
SCS�E Report ����

April� ����

VHDL vs Functional Hardware Description� A

Comparison and Critique

P� Kanthamanon� G� R� Hellestrand and M� C� Kam

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF NEW SOUTH WALES

Abstract

This paper presents a comparison of two Hardware Description Languages
�HDL�� VHDL and MODAL which employ di�erent description styles for
hardware speci�cation� The comparison is both qualitative and quantita�
tive and based on examples written in both languages� The languages are
distinct in their power to describe hardware at various levels of abstraction�
The results show that the functional description style� as used in MODAL�
provides a more accurate description of hardware and modelling of hardware
timing without loss of behavioural descriptive power�

1

1. Introduction

The objective of a Hardware Description Language (HDL) is to provide a suitable syntax
and semantics for the formal specification of hardware. For behavioural descriptions, most
HDLs employ sequential semantics, for example the VHSIC Hardware Description Language
(VHDL). In addition to the distinct structural and behavioural modes of description, VHDL
also provides a dataflow mode of description for more accurate hardware modelling.

Another style of hardware description is the functional style, as used in the Backus
functional programming notation [BACK78]. One example of an HDL having this style is
MODAL [HELL80], which is a concurrent, block structured, functional hardware
design/description language satisfying the requirements of digital hardware description at the
behavioural register–transfer, gate, and switch levels, using a common, simple and extensible
notation.

It is difficult to assert whether a sequential or functional description style is most appropriate
for behavioural specification. This paper compares both styles of description by comparing
VHDL and MODAL specifications. Other features of both languages are discussed. The
comparison is both qualitative and quantitative, and is based on examples of descriptions
written in both languages. An analysis is presented of the three main applications of HDLs:
specification, simulation and synthesis.

2. The Qualitative Comparison

2.1 Multi–level Hardware Description

A good HDL should provide a mechanism to describe hardware at all levels of abstraction
from the behavioural to the structural domain. It should facilitate mixed–level descriptions and
support both top–down and bottom–up design methodology thereby enabling designers to
specify hardware from the architectural level to the structural level, and to model the real
characteristics of hardware.

VHDL provides these features by employing separate and distinct structural, dataflow, and
sequential notations, and supporting mixed descriptions as shown in Example 1, which
describes an asynchronous data transfer unit with a 2–cycle signalling protocol. The block
diagram of the asynchronous data transfer unit is shown in Figure 1. The primitive components
used in structural descriptions have limited correspondence to real hardware. This will be
discussed in the quantitative comparison.

xdatain
XMIT

xfree

xreset

xgo

rdatainxdata

data

sreset

register

datareg

nq

q

r.in

p.edge

n.edge

s.in

RCV

D

ck Q
set

– e_xmitd

exmitd

e_rcvd

ercvd
rreset

e_rcvd

e_xmitd

datain

go

free

reset

Figure 1. Block Diagram of an Asynchronous Data Transfer Unit with 2–Cycle Protocol

2

PACKAGE support IS
TYPE bitvec IS ARRAY(3 DOWNTO 0) OF bit ;
TYPE threeval IS (’0’, ’1’, ’Z’) ;
TYPE threevec IS ARRAY (3 DOWNTO 0)

OF threeval ;
FUNCTION bitvec2threevec(x : bitvec)

RETURN threevec ;
FUNCTION threevec2bitvec (x : threevec)

RETURN bitvec ;
END support ;

USE WORK.support.ALL ;
ENTITY xmit IS

PORT (xgo, e_rcvd, xreset : IN bit ;
xdatain : IN bitvec ;
xfree, e_xmitd : OUT bit ;
xdata : OUT threevec);

END xmit ;
ARCHITECTURE behaviour OF xmit IS

SIGNAL busy : bit;
BEGIN
–– Sequential description

PROCESS (xreset, xgo)
BEGIN

IF xreset = ’1’ THEN
e_xmitd <= 0;

ELSIF NOT xgo’STABLE AND
xgo = ’1’ THEN

e_xmitd <= NOT e_xmitd ;
END IF;

END PROCESS ;
PROCESS (xgo, busy)
BEGIN

IF xgo = ’1’ OR busy = ’1’ THEN
xdata <= bitvec2threevec(xdatain) ;

