SCS&E Report 9306
April, 1993

VHDL vs Functional Hardware Description: A
Comparison and Critique

P. Kanthamanon, G. R. Hellestrand and M. C. Kam

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING
THE UNIVERSITY OF NEW SOUTH WALES

| SCIENTIA

Abstract

This paper presents a comparison of two Hardware Description Languages
(HDL)- VHDL and MODAL which employ different description styles for
hardware specification. The comparison is both qualitative and quantita-
tive and based on examples written in both languages. The languages are
distinct in their power to describe hardware at various levels of abstraction.
The results show that the functional description style, as used in MODAL,
provides a more accurate description of hardware and modelling of hardware
timing without loss of behavioural descriptive power.

1. Introduction

The objective of a Hardware Description Language (HDL) is to provide a suitable syntax
and semantics for the formal specification of hardware. For behavioural descriptions, most
HDL semploy sequential semantics, for example the VHSIC Hardware Description Language
(VHDL). In addition to the distinct structural and behavioural modes of description, VHDL
also provides a dataflow mode of description for more accurate hardware modelling.

Another style of hardware description is the functional style, as used in the Backus
functional programming notation [BACK78]. One example of an HDL having this style is
MODAL [HELL80], which is a concurrent, block structured, functional hardware
design/description language satisfying the requirements of digital hardware description at the
behavioural register-transfer, gate, and switch levels, using acommon, simple and extensible
notation.

Itisdifficult toassert whether asequential or functional description styleismost appropriate
for behavioural specification. This paper compares both styles of description by comparing
VHDL and MODAL specifications. Other features of both languages are discussed. The
comparison is both qualitative and quantitative, and is based on examples of descriptions
written in both languages. An analysis is presented of the three main applications of HDLS:
specification, ssimulation and synthesis.

2. The Qualitative Comparison

2.1 Multi-Hevel Hardware Description

A good HDL should provide a mechanism to describe hardware at all levels of abstraction
from the behavioural to the structural domain. It should facilitate mixed- evel descriptionsand
support both top—down and bottom—up design methodology thereby enabling designers to
specify hardware from the architectural level to the structural level, and to model the real
characteristics of hardware.

VHDL providesthese features by employing separate and distinct structural, dataflow, and
sequential notations, and supporting mixed descriptions as shown in Example 1, which
describes an asynchronous data transfer unit with a 2—cycle signalling protocol. The block
diagram of the asynchronous datatransfer unit isshownin Figure 1. The primitive components
used in structural descriptions have limited correspondence to real hardware. This will be
discussed in the quantitative comparison.

XMIT RCV
xdatain xdata rdatain
datain & 1) () 1) () = 154 datar%
data
‘ register
D
Xgo — e xmitd e xmitd
go & ck Qrr+
Set exmitd
Xreset
free xfr @
e revd e revd
ercvd
rreset
reset

Figure 1. Block Diagram of an Asynchronous Data Transfer Unit with 2—Cycle Protocol

PACKAGE support IS
TYPE bitvec ISARRAY (3 DOWNTO 0) OF hit ;
TYPE threeval IS(0’,'1',°2Z");
TYPE threevec ISARRAY (3DOWNTO 0)
OF threeva ;
FUNCTION bitvec2threevec(x : bitvec)
RETURN threevec;
FUNCTION threevec2hitvec (x : threevec)
RETURN bitvec ;
END support ;

USE WORK .support.ALL ;

ENTITY xmit IS
PORT (xgo, e rcvd, xreset : IN bit ;
xdatain . IN bitvec;
xfree, e xmitd : OUT bhit ;
xdata : OUT threevec);
END xmit ;

ARCHITECTURE behaviour OF xmit IS
SIGNAL busy : hit;
BEGIN
— Sequential description
PROCESS (xreset, xgo)
BEGIN
IF xreset ='1" THEN
e xmitd<=0;
ELSIF NOT xgo' STABLE AND
xgo='1 THEN
e xmitd <= NOT e xmitd ;
END IF;
END PROCESS;
PROCESS (xgo, busy)
BEGIN
IFxgo="1 ORbusy ='1' THEN
xdata <= bitvec2threevec(xdatain) ;
ELSE
xdata<="27277" ;
END IF;
END PROCESS;
— Dataflow description
busy <= e xmitd XOR e rcvd;
xfree <= NOT busy ;
END behaviour ;

