SCS&E Report 9301
February, 1993

Computational Limits on Team l|dentification of
Languages

Sanjay Jain and Arun Sharma

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING
THE UNIVERSITY OF NEW SOUTH WALES

| SCIENTIA

Abstract

A team of learning machines is essentially a multiset of learning machines.
A team is said to successfully identify a concept just in case each member of
some nonempty subset of the team identifies the concept. Team identification
of programs for computable functions from their graphs has been investigated
by Smith. Pitt showed that this notion is essentially equivalent to function
identification by a single probabilistic machine.

The present paper introduces, motivates, and studies the more difficult
subject of team identification of grammars for languages from positive data.
It is shown that an analog of Pitt’s result about equivalence of team func-
tion identification and probabilistic function identification does not hold for
language identification, and the results in the present paper reveal a very
complex structure for team language identification. It is also shown that for
certain cases probabilistic language identification is strictly more powerful
than team language identification.

Proofs of many results in the present paper involve very sophisticated
diagonalization arguments. Two very general tools are presented that yield
proofs of new results from simple arithmetic manipulation of the parameters
of known ones.

Some preliminary results were first reported at the 17th International Collo-
quium on Automata, Languages and Programming, Warwick University, July
1990.

During the early stages of this work, Sanjay Jain was affiliated with the
Department of Computer Science, University of Rochester and the Depart-
ment of Computer and Information Sciences, University of Delaware. He was
supported in part by NSF grant CCR 832-0136 at the University of Rochester.
His present address: Institute of Systems Science, National University of Sin-
gapore, Singapore 0511, Republic of Singapore, Email: sanjay@iss.nus.sg

At the same time, Arun Sharma was affiliated with the Department of
Computer Science, SUNY at Buffalo, Department of Computer and Infor-
mation Sciences, University of Delaware, and the Department of Brain and
Cognitive Sciences, MIT. He was supported by NSF grant CCR 871-3846 at
SUNY Buffalo and University of Delaware, and by a Siemens Corporation
grant at MIT.

1 Introduction

Identification of grammars (acceptors) for recursively enumerable languages from positive data by a
(single) algorithmic device is a well studied problem in Learning Theory. The present paper inves-
tigates the computational limits on language identification by a ‘team’ of (deterministic) machines.
A team of machines is essentially a multiset of machines. A team is said to identify a language if
each member of some nonempty subset of the team identifies the language.

Identification of programs for functions from their graph is another extensively studied area in
Learning Theory. For this related problem, L. Pitt [21, 23] established that team identification is
essentially equivalent to identification by a single probabilistic machine. He showed that for any
positive integer n and any probability p, if 1/(n+ 1) < p < 1/n, then the collections of computable
functions that can be identified by a single probabilistic machine with probability at least p are
exactly the same as the collections of computable functions that can be identified by a team of n
(deterministic) machines requiring at least one to be successful.

The present paper makes the following contributions to the study of team identification of
languages.

(a) It is shown that an analog of Pitt’s connection between probabilistic function and team
function identification does not hold for languages. In fact our results show that the structure
of team language identification is far more complex than the simple structure of team function
identification.

(b) For k > 2, the relationship between probabilistic language identification with probabilities of
the form 1/k and team language identification requiring at least 1/k of the machines to be
successful is established.

(c) Techniques to simplify complicated diagonalization arguments are presented.

(a) follows from one of our results (Theorem 10). Results in Section 5.5 illustrate the com-
plexity of team language identification. We achieve (b) by showing that for & > 2, probabilistic
identification of languages with probability at least 1/k is strictly more powerful than team lan-
guage identification where at least 1/k of the members in the team are required to be successful.
Proofs of results leading to this answer require very sophisticated diagonalization arguments. Two
very general results (Theorems 7 and 8) are presented which allow us to prove new diagonalization
theorems by simple arithmetic manipulation of the parameters of known results.

We also suggest that a plausible reason for Pitt’s connection not holding for language identifi-
cation may be the unavailability of negative data (information about what is not in the language)
to the learning agent. We argue this by showing that an analog of Pitt’s connection does hold
for language learning if the learning agent is also given negative information. It should be noted
that in the context of function identification, where Pitt’s connection holds, negative information
is implicitly available to the learning agent because it can eventually determine if a given ordered
pair doesn’t belong to the graph of a function.

