SCS&E Report 9305
April, 1993

Signal Transition Graph Constraints for Synthesis of
Hazard-Free Asynchronous Circuits with Unbounded-Gate
Delays

Radhakrishna Nagalla and Graham Hellestrand

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING
THE UNIVERSITY OF NEW SOUTH WALES

| SCIENTIA

Abstract

A synthesis procedure for asynchronous control circuits from a high level
specification, signal transition graph (STG), is described. In this paper,
we propose some syntactic constraints on STG to guarantee hazard-free im-
plementation. We have introduced a global persistency concept in order to
establish the relationship between the persistency concept introduced by Chu
[2] (which we call local persistency) and the consistent state coding (CSC).
The STG syntactic constraints required to compute the input set of a signal
are identified. We analyze all hazards under both single and multiple input
change conditions and propose necessary changes to the net contraction and
logic synthesis procedures. The proposed changes are guaranteed to generate
hazard-free circuits with the unbounded-gate delay model, if the STG is live,
safe and has consistent state coding.

1 Introduction

Synthesis of asynchronous circuits is gaining popularity due to inherent clock distribution and
clock skew problems associated with large synchronous circuits. The asynchronous design
approach eliminatesthe need for global clock synchronization and circumvents problemsdueto
clock skew. In synchronous systems, the clock cycle accommodates the slowest combinational
path and all operations start with a global clock. In asynchronous systems, an operation starts
whenever certain operations (events) are completed. Thusin asynchronous systems, the system
latency is decided by the average delay rather than the worst case delay as with synchronous
systems.

Despite many advantages of asynchronous circuits, they have not been extensively used
because of the lack of good specification and synthesis tools. The synthesis of asynchronous
circuitsisdifficult because of the presence of the hazards (transient errorsin acircuit due to the
presence of stray delays). Asynchronous logic has been designed traditionally using finite
state-machine like descriptions called flow tables [12, 16]. Hazards were removed by
introducing redundant states during the state assignment and/or by adjusting the feedback delays.
However, the traditional state based approach is impractical in designing large scale
asynchronous circuits due to the exponential state table size and the difficulty in adjusting the
relative delays of the gates.

Recently Chu[2, 3] introduced aformal, technology independent, graphical specifications
called signal transition graphs (STGs) which specify the circuit behaviour using the causal
relations between the signal transitions rather than the states. An STG is based on atype of Petri
net called the free—choice net which can explicitly describe the major aspects of asynchronous
control circuit behaviour such as concurrency, causality and conflict.

Chu developed a promising synthesis technique to implement asynchronous control
circuits from formal STG specifications. He proved that the constraints on STG specifications
such as liveness, persistency and consistent state assignment are necessary and sufficient to
implement hazard—free asynchronous control circuits. Meng et al. [10, 11] devel oped algorithms
for automated synthesis of asynchronous circuits, in which another notion of the persistency
called semi—modularity wastaken into account. Vanbekbergen et al. [17, 18] devel oped methods
for the optimized synthesisof ST G specificationsby considering state coding properties. L uciano
eta.[7,8,9] and Moon et al. [13] analyzed the possible hazards in asynchronous circuits and
developed methods for their removal.

In [7], Luciano proved, contrary to Chu’s claim, that the persistency is not a necessary
condition and the compl ete state coding (CSC) isthe only necessary and sufficient condition for
hazard—free circuit implementation. Recently Puri [15] presented proofs establishing a
relationship among Chu’s persistency constraint, the complete state coding and the signals
having a controlling value (definition in Section 2.4) in another signal. The fact that a signal
having a controlling value in another signal can be determined only after realizing the logic.

In this paper, we are concerned with the STG constraints for the hazard—free synthesis of
asynchronous circuits with a unbounded gate—delay model (wires have no delay and gates have
unbounded delay). We show that in some cases, the definition of the persistency given by Chu
doesnot represent persistency (literal meaning) of thesignalsinthe STGs. It can be easily shown
that a CSC violation is always associated with a non—persistent (literal sense) signal. We have
provided an extension to Chu’'s persistency constraint, called global persistency constraint in
order to always ensure the persistency (literal sense) of the signals in the STG. The global
persistency has one to one correspondence to the CSC property of the state graphs.

We also provide the STG syntactic constraints necessary to detect those signals having
controlling value in another signal. We prove that the net contraction [3] does not produce any
solution more efficient than the solutions obtained using existing boolean minimisation

techniques. Finally, we give a thorough analysis of the hazards under multiple input change
(MIC) conditions and prove that hazard—free circuit implementations (under both single input
change and multiple input change conditions) can always be obtained.

This paper is organized as follows. Section 2 presents some basic definitions from the
literature and describes some previous work in the area. Section 3 deals with STG syntactic
constraints such asliveness, persistency and consistent state coding (CSC). Section 4 establishes
the relationship among Chu'’s persistency constraint, global persistency constraint and the CSC.
Section 5 discusses the rel ationship between the controlling value and the CSC. Section 6 gives
an analysis on the net contraction. Section 7 analyzes hazards under both single and multiple
input change conditions and provides appropriate changes to the net contraction and logic
synthesis procedures in order to remove all the hazards. Section 8 describes two examples,
applying the ideas presented in the paper. Section 9 concludes the paper.

2 Preliminaries

2.1 Signal Transition Graph (STG)

An STG isan interpreted free—choice Petri net introduced by Chu [3] for specifying self—timed
asynchronous control circuits. STGs can be used effectively to specify the asynchronous
interface circuits, because the causal relations between the signal transitions can easily describe
explicit concurrency, sequencing and conflict behaviour.

2.1.1 Petri Nets

A Petri netisafour—tuple <T, P, F, My > where T, P and F form adirected bipartite graph and
M, iscaled theinitial marking. In the graph, P isaset of places which can be used to specify
conflict or choice, T is a set of net transitions and the directed edges F give the flow relation
between transitions and places; i.eF C (T x P)U(P x T). A marking M is a collection of
places corresponding to the local conditions which hold at a particular moment. A marking is
graphically represented by solid circles called tokens residing in these places and is an
assignment of nonnegative integers to denote the number of tokens residing at each place). An
example Petri netisshownin Figure 1(a) inwhich transitionsaredrawn asbars, placesascircles,
and the flow relation as directed arcs. Transitions are usually interpreted as events in a control
system while places are interpreted asthelocal conditionswhich becometrue or ceaseto betrue
due to the occurrence of some events, as specified by the flow relation.

A transition tiscalled an output transition of aplacepif (p,t) € F. Similarly atransition
tiscalled input transition of aplacepif (t, p) € F. Likewise, input places and output places are
also defined. For aplacep, .p and p. are often referred to as sets of input and output transitions.
Similarly, for a transition X, .x and x. are often referred to as sets of input and output places
respectively.

A Petri net structure describes the static behaviour of acontrol system. Its dynamic nature
isobtained by itsmarkings and by firing itstransitions which transforms one marking to another.
A transition is said to be enabled if al its input places have at least one token. An enabled
transition must eventually fire and its firing removes one token from each input place and adds
one token to each output place. The result of the execution of the net is described by aform of
finite automata called reachability graphs as shown in Figure 1(b). In areachability graph, each
node represents a state corresponding to a marking of the net, a labeled arc between nodes
indicatesthetransition from one marking to another dueto thefiring of an enabled transition. The
state corresponding to the initial marking of the net is highlighted in Fig. 1(b). A good review
of more basic Petri net conceptsisgivenin [14].

P2

'y X+
ts/\t3 /l\
P4, Pe Pa, P7 Z
voNE Y A
Ps, Pe P4, P7 % X—=
b \l
Z—

Ps, p7
ts

(b) Reachahility graph\‘ o1 (c) Signal transition graph

o 2 5y

z 00 01 11 10 Z 00 01 11 10
z+/y+ oloflo]1]1 olofo]1]1

111|111 111011

e/

X L >y =X+ 2Z
— Circuit
——> Z=X+yz

(e) Logic derivation

Figure 1. An exampleillustrating the synthesis of a circuit from a Petri net specification

2.1.2 Free—-Choice Nets

A free—choice net (FC net) isaPetri net where the input place p must be the unique predecessor
of t1 to...t,,if morethanonetransitionty . . . t, sharethesamep. Suchapiscalled afree-choice
place. A marked graph (MG) isanet in which each place has at most one input transition and
at most one output transition. A state machine (SM), which is adual notion of a marked graph,
isanet inwhich each transition hasat most oneinput place and at most one output place. Marked
graphs represent the structure of concurrent systems with deterministic choices whereas state
machines represent the structure of sequential systems with non—-deterministic choices[3,6].

2.1.3 Live and Safe Free—Choice Nets

An FC net isliveif every transition can be enabled through some sequence of firings from the
initial marking My. It can be shown that in alive FC net, each transition can be enabled infinitely
often [4]. It can also be shown that an FC netisliveif and only if the token count of every simple
loop of the net is nonzero [4]. Liveness guarantees that no deadlock occursin the circuit.

AnFCnetissafeif every place containsno morethan onetoken for all markingsreachable
from theinitial marking M,. This meansthat in a safe FC net, atransition cannot firetwicein a

row without firing some other transition. An FC net is safeif and only if every arcinthenet is
in asimple loop with atoken count of one [4].

Hack [6] proved that a live and safe FC net can be decomposed into either a set of SM
components or a set of MG components such that each transition and place can be represented
in at least one SM component or MG component.

2.1.4 STGsasInterpreted Free-Choice Nets

An STG is an interpreted free—choice petri net where the transitions are interpreted as value
changes oninput, output or internal signals of the specified circuit. Thetransitions are described
by t x {+~} wheret+ representsa0 to 1 transition and t— represents a 1 to O transition. From
now on, t* will denote any transition (i.e either t+ or t—) and t*~ will denote its complementary
value (i.e either t—or t+). In an STG, transitions are represented by their names instead of a bar
and alabel. Figure 1(c) shows an STG of acontrol circuit [10] whose underlying FC Petri net
isgiveninFigure1(a). TheFC net transitionsty, to, t3, 4, ts, tg represent the STG signal transitions
X+, X—, y+, y—, z+, z— respectively.

In STGs, theinput signal transitionsare underlined to distinguish from theinternal and the
output signal transitions. Thereason is, input signals are generated by the environment where as
the output and internal signals are generated by the circuit to be synthesized. Each place with a
singleinput and output transition isreplaced by adirected arc representing the causal relationship
between thetransitions. For example, the place ps between thetransitionst, andts in Figure 1(a)
is represented as x—— z— in Figure 1(c), meaning that the transition z— always follows the
transition x—.

Two transitionst; andt; inan STG are:

® ordered, if they arenever enabledinthesamemarking. i.e. if thereexistsasimpleloop
contai ning both of them. For examplein Figure 1(c), transitionsx—and z+ areordered.
If t1 and t2 are ordered, they can be represented either astl — t2 or astl = t2. Anarc
t1 — t2 constraintsthe signal transition t2 to be an immediate successor of t1. t1 = t2
meanst2 is a successor of t1.

in conflict, if firing one transition disables the other transition and vice-versa.

concurrent, if there exists a reachable marking where both of them are enabled and
none of thetwo transitionsare disabled by thefiring of the other transition. i.e. if there
isno simpleloop containing both of them and if they are not in conflict. For example
in Figure 1(c), transitions y+ and x— are concurrent.