USE WORK .support.ALL ;

ENTITY rev IS
PORT (e _xmitd, rreset : IN bit;
rdatain . IN threevec ;
e revd : OUT bit);
END rev ;

ARCHITECTURE behaviour OF rcv IS

SIGNAL datareg : bitvec;
BEGIN
— Sequential Description
PROCESS (e_xmitd)
BEGIN
IF NOT e _xmitd’ STABLE THEN
datareg <= threevec2bitvec(rdatain);
END IF;
END PROCESS;
PROCESS (rreset, e xmitd)
BEGIN
IFrreset ='1 THEN
e rcvd <= TRANSPORT '0" AFTER 100 ns;
ELSIF NOT e_xmitd' STABLE THEN
IFe xmitd="1" THEN
e rcvd<= "1 AFTER 100 ns;
ELSIF e xmitd="0" THEN
e rcvd<= '0' AFTER 100 ns;
END IF;
END IF;
END PROCESS;
END behaviour ;

USE WORK .support.ALL ;

ENTITY sync IS
PORT (reset,go :IN bit ;
datain : IN bitvec;
free : OUT bit) ;
END sync;

—Structural description
ARCHITECTURE structure OF sync IS

COMPONENT xmit
PORT (xgo, e rcvd, xreset: IN bit ;
xdatain . IN bitvec;
xfree, e xmitd : OUT hit ;
xdata : OUT threevec);
END COMPONENT ;
COMPONENT rcv
PORT (e xmitd, rreset : IN bit ;
rdatain . IN threevec;
e revd : OUT hit);
END COMPONENT ;
SIGNAL data : threevec;

SIGNAL exmitd: hit ;
SIGNAL ercvd : hit ;
BEGIN
XM: xmit PORT MAP (go, ercvd, reset, datain,
free, exmitd, data) ;
RC:rcv PORT MAP (exmitd, reset, data,
ercvd) ;
END structure ;

Example 1. VHDL Descriptions of a Data Transfer Unit with an Asynchronous, 2-Cycle
Protocol using Behavioural, Dataflow and Structural Descriptions.

WhileVHDL descriptions havelimited correspondenceto hardware, MODAL descriptions
provide good correspondence by using afunctional style of notation which employsfunctional
forms. MODAL describesdigital systemsat all levelsusing asingle, uniform notation asshown
in Example 2, which describesthe asynchronousdatatransfer unitin Figure 1. The semanticsof
each operation or function in MODAL correspond closely to actual hardware behaviour.

module sync (p.in reset, go, datain[3..0]; p.out e_rcvd)
p.out free) form

function /*function definition*/ p.edge :: nor [not, D(25)];
not:: 01 —10; n.edge ::nor [not D(25), al;
and:: L1} —>10; any.edge :: or [p.edge, n.edge] ;
or 1 00} >01; register datareg[3..0];

form /*form definition*/ module srff[g, nq] (p.in s.in, r.in, sreset)
exnor :: or[and, and not] ; {
exor :: notexnor; q <=norngsin:
hor . notor; ng <=norqsresetr.in;

module }

xmit (p.in Xgo, e_rcvd, xreset, xdatain[3..0] ;
p.out xfree, e xmitd, xdata[3..0])
register xmit.state;
{
xfree <=exnor e xmitde revd;
e xmitd <= not xmit.state ;

rev: body/
{
e _rcvd <= D(100) srff[ng](p.edge e_xmitd,
n.edge e xmitd, rreset);
?any.edge e xmitd? datareg <—rdatain ;

?0r go exor e xmitd e_rcvd? }
xdata <= xdatain ; net data[3..0], exmitd, ercvd ;
Xreset? xmit.state <—1; [* start of machine SYNC */
I* Nissignal rising detector*/ {
2and ~xgo not xreset? xmit(go, ercvd, reset, datain, free,
Xmit.state <— not xmit.state; exmitd, data);
} rcv(exmitd, reset, data, ercvd);
module rcv (p.in e xmitd, rreset, rdatain[3..0]; }

Example 2. The MODAL Descriptions of a Data Transfer Unit with an Asynchronous,
2—Cycle Protocol using Functional Stylewith Formsand Structural Style.