Rest of the paper is organized as follows. Section 2 informally discusses our main results and
motivates the study by describing scenarios which are partly modeled by team language learning.
Section 3 introduces the notation and Section 4 describes the definitions formally. Section 5 contains
proofs of our results.

2 Discussion

In the present section we informally introduce the definitions and discuss some of our findings. The
main subject of our investigation is identification of languages. However, with a view to compare
and contrast our results with analogous investigations in the context of function identification, we
will present notions from both function identification and language identification. Usually, we will
first describe a notion in the context of function identification followed by the description of an
analogous notion for language identification.

Learning machines may be thought of as Turing machines computing a mapping from ‘finite
sequences of data’ into computer programs. A typical variable for learning machines is M. At any
given time, the input to a learning machine M is to be construed as a code for the data available
to M till that time. The output of M is taken to be a hypothesis conjectured by M in response
to the data available to it. For example, in the context of function learning, the input is an initial
segment of the graph of a function and the output is the index of a program in some fixed acceptable
programming system. We now describe what it means for a machine to learn a function.

Let IV denote the set of natural numbers. Let f be a computable function and let n € N. Then,
the initial segment of f of length n is denoted f[n]. The set of all initial segments of computable
functions, {f[n] | f is a computable function and n € N}, is denoted SEG. It is easy to see that
there exists a computable bijection between SEG and N. Members of SEG are inputs to machines
that learn programs for functions, and we avoid notational clutter by using f[n] to denote the code
for the initial segment f[n]. We also fix an acceptable programming system and the output of a
learning machine is interpreted as the index of a program in this system. We say that M converges
on f to 7 just in case, for all but finitely many n, M(f[n]) = 7. The following definition is Gold’s
criterion for successful identification of functions by learning machines.

Definition 1 [15] (a) M Ex-identifies f just in case M, fed the graph of f, converges to a program
index for f. In this case we say that f € Ex(M).

(b) Ex denotes all such collections S of computable functions such that some machine Ex-
identifies each function in §.

The class Ex is a set theoretic summary of the capability of single machines to Ex-identify
collections of functions.

L. Blum and M. Blum [2] and Barzdin [1] showed that the class Ex is not closed under union.
This result may be viewed as a fundamental limitation on building general purpose devices for
learning functions, and, to an extent, justifies the use of heuristic methods in Artificial Intelligence.
However, this result also suggests a more general criteria of successful learning of functions in
which a team of machines is employed and success of the team is the success of any one or more
members in the team. The idea of team identification for functions was first suggested by J. Case
and extensively studied by Smith [29, 30]. The next definition describes team identification of
functions. Recall that a team of machines is essentially a multiset of machines.

Definition 2 (a) A team of n machines, {My, My, ..., M, }, is said to Team"' Ex-identify a func-
tion f just in case at least m members in the team Ex-identify f. In this case we say that
f € Team"Ex({M;,Mj,...,M,}).

(b) Team]'Ex is defined to be the class of sets S of computable functions such that some team
of n machines Team'Ex-identifies each function in §.

Team! Ex-identification was investigated by Smith [29, 30] and Team™ Ex-identification was
studied by Osherson, Stob, and Weinstein [18]. Pitt [21] noticed an interesting connection between

Team! Ex-identification and function identification by a single probabilistic machine. Probabilistic
machines behave very much like computable machines except that every now and then they have
the ability to base their actions on the outcome of a random event like a coin flip. (For a discussion
of probabilistic Turing machines see Gill [14].) The next definition informally describes probabilis-
tic identification of functions; we delay the formal details of the probability of identification till
Section 4.5. Below, P ranges over probabilistic machines.

Definition 3 [21, 23] Let p be such that 0 < p < 1.

(a) P Prob”Ex-identifies f just in case P Ex-identifies f with probability at least p. In this
case we say that f € Prob”’Ex(P).

(b) Prob”’Ex = {S | (3P)[S C Prob”’Ex(P)]}.