ELSE
xdata <= ”ZZZZ” ;

END IF;
END PROCESS ;

–– Dataflow description
busy <= e_xmitd XOR e_rcvd ;
xfree <= NOT busy ;

END behaviour ;

USE WORK.support.ALL ;
ENTITY rcv IS

PORT (e_xmitd, rreset : IN bit ;
rdatain : IN threevec ;
e_rcvd : OUT bit);

END rcv ;
ARCHITECTURE behaviour OF rcv IS

SIGNAL datareg : bitvec ;
BEGIN
–– Sequential Description

PROCESS (e_xmitd)
BEGIN

IF NOT e_xmitd’STABLE THEN
datareg <= threevec2bitvec(rdatain);

END IF;
END PROCESS ;
PROCESS (rreset, e_xmitd)
BEGIN

IF rreset = ’1’ THEN
e_rcvd <= TRANSPORT ’0’ AFTER 100 ns;

ELSIF NOT e_xmitd’STABLE THEN
IF e_xmitd = ’1’ THEN

e_rcvd <= ’1’ AFTER 100 ns;
ELSIF e_xmitd = ’0’ THEN

e_rcvd <= ’0’ AFTER 100 ns;
END IF ;

END IF;
END PROCESS ;

END behaviour ;

USE WORK.support.ALL ;
ENTITY sync IS

PORT (reset, go : IN bit ;
datain : IN bitvec ;
free : OUT bit) ;

END sync ;
––Structural description
ARCHITECTURE structure OF sync IS

COMPONENT xmit
PORT (xgo, e_rcvd, xreset : IN bit ;

xdatain : IN bitvec ;
xfree, e_xmitd : OUT bit ;
xdata : OUT threevec);

END COMPONENT ;
COMPONENT rcv

PORT (e_xmitd, rreset : IN bit ;
rdatain : IN threevec ;
e_rcvd : OUT bit);

END COMPONENT ;
SIGNAL data : threevec ;
SIGNAL exmitd : bit ;
SIGNAL ercvd : bit ;

BEGIN
XM: xmit PORT MAP (go, ercvd, reset, datain,

free, exmitd, data) ;
RC: rcv PORT MAP (exmitd, reset, data,

 ercvd) ;
END structure ;

Example 1. VHDL Descriptions of a Data Transfer Unit with an Asynchronous, 2–Cycle
 Protocol using Behavioural, Dataflow and Structural Descriptions.

3

While VHDL descriptions have limited correspondence to hardware, MODAL descriptions
provide good correspondence by using a functional style of notation which employs functional
forms. MODAL describes digital systems at all levels using a single, uniform notation as shown
in Example 2, which describes the asynchronous data transfer unit in Figure 1. The semantics of
each operation or function in MODAL correspond closely to actual hardware behaviour.

module sync (p.in reset, go, datain[3..0];
p.out free)

function /*function definition*/
not :: 0 1 –> 1 0 ;
and :: 1{1} –> 1 0 ;
or :: 0{0} –> 0 1 ;

form /*form definition*/
exnor :: or[and, and not] ;
exor :: not exnor ;
nor :: not or ;

module
xmit (p.in xgo, e_rcvd, xreset, xdatain[3..0] ;

p.out xfree, e_xmitd, xdata[3..0])
register xmit.state ;
{

xfree <= exnor e_xmitd e_rcvd ;
e_xmitd <= not xmit.state ;
?or go exor e_xmitd e_rcvd?

xdata <= xdatain ;
?xreset? xmit.state <– 1;
/* ^ is signal rising detector*/
?and ^xgo not xreset?

xmit.state <– not xmit.state;
}

module rcv (p.in e_xmitd, rreset, rdatain[3..0];

p.out e_rcvd)
form

p.edge :: nor [not, D(25)];
n.edge :: nor [not D(25), a];
any.edge :: or [p.edge, n.edge] ;

register datareg[3..0];
module srff[q, nq] (p.in s.in, r.in, sreset)

{
q <= nor nq s.in ;
nq <= nor q sreset r.in;

}
/*rcv: body*/

{
e_rcvd <= D(100) srff[nq](p.edge e_xmitd,

 n.edge e_xmitd, rreset);
?any.edge e_xmitd? datareg <– rdatain ;

}
net data[3..0], exmitd, ercvd ;
/* start of machine SYNC */
{

xmit(go, ercvd, reset, datain, free,
 exmitd, data);

rcv(exmitd, reset, data, ercvd);
}

Example 2. The MODAL Descriptions of a Data Transfer Unit with an Asynchronous,
 2–Cycle Protocol using Functional Style with Forms and Structural Style.