2.2 Behavioural Specification

In VHDL, a sequentia style of description is used for behavioural specification. Many
operators, such as Boolean functions, arithmetic operators, relational operators are provided.
Such descriptions can only represent the intent of the hardware, the actual correspondence is
weak. While this type of description is useful for indicating system function, it measurably
complicates the synthesis process.

To provide high level descriptions, MODAL employs functional forms which are
mathematically well-based, can describe the behaviour of hardware at a high level of
abstraction, and can be readily synthesised and interpreted by a simulator.

Examples 3 and 4, below, show behavioural descriptions in VHDL and MODAL. Both
descriptionsrepresent the behaviour of a16-hit serial adder. Whilethe syntactic stylesarevery
different, these two descriptions are behaviourally identical.

ENTITY sadd16 1S

PORT (a, b :IN bit_vector(15 DOWNTOO0) ;
load, clk :IN bit;
sum : OUT bit_vector(15 DOWNTO
0);
cout : OUT hit) ;
END sadd16b ;

ARCHITECTURE sequent OF sadd16b IS
BEGIN
PROCESS (load, clk)
VARIABLE aar :hbit vector(15 DOWNTO
0);
VARIABLE count : integer ;
VARIABLE ¢ s bit;
BEGIN
IF (NOT load’ STABLE) AND (load ='0’)
THEN

aa :=a;
r =b;
count :=0;
c =0,
END IF;

IF count /= 16 THEN
IF NOT clk’ STABLE THEN
IFclk="1 THEN
r :=(aa(0) XOR r(0) XOR c)
& r(15 DOWNTO 1);
¢ :=((a(0) OR r(0)) AND c) OR (aa(0)
AND r(0));
ELSIFclk ="0"' THEN
aa ='0" & aa(15 DOWNTO 1);
count :=count + 1;
END IF;
END IF;
END IF;
sum <=r;
cout <=c;
END PROCESS;
END sequent ;

module sadd16(p.in a[15..0], b[15..0], c.in, load,
clk;
p.out sum[15..0], cout)
form /*form definition*/
equ :: or[and,and not];
exor ::notequ;
logical shift right/
shr [0, a.w-1];
[*incrementor*/
inc ::[exor[a and[atl..w, 1]], inc[a+1..w];
[* 1-bit full adder*/
gen :anda.atl;
prop ::exora.atl,
sum :: prop[prop, at+2];
carry :: or[gen, and[prop, a+2]];
register /*register instantiation*/
¢, I*intermediate carry*/
count[4..0], /*counter*/
r[15..0], /*result*/
ag[15..0]; /*operand*/
{
sumcout<=rc;
load? /[*signal falling*/
{
aa <-a;
r <-b;
c <-0;
count <—0;
}
not count[4]?
{
?clk? /*signal rising*/
{
r <—(sumgqQ] r[Q] c) rf[15..1] ;
c <—carydQ]r[0]c;
}
2Aclk?
{
aa <-shraa;
count <—inc count ;
}
}
}

Example 3. The Behavioural Description of
VHDL

Example 4. The Behavioural Description of

MODAL

Since the default basis in MODAL is Boolean, the more complex operations such as
multiplication and division may be defined by using forms or module descriptions. Recent
extensionsto MODAL [KAM924] enable externally defined functionsof arbitrary complexity
to beincorporated into aMODAL description, with the same status asintrinsic functions. This
strategy has obvious advantage in simulation where the high level function takes significantly
less time to simulate than the equivalent function expressed in terms of primitive circuits.

Example 5 showsaMODAL description using high-evel externally defined functions stored
inalibrary. Thefunction u2f intheexampleisused to convert datafrom unsigned binary, which
isthe default basis datatypein MODAL, to floating point which isrequired by functions fadd
and fmul.