Pitt [21, 23]showed that if 1/(n + 1) < p < 1/n, then Team! Ex = Prob?Ex. In other words,
the collections of computable functions that can be identified by a single probabilistic machine with
probability at least p are exactly the same as the collections of computable functions that can be
identified by teams of n deterministic machines requiring at least one to be successful.

Using the above connection, Pitt and Smith [24, 25] studied the general case of Team] Ex-
identification! in which the criterion of success requires at least m out of n machines to be successful.
They showed that for each m,n > 0 such that m < n, Team”'Ex = TearnlLEJEx.

However, the story is completely different for languages. We next describe preliminary notions
about language identification.

A text for a language L is a mapping T from N into N U {#} such that L is the set of natural
numbers in the range of T'. Intuitively, a text T for a language L is a presentation of elements
of L (possibly repeated) and no non-elements of L; #’s in the presentation may be thought of as
modeling pauses in data input. content(l') denotes the set of natural numbers in the range of T'.
(Thus, the content of a text never includes #.) The initial sequence of text T" of length n is denoted
T[n]. The set of all finite initial sequences of N and #’s is denoted SEQ. It is easy to see that
there exists a computable bijection between SEQ and N. Members of SEQ are inputs to machines
that learn grammars (acceptors) for r.e. languages. We also fix an acceptable programming system
and interpret the output of a language learning machine as the index of a program in this system.
Then, a program conjectured by a machine in response to a finite initial sequence may be viewed as
a candidate accepting grammar for the language being learned. We say that M converges on text
T to 7 just in case for all but finitely many n, M(T'[n]) = ¢. The following definition introduces
Gold’s criteria for successful identification of languages.

Definition 4 [15]

(a) M TxtEx-identifies a text 1" just in case M, fed 7', converges to a grammar for content(7").

(b) M TxtEx-identifies an r.e. language L just in case M TxtEx-identifies each text for L. In
this case we say that L € TxtEx(M).

(c) TxtEx denotes all such collections £ of r.e. languages such that some machine TxtEx-
identifies each language in L.

The class TxtEx is a set theoretic summary of the capability of machines to TxtEx-identify
collections of r.e. languages. We now define team identification of languages.

Definition 5 (a) A team of n machines, {My,Ma,...,M,}, is said to Team' TxtEx-identify a
text 1" just in case at least m members in the team TxtEx-identify T.

!The general case of team function identification was also studied by Osherson, Stob, and Weinstein [18].

(b) A team of n machines {My,Msj,...,M,} is said to Team] TxtEx-identify a language
L just in case {My, My, ..., M, } Team]'TxtEx-identify each text for L. In this case we write
L € Team]' TxtEx({Mi,Ma,...,M,}).

(c) Team ' TxtEx is defined to be the class of sets £ of recursively enumerable languages such
that some team of n machines Team' TxtEx-identifies each language in L.

Note that in the above definition we have allowed the possibility that for a given language L,
different machines in the team may be successful on different texts for L. It can be shown that
an alternative formulation in which successful machines in the team are required to be successful
on all texts for L is equivalent to our definition in the sense that both formulations yield the same
collections of identifiable languages (the reader is directed to Fulk [12, 13] for arguments of such
equivalences).

Probabilistic language identification is the subject of next definition. Again, as was the case
with probabilistic function identification, we delay the formal details of probability of identification
in the following definition to Section 4.5.

Definition 6 [21, 23] Let 0 < p < 1.

(a) P Prob?TxtEx-identifies L just in case for each text T for L, P TxtEx-identifies T" with
probability at least p. In this case we write L € Prob?TxtEx(P).

(b) Prob?’TxtEx = {£ | (3P)[L C Prob?TxtEx(P)]}.

As already mentioned, the study of team language identification not only turns out to be more
difficult than team function identification, but it also has many surprises. Below, we discuss some
of these unexpected results.

In the context of function identification, we have the following result immediately following
from the results of Pitt and Smith [25].

Team’Ex = Team!Ex

The above result says that the collections of functions that can be identified by teams employing
4 machines and requiring at least 2 to be successful are exactly the same as those collections which
can be identified by teams employing 2 machines and requiring at least 1 to be successful.