AN STGisdefined aslive [3], if and only if :
the underlying net is live and safe.

for eachsignal t thereisat least one SM component, initially marked with onetoken,
suchthat it containsall transitions t* of t, and each pathfromatransition t* toanother
transition t* (i.e. both raising or falling) contains a complementary transition t*~.
This condition ensures that the interpreted finite automata (i.e. the state graph) has a
consistent state assignment.

2.2 State Graph

A state graph (SG) is an equivalent finite automata obtained from all the possible transition
sequences defined by a signal transition graph. The SG is a directed graph, where each node
called a state, has a one to one correspondence with alive and safe marking of the STG. It is
defined formally asa 2-tuple< V, E > , where V is aset of statesand E is set of edges. i.e.

E C (V X V). The SG can be derived from alive STG using a deterministic procedure given
in[3].

In order to implement the SG, the states are interpreted as binary vectors representing
values of the signalsin acircuit. Figure 1(d) shows the state graph of the STG given in Figure
1(c). Thecontrol circuit is comprised of the set of signals J= {x, Y, Z} . Hencein its state graph,
every state isrepresented as binary vector < x, y, z>. In the SG, the concurrent transitions of the
STG are explicitly represented as all the possible transition sequences.

2.2.1 Consistent State Coding

The synthesis procedure described in [3] usesthe signalsin acircuit directly as state variables,
sothat the circuit must be ableto tell itsglobal state only fromitsinput and output signals. When
two different statesare given the samebinary representation, thedigital circuit cannot distinguish
thetwo statesfrom each other. Thusevery state of the SG must be assigned auniquebinary vector
of thesignal values. A state graphissaid to satisfy consistent state assignment (proposed by Chu
in [3]) if the binary vector v, of every state in the SG meets the following condition

Anedgewith atransition t+(t—-) fromstate 5, tostates (i.e. s i $) definesthe
valueof signal t equal to O(1) in V1 and 1(0) in V, respectively. If theedges — 9
does not have atransition t*, then the signal t must have the same value in both V;
and \,. The value of signal tin V, iscaled theimplied value of tin V.

If notwo different states are assigned the samebinary codein aSG, then the SG issaid to possess
unique state coding (USC) property [17].

The compl ete state coding (CSC) [13] property is same as the consistent state assignment
proposed by Chu in [3] and isformally defined as follows.

A state graph is said to satisfy complete state coding constraint if :
® o two states are assigned the same binary code

® thetransitions of non—nput signals, enabled in two states with the same binary state
assignment, are same.

Thus, only the input transitions enabled in two states with same binary code are different,
and it is assumed that the environment can distinguish between them. In order to implement a
circuit, the state graph must satisfy CSC property [13]. The state graph in Figure 1(d) satisfies
the CSC property and thusthelogic functionsfor the output signalsy and z are derived as shown
in Figure 1(e).

2.3 Hazards

A hazard isapossible deviation of the output from the expected behaviour with respect to some
input change. Hazards occur due to stray delays in the circuit. Combinational hazards can be
classified into two categories namely static and dynamic hazards.

A static hazardisa 0—1—0 ora 1—=0—1 transition in any condition where no such
atransition for the signal is specified. The former type of hazard is called a static 0—hazard and
the latter a static 1-hazard.

Dynamic hazards occur when the expected behaviour isasingletransition0—1or 1—0
but the possibletransition becomes0—-1—-0—-1,0—-1—-0—-1—-0—1,etc.or 1 -0—=1—0,
1-0—-1—-0—1—0, etc.

Hazards are associated with circuit configurations, not with physical circuits. Thus the
circuits should be implemented in such away that all static and dynamic hazards are eliminated.

2.4 Logic functions

A single—output logic function f of ninput variablesisamapping f: {0, 1}" — {0, 1, *}. Each
element of {0, 1} " iscalled a vertex in the n—dimensional Boolean cube.

For all vertices, if f evaluates to {0,1} then f is a completely specified logic function,
otherwise f is aincompletely specified logic function.

The on—set of f isdefined as the set of vertices for which f evaluates to 1; the off—set, the
set of verticesfor which f evaluates O; the don’ t—care set, the set of verticesfor which f evaluates
to* (i.e not specified). Each vertex of the on—set of f is called minterm and that of the off—set of
fis called maxterm.

A literal isavariable or its complement. A cube cisaset of literals, such that if a € ¢
then a & c andvice-versa. Each vertex of an n—dimensional cubeisrepresented by acubewith
nliterals.

A cubeisexpanded by removing literals. When expanded, the resultant cubes cover more
vertices or more cubes with higher number of literals. A cube ¢’ covers another cube c”, if
¢ Cc”, for example{a, b} coversboth{a, b, d} and{a, b, d}.

Anon-set cover F of alogicfunctionfisaset of cubessuchthat each minterm of fiscovered
by at least one cube of F. The on—set cover isthe sum—of—product (SOP) implementation of the
function f. Similarly an off—set cover R of a logic function f is a set of cubes such that each
maxterm of fiscovered by at |east one cube of R. The off—set cover isthe product—of—sum (POS)
implementation of the function f.

A cubein an on—set (off—set) can be expanded by covering al the other cubesin the on—set
(off—set) and the cubes in the don’t—care set. A cube is called prime implicant of f if the cube
cannot be expanded further. A cover is called prime cover of afunction f if al of its cubes are
the prime implicants of f. A cover iscaled irredundant if it ceasesto be a cover after removing
any one of its cubes.

A function f is monotone increasing in avariable x; if

fxa,%,...,%=0,..%)=1=1fx,%,.., %=1, ..%)=1,
that isincreasing the value of x from 0 to 1 never decreases the value of f from 1 to 0.

A function f is monotone decreasing in avariable X if

f,%, .., %=1,..%)=0= f(x,%,..,%=0,..%)=0,
that is decreasing the value of % from 1 to O never increases the value of f from O to 1.

A function f is positive (negative) unate in variable x; if it is monotone increasing
(decreasing) in variable x; . A function f is binate if it is neither positive nor negative unate.

A variable x; is said to have controlling value in afunction f, if
fx, %, ..., %=1,..%)=012) = f(xx,%,..,%=0,..%)=10)

. df,
l.e. & = F(Xpy Xoy cevy Xiy ooy X)) D F(Xg, Xop ooy Ky ey X)) =1

If the variable x; has a controlling value in afunction f, then the function f is binate in the
variable x;.

3 Syntactic Constraints

STGsarebehavioura specifications of SGsfrom which state graphs can be derived to realisethe
final control circuit. STGsare more concise, because they do not require alarge number of states
to describe concurrent occurrences of control events, in contrast to the case of SGs. In order to
realise deadl ock—free and hazard—free circuits, SGs should satisfy certain properties[3, 7, 13].

The properties of SGs can be redefined as the corresponding syntactic constraints of STGs
because, they can be checked and modified more easily in STGs due to the fewer number of
transitions than the number of states of SGs.

3.1 STG liveness

In the process of obtaining alogic function from an STG specification, thefirst step isto obtain
the state graph with consistent state assignment (Section 2.2.1). From the concept of consistent
state assignment it can be deduced that, in every ssimple cycle of an SG, the number of positive
(t+) and negative (t-) transitions must be equal, and they must aternate. If the STG is live
(Section 2.1.4), then every pair of positive and negativetransitions of asignal are ordered. Thus,
the STG livenessis a hecessary condition to implement a circuit from an STG specification.

3.2 Persistency

Persistency is one of the important properties of signal transition graphs. A Petri net is said to
be persistent if, for any two enabled transitions, the firing of one transition will not disable the
other [14]. In state graphs, persistency isreferred to as semi—modularity [12]. Using aninformal
definition from [12], in asemi—modular state graph, if asignal transition t+ (or t—) isexcited in
state a, but the signal does not changeto 0 or 1 (from 1 or 0) when the circuit goesto anew state
b, then the signal must still be excited in state b and have the samevalue asin statea . In [12],
it was proved that semi—modul arity isasufficient condition for speed—ndependencewith respect
to al the signals in a state graph.

3.2.1 Chu’'s STG Persistency

In an attempt to characterize speed—-independence at the STG level, Chu [3] introduced the STG
persistency constraint as an equivalent to persistency in state graphs. According to Chu, an STG
iscalled persistent if al of itsnon— nput transitionsare persistent. A transition uisnon—persistent
if transition t* enables u, and u and t*~, the complementary transition of t*, are concurrent as
shown in Figure 2(a). Persistency isjustified as a necessary syntactic constraint by considering
the corresponding logic implementation in the case of non—persistency. In Figure 2(a),
concurrency between u and t*~ implies that while the logic element is reacting to t* to cause u,
t*~ may be occurring simultaneously at the input of that logic element. This represents a race
condition for the circuit. Thisrace can be eliminated by introducing a persistency constraint into
the graph.

A persistency constraint is an ordering constraint between two transitions, namely from
utot*~ (u-= t*~) asshownin Figure 2(b). Note that the addition of the ordering constraint does
not change the behaviour of the system, but may reduce the level of concurrency in the
specification. Chu assumed that the transitions of all input signals are always persistent. The
reason for this assumption isthat evenif two transitions of input signals appear to be enabled in
the same state, in aglobal system comprising the original system and the environment, they may
indeed be enabled in different state. Thus Chu’s persistency is defined as follows

AnSTGispersistentif andonly if for every non—input signal j, atransition of j caused
by atransition t* is ordered with t*~.

3.3 STG Persistency versus Consistent State Coding (CSC)

Moon [13] proved that a state graph satisfies CSC property if and only if it is semi—modular.
Transformations can be applied at the STG level to enforce the CSC property of the state graphs.

t*

T/ . STG/
/" \:Zb y \QZD é

t*~ it t* ~ persi stency

t*

constraint
u*

State Graph State Graph

t*~ -~
(a) Non—persistent transition u* (b) Persistent transition u*

Figure 2. lllustration of Chu's STG persistency constraint [2] definition

A CSCviolation can becorrected either by inserting an extrasignal inthe STG so asto distinguish
the states violating CSC, or by introducing a new ordering constraint between the signal
transitions so as to remove some of the states violating CSC. An algorithm for solving the CSC
problem in STGs was developed in [17, 18]. The STG persistency constraint is also used by a
number of researchers to satisfy CSC [3, 10] because it is a specia case of solving the CSC
problem. Thus the algorithm presented in [10] which is based on STG persistency constraints
may add more constraintsthan are necessary for consistent state assignment, asobservedin[17].