#interface <math.m> k :: X’0001;
/* The high-evel operations library*/ g:: X’0001;
[* fadd : floating point adder */ {
/* fmul : floating point multiplier */ 21clk?{
[* u2f :unsign binary to foating point)
converter */ 2z <z,
module SecondOrderFilter zZ <X
(p.in ck, in[31..0]; p.out out[31..0]) }

register Fx=in+zXk+zXg */
Z[31..0]; zZ[31..0]; x <=faddin fadd (fmul z (u2f k))
net fmul zu2f g;
X[31..0]; out <= zz;
constant }

Example5. MODAL Description using Externally Defined Functions

2.3 Description Complexity

One important objective of HDLs is the formal specification of circuits. A description
language should have well defined and consi stent semanticsand syntax. If thelanguage allows
designersto usedifferent stylesof description such assequential and concurrent styles, it should
explicitly separate the two sets of semantics to minimize the confusion for designers when

writing or reading circuit descriptions.

ARCHITECTURE use_signal OF mux4 1S
SIGNAL temp : integer ;
BEGIN
PROCESS (& b,i0,i1,i2,i3)
BEGIN
temp <=0,
IFa="1 THEN
temp <=temp + 1,
END IF;
IFb="1 THEN
temp <=temp + 2;
END IF;
CASE temp IS
WHEN 0=>q<=i0;
END CASE;
END PROCESS;
END use signal;

ARCHITECTURE use variable OF mux4 IS
BEGIN
VARIABLE temp : integer ;
PROCESS (4, b,i0,i1,i2,i3)
BEGIN
temp :=0;
IFa="1 THEN
temp :=temp + 1;
END IF;
IFb="1 THEN
temp :=temp + 2;
END IF;
CASEtemp IS
WHEN 0=>qg<=i0;
END CASE;
END PROCESS;
END use variable;

Example 6. VHDL Description Showing the
Mixed—Usage of Signalsand Variables
in a Sequential Statement.

Example 7. The Correction for Example 6.

VHDL allows designers to have both signa assignments and variable assignments in
sequential statements. Signal and variable assignments have different semantics, in that
variables reflect their assigned values immediately whereas signals are updated after atime

delay (possibly aprocessinvocationdelay). Thisiscomplex and confusing, and readily leadsto
unexpected behaviour in models.

Example6[PER91], above, attemptsto directly and simply model the behaviour of a4-to-1
multiplexer. The signal temp is initialised in the process statement (which are used for
describing sequential behaviour). Since asignal object in VHDL does not get updated in the
same simulation cycle asthe value is assigned, the statements which rely on the value of temp
are evaluated incorrectly. The error in Example 6 may be corrected by using VHDL variables,
since they are updated as part of the assignment. Example 7 [PER91] shows the correct
description of a4—to-1 multiplexer.

In MODAL, all functions are assumed to perform work which requires energy and takes
time, and is reflected as a definable delay which is consistently and straightforwardly
interpretable by a simulator.

2.4 Technology Dependencies

Ideally, a description should be independent of implementation technology so that when
technology changes, the same description should be still applicable. This enhances the
portability of models written in the HDL.

Technology dependent information which is mainly used by tools such as simulators and
synthesisers, should not be embedded in descriptions. Examples of technology dependent
information are propagation delays, resolution functions and multiple-valued logic
information.

ARCHITECTURE conflict OF simple IS BEGIN
TYPE trivec ISARRAY (integer RANGE <>) P1: PROCESS (inl)
OF threevd ; BEGIN
FUNCTION resolve (SIGNAL s: trivec) IFin1="1" THEN
RETURN threeval IS a<=di;
—Assume that both 1's and 0's predominate over Z ELSE
VARIABLE temp : threeval ; a<='7Z";
BEGIN END IF;
FORi IN s RANGE LOOP END PROCESSPL ;
IFs(i)="0 THEN P2: PROCESS (in2)
temp:='0’; BEGIN
exit ; IFin2="1" THEN
ELSE a<=d2;
temp:='1"; ELSE
END IF; a<='7Z";
END LOOP; END IF;
RETURN temp; END PROCESS P2 ;
END resolve; g<=a;
SIGNAL a: resolve threeva ; END conflict ;

Example 8. VHDL Description using a Resolution Function

VHDL provides mechanisms for describing technology related information, which makes
such descriptions technology specific and, as well, complicates both the syntax and semantics
of thelanguages. Although VHDL provideslibrary and packagefacilitieswhich may beused to
encapsulate technology dependent information, the language compiler must process this
information so that it can be passed to various simulation and synthesistools. If the description
is to be used with different technology, a recompilation using the appropriate library and/or

package is required. An example of atechnology dependent VHDL description isshown in
Example 8, above.