2.2 Behavioural Specification

In VHDL, a sequential style of description is used for behavioural specification. Many
operators, such as Boolean functions, arithmetic operators, relational operators are provided.
Such descriptions can only represent the intent of the hardware, the actual correspondence is
weak. While this type of description is useful for indicating system function, it measurably
complicates the synthesis process.

To provide high level descriptions, MODAL employs functional forms which are
mathematically well–based, can describe the behaviour of hardware at a high level of
abstraction, and can be readily synthesised and interpreted by a simulator.

Examples 3 and 4, below, show behavioural descriptions in VHDL and MODAL. Both
descriptions represent the behaviour of a 16–bit serial adder. While the syntactic styles are very
different, these two descriptions are behaviourally identical.

4

ENTITY sadd16 IS
PORT (a, b : IN bit_vector(15 DOWNTO 0) ;

load, clk : IN bit ;
sum : OUT bit_vector(15 DOWNTO

0);
cout : OUT bit) ;

END sadd16b ;
ARCHITECTURE sequent OF sadd16b IS
BEGIN

PROCESS (load, clk)
VARIABLE aa, r : bit_vector(15 DOWNTO

0);
VARIABLE count : integer ;
VARIABLE c : bit ;

BEGIN
IF (NOT load’STABLE) AND (load = ’0’)

THEN
aa := a ;
r := b ;
count := 0 ;
c := ’0’ ;

END IF ;
IF count /= 16 THEN

IF NOT clk’STABLE THEN
IF clk = ’1’ THEN

r := (aa(0) XOR r(0) XOR c)
& r(15 DOWNTO 1);

c := ((a(0) OR r(0)) AND c) OR (aa(0)
AND r(0));

ELSIF clk = ’0’ THEN
aa := ’0’ & aa(15 DOWNTO 1);
count := count + 1;

END IF;
END IF ;

END IF ;
sum <= r ;
cout <= c ;

END PROCESS ;
END sequent ;

module sadd16(p.in a[15..0], b[15..0], c.in, load,
clk;

 p.out sum[15..0], cout)
form /*form definition*/

equ :: or[and,and not];
exor :: not equ;
/*logical shift right*/
shr :: [0, a..w–1];
/*incrementor*/
inc :: [exor[a, and[a+1..w, 1]], inc[a+1..w];
/*1–bit full adder*/
gen :: and a..a+1;
prop :: exor a..a+1;
sum :: prop[prop, a+2];
carry :: or[gen, and[prop, a+2]];

register /*register instantiation*/
c, /*intermediate carry*/
count[4..0], /*counter*/
r[15..0], /*result*/
aa[15..0]; /*operand*/

{
sum cout <= r c ;
?!load? /*signal falling*/
{

aa <– a ;
r <– b ;
c <– 0 ;
count <– 0 ;

}
?not count[4]?
{

?^clk? /*signal rising*/
{

r <– (sum a[0] r[0] c) r[15..1] ;
c <– carry a[0] r[0] c ;

}
?!clk?
{

aa <– shr aa ;
count <– inc count ;

}
}

}

Example 3. The Behavioural Description of
 VHDL

Example 4. The Behavioural Description of
 MODAL

Since the default basis in MODAL is Boolean, the more complex operations such as
multiplication and division may be defined by using forms or module descriptions. Recent
extensions to MODAL [KAM92a] enable externally defined functions of arbitrary complexity
to be incorporated into a MODAL description, with the same status as intrinsic functions. This
strategy has obvious advantage in simulation where the high level function takes significantly
less time to simulate than the equivalent function expressed in terms of primitive circuits.