However, in the context of language identification, we are able to show the following result
which says that there are collections of languages that can be identified by teams employing 4
machines and requiring at least 2 to be successful, but cannot be identified by any team employing
2 machines and requiring at least 1 to be successful. O denotes proper superset.

Team;TxtEx D TeamjTxtEx

As a consequence of the above result, which follows from our Theorem 10, an analog of Pitt’s
connection does not hold for language identification. This fact turns out to be somewhat surprising
because many results about function identification were found to have analogous counterparts in
the context of language identification. Even more surprising is the following result which follows

from our Theorem 11.
TeamTxtEx = Team) TxtEx

We actually complete the picture for team language identification for success ratio 1/2 and as
a consequence of our results, we have the following result which says that probabilistic language
identification with probability at least 1/2 is strictly more powerful than team identification with
success ratio 1/2.
Probz TxtEx — UJ Team;; TxtEx # {
J

The above findings are the subject of Section 5.3. Some of our proofs of the above results use two
diagonalization tools described in Section 5.2. These tools, presented in the form of very general
theorems, allow us to prove new diagonalization results from simple arithmetic manipulation of
the parameters of known diagonalization arguments. For example, Theorem 7 allows us to employ
results of the form TeaméTxtEX—TeamextEX # () to prove results of the form Team;/,TxtEx—

Tearnf,/TxtEX # (for ‘suitable’ values of ¢, ', k', I’ obtainable under ‘certain conditions’ from
0,4, k1.

In Section 5.4, we again employ the tools of Section 5.2 to give partial picture for success
ratios of the form 1/k, k > 2. For example, the following result sheds light on when introducing
redundancy in the team yields extra language learning ability.

(Vk > 2)(V even j > 1)(Vi| j does not divide i)[Teami.katEx — Team', TxtEx # (]

As a consequence of the above result, we have the following relationship between probabilistic
language identification with probabilities of the form 1/k and team language identification.

(Vk > 2)[Prob%TxtEx — U Tearn;.katEX + 0]
J

Thus, we are able to establish that for probabilities of the form 1/k, probabilistic language
identification is strictly more powerful than team identification where at least 1/k of the members
in the team are required to be successful.

In Section 5.5, we present results for some other success ratios and shed light on why general
results are difficult to obtain.

Finally, in Section 5.6, we address the problem of why Pitt’s connection fails for language iden-
tification from positive data, and conjecture that a plausible reason for probabilistic and team iden-
tification behaving differently for language identification is the unavailability of negative data. In
support of this conjecture, we consider a hypothetical learning criteria called InfEx-identification.
This criteria is like TxtEx-identification except that the learning machine is fed an informant of
the language instead of a text for the language being learned. An informant, unlike a text which
only contains information about what is in the language, contains information about both elements
and non-elements of the language.? We show that an analog of the Pitt’s connection holds for
probabilistic InfEx-identification and team InfEx-identification, as they turn out to be essentially
the same notions.

Before we undertake a formal presentation of our study, it is worth noting an aspect of team
identification that cannot be overlooked, namely, it may not always be possible to determine which
members in the team are successful. This property seems to rob team identification of any pos-
sible utility. However, we present below scenarios in which the knowledge of which machines are
successful is of no consequence, all that matters is some are.

First, consider a hypothetical situation in which an intelligent species, somewhere in outer space,
is attempting to contact other intelligent species (such as humans on earth) by transmitting radio
signals in some language (most likely alien to humans). Being a curious species ourselves, we would
like to establish a communication link with such a species that is trying to reach out. For this
purpose, we could employ a team of, not necessarily cooperating, language learners each of which
perform the following three tasks in a loop:

2Tt is worth noting that the notion of informants is merely theoretical, as for any non-recursive r.e. language, the
only informants available are non-recursive. We consider informants purely for gaining a theoretical insight about
language learning.

(a) receive and examine strings of a language (eg., from a radio telescope);
(b) guess a grammar for the language whose strings are being received;

(c) transmit messages back to outer space based on the grammar guessed in step 2.

If one or more of the learners in the team is actually, but, possibly unknowingly, successful
in learning a grammar for the alien language, a correct communication link would be established
between the two species.