In this description, aconflict occurs asaresult of more than two drivers assigning different
valuesto thesamesignal. In VHDL, aresolution function isrequired to resolve the conflict. In
this example, the resolution function is a Wired-AND connection. If TTL or CMOS
technology is required, this resolution function correctly models the open—collector circuit.
However, it is inappropriate for ECL technology because an open collector circuit in ECL
performs a Wired—OR function.

InMODAL, the only abstraction which can be used to model technology dependent features
is the delay operator. All technology dependent information has to be provided from other
sources. For example, a simulator for MODAL has accessto resolution functions and delay
characteristics for various technologies. Example 9 illustrates a technology independent
descriptionin MODAL, inwhich there may be aconflict on the net qwhen bothinlandin2 are
true. If the net g isdriven by two drivers, the conflict will need to be resolved by the smulator,
sinceit is part of the dynamic behaviour of the circuit.

module conflict (p.inind, in2, d1, d2; p.out) module conflict (p.ininl, in2, d1, d2;

{ p.out < TECH = TTL_OC> q)
?inl?q<=d1, [* use TTL_OC to resolve conflicts, if any */
?2in2?2q<=d2; {

} ?inl?qg<=d1;

?in2?2q<=d2;
}
Example 9. MODAL Description Represent Example 10. Using an Affix List to Pass
the Conflict of a Signal Information to a Modulein
MODAL

Although MODAL does not provide constructs for the explicit specification of technology
dependent information, the language provides a construct called an affix list [HELLS80,
KAMS8E] through which technology—dependent information may be described. This
information is not interpreted by the compiler, but is passed directly to the simulators and
synthesisers. Example 10 demonstratesthe use of an affix list to specify technol ogy dependent
information.

3. The Quantitative Comparison

3.1 Accuracy in Modelling Timing and Delay

The method used to measure how accurately timing can be modelled by the two languages
employs simulators to evaluate a set of examples written in each language. The results are
compared with how real hardware is expected to perform. The VHDL toolset, PICA.VHDL
Version 2.216 [PICA91], is used to simulate VHDL descriptions. Since there are many
limitationsinthistool set, certain techniquesareused tofacilitatethe simulations. The MODA L
compiler and Maxim simulator [KAM92b] are used to compile and simulate the MODAL
descriptions. The results are interpreted according to the semantics of the simulation
mechanism of each language, and the comparison coversdifferent styles of description ranging
from structural to behavioural.

In the structural domain, both languages employ component instantiation statements to
describe the netlist of a circuit. Each component created is treated as a black—box whose
functionality has to be described using some style of description. The accuracy in the
interpretation of circuits described in the structural domain obviously relies on the accuracy of

the other types of description employed in the individual component. The functionality of a
component in VHDL can be described using dataflow or sequential descriptions, whereasonly
functional descriptionsare supportedin MODAL. Examplesof various descriptions have been

simulated to measure the accuracy of interpretation.

5 :)D@I}wm

cout

Figure 2. A Full Adder

ENTITY fadder IS module fadder (p.in a, b, cin; p.out sum, cout)
PORT (a . IN bit ; net ni;
b . IN bit ; {
cin :IN bit; nl <=exorab;
sum : OUT bhit: sum <=exornlcin;
cout : OUT hit); cout <=or(andab)andcinnl;
END fadder ; }
ARCHITECTURE dataflow OF fadder 1S Example 12. MODAL Description of a Full
SIGNAL nl: hit; Adder
BEGIN
nl <=aXORbAFTER2ns; —L1 module fadder (p.in & b, cin; p.out sum, cout)
sum <=nlXORcinAFTER2ns; —L2 net nil;
cout <=(n1AND cin) OR (a AND b) {
AFTER 2ns; —L3 nl <=D(5) exorab;
END dataflow ; sum <=D(5) exor nlcin;
cout <=or (andab)andcinnl;
}