5

Example 5 shows a MODAL description using high–level externally defined functions stored
in a library. The function u2f in the example is used to convert data from unsigned binary, which
is the default basis data type in MODAL, to floating point which is required by functions fadd
and fmul.

#interface <math.m>
/* The high–level operations library*/

/* fadd : floating point adder */
/* fmul : floating point multiplier */
/* u2f : unsign binary to foating point

 converter */
module SecondOrderFilter

(p.in ck, in[31..0]; p.out out[31..0])
register

z[31..0]; zz[31..0];
net

x[31..0];
constant

k :: X’0001 ;
g :: X’0001 ;

{
? ^clk? {

 zz <– z;
 z <– x;

}
/* x = in + z X k + z X g */
x <= fadd in fadd (fmul z (u2f k))

 fmul z u2f g ;
out <= zz;

}

Example 5. MODAL Description using Externally Defined Functions

2.3 Description Complexity

One important objective of HDLs is the formal specification of circuits. A description
language should have well defined and consistent semantics and syntax. If the language allows
designers to use different styles of description such as sequential and concurrent styles, it should
explicitly separate the two sets of semantics to minimize the confusion for designers when
writing or reading circuit descriptions.

ARCHITECTURE use_signal OF mux4 IS
SIGNAL temp : integer ;
BEGIN

PROCESS (a, b, i0, i1, i2, i3)
BEGIN

temp <= 0;
IF a = ’1’ THEN

temp <= temp + 1;
END IF;
IF b = ’1’ THEN

temp <= temp + 2;
END IF;
CASE temp IS

WHEN 0 => q <= i0 ;
.

END CASE ;
END PROCESS;

END use_signal;

ARCHITECTURE use_variable OF mux4 IS
BEGIN
VARIABLE temp : integer ;

PROCESS (a, b, i0, i1, i2, i3)
BEGIN

temp := 0;
IF a = ’1’ THEN

temp := temp + 1;
END IF;
IF b = ’1’ THEN

temp := temp + 2;
END IF;
CASE temp IS

WHEN 0 => q <= i0;
.

END CASE ;
END PROCESS;

END use_variable;

Example 6. VHDL Description Showing the
 Mixed–Usage of Signals and Variables

 in a Sequential Statement.

Example 7. The Correction for Example 6.

VHDL allows designers to have both signal assignments and variable assignments in
sequential statements. Signal and variable assignments have different semantics, in that
variables reflect their assigned values immediately whereas signals are updated after a time

6

delay (possibly a process invocation delay). This is complex and confusing, and readily leads to
unexpected behaviour in models.

Example 6 [PER91], above, attempts to directly and simply model the behaviour of a 4–to–1
multiplexer. The signal temp is initialised in the process statement (which are used for
describing sequential behaviour). Since a signal object in VHDL does not get updated in the
same simulation cycle as the value is assigned, the statements which rely on the value of temp
are evaluated incorrectly. The error in Example 6 may be corrected by using VHDL variables,
since they are updated as part of the assignment. Example 7 [PER91] shows the correct
description of a 4–to–1 multiplexer.

In MODAL, all functions are assumed to perform work which requires energy and takes
time, and is reflected as a definable delay which is consistently and straightforwardly
interpretable by a simulator.

2.4 Technology Dependencies

Ideally, a description should be independent of implementation technology so that when
technology changes, the same description should be still applicable. This enhances the
portability of models written in the HDL.

Technology dependent information which is mainly used by tools such as simulators and
synthesisers, should not be embedded in descriptions. Examples of technology dependent
information are propagation delays, resolution functions and multiple–valued logic
information.