Consider another scenario in which two countries, A and B, are at war with each other. Country
B uses a secret language to transmit movement orders to its troops. Country A, with an intention
to confuse the troops of country B, wants to learn a grammar for country B’s secret language so
that it can transmit conflicting troop movement instructions in that secret language. To accomplish
this task, country A employs a “team” of language learners, each of which perform the following
three tasks in a loop:

(a) receive and examine strings of country B’s secret language;
(b) guess a grammar for the language whose strings are being received;

(c¢) transmit conflicting messages based on the grammar guessed in step 2 (so that B’s troops
think that these messages are from B’s Generals).

If one or more of the learners in the team is actually, but possibly unknowingly, successful in
correctly learning a grammar for country B’s secret language, then country A achieves its purpose
of confusing the troops of country B.

In both the scenarios described above, we have a team of learners trying to infer a grammar for
a language from positive data. The team is successful, just in case, some of the learners in the team
are successful. It should be noted that the notion of team language identification models only part
of the above scenario, as we ignore in our mathematical model the aspect of learners transmitting
messages back. We also mathematically ignore possible detrimental effects of a learner guessing
an incorrect grammar and transmitting messages that could interfere with messages from a learner
that infers a correct grammar (for example, the string ‘baby milk powder factory’ in one language
could mean the string ‘ammunition storage’ in another!). In no way are these issues trivial; we
simply don’t have a formal handle on them at this stage.

3 Notation

Recursion-theoretic concepts not explained below are treated in [27]. N denotes the set of natural
numbers, {0,1,2,...}. NT denotes the set of positive integers, {1,2,3,...}. €, C, and C denote,
respectively, membership, containment, and proper containment for sets.

* denotes unbounded but finite; we let (VYn € N)[n < % < oo]. Unless otherwise specified,
ety g, kylymyn, vy s, b, u, v, w, x, Yy, 2z, with or without decorations, range over N. a, b, ¢, with
or without decorations range over N U {x}. [m .. n] denotes the set {i | m < i < n}. We say that
a pair (¢,7)is less than (k,)iff i <j VvV [t =7 A k<]

() denotes the empty set. A, B, C, 5, X, Y, Z, with or without decorations, range over subsets
of N. We reserve A™ to range over multisets with elements from N. We usually denote finite
sets by D. card(D) denotes the cardinality of the finite set D. card(A™) denotes the number
of (not necessarily distinct) elements of the multiset A™. Similarly, set operations, N, U, C, set

difference, on multisets producing multisets can be defined (for example {1,1,2}U{1} = {1,1,1,2}
and {1,1,2} —{1} = {1,2}). max(), min() denote the maximum and minimum of a set respectively.
We take min(() to be oo and max()) to be 0.

Let 7, with or without decoration, range over partial functions. For @ € (N U {x}), we say that
m is an a-variant of 7y (written 7y =% 72) just in case card({z | m(2) # n2(2)}) < a. Otherwise
we say that 7; is not an a-variant of 7, (written 7y #* 13).

The set of all total recursive functions of one variable is denoted by R. f ranges over R. In
some situations ¢, g range over R; in other situations ¢, g range over natnum. In some situations
p ranges over R; in other situations p is a real number (construed as a probability). For a partial
recursive function 7, domain(7n) denotes the domain of 1 and range(n) denotes the range of . n(z)|
iff 2 € domain(7n); n(z)] otherwise.

& denotes the class of all recursively enumerable languages. L, with or without decorations,
ranges over £. L, with or without decorations, ranges over subsets of £. ¢ denotes a standard
acceptable programming system (also referred to as standard acceptable numbering) [26, 27]. ¢;
denotes the partial recursive function computed by the i program in the standard acceptable
programming system . W; denotes the domain of ¢;. W; is, then, the r.e. set/language (C N)
accepted by ¢-program i. We can (and do) also think of 7 as (coding) a (type 0 [16]) grammar for
generating W;. @ denotes an arbitrary Blum complexity measure [3] for ¢. W, , denotes the set
{z <n|®i(z)<n}.

(1,j) stands for an arbitrary computable one to one encoding of all pairs of natural numbers
onto N [27]. Corresponding projection functions are m; and w2. (Vi,j € N) [m1({¢,7)) = ¢ and
m2((4, 7)) = 7 and (my(2), me(2)) = «]. Similarly, (i1, %2,...,%,) denotes a computable one to one
encoding of all n-tuples onto V.