Example 11. VHDL Description of a Full

Example 13 The use of Delay Operatorsin

Adder MODAL Description
T [1 [cout T— 1 [cout
41— | | T __ sum +— 1 1L sum
] [cin - [cin
- 1 b I I I ¢
1 a 1 a

5 10 15 20 25
Time (x 1.0e-9 seconds)

(a) VHDL waveformsfor afull adder

5 10 15 20 25
Time (x 1.0e-9 seconds)

(b) MODAL waveformsfor afull adder

Figure 3. Simulation Waveforms Produced by VHDL and MODAL Simulators

Figure 2 and Examples 11 and 12 describe afull adder, using the VHDL dataflow style and
the MODAL functional style. Even though operator precedenceruleand parentheses are used
in VHDL, thereisno delay property for operators embedded in the same statement. A lumped
delay can bedefined by using theafter clause, asshownin Example 11. Thiscausesonincorrect

behaviour to be observed in the circuit associated with statement L3 in Example 11 (cout and
sum should not change at the same time). To produce a correct description, delays have to be
associated with each operator. The functional semantics of MODAL avoid this problem, since
thereisan intrinsic delay associated with the action of each operator and function. Designers
can alter thedesired delay for each signal by using the delay operator, asillustrated in Example
13. Asaresult, the MODAL description models the correct timing behaviour of the hardware.
The simulation results for both VHDL and MODAL, as shown in Figure 3, confirm this

comparative analysis.

20>

din 71

bl

e e

For lowpass filter :
a0=1lal=1k2=1

Figure 4. Block Diagram of a First—Order FIR Filter

PACKAGE supportl IS
FUNCTION int2vec (x : integer)
RETURN bit_vector(7 DOWNTO 0) ;
FUNCTION vec2int
(x : bit_vector(7 DOWNTO 0))
RETURN integer ;
END supportl ;

USE WORK .support1.ALL ;
ENTITY filterl IS
PORT (din : IN bit_vector(7 DOWNTO 0);
ck :IN bit;
dout : OUT bit_vector(7 DOWNTO 0));
END filter1;
ARCHITECTURE sequent OF filter1 IS
SIGNAL z1d : integer ;
SIGNAL z1 :integer;
FUNCTION mult2c8(mand, mier : integer)
RETURN integer IS

VARIABLE ma :integer;

VARIABLE mal : bit_vector(7 DOWNTO 0) ;
VARIABLE md : bit_vector(7 DOWNTO0) ;
VARIABLE mr : bit_vector(7 DOWNTO Q) ;
VARIABLE f : bit;

VARIABLE i :integer ;

modulefilterd (p.in din[7..0], ck;
p.out dout[7..0])
#include <form.m>
module adder[7..0](p.in a[7..0], b[7..0], cin)
net c[7..0] ;
{
adder <= exor a:b:c[6..0] cin;
¢ <= or(anda:b):andc[6..0] cin:
exora:b;
}
module mult2c8[mout[7..0], done]
(p.in mand[7..0], mier[7..0], load)
register
ma[7..0]; md[7..0]; mr[7..0]; count[3..0];
net cki;
initiate
cki <= 1; count <—0;
{
?MNoad ?
{
ma <-0;
md <-—mand;
mr <—mier,
count <—1000;
}

Example 14. VHDL Description of a First—
Order FIR Filter

Example 15. MODAL Description of a
First—Order FIR Filter

BEGIN
mr(7 DOWNTO 0) :=int2vec(mier) ;
md(7 DOWNTO 0) :=int2vec(mand) ;
f =0
ma :=0;
FORiINOTO6LOOP
IFmr(0)="1 THEN
ma:=ma+ mand ;
END IF;
mal :=int2vec(ma) ;
f := (md(15) AND mr(0)) ORf ;
mr(7 DOWNTO 0) :=mal(0) &
mr(7 DOWNTO 1);
mal(7 DOWNTO0):=f &

mal(7 DOWNTO 1);

ma :=vec2int(mal) ;
END LOOP,
IFmr(0)="1 THEN

ma := ma— mand,
END IF;
mr(0) :=0;
RETURN ma;