3.3.1 The Argument against Chu’s STG Persistency

L et usconsider the non—persistent STG givenin Figure 1(c). Thetransition y+ isnon—persistent
because the transitions x+ and y+ are ordered (i.e x+ — y+) and the transitions y+ and x— are
concurrent. The condition when x— disables y+ results in a hazard according to the persistency
concept. But the corresponding state graph in Figure 1(d) satisfies CSC because all the statesare
represented by a unique binary vector. The CSC property ensures hazard—free implementation.
The hazards at this stage mean undesirable behaviour (not according to theinitial specification)
at the functional level. Thus, this example shows that the STG persistency constraint is not a
necessary condition to satisfy CSC.

In Figure 1, the logic equation for the non—persistent signal y isy=x+z When x—fireszis
aready at 1, dueto the causal relation z+ — x—. Since zisacontrolling value for the or gate, x—
cannot disabley+. The concept of controlling value was introduced by Luciano in [8]. Recently
Puri [15] has proved the following theorems

Theorem 1: If thereisasignal transition s* between t* and t*~, such that shas a
controlling valuein u , then non—persistency of u neither causes ahazard nor aCSC
violation (refer Figure 2).

Theorem 2 : If there is a signal transition s* between t* and t*~ such that sis a
non—controlling value in u, then non—persistency of u must cause a CSC violation
(refer Figure 2).

The above theorems do not provide avisual and intuitive rel ationship between persistency
and CSC, because we will know whether a signal s has a controlling value (according to the

definition in Section 2.4) in a non—persistent signal u only after deriving the logic. If an STG
satisfies CSC property, al the signal transitions in the STG must be literally persistent.

According to Chu [3], the persistency of a non—input transition u* is defined solely based
onatransitiont* with acausal relation t* — u* and the relationship between the complementary
transition t*~ and u*, and does not consider the relationship between all other signal (except t)
transitions and u*. Thus, we consider the persistency constraint introduced by Chu aslocal STG
persistency constraint and introduce aglobal STG persistency concept considering all thesignal
transitionsin the STG.

In the following Section, we show that whenever there is a CSC violation in an STG, a
signal is non—persistent(literally). The global persistency definition represents the literal
persistency of all the signalsand hasaone to one correspondence with the CSC property of state
graphs. From now on persistency refersto the literal persistency or global persistency. We al'so
show that the persistency constraint of Chu is a specia case of global persistency constraints.
Section 5 discusses the conditions under which asignal hasacontrolling valuein another signal.

4 Global STG Persistency

Complete state coding is the only necessary and sufficient condition for implementing
speed—-independent, hazard—free circuits. The global persistency property of STGsisexactly the
same as the CSC property of state graphs. An STG is persistent if all the non—input transitions
are persistent with respect to all other signal transitions in the STG. The conditions at which a
signal transition is persistent or non—persistent with respect to another signal transition are
discussed below.

4.1 Non—persistent Transition u* with respect to a Transition p*

The different causal constraints that may cause a signal transition to be non—persistent are
considered. We present direct proof that relates those causal constraints and the CSC violation.
Let us consider an STG in which asignal transition u* is locally non—persistent (according to
Chu’'sdefinition [3]), i.eatransition p* enablesu* and the complementary transition p*~and u*
are concurrent (Figure 3 and Figure 4).

4.1.1 No Signal Transition between Transitions p* and p*~

Let us consider an STG where there is no signal transition between transitions p* and p*~ as
shown in Figure 3(a). The signal transition u* is non—persistent (locally and globally) if it is
ordered with p* and concurrent with p*~. The definitions for local and global persistencies are
thesameinthiscase. Theformal definition of global persistency isgiven inthe next section. The
following theorem [15] establishes that the non—persistency in this case always cause a CSC
violation inthe SG .

Theorem 3: If thereisno signal transition between p* and p*~, and the transition
u* is ordered with p* and concurrent with p*~, then the signal u is non—persistent
and will cause a CSC violation in the state graph.

Proof : Let the binary values of p and u before firing the transition p* be P, U. Let
the values of the remaining input signals to the sub—circuit implementing the signal
u be represented as # (because they are not affected by the transitions of p and u).
Thus the binary coding of the state in which p* isenabled is equal to #PU. A signal
transition after itsfiring will change the signal value in the opposite direction of its

#PU
\ !
p STG _
#PU
/ \ et . U*
o " P N
#PU #PU
U’N /p*~
#PU
(@ Transitions p*~ and u* are
concurrent
#PU
|
#PU

<:> p*;/
P | #PU
s AN

#PU

(b) Transitionsp*~and u* areordered with p* —— u*
—uispersistent (according Chu’s definition)

Figure 3. Non—persistent signal u with respect to signal p when no signal transition is between
p* and p*~

current value. The resultant SG of the STG where the signal u is non—persistent is
given in Figure 3(a). It can be observed that the SG has two states with the same
binary code #PU in which the two different transitions p* and u* are enabled. It is
also evident that from a particul ar state, after executing the sequence p* — p*~, we
will reach another state with same binary code. This condition says that the state
graph has CSC violation. The same binary code indicates that the two statesin fact
represent asingle state enabling two transitions p* and u*. Thetransition u* may not
be persistent depending on the delay of firing p*. Since the persistency of u* is
depend on the delay of firing p*, we consider u as non—persistent with respect to p.
Thus if there is no signal transition between p* and p*~, and the transition u* is
ordered with p* and concurrent with p*~, then u is non—persistent and causes CSC
violation. [|

Let us now consider the STG given in Figure 3(b), where the transition u* is ordered with p*~
and not concurrent with p* (i.e. p* — p*~— u*). Thefollowing theorem establishesthat Chu's
persistency constraint is not sufficient to ensure CSC property.

Theorem 4 : If thereis no signal transition between p* and p*~ and the transition
u* is ordered with p*~ and not concurrent with p* (i.e. p* — p*~— u*), then the
signal u which is persistent according to Chu’s definition (actually non—persistent
globally — refer Definitions 1& 2) will cause a CSC violation in the state graph.

Proof : Therelevant SGisgivenin Figure 3(b). It can be easily seen that the SG has
two states with the same binary code and violates CSC. In fact the causal constraint
p* — p*~— u*, which is aparticular case of the concurrent relationship between
p*~and u* (i.eeither p* — p*~— u* or p* — u* — p*~—refer Figure 3(a)), causes

10

#PQU

p* p*l
/N #pQu T
q* o VN
/ 4PQU #POU
p*~ p*f/ u*\A /q*
/ #PQU #PQU
u>\14Y~
#PQU

T

#PQU

Figure 4. Non—persistent u (according to Chu’s definition) with no CSC violation — actually u
IS persistent

the CSC violation and the signal u to be non—persistent. But according to Chu's
persistency definition[3], the signal u is persistent even though it is actually
non—persistent. Chu[3] dealt with this problem separately with consistent state
assignment. Thus this example proves that the Chu'’s persistency constraint is not
sufficient to ensure CSC property. [|

4.1.2 Signal Transition between Transitions p* and p*~

Figure 4 showsan STG, in which thereisasignal transition g* between transitions p* and p*~.
The signal transition u* is ordered with p* and concurrent with g* and p*~. The following
theorem proves that Chu’'s persistency constraint is not a necessary condition to ensure CSC
violation.

Theorem 5 : A non—persistent signal according to Chu’s definition may actually be
persistent (refer Definition 3 for global persistency) and may not cause CSC
violation.

Proof : According to Chu’'sdefinition[3], thesignal uin Figure 4, is non—persistent
(locally). Let the binary values of p, q, u before the transition p* firesbe P, Q, U
respectively and | et the val ues of the remaining signal sbe denoted by # (becausethey
do not change in the transition sequence of Figure 4). Figure 4 aso shows the
corresponding SG derived fromthe STG. It can be seenthat thereare no stateshaving
same binary code and thusthereisno CSC violation in the state graph. Thisexample
showsthat Chu’s persistency constraint is not necessary to ensure the CSC property
in state graphs. [|

Thus theorems 3& 4 show that Chu's persistency constraint is neither a necessary nor a
sufficient condition to ensure the CSC property. The causal constraints between p*, p*~, g* and
u* are not sufficient to decide whether the signal u is globally persistent or not. The global
persistency definition requires also the causal constraint between g*~ and u* and is defined in
genera asfollows

Definition 1 : If thereisno signal transition between a sequence of transitions, s*
={ty*, to*, ..., t*, ..., ty*} and a sequence of complementary transitions, s*~ =

1

{to*~ to*~, ..., t*~, ..., ty*~} and if the signal transition u* isordered with one
of the transitions of s* or s*~(i.e t* — u* or tj*~— u*), then the signal u is
non—persistent with respect to signal t; (refer Figure 5).

Definition 2 : An STG is globally non—persistent, if any of its non-input signalsis
non—persistent with respect to any of the other signalsin the STG.

In the above definitions, the transitions in the sequences s* and s*~ can be
concurrent. If two transitionst;* and to* are concurrent, they can beviewed aseither
t1* = to* or ty* — t1*.

When s* = p* and s*~= p*~, thenthesignal uisnon—persistent and causesaCSC violation
in the state graph as explained in Section 4.1.1. Figure 5 illustrates the different conditions in
whichthesignal uisnon—persistent with respect to p*, whens* = {p*, g*} ands*~={p*~, g*~}.
Thefollowing theorem establishesarel ation between the non—persistency of asignal with respect
to another signal and CSC violation.

Theorem 6 : A signal in an STG which is non—persistent with respect to another
signal (refer Definition 1) causesa CSC violation in the state graph and vice-versa.

Proof : (=) Let nbethe number of transitionsin s* and s*~. When thereisasingle
transition (n=1) in the sequences s* and s*~, the non—persistent signal u will cause
a CSC violation and this condition is proven under Theorems 3& 4. L et us consider
transitions of two signals p and g in the sequences s* and s*~ as shown in Figure 5.
Thedifferent waysin which thetransition u* isordered are shownin case (1) to case
(4) of Figure 5. In Case (1), u* is ordered with p* and concurrent with all the
remaining transitionswhereasin Case(4), u* isnot concurrent with any of the signal
transitions. Since thereis no signal transition between s* and s* ~, the sequences of
transitions s* and s*~ can be grouped as single transitionst* and t* ~ irrespective of
the number of transitions in s* and s*~. The resultant simplified STGs have
transitions t* and t*~ with no signal transition in between them and u* is either
concurrent or ordered with t*~ as shown in Figure 5. Theorems 3 & 4 say that the
simplified STGswill causeaCSC violationinthestategraph. Thus, anon—persistent
signal uaways causesaCSC violation in the state graphsirrespective of the number
of transitionsin the sequences s* and s*~. The SGs corresponding to the ssmplified
STGs (with transitions of t and u) and the final SGs corresponding to the origina
STGs (with transitions of p, g and u) are also given in Figure 5. The SGs aso
illustrates that there is CSC violation in the state graphs. The final SGsin Figure 5
are not complete but give enough information to provea CSC violation. All thefinal
SGs have two states with same binary code where the transitions p* and u* are
enabled. The same binary codeindicatesthat the two statesin fact represent asingle
state enabling two transitions p* and u*. The transition u* may not be persistent
depending onthedelay infiring p*. Thisclearly givesriseto amalfunction or hazard.
Sincethe persistency of u* isdepend onthedelay infiring p*, thesignal uisdefined
to be non—persistent with respect to p* (first signal transition in s*). Thus a
non—persistent signal must always cause a CSC violation.