ARCHITECTURE conflict OF simple IS
TYPE trivec IS ARRAY (integer RANGE <>)

OF threeval ;
FUNCTION resolve (SIGNAL s : trivec)

RETURN threeval IS
––Assume that both 1’s and 0’s predominate over Z

VARIABLE temp : threeval ;
BEGIN

FOR i IN s’RANGE LOOP
IF s(i) = ’0’ THEN

temp := ’0’;
exit ;

ELSE
temp := ’1’;

END IF;
END LOOP;
RETURN temp;

END resolve ;
SIGNAL a : resolve threeval ;

BEGIN
P1: PROCESS (in1)

BEGIN
IF in1 = ’1’ THEN

a <= d1 ;
ELSE

a <= ’Z’ ;
END IF ;

END PROCESS P1 ;
P2: PROCESS (in2)

BEGIN
IF in2 = ’1’ THEN

a <= d2 ;
ELSE

a <= ’Z’ ;
END IF ;

END PROCESS P2 ;
q <= a ;

END conflict ;

Example 8. VHDL Description using a Resolution Function

VHDL provides mechanisms for describing technology related information, which makes
such descriptions technology specific and, as well, complicates both the syntax and semantics
of the languages. Although VHDL provides library and package facilities which may be used to
encapsulate technology dependent information, the language compiler must process this
information so that it can be passed to various simulation and synthesis tools. If the description
is to be used with different technology, a recompilation using the appropriate library and/or

7

package is required. An example of a technology dependent VHDL description is shown in
Example 8, above.

In this description, a conflict occurs as a result of more than two drivers assigning different
values to the same signal. In VHDL, a resolution function is required to resolve the conflict. In
this example, the resolution function is a Wired–AND connection. If TTL or CMOS
technology is required, this resolution function correctly models the open–collector circuit.
However, it is inappropriate for ECL technology because an open collector circuit in ECL
performs a Wired–OR function.

In MODAL, the only abstraction which can be used to model technology dependent features
is the delay operator. All technology dependent information has to be provided from other
sources. For example, a simulator for MODAL has access to resolution functions and delay
characteristics for various technologies. Example 9 illustrates a technology independent
description in MODAL, in which there may be a conflict on the net q when both in1 and in2 are
true. If the net q is driven by two drivers, the conflict will need to be resolved by the simulator,
since it is part of the dynamic behaviour of the circuit.

module conflict (p.in in1, in2, d1, d2 ; p.out q)
{

? in1 ? q <= d1;
? in2 ? q <= d2 ;

}

module conflict (p.in in1, in2, d1, d2 ;
 p.out < TECH = TTL_OC> q)

/* use TTL_OC to resolve conflicts , if any */
{

? in1 ? q <= d1;
? in2 ? q <= d2 ;

}

Example 9. MODAL Description Represent
 the Conflict of a Signal

Example 10. Using an Affix List to Pass
 Information to a Module in

 MODAL

Although MODAL does not provide constructs for the explicit specification of technology
dependent information, the language provides a construct called an affix list [HELL80,
KAM88] through which technology–dependent information may be described. This
information is not interpreted by the compiler, but is passed directly to the simulators and
synthesisers. Example 10 demonstrates the use of an affix list to specify technology dependent
information.

3. The Quantitative Comparison

3.1 Accuracy in Modelling Timing and Delay

The method used to measure how accurately timing can be modelled by the two languages
employs simulators to evaluate a set of examples written in each language. The results are
compared with how real hardware is expected to perform. The VHDL toolset, PICA.VHDL
Version 2.216 [PICA91], is used to simulate VHDL descriptions. Since there are many
limitations in this toolset, certain techniques are used to facilitate the simulations. The MODAL
compiler and Maxim simulator [KAM92b] are used to compile and simulate the MODAL
descriptions. The results are interpreted according to the semantics of the simulation
mechanism of each language, and the comparison covers different styles of description ranging
from structural to behavioural.

In the structural domain, both languages employ component instantiation statements to
describe the netlist of a circuit. Each component created is treated as a black–box whose
functionality has to be described using some style of description. The accuracy in the
interpretation of circuits described in the structural domain obviously relies on the accuracy of

8

the other types of description employed in the individual component. The functionality of a
component in VHDL can be described using dataflow or sequential descriptions, whereas only
functional descriptions are supported in MODAL. Examples of various descriptions have been
simulated to measure the accuracy of interpretation.