END mult2c8;

BEGIN
— Delay signd
PROCESS (ck)
BEGIN
IF NOT ck’ STABLE AND ck ='0" THEN
zld<=1271;
END IF;
END PROCESS;
— Calculate output at tn
PROCESS (ck, zid)
VARIABLE m1, m2, m3, m4 : integer ;
CONSTANT bl: integer :=-120;
CONSTANT k1 : integer := 124;
BEGIN
IFNOT ck’ STABLE and ck ="1" THEN
ml := mult2c8(vec2int(din), k1) ;
m2 := mult2c8(z1d, bl)) ;
END IF;
m3:=ml+m2;
—Since &0, al, k2 :=1, Calculate m4
m4:=m3+z1d;
— transfer new output
z1 <=m3;
dout(7 DOWNTO 0) <= int2vec(md4)

AFTER 1200 ns;

END PROCESS;
END sequent ;

7?

{

?or count ?

{

?ncki ?

{
?and (not or count[3..1]) count[0]?
{

ma <—(?mr[Q]?
adder(ma, not md, 1)
?? ma);
mr[0] <-0;
}

7?

{
ma[7] <—or (and md[7] mr[Q])
ma[7];
ma[6..0] mr <— (?mr[Q]?
adder(ma, md, 0)
??7ma)
mr[7..1];
} count <— dec count;
}
}
}
mout <=ma;
done <=not or count ;
cki <= D(100) not and cki or count ;
}
register
z1d[7..0];
net
m1[7..0]; m2[7..0]; m3[7..0]; m4[7..0]; donel;
donez;
constant
kl:: X'7c;
bl:: X'88;
initiate
z1d <-0;
{
?!ck ?z1d <-m3;
m1 donel <= mult2c8(din, k1, ck);
m2 done2 <= mult2c8(z1d, b1, ck);

m3 <= adder(m1, m2, 0);
ma <= adder(z1d, m3, 0);
dout <= m4,

Example 14. VHDL FIR Filter (Cont.)

10

Example 15. MODAL FIR Filter (Cont.)

¥ | /" | \\\ | /" I \\\ ck m o
T [N L\~ dout[Q] . dout[0]
IV damy N e
1 1 | ! dout[2] m dat(2]
—||‘_l |_= dout[3] m doutl]
—_‘_l L+ dout[4] —r—_ T T T T ULTL | ol
T J_L_|/ \ fdoutfs) T\ — T TV LU L s
4+4— \ 7\ /’ dou t[6] 1 . // \ Ml / dout[6]
\ — g i _ , \ [T 171/ dout [7]
- \\ // \\ /Z dout[7] | _// AN _// -
I —— d! n[O] 1 1 din[1]
e — din[1]] | infz)
di n[2] E 1 din[3]
+— din[3] 1) sinl4]
T din[4] 1 | dinfs]
1 din[5]] ol
din[6] | E— ot
——— d| n[?] ‘ ‘ ‘ | ‘ Input Events
T T T T T LRl L L LR L LR L
2 4 6 8 10 2 4 8 B w0
Time (x1e—6 seconds) Time (x1e—6 seconds)
(a) Waveforms from VHDL simulation (b) Waveforms from MODAL simulation

Figure 5. Simulation Waveformsof a First—Order FIR Filter Described in VHDL and MODAL

In the next step of this comparison, afirst—order FIR filter isdescribed in both languagesto
compare the VHDL sequential style and the MODAL functional style of behavioura
description. The block diagram of the filter is shown in Figure 4, and the multiplication
algorithm used isfrom [CAV 84]. Examples 14 and 15 detail the sequential VHDL description
and the functional MODAL description of the first—order FIR filter, respectively. The
assignment statements of VHDL description support only lumped delay, and may cause the
problems mentioned in Section 2.3. In contrast, the functional description in MODAL
describesthe functions needed for the first—order FIR filter, and till corresponds closely to the
hardware behaviour. The output delay is evaluated according to which input change has
occurred, and the number of levelsof function delay incurredto propagatethissignal changeto
the output. As aresult, the timing delay as expected in actual hardware is obtained. Figure 5
shows the simulation results obtained from each CAD system.