(=) Assumethe state graph has CSC violation, i.eit hastwo states with same
binary code enabling two different signal transitions. In astate graph, two stateswill
have the same binary code if and only if both transitions of the signals (t* and t*~)
occur between them as shown in Figures 3&5. The STGs corresponding to the SGs
with CSC violation are also given. It can be observed that there is no single signal

12

#TU #PQU
Smplified STG t*l p*’q*l

r N 4Ty #PQU
/ \) t*;'/ \‘U* p*~’q*‘__/ \‘U*

t #TU #TU #PQU #PQU
N e~ N /p*~,q*-
#TU #PQU
Smplified SG Final SG
#TU #PQU
Smplified STG " 1 o* 'q*l

v & 4T #PQU
/ t*:/ p*~’q*~

t*._\ #TU #PQU
u* U’N U’N

#TU #PQU

Smplified SG Final SG

Figure 5. Non—persistent signal u with respect topwhen p*— gq*— p*——q*—

13

transition between a sequence of transitions (p*, g* in Figure 5) and a sequence of
the corresponding complementary transitions (p*~, g*~ in Figure 5) and thereisa
transition (u*) ordered with one of the transitions of the sequences. Thus the signal
u is non—persistent with respect to the signal p whose transition (p* in Figure 5) is
first among the sequence of transitions. [|

4.2 Global Persistency Constraint

In this Section, we introduce the persistency definition and the constraints that can be used to
enforce CSC property in state graphs.

Definition 3: An STGispersistent if for all signals, thereisa transition in between
the transitions of the sequences s* = {t1*, to*, ..., t*, ..., ty*} and s*~={t;*~,
to*~ ..., t*~ ..., t*~}. An STG is also persistent even if there is no transition
between s* and s*~, but thereis no other transition u* which is ordered with one of
the transitions of s* and s*~.

The persistency definition is exactly opposite of the non—persistency definition. Thusasadirect
consequence of Theorem 6, we can derive a corollary about the relationship between persistent
STG and CSC property of the corresponding state graph.

Corollary : Apersistent STG always satisfiesthe CSC property in the corresponding
state graph.

Proof : In apersistent STG, since there is atransition between the transitions of s*
and s*~, dl the transitions of s* and s*~ do not occur consecutively and do not
produce two states with the same code. According to the Theorem 6, the state graph
with CSC violation must have acorresponding STG with anon—persistent transition.
Thus apersistent STG aways satisfies the CSC property in the corresponding state

graph. []

The definitions and the proofsrel ate to the persistency assumesthat every signal inthe STG has
exactly 1 up and down transition. The persistency definition also supports signalsin an STG
having multiple up and down transitions aslong asthere is at |east one signal transition between
multiple occurrences of the same signal transitions. Let s* = {t;*, b*, ..., t*,...,t,*} bea
sequenceof transitionsand s*~= {t;*~, t,*~, ..., t*~, ..., ta*~} bethecorresponding sequence
of complementary transitions.

Restriction 1 : The global persistency concept supports an STG having multiple
occurrences of s* and s*~ aslong asthereisa signal transition x* between the two
occurrences s* or s*~.

The reason for the above restriction is that the resultant state graph has two states with same
binary code enabling two signal transitionst;* which need to be differentiated. Otherwise there
will be a CSC violation in the state graphs. If thereis no signal transition between the multiple
occurrences s* and s*~ then an internal signal transition x* can be introduced between two
occurrences of s* or s*~ such that x* and x*~ satisfies STG liveness.

A non—persistent signal can be made persistent in a number of ways. The persistency
constraint introduced by Chu [3] isone way of enforcing persistency of asignal. The following
definition gives a number of ways in which a non—persistent signal can be made persistent.

Definition 4 : A non—persistent transition u* with respect to t1* (refer Definition 1)
can be made persistent by (a) introducing a constraint such that u* and t,*~ are

14

p* p*
u* Tt--- oo v q*4---:, X*\
p*~}."o Persisteﬁcy p*~A"'Persig;ency u*
/ L’ constraints / L’ constraints
bl *l ‘
S* _ q* ~ q* ~
(i) Non—persistent u* (ii) Persistent u* (iii) Persistent u* with internal
signal transition x*
(a) Transitionu* concurrent with g*, p*~, g* ~ and ordered with p*
p* p*
¢ /N /
q*'(‘ == x* a*
>/ . ’ \ X*
p* - F e L’ 'Persi stency p* ~ Persistency
.’ constraints

, constraint
4

% > %
s+~ q -~ q *\‘
u* u* w
(i) Non—persistent u* (it) Persistent u* (iii) Persistent u*

(b) Transition u* ordered with p*, g*, p*~and g*~

Figure 6. Different constraints to enforce persistency

ordered (i.eif t* — u*, the constraint isu* = y* € {tjz1*, ..., t*, tix~ ..., ty*~}
and if t*~— u*, the congdtraint is u* = y* € {tj.1*~, ..., ty*~}, y* being a
non—nput signal transition), or (b) introducing an extrainternal signal transition x*
such that either ti* — x* — u* or tj*~— x* — u* and x* and t,*~ are ordered, or
(c) introducing an extrainternal signal transition x* betweentransitionsof s* or s*~,
but not before a non—input signal transition. The internal signal transition x* is
introduced in such a way that x* and x*~ does not cause further non—persistency
and satisfies STG liveness.

One of the three conditions given in the above definition can be used to enforce persistency in
anon—persistent STG. If the non—persistent transition u* isordered witht,*~ (i.et,*~— u*) then
the non—persistency can beremoved by inserting aninternal signal transition. Figure6illustrates
the different waysin which persistency can be enforced. The non—persistent u* in Figure 6(a)(i)
can be made persistent in two different ways as shown in (i) and (iii) of Figure 6(a). In Figure
6(a)(ii), the persistency constraint reduces the level of concurrency in the description where as
in Figure 6(a)(iii) the internal signal transition x* is introduced to maintain the concurrency
between u* and (g*, p*~, g*~). The constraints u* — p*~ and x* — p*~ are same as the
persistency constraints defined by Chu[3]. Since the non—persistent u* is ordered with all the

15

transitions in Figure 6(b)(i), it can be made persistent only by introducing an internal signal
transition x* between p* and g*~. The transition x* can be introduced in a number of
configurations and two typical configurations are given in Figure 6(b) (ii) & (iii). The dotted
edges represent many possibilities.

5 Relationship between Controlling Valueand CSC

In Section 3.3.1, we discussed the rel ation between asignal having acontrolling value in another
signal and the CSC. Puri [15] has proved Theorems 1 & 2 that relate the controlling value, CSC
property and CSC violation. The formal definition of controlling valueis given in Section 2.4.
In this Section, we provide STG syntactic constraintsin order to determine whether asignal has
acontrolling value in another signal. If asignal x has a controlling value in a non-input signal
y then x can be classified either as atrigger signal or as a context signal [18,19].

5.1 Trigger Signals

A signal x iscalled trigger signal for anon-input signal y if atransition of the signal x causes
the signal y to change immediately. Obviously, such atrigger signal x is an input signal for the
logic generating y. X isatrigger signal of y iff thereisan arc in the STG going from atransition
of x to atransition of y (x* — y*), provided that the arc is not redundant. An arc from x* to y*
is redundant if there is another path from x* to y* with asignal transition in between them. In
Figure 7(a) [18], signals A and D are the trigger signals to the signal B because of the causal
relationsat+ — b+ and d+ — b—.

5.2 Context Signals

A signal xis called context signal for anon—input signal y if x isnot atrigger signal of y but is
an input signal for the logic generating y. In an STG, context signals do not have direct arcs
between their transitions and the transitions of the non—input signalsthat are being implemented.
Context signals may vary according to the logic implementation, and can be further classified
into two categories, essential context signals and non—essential context signals.

The essentia context signals are the input signals that are necessary to the logic being
implemented, i.eif the transitions of the essential context signals are removed from the STG,
then the STG becomes non—persistent and has a state graph with CSC violation. An essential
context signal is defined formally as follows.

Definition 5: A signal x iscalled an essential context signal to a non—input signal
yif xisnot atrigger signal and if the persistent signal y becomes non—persistent by
removing the transitions of the signal x fromthe STG.

Non—essential context signal saresignal sthat are not essential but can be used toimplement
thelogici.e. thereisawaysalogic realisation with out non—essential context signals. In Figure
7(a), cistheessential context signal tothesignal b, whereasin Figure 7(b), cisthe non—essential
context signal to the signal b. The corresponding logic redlisations are also given in Figures
7(a)&7(b). It can be seenin Figure 7(b), that the signal b has a realisation without ¢ as an input
signal. The following theorem gives the relation between the context signals and the global
persistency of an STG.

Theorem 7 : The signal x whose transition x* (either x+ or x— but not both) is

concurrent with a non—input signal transition y* is the context signal to the signal
y iff the STG is persistent.

16

at 0000 b
at cd
b\ 00 01 11 10
+

ol ‘[. CJ;/\EH o= ol ofof|lo]1
of ¢ |9 | O] 1
L goe f
l W & b ¢ —don't care value

b b=a+ cd
(i) STG (ii) Sate graph (iii) Logic Derivation

(a) An Examplein which the signal cisessential context signal to thesignal b

a+ ° cd

00 01 11 10

\.
&

o b+ Ct/\?+ (o ©) 0 0 ol

« ol ¢ ¢ [0] 2

| T

9 l b Yo7 o 1le e |1

\T b— ¢ —don’t care vaue
- b=as b3

(i) STG (ii) Sate graph (iii) Logic Derivation

(b) An Examplein which the signal c is hon—essential context signal to the signal b

Figure 7. Examples illustrating the trigger and different context signals

Proof : (=) Assume the STG is persistent. According to the Corollary given in
Section 4.2, apersistent STG always has astate graph with the CSC property. Let us
consider the persistent STG and the state graph shown in in Figure 7(a). The
transition c+ isconcurrent with the non—nput signal b+. It can be observed from the
state graph that there is an implicit constraint c+ — b+ i.e, ¢ has controlling value
in b at aparticular vertex of boolean cube. The persistency of the STG assures that
all theconstraints(explicit andimplicit) are persistent. Thusthesignal cisthecontext
signal to the signal b. In general, if asignal transition x* is concurrent with another
transition y* in a persistent STG then there will be an implicit constraint x* — y*
indicating that x is context signal to thesignal y. If signal x has both of itstransitions
x+ and x— concurrent with y* then the state graph will have two implicit constraints
x+ — y* and x—— y* indicating that the signal x is redundant with respect to the
signa vy.