The quantifiers ‘ivo’ and ‘OEIO’ mean ‘for all but finitely many’ and ‘there exists infinitely many’,
respectively.

4 Definitions

4.1 Learning Machines

In Definition 7 below, we formally introduce what we mean by a machine that learns a function,
and in Definition 9, we do the same for a machine that learns a language.

We assume, without loss of generality, that the graph of a function is fed to a machine in
canonical order. For f € R and n € N, we let f[n] denote the finite initial segment {(z, f(z)) |
x < n}. Clearly, f[0] denotes the empty segment. SEG denotes the set of all finite initial segments,
{fIn]| f € RAn € N}. Note that f[n]U{(n,z)} is a new finite initial segment of length n + 1
formed by extending f[n] suitably.

Definition 7 [15] A function learning machine is an algorithmic device which computes a mapping
from SEG into N.

The output of a function learning machine M on initial segment f[n], denoted M(f[n]), is
interpreted as the index of a program in our fixed acceptable programming system ¢.

We now consider language learning machines. Definition 8 below introduces a notion that
facilitates discussion about elements of a language being fed to a learning machine.

Definition 8 A sequence o is a mapping from an initial segment of N into (N U{#}). The content
of a sequence o, denoted content(o), is the set of natural numbers in the range of 0. The length of

o, denoted by |o], is the number of elements in . For n < |o|, the initial segment of o of length n
is denoted by o[n].

Intuitively, #’s represent pauses in the presentation of data. We let o, 7, and v, with or without
decorations, range over finite sequences. SEQ denotes the set of all finite sequences. o1 ¢k denotes
the concatenation of k at the end of sequence o1, where ¢ = o1 ¢ k is defined as follows:

o(z) = { Zl(w) if & < |oy;

if 2 = |oy].

Definition 9 A language learning machine is an algorithmic device which computes a mapping
from SEQ into N.

The output of a language learning machine M on finite sequence o, denoted M(c), is interpreted
as the index of a program (a grammar) in our fixed acceptable programming system ¢.

The set of all finite initial segments, SEG, can be coded onto N. Also, the set of all finite
sequences of natural numbers and #’s, SEQ, can be coded onto N. Thus, in both Definitions 7 and
9, we can view these machines as taking natural numbers as input and emitting natural numbers
as output. Henceforth, we will refer to both function-learning machines and language-learning
machines as just learning machines, or simply as machines. We let M, with or without decorations,
range over learning machines.

4.2 Function Identification

In Definition 10 below we spell out what it means for a learning machine on a function to converge
in the limit.

Definition 10 Suppose M is a learning machine and f is a computable function. M(f)]| (read:
M(f) converges) <= (Elz)(i‘v(’) n) [M(f[n]) = 4. If M(f)|, then M(f) is defined = the unique ¢
such that (ivo n)[M(f[n]) = 7], otherwise we say that M(f) diverges (written: M(f)7).

The next definition introduces Gold’s criteria for successful identification of a function.

Definition 11 [15, 2, 6] Let @ € N U {x}.
(i) M Ex®-identifies f (written: f € Ex*(M)) <= (3i|¢; =" /)IM(f)| = ¢].
(i) Ex* ={S | (3IM)[S C Ex"(M)]}.

Case and Smith [6] motivate anomalies (or, mistakes) in the final programs in Definition 11
from the fact that physicists sometimes do employ explanations with anomalies. The a = * case
was introduced by L. Blum and M. Blum [2] and the other a > 0 cases were first considered by
Case and Smith [6].

4.3 Language Identification

Definition 12 A text T for a language L is a mapping from N into (N U {#}) such that L is the
set of natural numbers in the range of T. The content of a text T, denoted content(T"), is the set
of natural numbers in the range of 7.

Intuitively, a text for a language is an enumeration or sequential presentation of all the objects
in the language with the #’s representing pauses in the listing or presentation of such objects. For
example, the only text for the empty language is just an infinite sequence of #’s.

We let T', with or without superscripts, range over texts. T'[n] denotes the finite initial sequence
of T with length n. Hence, domain(7'[n]) = {z | z < n}.