Figure 2. A Full Adder

a
b

cin

sum

cout
a
b

n1

ENTITY fadder IS
PORT (a : IN bit ;

b : IN bit ;
cin : IN bit ;
sum : OUT bit :
cout : OUT bit);

END fadder ;
ARCHITECTURE dataflow OF fadder IS

SIGNAL n1 : bit ;
BEGIN

n1 <= a XOR b AFTER 2 ns ; –– L1
sum <= n1 XOR cin AFTER 2 ns ; –– L2
cout <= (n1 AND cin) OR (a AND b)

AFTER 2 ns; –– L3
END dataflow ;

module fadder (p.in a, b, cin ; p.out sum, cout)
net n1;
{

n1 <= exor a b ;
sum <= exor n1 cin ;
cout <= or (and a b) and cin n1 ;

}

Example 11. VHDL Description of a Full
 Adder

Example 12. MODAL Description of a Full
 Adder

module fadder (p.in a, b, cin ; p.out sum, cout)
net n1;
{

n1 <= D(5) exor a b ;
sum <= D(5) exor n1 cin ;
cout <= or (and a b) and cin n1 ;

}

Example 13 The use of Delay Operators in
 MODAL Description

5 10 15 20 25 5 10 15 20 25

a
b
cin

cout
sum

a
b
cin

cout
sum

Time (x 1.0e–9 seconds) Time (x 1.0e–9 seconds)

Figure 3. Simulation Waveforms Produced by VHDL and MODAL Simulators

(a) VHDL waveforms for a full adder (b) MODAL waveforms for a full adder

Figure 2 and Examples 11 and 12 describe a full adder, using the VHDL dataflow style and
the MODAL functional style. Even though operator precedence rule and parentheses are used
in VHDL, there is no delay property for operators embedded in the same statement. A lumped
delay can be defined by using the after clause, as shown in Example 11. This causes on incorrect

9

behaviour to be observed in the circuit associated with statement L3 in Example 11 (cout and
sum should not change at the same time). To produce a correct description, delays have to be
associated with each operator. The functional semantics of MODAL avoid this problem, since
there is an intrinsic delay associated with the action of each operator and function. Designers
can alter the desired delay for each signal by using the delay operator, as illustrated in Example
13. As a result, the MODAL description models the correct timing behaviour of the hardware.
The simulation results for both VHDL and MODAL, as shown in Figure 3, confirm this
comparative analysis.

Figure 4. Block Diagram of a First–Order FIR Filter

+

b1

a1

a0

+ k2Z1k1din dout

For lowpass filter :
a0 = 1, a1 = 1, k2 = 1

PACKAGE support1 IS
FUNCTION int2vec (x : integer)

RETURN bit_vector(7 DOWNTO 0) ;
FUNCTION vec2int

(x : bit_vector(7 DOWNTO 0))
RETURN integer ;

END support1 ;

USE WORK.support1.ALL ;
ENTITY filter1 IS

PORT (din : IN bit_vector(7 DOWNTO 0);
ck : IN bit;

dout : OUT bit_vector(7 DOWNTO 0));
END filter1;
ARCHITECTURE sequent OF filter1 IS

SIGNAL z1d : integer ;
SIGNAL z1 : integer ;
FUNCTION mult2c8(mand, mier : integer)

RETURN integer IS
VARIABLE ma : integer ;
VARIABLE ma1 : bit_vector(7 DOWNTO 0) ;
VARIABLE md : bit_vector(7 DOWNTO 0) ;
VARIABLE mr : bit_vector(7 DOWNTO 0) ;
VARIABLE f : bit ;
VARIABLE i : integer ;

module filter1 (p.in din[7..0], ck;
p.out dout[7..0])

#include <form.m>
module adder[7..0](p.in a[7..0], b[7..0], cin)

net c[7..0] ;
{

adder <= exor a : b : c[6..0] cin ;
c <= or (and a : b) : and c[6..0] cin :

 exor a : b ;
}

module mult2c8[mout[7..0], done]
(p.in mand[7..0], mier[7..0], load)

register
ma[7..0]; md[7..0]; mr[7..0]; count[3..0];

net cki;
initiate

cki <= 1; count <– 0;
{

? ^load ?
{

ma <– 0;
md <– mand;
mr <– mier;
count <– 1000 ;