(=) Assume the STG is non—persistent. According to Theorem 6, the
corresponding state graph of the STG has a CSC violation. Let us consider a
non—persistent STG given by case(1) of Figure 5. The corresponding state graph has

17

animplicit constraint g* — u*. Theconstraint g* — u* may not be persistent because
the circuit can have the sequence of transitions p* — g* — p*~— g*~ an infinite
number of times with out u* occurring. This indicates a hazard condition for the
signal u. The signal q does not have any control on the signal u indicating that g is
not acontext signal to thesignal u. Thus, the signalswhosetransitionsare concurrent
with a transition in a non-input signal, are not context signals to that non—input
signadl, if the given STG is hon—persistent. [|

The following theorem gives a relationship between an essential context signal and trigger
signals. Before stating the theorem we need the following definitions for interleaving [18].

Definition 6 : Transitionsof asignal x are said to beinterleaved with thetransitions
of asignal y, denoted by I(x*, x*~, y*, y*~), inan STGiff there existsa simple cycle
on which the transitions are ordered as x* = y* %> x*~ %> y*~,

Theorem 8: Let the signals x and y be the trigger signals of a non—-input signal z.
If both the transitions of a trigger signal x occur between the transitions of z (i.e.
transitions of signals x and z are not interleaved) and transitions of both the trigger
signals are not interleaved then, the transitions of the essential context signal must
be interleaved with the transitions of the trigger signal x and with the transitions of
either the trigger signal y or the non—-input signal z.

Proof : Let us consider the STG shown in Figure 8(a). The signals x and y are the
trigger signals to the signal z because of the constraints x—— z+ and y+ — z—. The
transitions x+ and x— occur between z—and z+. It can be observed that the signal v
has the transition v— between x+ and x—, and the other transition v+ between y+ and
y— satisfying the above theorem. If thereis no transition of the signal v between x+
and x—then, the STG becomes non—persistent (refer Definitions 1& 2). Similarly, if
thereisnotransition of v between y+ and y—or between z+ and z—then thetransitions
of zandy can be grouped together with no other signal transition betweenthem. Thus,
the resultant STG becomes non—persistent (refer Definitions 1&2). The signal vis
the essential context signal to the signal z because the STG becomes non—persistent
whenever the transitions of the signal v are removed. Thus, the essential context
signal must beinterleaved with thetransitions of the signal x and with thetransitions
of thesignal y or thesignal z. A similar theoremwasproven usinglock graphsin[18].
It can be observed in Figure 8(b) that the signal v isnot a context signal to the signal
Z because the trigger signals x and y are interleaved. [|

There can be many candidates for an essential context signal to a given non—input signal.
According to theorem 8, the logic implementation should contain at least one of the many
possible essential context signals. All the signals except the one which is selected for the logic
implementation can be considered as non—essential context signals. Figure 8(c) shows an STG
wherethe signal zhasthe signalsu and v asthe two possible essential context signals. Thelogic
implementation must have either u and v as an input signal to realize the non-input signal z

Figure 7(a) gives another example demonstrating the significance of the essential context
signal. The signal cisthe essential context signal of the non—input signal b. Thetrigger signals
of b arethe signalsa and d. It can be observed that a+ and a— transitions can occur between the
transitions b— and b+. The essential context signal c isinterleaved with both the trigger signals
aand d asrequired by the theorem 8. Theorem 7 also says that the signal c isacontext signal to
the signal b because the transitions c+ and b+ are concurrent. In Figure 7(b), the signal cis
anon—essential context signal of the signal b, because the transitions a+ and a— no longer can
occur between the transitions of b.

18

x VN x o
X+ y- y—
7+ \ ‘_/ (i) STG (ii) Contracted STG for signal y z+\ ; ‘_/
\ / (a) An Example with context signals
X=
Z— 7— 7—
y+/ v+ y+/ y+/ v+

Xt—> y-

/ (ii) Contracted STG for I
z+ x signalszandy z+ Zre ¥
\ / (i) STG \
(iii) Contracted STG for signal v
X= X=

Xr—b y—

x v

(b) An Example without context signals

y+ — 72— y+ —> 72— yt — z-
* 4 (iii) Contracted STG for signal z 4
—Vvisessential context signal of z
u+ v+ u+ v+
4 / \ A / \
X+ y- X+ y- X+ y-
z+ \4 / zZ+ \ / z+
4 U— 4 U— 4
(1) STG (ii) Contracted STG for signal z—

X=< V= X= uisessential context signal of z X= ¢ v-

(c) AnExamplewithtwo contracted ST Gsfor asignal

Figure 8. Examples illustrating the relationship between context signals and net contraction

6 Net Contraction

The behaviour of a non—input signal s can be represented by an STG which only contains
transitions of s and S(s) (input set of s) where §(s) denotes the minimum set of the signals
required to implement that signal s. This STG can be derived from the original one using a
technique called net contraction [3]. A contracted STG for signal sisobtained from the STG by
removing the transitions of the signals which are not in the set sU S(s), in such away that the
concurrency and sequence relations between the remaining transitions are preserved.

Net contraction is done in the following way [3]. Let t be atransition of asignal that has
to be eliminated from the STG. For dl transitionst and tj inthe STG, add the arc tf — t only if
the arcs ; — t and t — tj are present. Then remove the transition t and all arcs connected to t.

19

Figure 8 illustrates the rel ation between the context signals and the net contraction. It is obvious
that al the trigger signals of sare part of the set of input signals, S(s) for the logic generating s.
It was initially incorrectly believed that S(s) only consists of trigger signals [3, 5]. But, the
essential context signals of s should be part of S(s) because without them the signal s becomes
non—persistent [19]. The non—essential context signals of s can be removed from the STG to
generate contracted STG for signal s. Thus, the input signals necessary to realize the logic for
asigna sarethetrigger signals and the essential context signals (if any) of swithout which the
s becomes non—persistent. The trigger signals can be easily detected in the STG. The essential
context signals can be detected using Theorem 8. Thus we have provided the STG syntactic
constraints which determine the set of input signals needed to generate the contracted STGsfor
all non—input signals.

In Figure 8(a) the signal v isthe essential context signal of the signal zand the signal xis
anon—essential context signal of thesignal y. All signalsexcept v, aretrigger signalsto thesignal
v. Thus only signal y has a contracted STG that is different from the origina STG. The STG
specification will becomemuch simpler by just adding the constraint x+ — y—asshowninFigure
8(b). Thereareno context signal sand all the non— nput signalshavethe corresponding contracted
STGs.

Chu [3] advocated the decomposition by net contraction as a means of obtaining efficient
implementations. I n thefollowing theorem, we show that net contraction can be used to facilitate
analysis and synthesis of the systemsin an efficient manner but it does not produce any more
efficient solutions.

Theorem 9 : In a persistent STG, no signal except the trigger and the essential
context signals of a non—input signal, effects the logic implementation of that
non—input signal.

Proof : (=) Let zbe a non-input signal whose logic is being implemented. Let us
consider asignal x which is neither a trigger nor an essential context signal of the
signal z. The persistency of an STG ensures that the implied value of the signal z
changesonly inthe stateswhereitstransitionsare enabled. All statesbetween z+ and
z-including the state in which z+ is enabled have the same implied value for signa
z Similarly al states between z- and z+ including the state in which z is enabled
have the same implied valuefor signal z. The signal x can be proved to be redundant
inthelogic implementation of thesignal zif apair of stateswith same signal values
except for the signal x do not have different implied values for the signal z. That is,
the states around atransition of the signal x should have the same implied value for
the signal z. The theorem hasto be proved for two different cases: (a) atransition of
the signal x which isnot concurrent with atransition of signal z or (b) atransition of
the signal x which is concurrent with a transition of the signal z.

L et usassumethat atransition of the signal x isnot concurrent with atransition
of the signal z. Let the values of z and x just before x* be Z and X. Let # represent
valuesall other signals. Thus, #ZX represent the signal values of astatein which the
transition x* isenabled and #ZX represent the signal values of the resultant state due
to the firing of the transition x*. The implied value of z in both the states (i.e just
beforeandjust after transition x* or x*~) isequal to Z becausexisnot atrigger signal.
Theimplied value of zin state #ZX isequal to Z if and only if x isatrigger signal of
z That means, aslong as x is not trigger signal of z, all the adjacent verticesin the
direction of signal x in the boolean n—cube have the same (including don't—care)
implied value of z. Thus the signa x is redundant and does not affect the logic
implementation.

20

L et usassumethat atransition x*, of the signal xisconcurrent with atransition
z*, of thesignal z. Since the transitions are concurrent, either x* can occur before z*
or z* can occur before x*. Let the values of x and z before their transitions be X and
Z. Let # represent values of all other signals. Thus, if x* occurs before z*, the two
states just before and just after the transition x* will have the binary code #2X and
#Z X respectively. But, theimplied value of the signal zin both the statesis equal to
Z becausez* canalso occur beforex*. Similarly, if z* occursbeforex*, thetwo states
just before and just after the transition x* will have the binary code #ZX and
#Z X respectively. Theimplied value of the signal zin both the statesis equal to Z.
Thusit can be easily seen that all the adjacent verticesin the direction of the signal
xintheboolean n—cube havethe same (including don’'t—care) implied value of z. That
means, the signal x is redundant and does not affect the logic implementation.

(=) Letusconsider asignal xwhichisan essential context signal of the signal
z If thesignal xisremoved from the graph, the signal zwill become non—persistent
(seeabovefor Definition 5). That meanstherewill betwo stateswith the samebinary
code and with two different transitions enabled (z* being one of them). By
introducing x* between thetwo states, the stateswill have two different binary codes
with the value of the signal x being different. The implied values of the signal zwill
be different in those two states. Thus, the signal x is not redundant and is necessary
to implement the signal z. If x isatrigger signal to the signa z, it is obvious that x
IS necessary to implement the logic. [|

The above theorem provesthat the trigger and the essential context signals of anon—input signal
arenecessary and sufficient toimplement that non—nput signal. It al so provesthat net contraction
onapersistent STG doesnot giveany moreefficient solution. Figure 8(c) givesan examplewhere
thesignal zhastwo possibleessential context signalsuandyv. Thus, therearetwo contracted STGs
for the signal zwhich contain either u or v as shown in Figure 8(c).

7 Hazar d—free L ogic lmplementation

7.1 Logic derivation from a state graph

Assuming agiven STG is live and satisfies CSC property, the state graph can be generated to
derivethelogic. Thelogic for each non-nput signal can be determined from theimplied values
of the non—input signal in each state of the SG. For each non—input signal, a state in SG can be
classified as either an on—set vertex or an off—set vertex in the n—-dimensional boolean cube (n
Isthe number of trigger and essential context signals). The verticesin the boolean cube that are
not represented by the statesin SG, form the don’t—care set.

Once the on—set and off—set are derived from the SG, logic minimisation may be applied.
Thegoal of minimisation isto find ahazard—free cover with a minimum number of cubes, while
making each cube depend on as few literals as possible. Each cube in the minimum cover isa
product term for a sum—of—product (SOP) implementation and asum term for aproduct—of—sum
(POS) implementation. The syntactic constraints defined in Section 3 only remove undesirable
behaviour at functional level and do not produce automatically a hazard—free implementation.
The following theorem proved in [13] gives the exact implications of the syntactic constraints.