3.2 Accuracy in Describing Hardware

Digital hardware is usually described in terms of modules and interconnections. The
definition within modules details the functions and the hierarchical structure, while the
interconnections specify the communication paths among modules. This information is
important in synthesisfrom HDL specifications, sinceit facilitates the generation of data—flow
and control—flow graphs.

Both VHDL and MODAL provide accurate hierarchical and interconnection information
using structural description. The functions of modules are described differently, using the
dataflow and sequential stylesin VHDL, and the functional stylein MODAL. The MODAL
functional style provides good correspondence with hardware, which facilitates the synthesis
task. The VHDL dataflow style has similar correspondence, but the sequential style provides
little information for hardware synthesis, resulting in VHDL constructs being restricted to a
synthesisable subset of the language [CAM91]. Since VHDL dataflow and sequential styles
have different semantics, different techniques are required to synthesis each description style,
complicating thetask of synthesisers. Examples 11 and 14, and 12 and 15 together with Figures
2 and 4, illustrate the hardware correspondence issues described in this section.

n

4. Conclusions

The qualitative comparison demonstrates the similarity between VHDL and MODAL in
their respective ability’sto describe hardware at various level s of abstraction. At the structural
level, circuit descriptionswritten in each language are similar in style and semantics. However,
large differences in the description styles are evident at the behavioural level. While VHDL
provides distinct dataflow and sequential styles of description at thislevel, MODAL uses a
uniform functional notation.

VHDL alowsdesignersto mix objects, namely signalsand variables, having different delay
semanticsin the same sequential statements. This makes the language confusing and may lead
to unexpected behaviour in the system being designed. MODAL, by contrast, provides
consistent delay semantics.

The ability to describe technology dependent informationin VHDL demonstrates a nexus
between the roles of description/specification and interpretation, which reduces the reusability
of the descriptions. The quantitative analysis reveals that the functional description used in
MODAL provides amore accurate language for describing hardware, and modeling of timing
and delay. This allows simulation tools to provide accurate result and eases the task of
synthesisers.

In conclusion, the comparisons show that the functional description style of MODAL hasa
consistent concurrent semantics whereas VHDL has an mix of sequential and concurrent
semantics. The many features of VHDL to support the many description styles increase the
language complexity. The functional description style provides a more natural/intuitive
semanticsfor hardware descriptions. Thisfacilitates the simulation and automatic synthesis of
hardware from MODAL descriptions.

References:

[ARM89] J.R.Armstrong,” Chip—Level ModelingwithVHDL”, PrenticeHall,, New Jersey,
USA, 1989.

[BACK78] J. Backus,”Can programming be liberated from the von Neumann style: a
functional style and its algebra of programs’,Communications of ACM, Vol. 21,
No. 8, pp. 613-641, 1978.

[CAM91] R.Camposano, L.F. Saunders, and R.M. Tabet,” VHDL as|Input for High-Level
Synthesis’, IEEE Design & Test of Computers, Vol. 8, No. 1, pp. 4349, March
1991.

[CAV84] J.J F, Cavanagh, "Digital Computer Arithmetic, New york, 1984.

[HELL80] G.R. Hellestrand, "MODAL: A System for Digital Hardware Description and
Simulation”, Journal of Digital Systems, Vol. 4, No. 3, pp. 241-304, Fall 1980.

[IEEE87] "IEEE Standard VHDL Language Reference Manual”, IEEE Std. 1076-1987,
IEEE Computer Soc. Press, USA., 1987.

[KAMS88] Ming Chi Kam, "Tutorial on Using the MODAL Compiler and Simulation
System”, Internal Document, UNSW., May 1988.

[KAM92a] M.C. Kam, "Using the MODAL Math Functions’, Internal Document, VaST
Lab., UNSW.,, 1992.

[KAM92b] M.C. Kam, "MODAL — A Hardware Description Language: User’ Manual”,
UNSW., 1992.

[PER91] Douglas L. Perry, "VHDL”: Int. Ed., MCGRAW-HILL, Singapore, 1991.

[PICA91] "VHDL ToolsetsReferenceManua”, PICA Lab., Uni. of Pittsburgh, USA., 1990.

12