In Definition 13 below we spell out what it means for a learning machine on a text to converge
in the limit.

Definition 13 Suppose M is a learning machine and 7" is a text. M(7')] (read: M(T') converges)
= (Elz)(i‘v(’) n) [M(T[n]) = ¢. If M(T)|, then M(T) is defined = the unique ¢ such that (ivo
n)[M(T[n]) =], otherwise we say that M(T') diverges (written: M(T)7).

Definition 14 [15, 5, 20] Let a € N U {*}.

(i) M TxtEx"-identifies T < [M(T)| and Wy =" content(T)].
(ii) M TxtEx"-identifies L (written: I € TxtEx*(M)) <= M TxtEx"-identifies each text for
L.

(iii) TxtEx®* = {£ | (IM)[£ C TxtEx"(M)]}.

4.4 Team Identification

A team of learning machines is any multiset of learning machines. We let M, with or without
decorations, range over teams of machines. In describing teams of machines, we use the notation
for sets with the understanding that these sets are to be treated as multisets. Also, set operations,
U, N, C, set difference, etc., on teams result in multiset of machines.

Definition 15 introduces team identification of functions and Definition 16 introduces team
identification of languages.

Definition 15 [30, 19] Let a € N U {*} and let m,n € NT.
(a) Let f € R. A team of n machines {M;,Mj,...,M,} is said to Team] Ex"-identify
f (written: f € Team]'Ex®({My,Ms,...,M,})) just in case there exist m distinct numbers
U, 12, « ooy by 1 <4y < ig < -+ - < 4y, < 1, such that each of M;,,M,,,..., M, Ex“-identifies f.
(b) Team'Ex"” = {S | (IM1, M3, ..., M,,)[S C Team'Ex"({M;,Ma,...,M,})]|}.

Definition 16 Let m,n € Nt and a € N U {x}.

(a) A team of n machines {My, My, ..., M,} is said to Team]' TxtEx"-identify T just in case
there exist m distinct numbers o1, 79, ..., 2y, 1 < 33 < 19 < --+ < 1y, < n, such that each of
M;,,M,,,...,M; TxtEx"-identifies 7"

(b) Let L € & A team of n machines {M;,My,...,M,} is said to Team] TxtEx®-
identify L (written: L € Team TxtEx*({Mi,Mg,...,M,})) just in case {M;,Mg,...,M,}
Team TxtEx“-identify each text for L.

(c) Team]'TxtEx® = {S | (IM;1, My, ..., M,)[S C Team] TxtEx*({My,M,,...,M,})]}.

For both Team!' Ex®-identification criteria and Team!' TxtEx®-identification criteria, we refer
to the fraction m/n as the success ratio of the criteria. In the following, for i > j, we take
Team; TxtEx" = {0}.

4.5 Probabilistic Identification

A probabilistic learning machine may be thought of as an algorithmic device which has the added
ability of basing its actions on the outcome of a random event like a coin flip. More precisely, let
t be a positive integer greater that 1. Then, a probabilistic machine P may be construed as an
algorithmic machine that is equipped with a ¢-sided coin. The response of P to input ¢ not only
depends upon ¢ but also on the outcomes of coin flips performed by P while processing o. We
make these notions precise below; we closely follow Pitt [22, 23].

Let N,, denote the set {0,1,2,...,m — 1}. An oracle for a t-sided coin, ¢ > 1, also referred to
as a t-ary oracle, is an infinite sequence of integers 49,41, ¢, ... such that for each j € N, ¢; € N,.
(A typical variable for oracles is O).

Clearly, N7°, the infinite Cartesian product of N, with itself, denotes the collection of all ¢-sided
coin oracles. Observe that a t-ary oracle is somewhat like a text for the finite language N, and
notations for texts carry over to oracles, that is, the n!”* member of O is denoted O,, and the initial
finite sequence of O of length n is denoted O[n]. The set {O[n] | O is a t-ary oracle and n € N}
is the collection of all finite ¢-ary sequences. (A typical variable for finite t-ary sequences is p).
Similarly, the length of a finite t-ary sequence p is denoted |p|; for n < |p|, the n* member of p is
denoted by p, and the initial sequence of length n in p is denoted by p[n].