Theorem 10 : If the given STG is live and satisfies CSC property, then every
non—input signal is a unate function of itself.

21

Proof : Let us assume for the sake of contradiction that an output variable X is not
unatein itself. Then there must be an on—set vertex v = (X, %, .. ., %X =0,..., %)
and an off—set vertex v’ = (X, %, ..., % =1,...,%). Theverticesv' andVv” indicate
that thevariablex iscontrollingitself. That meansthereisan inherent oscillation due
to the negative feedback, which violates the CSC assumption. [|

The above theorem impliesthat every output variablet can be expressed ast = S+ Mt (feedback
loop SOP redlisation) where Sand M are combinational logic functions independent of t. Here,
Swhich initially setsthe value of t to 1, is called the s—cover and Mt which maintains the value
of t until thetransition t—occurs, is called the m—cover. Thus, the following latches may be used
to implement the next—state logic [13] :

S-M Latch: t=S+Mt[]1]
SR Latch: t=S+Rt wheeM=R
C—element : t=AB+ (A+B)t whereS=ABand M = (A+B)

If POS implementation is required, the output variable t can be expressed ast =R . (M’ + t)
(feedback loop POS realisation) where R, which resets the value of t, is called the r—cover and
(M’ +t) which maintains the value of t as O until the transition t+ occurs, is called the m'—cover.

In Section 6, we have shown that the trigger and the essential context signals of f; are
necessary and sufficient to realise alogic function f;. Thus the s—cover, m—cover, r—cover and
m’—cover are functions of the trigger and the essential context signals of f;.

7.2 Hazar d—freelogic implementation

In this Section, we analyze logic hazards under both the single input change (SIC) and the
multiple input change (MIC) conditions, and give the synthesis procedures needed to remove
logic hazards under both conditions of operation, assuming the unbounded—gate delay model.
The required changes to the net contraction procedure and existing logic synthesis methods in
realizing hazard—free implementation are also discussed.

7.2.1 Hazard—free implementation under SIC condition

A two-evel implementation has only one type of logic hazard, namely the 1-static hazard in
a SOP implementation and O-static hazard in a POS implementation [16].

Thecircuit C; isfree of static hazards aslong as at |east one of its cubes remains constant
during each transition of itsinput signals. Aslong as one cube output is constant, the output of
thecircuit C; remains constant (1 in SOP implementation and 0 in POSimplementation) and thus
the circuit is hazard—free. Thisisachieved by covering every two adjacent statesin SG or every
signal transitionin STG with the same cube. A simplealgorithmwhich removesall hazardsunder
SIC conditionsisgivenin [13] for SOP implementation. A similar algorithm can be obtained for
POS implementation. There are no changes to the net contraction procedure to remove hazards
under SIC conditions.

7.2.2 Hazar d—free implementation under MIC condition

Concurrent signal transitions which occur simultaneously can also cause hazards. We must
identify the cubes (product termsin SOP and sum termsin POS) which can potentially produce
glitches under MIC conditions. Under the unbounded—gate delay and zero—wire delay model,
multipleinput changes correspond to concurrent signal transitionsin acontracted STG. Thusthe
effect of concurrent signal transitions on cubes should be analyzed for the following four output
transitions: 0 = O0and 1 = 1 (for static hazards), 1 = 0 and 0= 1 (for dynamic hazards).

22

In [13], a procedure to remove all the hazards under MIC conditions is given. Here, the
algorithm for minimizing logic under SIC condition is used first to obtain the SOP realisation.
Then all the cubeswhich can produce glitches during the output transitions: 0 = 0,1 = 0 and
0= 1, areidentified. Once the problematic cubes are identified, the glitches are eliminated by
adding to each such cube somelitera which remainsat O while concurrent transitionstake place.
However, if no literal which remains at O is available, then the circuit is not hazard—free under
some concurrent transitions. After such transitions are identified, the STG can be modified to
sequentialize the concurrency in such away that no MIC hazards exist [13].

In this Section, we show that if the feedback loop SOP (POS) realisation is hazard—free
under SIC condition, it is aways hazard—-free under MIC condition during all the output
transitionsexceptthe 1 = 0 (0 = 1) transition. Wegivethe STG conditionsfor which the SOP
realisation is not hazard—free and provide the necessary changesto the net contraction and to the
logic synthesisalgorithms, so that the synthesized circuit ishazard—free (under both SICandMIC
conditions).

Let usconsider n concurrent signal transitions X *, xo*, . .., X,* wherexg, %, ..., X, are
either trigger or essential context signals of the output signal f. Let the values of xg, X, . . ., X
before firing the transitionsbe Xy, Xo, . . ., X, and after firing the transitionsbe Xy, Xo, . . ., X.
Letty;* (to*) represent all transitionsbetween x* and f+ (f—) excluding % * ~, where the concurrent
signal transitions x* are not the trigger transitions of f+ (f—). Let the values of t; and t, before
firing the transitions be T; and T, and after firing the transitions be T, and T,. The
interrelationship between the concurrent transitions in the STG and the possible hazards
associated with the resultant logic realisation is discussed below. For convenience sake, let us
consider n=2.

® For the output f to remain O (f : 0= 0) during the concurrent transitions , the
transitionsx;* and %* should occur between thetransitionsf—and f+, and x.* and x*
should not be the trigger transitions of f— The corresponding STG and the resultant
cubes (for SOP and POS) are given in Figure 9(a).

e Similarly, for the output f toremain 1 (f : 1 = 1) during the concurrent transitions,
thetransitionsx; * and x* should occur between thetransitionsf+ and f—, and x;* and
X* should not be the trigger transitions of f+. The corresponding STG and the
resultant cubes (for SOP and POS) are given in Figure 9(c)

® Theconcurrenttransitionsx; * andx* causetheoutput transitionf+ (f: 0 = 1)if and
only if x3* and x* are the trigger transitions of f+. The corresponding STG and the
resultant cubes (for SOP and POS) are shown in Figure 9(b).

e Similarly the concurrent transitions x* and x* cause the output transition f— (f :

1= 0)ifandonlyif x;* and x* arethetrigger transitions of f—. The corresponding
STG and the resultant cubes (for SOP and POS) are shown in Figure 9(d).

The illustrations given in Figure 9 can be generalized for n concurrent signal transitions. The
logic realisations deduced in Figure 9 by no means represent all possible STGs, but can be used
to anayze for MIC hazards. In particular, the STGs in which both a transition and its
complementary transition occur between f+ (f—) and f— (f+), are not considered in Figure 9. Let
us consider f—=%> p* %> p*~-= f+. Let P (P) be the value of p between p* (p*~) and p*~ (p*).
It can be observed easily that the s—cover in SOP contains P as aliteral and m’—cover in POS
contains (P+f) as a cube. Similarly if we consider f+ *> p* %> p*~ 2> f—, the m—cover in SOP
contains Pf as a cube and the r—cover in POS contains P as aliteral.

Theillustrationsgivenin Figure 9 support single occurrencesof the +veand—vetransitions
(f+ and f-) of an output signal f. If multiple +ve and —ve transitions of an output signal f are
alowed in an STG, then the logic realisations given in Figure 9 are still valid except that the

23

<N\

Xt X = ())
t* %
l STG

f+

SOP: f = S+ Mf where
S=.... X1 X2 T1 (aproduct term)

Mf = sum of product terms
POS:f=R (M’ +f) where

R =asingle sum term

(M’ +f) = ... (..XH) (.. Xo+) (... T, H)

Logic Realisation

9(a) : Static 0-Hazard

SOP: f= S+ Mf where
S=... X1 X2 (aproduct term)

Mf = sum of product terms
POS:f=R (M’ +f) where

R =asingle sum term

(M +f)=..... (. X1+ (. X2+ 1)

Logic Realisation

9(b) : Dynamic 0—>1 Hazard

7\ N
Xt X = Co) >
Xo* X1*
f
* STG f! SG
f+I
|
A\
0t Xt <= Co0) >

SOP: f = S+ Mf where
S=aproduct term

Mf=(..+. . X1+.Xo+..T)f
POS:f=R (M’ +f) where

R=(..+ X1+ X2+ T))

(M’ + f) = product of sum terms

Logic Realisation

9(c) : Static 1-Hazard

f+

|
! neD

7\ N
Xp* Xt = Con) <>
\/ Xz’k\x Xl*

e f_! SG

SOP: f = S+ Mf where
S=aproduct term

Mf = (oo + . X+ . X)) f
POS: f=R (M’ +f) where
R=(cu.. + X1+ X5)

(M’ + f) = product of sum terms

Logic Realisation

9(d) : Dynamic 1->0 Hazard

Figure 9. lllustration of the interrelationship between concurrent signal transitionsin an STG
(a* =x+,%* =x+,1* =t1+, b* =tr+) and the possible hazards associated with the resultant
logic realisation

24

s—cover, S (r—cover, R) may contain multiple product terms (sum terms) and m—cover, Mf
(M’—cover, (M’ +f)) may contain more product terms (sum terms). For example, if the STG has
two f+ and two f— transitions then s—cover may be sum of two product terms (p—terms) and
r—cover may be product of two sum terms (s-terms). The feedback loop SOP and POS logic
realisations are now analysed for hazards under M1C conditions.

Lemma 1: Thefeedback loop SOP (POS) realisation of fisfree of static 1-hazards
(static O—hazards) under MIC condition if the realisation is hazard—free under SIC
condition [16,13].

Proof : Let us consider concurrent transitions associated with static 1-hazards, that
is the concurrent transitions are not the trigger transitions of f—and occur between
the transitions f+ and f— (see Figure 9(c)). The procedure used to remove hazards
under SIC conditions guarantees the existence of a constant 1 cube during the
concurrent transitions [16, 13]. Thus the SOP redlisation is free of static 1-hazards
under MIC condition. [

Theorem 11 : Thefeedback |oop SOP (POS) redlisation of fisfreeof static 0-hazards
(static 1-hazards) under MIC condition, if the realisation is hazard—free under SIC
condition.

Proof : The feedback loop SOP redlisation is free of static O-hazards if the
combinational functionss—cover and m—cover arefreeof static 0-hazardsunder MIC
conditions. The concurrent transitions with which the static O-hazards are
associated, are not the trigger transitions of f+ and occur between the transitions f—
and f+. From Figure 9(a), we can see that the s—cover isaproduct term (p—term) and
m—cover is sum of a number of product terms. The m—cover does not produce any
glitch because al the product terms contain f as a literal with the value of f being 0.
The p—term of s—cover may produce aglitch if it has no literal equal to O during the
concurrent transitions and if it has complementary appearances of literals
corresponding to the concurrent transitions. During the concurrent signal transitions
thevaluesof all other signalsremain constant. The p-term of thes—cover will contain
aliteral whichisequal to O until thetransition t;*, if only the transition t;* (and not
also t1*~) occur between the concurrent transitions and f+. If t1* = t;+ then the
s—cover will contain T; asaliteral and if t;* = t;— then the s—cover will contain T;
asaliteral. Thusevenif the s—cover contain any combination of literals, the s—cover
will be zero during the concurrent transitions. A transition such ast;* always exists
if the given STG has the CSC property.