}

Example 14. VHDL Description of a First–
Order FIR Filter

Example 15. MODAL Description of a
First–Order FIR Filter

10

BEGIN
mr(7 DOWNTO 0) := int2vec(mier) ;
md(7 DOWNTO 0) := int2vec(mand) ;
f := ’0’;
ma := 0 ;
FOR i IN 0 TO 6 LOOP

IF mr(0) = ’1’ THEN
ma := ma + mand ;

END IF;
ma1 := int2vec(ma) ;
f := (md(15) AND mr(0)) OR f ;
mr(7 DOWNTO 0) := ma1(0) &

 mr(7 DOWNTO 1);
ma1(7 DOWNTO 0) := f &

 ma1(7 DOWNTO 1);
ma := vec2int(ma1) ;

END LOOP;
IF mr(0) = ’1’ THEN

ma := ma – mand;
END IF;
mr(0) := 0;
RETURN ma ;

END mult2c8;

BEGIN
–– Delay signal
PROCESS (ck)
BEGIN

IF NOT ck’STABLE AND ck = ’0’ THEN
z1d <= z1 ;

END IF;
END PROCESS;
–– Calculate output at tn
PROCESS (ck, zid)

VARIABLE m1, m2, m3, m4 : integer ;
CONSTANT b1 : integer := –120 ;
CONSTANT k1 : integer := 124 ;

BEGIN
IF NOT ck’STABLE and ck = ’1’ THEN

m1 := mult2c8(vec2int(din), k1) ;
m2 := mult2c8(z1d, b1,) ;

END IF ;
m3 := m1 + m2 ;
–– Since a0, a1, k2 :=1, Calculate m4
m4 := m3 + z1d ;
–– transfer new output
z1 <= m3 ;
dout(7 DOWNTO 0) <= int2vec(m4)

AFTER 1200 ns ;
END PROCESS ;

END sequent ;

??
{

? or count ?
{

? ^cki ?
{

?and (not or count[3..1]) count[0]?
{

ma <– (?mr[0]?
adder(ma, not md, 1)

?? ma);
mr[0] <– 0;

}
??
{

ma[7] <– or (and md[7] mr[0])
ma[7];

ma[6..0] mr <– (?mr[0]?
adder(ma, md, 0)

?? ma)
mr[7..1];

} count <– dec count;
}

}
}
mout <= ma;
done <= not or count ;
cki <= D(100) not and cki or count ;

}
register

z1d[7..0];
net

m1[7..0]; m2[7..0]; m3[7..0]; m4[7..0]; done1;
done2;

constant
k1 :: X’7c;
b1 :: X’88;

initiate
z1d <– 0;

{
? !ck ? z1d <– m3 ;
m1 done1 <= mult2c8(din, k1, ck);
m2 done2 <= mult2c8(z1d, b1, ck);
m3 <= adder(m1, m2, 0);
m4 <= adder(z1d, m3, 0);
dout <= m4;

}

Example 14. VHDL FIR Filter (Cont.) Example 15. MODAL FIR Filter (Cont.)

11

2 4 6 8 10
Time (x1e–6 seconds)

ck

din[0]
din[1]
din[2]
din[3]
din[4]
din[5]
din[6]
din[7]

dout[0]
dout[1]
dout[2]
dout[3]
dout[4]
dout[5]
dout[6]
dout[7]

(a) Waveforms from VHDL simulation (b) Waveforms from MODAL simulation

Figure 5. Simulation Waveforms of a First–Order FIR Filter Described in VHDL and MODAL

Time (x1e–6 seconds)

In the next step of this comparison, a first–order FIR filter is described in both languages to
compare the VHDL sequential style and the MODAL functional style of behavioural
description. The block diagram of the filter is shown in Figure 4, and the multiplication
algorithm used is from [CAV84]. Examples 14 and 15 detail the sequential VHDL description
and the functional MODAL description of the first–order FIR filter, respectively. The
assignment statements of VHDL description support only lumped delay, and may cause the
problems mentioned in Section 2.3. In contrast, the functional description in MODAL
describes the functions needed for the first–order FIR filter, and still corresponds closely to the
hardware behaviour. The output delay is evaluated according to which input change has
occurred, and the number of levels of function delay incurred to propagate this signal change to
the output. As a result, the timing delay as expected in actual hardware is obtained. Figure 5
shows the simulation results obtained from each CAD system.