Let usnow consider an STG with two f+ and two f—transitions. Let P; and P,
be the two product terms in the s—cover of the feedback loop SOP redlisation. The
p—terms, P; and P, represent thetwo states S, and S of the state graph in which two
different f+ (lets say f1+, fo+ respectively) transitions are enabled. The p—term Py
(P2) isdetermined by the values of al the signalsexcept f, inthe state §; ($). From
the first part of the proof, it is clear that P; and P, cannot produce any glitches
between f;— and f;+ and between f,— and fo+ respectively. If the p—term Py (P»)
produces a logic—1 between f,— (f1—) and f,+ (f1+) then the feedback loop SOP
realisationisnot free of static 0—hazards. Thevalueof the p—term P; (P,) can become
1 only in astate whose binary vector is same asthe state § (), except the value of
thesignal f. Thusin order to generate logic—1 between fo— (f;—) and f,+ (fi+), there
should be a state in SG, between f,— (fi—) and f,+ (f;+) which has the same binary
vector as § (). That is, there should be two states with the same binary code in

25

which a non—put signal transition f;+ (fo+) is enabled, which violates the CSC
assumption. Thus the feedback loop SOP redlisation is free of static O—hazards.
Similarly we can prove even if the given STG has multiple (more than two)
occurrences of f+ and f— transitions, that the feedback loop SOP realisation is free
of static O-hazards under MI1C conditions.

Similarly, it can be shown that the feedback loop POSrealisationisalwaysfree
of static 0—hazards. [

Theorem 12 : The feedback loop SOP (POS) realisation of f isfree of the dynamic

hazards associated with the 0 — 1 (1 — 0) output transition under MIC conditions,
if the realisation is hazard—free under SIC conditions.

Proof ;. The feedback loop SOP redlisation, f = S+ Mf is free of dynamic 0— 1
hazards if the cubes in the s—cover and the m—cover do not produce glitches during
the 0— 1 transition of the output.

The concurrent transitions associated with the 0 — 1 output transition are the
trigger transitions of f+. In the feedback loop SOP realisation, s—cover isasingle
p—term and m—cover is the sum of product terms as shown in Figure 9(b). The
m—cover does not cause a glitch because al the p—termsin the m—cover contain f as
aliteral and thevalue of f iszero between f—and f+. The p-term of s—cover changes
itsvalue from 0 to 1 only when all the concurrent transitions occur (simultaneously
orinany order). Thusthefeedback |oop SOPreadlisationisalwaysfreeof thedynamic
hazards associated with the 0 — 1 output transition.

L et usnow consider acasewhere multiple +veand—veoutput signal transitions
(f+ and f—) areallowed in an STG. The s—cover consists of multiple p—terms, Py, P»,
Ps,, Ph representing the states, S, $, S,, § of the state graph in which
different f+ trangtions, fi+, b+, f3+, , fa+ areenabled. Thevalueof the p—terms
P1, P2, P3,, P, can become 1 only in the states whose binary vectors are same
asthat of thestates S, $, S,, S, ignoring thevalueof f. Thusin order to generate
aglitch, there should be anew state between f,—and f,+ whose binary vector issame
asthatof §, $, S,, § which violates CSC assumption. Thus even if the given
STG has multiple occurrences of f+ and f— transitions, the feedback loop SOP
realisation isfree of the dynamic hazards associated with the0 — 1 output transition.

Similarly, we can prove that the feedback loop POS realisation is always free
of the hazards associated with the 1 — O output transition. [|

The following Theorem establishes the STG conditions for which the hazards associated with

the1— 0 (0— 1) output transition occur under MIC condition in the feedback |oop SOP (POS)
realisation.

Theorem 13 : In the net contracted STG, let us consider the concurrent trigger
transitionsof f—(f+) : x.*, %*, ..., %*. Let S =by...,F representsthebinary vector
of thestatein SG, inwhichthetransition f+isenabled, whereb; ...b, denotethevaues
of thetrigger and essential context signals of f, in Sgn. The SOP (POS) realisationis
not free of the dynamic 1— 0 (0— 1) hazardsif and only if a state associated with
the concurrent transitions, x;* in SG has the same binary vector asthat of S, except
thevalue of f, i.e. by...b4F.

Letyi* represent all single signal transitions between the transition f+ (f-) and
concurrent transitions, in the uncontracted STG. The SOP(POS) realisation consists
of the dynamic hazards associated with the 1 — 0 (0— 1) output transition if and

26

,——a SIG
< Th
5
| = @
/_\. . N
Haved R
— @S

k—map

dx

00 01 11 10
oo| 0| O |f1\|¢
"Bnae
nfoy|e ||y O
10| 0 (\1 |\1/| ¢
¢ —don't care vaue

x=ad+ax+dx

k—map

dx

00 01 11 10
Telo [
00(1 0

x=ad+ax+dx

(b) Logic synthesis without considering the MIC hazards — net contraction

X dx k—map
STG G #—don't carestates @ _ 00 01 11 10
in@ in@ Off-set cover Rap

_ 01 ¢

x=acd+ax+dx [~

- . - . . njiojl/¢ |1\ 0
(c) Modified net contraction and modified logic synthesis

to remove hazards under MIC condition 100 0 |\ (\I/| #

Figure 10. Logic synthesis and net contraction associated with MIC hazards

27

¢ —don't care vaue

only if

(a) acomplementary transition of x*, % * ~ also occurs between f+ (f-) and x*,

(b) a complementary transition of x*, x*~ do not occur between f+ (f-) and
x *)

(c) atransition of y* is not an essentia context signal of f and

(d) a complementary transition of any transition of yi*, yi*~, is not a trigger
transition of f+ (f-).

Proof : Figure 9(d) illustratesthe concurrent transitions associated with the dynamic
1 — 0 hazard. The feedback loop SOP realisation, f = S+ Mf isnot free of dynamic
1— 0 hazards if the cubes in the s—cover and the m—cover produce glitches during
the 1 — 0 transition of the output. The m—cover changes its value from 1 to O only
when al the concurrent transitions occur (simultaneously or in any order). Thusthe
m—cover does not cause any glitch under MIC condition.

The dynamic 1— 0 hazard can only occur if the s—cover causesa0—1—0
glitch during the concurrent transitions and if the glitch propagates to the output f
only after the output f becomes 0 dueto the 1 — 0 changeinthem—cover. Thep-term
of s—cover is equal to the product of the literals corresponding to the values of the
trigger and essential context signals of f in the state Sy, i.€. by...,. The value of the
p-termisequal to 1 in all the states whose binary vector is equal to either by ..., F
or by...nF. Thusin order to generate alogic—1 when m—cover changesitsvauefrom
1to 0, astate associated with the concurrent transitions must have the binary vector
equal to by ...b,F. Thefour conditions given above ensure that a state associated with
the concurrent transitions always has the binary vector b; ...b,F. Conditions (c) and
(d) ensure that the transitions such as y* will be removed in the net contracted STG
and the prime and irredundant s—cover is independent of the literals corresponding
tothetransitionsy;*. The Condition (a) impliesthat thesignal x must have morethan
two transitions and a same transition x* also occurs between f— and f+. Condition
(a) alsoimpliesthat the s—cover can cause 0 — 1transition of f, during the concurrent
transitions. Condition (b) ensure that the s—cover always stabilises back to 0 in
accordance with the f— transition. Thus, the p—term of the s—cover causes the
dynamic hazard. If the transition y* ~ isatrigger transition of f+ (Condition (d) not
satisfied) or if the transition y;* is an essential context signal of f (Condition (c) not
satisfied), then the p—term contains Y; (the valuey; after yi*~) asaliteral. When the
transition y* occurs, the p—term of the s—cover becomes 0 and does not produce the
glitch.

Similarly we can prove that the POS realisation is not free of the hazards
associated with 0— 1 output transition. [|

In an un—contracted STG, if suppose y;*~ is not the trigger transition of f+, but occurs

between f— and f+, then the prime s—cover (with don't cares) does not contain Y; as aliteral, but
the non—prime s—cover (with out don’t cares) contains Y; as a literal. This property is used to
remove the hazards. The contraction procedure normally removes transitions such as y;* and
y,*~. Figure 10(a) & 10(b) giveanimplementation of thesignal xwhichisnot hazard—free under
MIC conditions. Figure 10(a) illustrates the synthesis procedure without the net contraction

where as Figure 10(b) illustrates synthesis with net contraction.
In order to eliminate M| C hazards, the net contraction procedure should not removeat least

oneset of transitions, such asy;* (between f+ and f—) and y;* ~ (between f—and f+). The next step
in the synthesis processisto add the don’t care statesin which Y; (the value after yi*) appears,
to the off—set cover. This process will add the literal Y, to the p—term of s—cover. Figure 10(c)

28

gives an implementation of the signal x which is hazard—free under MIC condition and also
Illustratesthe modificationsin the net contraction and thelogic synthesis. In thisexamplethe net
contraction procedure finds c—and c+ asy* and y;*~ transitions and thus the STG and the state
graphremainthesameasshowninFigure10(c). Duringlogicsynthesis, thedon’t carestates0010
and 1010 in which the literal c isequal to O, are included in the off—set cover.

If we cannot find transitions such as yi* and y;*~ then the realisation is not hazard—free
under the concurrent occurrences of some transitions. In the following Theorem we show that
thetransitionssuch asy;* (between f+ and f—) and y; * ~ (between f—and f+) can alwaysbefound
if the STG islive, safe and satisfies the CSC property.

Theorem 14 : If the given STG islive, safe and satisfies the CSC property, then a
hazard—free feedback loop SOP (POS) implementation (under both SIC and MIC
conditions) always exists unless the concurrent trigger transitions of the output
transition f—, are associated with the input signals which come from the same
environment. If the environment from which theinput signals come, also provide an
extra signal to implement the feedback loop SOP (POS) redisation, then the
implementation can be made always hazard—free.

Proof : The procedure to remove all the hazards under SIC condition is explained
in Section 7.2.1. If theimplementation is hazard—free under SIC conditions, then the
only hazardsthat can occur, are associated with the output transition 1 — 0 and with
the MIC conditions (from Lemma 1 and Theorems 11-13). That is, the
implementation is not hazard—free if and only if the first two STG conditions given
in Theorem 13 are satisfied. Those conditions are reflected in the STG shown in
Figure 10(b) where the x— is the 1— 0 output transition and a— and d— are the
concurrent signal transitions associated with MIC condition. If we can prove that
there will be always signal transitions such as ¢+ and ¢— as shown in Figure 10(a),
then the hazards associated with the 1— 0 output transition can be removed by
adding aliteral of c to the problematic p—terms of the s—cover.