3.2 Accuracy in Describing Hardware

Digital hardware is usually described in terms of modules and interconnections. The
definition within modules details the functions and the hierarchical structure, while the
interconnections specify the communication paths among modules. This information is
important in synthesis from HDL specifications, since it facilitates the generation of data–flow
and control–flow graphs.

Both VHDL and MODAL provide accurate hierarchical and interconnection information
using structural description. The functions of modules are described differently, using the
dataflow and sequential styles in VHDL, and the functional style in MODAL. The MODAL
functional style provides good correspondence with hardware, which facilitates the synthesis
task. The VHDL dataflow style has similar correspondence, but the sequential style provides
little information for hardware synthesis, resulting in VHDL constructs being restricted to a
synthesisable subset of the language [CAM91]. Since VHDL dataflow and sequential styles
have different semantics, different techniques are required to synthesis each description style,
complicating the task of synthesisers. Examples 11 and 14, and 12 and 15 together with Figures
2 and 4, illustrate the hardware correspondence issues described in this section.

12

4. Conclusions

The qualitative comparison demonstrates the similarity between VHDL and MODAL in
their respective ability’s to describe hardware at various levels of abstraction. At the structural
level, circuit descriptions written in each language are similar in style and semantics. However,
large differences in the description styles are evident at the behavioural level. While VHDL
provides distinct dataflow and sequential styles of description at this level, MODAL uses a
uniform functional notation.

VHDL allows designers to mix objects, namely signals and variables, having different delay
semantics in the same sequential statements. This makes the language confusing and may lead
to unexpected behaviour in the system being designed. MODAL, by contrast, provides
consistent delay semantics.

The ability to describe technology dependent information in VHDL demonstrates a nexus
between the roles of description/specification and interpretation, which reduces the reusability
of the descriptions. The quantitative analysis reveals that the functional description used in
MODAL provides a more accurate language for describing hardware, and modeling of timing
and delay. This allows simulation tools to provide accurate result and eases the task of
synthesisers.

In conclusion, the comparisons show that the functional description style of MODAL has a
consistent concurrent semantics whereas VHDL has an mix of sequential and concurrent
semantics. The many features of VHDL to support the many description styles increase the
language complexity. The functional description style provides a more natural/intuitive
semantics for hardware descriptions. This facilitates the simulation and automatic synthesis of
hardware from MODAL descriptions.

References:

[ARM89] J.R. Armstrong, ”Chip–Level Modeling with VHDL”, Prentice Hall,, New Jersey,
USA, 1989.

[BACK78] J. Backus,”Can programming be liberated from the von Neumann style: a
functional style and its algebra of programs”,Communications of ACM, Vol. 21,
No. 8, pp. 613–641, 1978.

[CAM91] R. Camposano, L.F. Saunders, and R.M. Tabet, ” VHDL as Input for High–Level
Synthesis”, IEEE Design &Test of Computers, Vol. 8, No. 1, pp. 43–49, March
1991.

[CAV84] J. J. F., Cavanagh, ”Digital Computer Arithmetic, New york, 1984.
[HELL80] G.R. Hellestrand, ”MODAL: A System for Digital Hardware Description and

Simulation”, Journal of Digital Systems, Vol. 4, No. 3, pp. 241–304, Fall 1980.
[IEEE87] ”IEEE Standard VHDL Language Reference Manual”, IEEE Std. 1076–1987,

IEEE Computer Soc. Press, USA., 1987.
[KAM88] Ming Chi Kam, ”Tutorial on Using the MODAL Compiler and Simulation

System”, Internal Document, UNSW., May 1988.
[KAM92a] M.C. Kam, ”Using the MODAL Math Functions”, Internal Document, VaST

Lab., UNSW., 1992.
[KAM92b] M.C. Kam, ”MODAL – A Hardware Description Language: User’ Manual”,

UNSW., 1992.
[PER91] Douglas L. Perry, ”VHDL”: Int. Ed., McGRAW–HILL, Singapore, 1991.
[PICA91] ”VHDL Toolsets Reference Manual”, PICA Lab., Uni. of Pittsburgh, USA., 1990.