If either a or d is not an input signal, then the STG in Figure 10(b) does not
satisfy the CSC property. In order to enforce CSC, without removing the concurrency
between a— and d—, asignal transition such as c— should be there.

If aand d areinput signals but come from two independent environments then
we can not have the causal constraint a+ — d— without having at least one signa
transition such as c— in between them.

If aand d areinput signals and come from same environment then they can be
considered as output signals to that environment. There should be at least a signa
transition such as c—in that environment. Otherwise there will be CSC violation in
that environment. If the signal such as c isavailable from that environment then the
circuit is hazard—free under concurrent occurrences of the input signal transitions.
Otherwise, the circuit is not hazard—free for the given STG specification.

Inal thethree cases, theinverted transition of c—should alwaysoccur between
x—and x+. Otherwise there will be a CSC violation.

Thus if the STG is live, safe and satisfies CSC then there will be always a
feedback loop SOP implementation which is hazard—free under both SIC and MIC
conditions. Similarly we can prove that a hazardfree feedback loop POS
implementation always exists. [|

29

v

S1 QR42 S2
b d

(a) Block diagram of the QR42 system

atv— ge—a
ate— b‘ﬂfp— ot ‘f’ D i‘—* D \7;+
b+ c+ a d+ b+ ct a d+
a d_+ X+ X+ a— X+
b— b— b— X+ b—
l A l 4 l 4 1 4 l i
at at c- at at
b+ c— b+ Qp— c— b+ o c—
! ! | | —
a d- & d X— a a d-
b-— X— X—
l b —» X— ——» l
b-— b—
(b) Origina STG (c) Fina STG (d) Contracted STG ~ (€) Contracted STG (f) Contracted STG
for b for c for x

Figure 11. Synthesis of QR42 module

8 Examples

In this Section two examples will be discussed to demonstrate the significance of the theory
developed above. The different aspects of the synthesis process such as persistency or complete
state coding, trigger and context signals, net contraction and hazard removal are described.

8.1 Module QR42

Module QR42[5] can be used to connect two systems S1 and S2 asshown in Figure 11(a), where
S1 follows four—phase signaling and S2 follows two—phase signaling. Assuming that all the
signals are at low voltage initially, one cycle of QR42 activities can be specified as

[a+;((b+a-) | ¢+ d+);b—a+ ((b+a-) | (c—d-);b-]"
A sequence b+ ; a—indicates that a— should come after b+. The notation b+ || c+ denotes that
b+ and c+ can occur in parallel. The notation [a]* indicates zero or more repetitions of a. The
STG that captures the signaling specifications of QR42 is given in Figure 11(b). The initial

30

marking of this STG consists of the edge leading into the topmost a+ transition. The STG has
two occurrences of the same transitions of the signalsa and b. Thereisno other signal transition
between two occurrences of s* = {b+, a—} except s*~ = {b—, at}. This clearly violates the
Restriction 1, which allows multiple occurrences of the same transitions as long as they are
distinguished by a signal transition in between them. An internal signal transition cannot be
inserted before an input signal transition (e.g. between b— and a+) because the circuit can not
Impose constraints on the outside world. Thus the internal signal transitions x+ and x— are
inserted asshowninFigure11(c). The STGisstill non—persistent dueto the constraintsa+ — c+
and a+ — ¢— and the two occurrences of the sequence of transitions {b—, a+, b+, a—}. The
persistency constraints c+ — b+ and c—— b+ are introduced as shown in Figure 11(c) to make
the STG persistent. Thelogic equations resulting from the boolean minimisation of thefinal STG
are given below.

b=cx+cx
c=ax+cla+x

x=ad+x(a+d
before removing hazards under M1C condition

x = acd + x(a+d)
after removing hazards under MI1C condition

The samelogic equations are al so obtained from the contracted STGs. Thetrigger signalsfor the
signal barec andx because of thearcsc+ — b+ andx+ — b—. Thereisno essential context signal
for the signal b. The resultant contracted STG for the signal b is shown in Figure 11(d). In the
case of signal ¢, the trigger signal is a and the essential context signal isx. If x isremoved the
signal ¢ becomes non—persistent. The contracted STG for the signal cis given in Figure 11(e).
The trigger signals for the signal x are a and d. In order to remove the hazards under MIC
condition, thetransitions of the signal ¢ should be included in the contracted STG. The resultant
contracted STG is shown in Figure 11(f). If the don’'t—care states associated with ¢c=0 (c—
transition) are not included in the off—set, then the resultant logic still contain the hazards under
MIC condition.

8.2 An Artificial Controller

InthisSection, anartificial controller givenin[18] will bediscussed. Theartificial controller can
be used to connect two systems S1 and S2 which follows four—phase signalling as shown in
Figure 12(a). The corresponding STG isgiven in Figure 12(b). The important constraint hereis
5that the time critical transitions of the two systems (i.e. R1+ and Ry+) should not occur on a
simple cycle. The arcs Ri—— A+ and Ri+ — Ao— are non—persistent with respect to A1+. The
constraint arc A,+ — A1— can be used to remove the non—persistency behaviour. Inthat case, the
two time consuming transitionsresideon asimple cycle, whichisnot allowed. Aninternal signal
transition x+ can beintroduced asshownin Figure 12(c) sothat thetransitionsof A, are persistent
with respect to A1 whilethe two time consuming transitions are not on asimplecycle. It can also
be observed that the transition A+ is not persistent with respect to Ry+. Thus, the transition x—
isinserted between A,+ and Ao— as shown in Figure 12(c) in such away that the transition A1+
is persistent and the transitions x+ and x— are on a simple cycle. There are no essential context
signals for all the non-input signals in the final STG. The contracted STGs for the non—input
signalsA1, A and x aregivenin Figures 12(d), 12(e) and 12(f) respectively. Thefollowing logic
equations can be obtained either directly from the boolean minimisation of thefinal STG or from
the contracted STGs.

31

S1

R1 A2

AC

(a) Block diagram of the artificial controller (AC)

D

~

R1- R2+

I

=S

Al- A2+
<
]
R1+ R2-

.

Al+ &— A2-

\/

_/
N
\

%‘/ N A2+
N\
~

Al+ &——m A2

C

(d) Contracted STGfor Al

(Al

Al R2

(c) Fina STG

(b) Original STG

~

R2+

~

|

A2+

| =

R2-

vy

|

A2-

A\

(e) Contracted STG for A2

Figure 12. Synthesis of the artificial controller

9 Conclusions

A]_:A_2X
A=R X+A2(R2+X)

X=R;+A; X

2t
/
P
AA
(Al

1- R2+
\A l
X \
ALx A2+

(f) Contracted STG for x

In this paper, we dealt with signal transition graph constraints for hazard—free synthesis of
asynchronous circuits with unbounded—gate delay model. We established arel ationship between
Chu’s persistency constraint [3] and the compl ete state coding constraint [7, 13] with the help of

32

global persistency constraints. We provided the ST G syntactic constraintsrequired toidentify the
input set of asignal. We showed contrary to Chu's belief [3] that the net contraction does not
produce any solution more efficient than the sol ution obtai ned using bool ean minimisation from
an un—contracted STG. We analyzed hazards under both single and multiple input change
conditions and proposed the necessary changes to the net contraction and the logic synthesis
procedures in order to obtain hazard—free implementations.

Acknowledgement

The authors would like to thank Ruchir Puri for providing us with his unpublished manuscript
and for many useful discussions.

References

[1] C. Berthet and E. Cerny. Synthesis of Speed—independent Circuits Using Set—Memory
Elements. In G. Saucier, editor, Proc. International Workshop on Logicand Arch. Synthesis
for Slicon Compilers. Grenoble, France, May 1988.

[2] T.-A. Chu. Synthesis of Self-timed Control Circuits from Graphs. An Example. In
International Conference on Computer Design, pages 565-571, October 1986.

[3] T.-A. Chu. Synthesis of Self-timed VLS Circuits from Graph-theoretic Specifications.
PhD thesis, MIT, June 1987.

[4] F Commoner, A. W. Holt, S. Even and A.Pnueli. Marked Directed Graphs. Journal of
Computer and System Sciences, 5:511-523, 1971.

[5] G. Gopalakrishnan and P. Jain. Some Recent Asynchronous System Design
Methodologies. Technica Report UU-CS-TR-90-016, University of Utah, October
1990.

[6] M. Hack. Analysis of Production Schemata by Petri Nets. Master’s thesis, MIT, 1972.
(Project MAC TR-94).

[7] L. Lavagno, K. Keutzer and A. Sangiovanni—Vincentelli. Synthesis of Verifiably
Hazard—free Asynchronous Control Circuits. In Advanced Research in VLS: UC Santa
Cruz, Pages 86-102, 1991.

[8] L. Lavagno, K. Keutzer and A. Sangiovanni—Vincentelli. Algorithms for synthesis of
hazard—free asynchronous circuits. In Proceedings of the Design Automation Conference,
Pages 302-308, June 1991.

[9] L.Lavagno,C.W.Moon, R. K. Braytonand A. Sangiovanni—Vincentelli. Solving the state
assignment problem for signal transition graphs. In Proceedings of the Design Automation
Conference, Pages 568-572, June 1992.

[10] T. H-Y. Meng, R. W. Brodersen and D. G. Messerschnitt. Automatic Synthesis of
Asynchronous Circuits from High—Level Specifications. |EEE Transactionson CAD of
Integrated Circuits, 8(11):1185-1205, November 1989.

[11] T. H.-Y. Meng. Synchronization Design of Digital Systems. Kluwer Academic, 1990
[12] R. E. Miller. Switching Theory, volume |1, chapter 10. John Wiley and Sons, 1965.

[13] C. W. Moon, P. R. Stephen and R. K. Brayton. Synthesis of hazard—free asynchronous
circuits from graphical specifications. In Proceedings of International Conference on
Computer—Aided Design, Pages 322—325, November 1991.

33

[14]
[15]

[16]
[17]

[18]

[19]

T. Murata. Petri Nets. Properties, Analysis and Applications. Proceedings of the |IEEE,
77(4): 541-580, April 1989.

R. Puri. Signa Transition Graph Constraints for Hazard—free Synthesis of Asynchronous
Circuits. Unpublished manuscript, June 1992. To be appeared in Proc. of ISCAS 93.

S. H. Unger. Asynchronous Sequential Switching Circuits. John Wiley & Sonsinc., 1969.

P. Vanbekbergen, F. Catthoor, G. Goossens and H. De Man. Optimized Synthesis of
Asynchronous Control Circuits from Graph-theoretic Specifications. In Proceedings of
International Conference on Computer—Aided Design, Pages 184-187, 1990.

P. Vanbekbergen, F. Catthoor, G. Goossens and H. De Man. Time and area Performant
Synthesisof Asynchronous Control Circuits. Technical report, IMEC Laboratory, B—3030
Leuven, Belgium, 1990.

M.—L. Yu and P. A. Subrahmanyam. A New Approach for Checking the Unique State
Coding Property of Signal Transition Graphs. In Proceedings of the European Conference
on Design Automation, Pages 312-321, March 1992.