Let p be a finite t-ary sequence and P be a probabilistic machine equipped with a ¢-sided coin.
Let o € SEQ. Then, P?(¢) denotes the output of P on ¢ such that the result of any coin flip
performed by P are ‘read’ from p, that is, the outcome of the first coin flip is pg, the outcome of the
second coin flip is py, and so on and so forth. If P performs more coin flips than |p| in responding
to o, then P?(¢) is undefined.

Similarly, we can describe the behavior of P for a given t-ary oracle O. P9 behaves like P
except whenever P flips its coin, P? reads the result of the coin flip from the oracle O, that is, the
result of the first coin flip is Og, the result of the second coin flip is Oy, and so on and so forth.

We now describe a probability measure on a single coin flip. For a t-sided coin, let (N, By, pry)
be a probability space on the sample space Ny, where B; is the Borel field {S | S C N;} and
pr; = card(S9)/t. Intuitively, this measure simply says that the probability of the outcome of
flipping a ¢-sided coin belonging to a set S C N, is card(5)/t. We employ this measure to describe
a probability measure on t-ary oracles next.

The sample space of events for oracles of a t-sided coin is N{°—the set of all infinite sequences
of numbers less than ¢. Let By® be the smallest Borel field of subsets of N3 containing all the sets
Ni_l X A; x N7°, where for each j, A; € By. Then, let (N{°, B®, pri®) be a probability space where
pry° is defined as follows.

Given a nonempty set of n integers, i1, 2,13, ...,8,, such that 0 < &3 < i3 < i3 < -+ < iy, let
Ail isia,...in denote the set N?_l X Ai X N?ril_l x A;, X NiS_iQ_l X Ajy XX A, X N7°, where
each A; € B;. Then, pry® is defined on By® such that pry®(4; ;. .i,) = [[j=1 Pr:(A;)), for each
choice of n integers 1, 9,...,2;.

Clearly, sets A are measurable.

11,22,835--4tn

4.5.1 Probabilistic Function Identification

Let P be a probabilistic machine equipped with a ¢-sided coin and let f € R. Then, the probability
of P Ex“-identifying f is taken to be pr{?({O | POEx“-identifies f}). However, to be able to

compute such a probability, it needs to be established that the set {O | POEx“-identifies f} is
measurable. This is the subject of next lemma.

10

Lemma 1 [22, 23] Let P be a probabilistic machine and let f € R. Then {O | PO Ex®-identifies f}
is measurable.

The following definition, motivated by the above lemma, introduces the probability of function
identification.

Definition 17 [22, 23] Let f € R and P be a probabilistic machine equipped with a ¢-sided coin
(t > 2). Then, pr{°(P Ex“-identifies f) = pr{®({0 | PY Ex“identifies f}).

The next lemma says that we do not sacrifice any learning power by restricting our attention
to the investigation of identification by probabilistic machine equipped with only a two-sided coin.

Lemma 2 (Adopted from [22, 23]) Let t,t' > 2. Let P be a probabilistic machine with a t-sided
coin. Then, there exists a probabilistic machine P’ with a t'-sided coin such that for each [€ R,
pry? (P Ex®-identifies [) = pry°(P Ex®-identifies f).

The next definition describes function identification by probabilistic machines. The above
lemma frees us from specifying the number of sides of the coin, thereby allowing us to talk about
probability function pry® without specifying ¢. For this reason, we will refer to pr{® as simply pr
in the sequel. Also, we are at liberty to use whatever value of the number of sides of a coin that is
convenient for the presentation at hand.

Definition 18 [22, 23] Let 0 < p < 1.
(a) P Prob?Ex"-identifies f (written: f € Prob?Ex®(P)) just in case pr(P Ex“-identifies f) >

" (b) ProbPEx* = {8 C R | (3P)[S C Prob’Ex"(P]).

4.5.2 Probabilistic Language Identification

Let P be a probabilistic machine equipped with a t-sided coin and let T be a text for some
language L € &£. Then, the probability of P TxtEx“-identifying 7" is taken to be pr®({O |
PO TxtEx®identifies T}). The next lemma establishes that the set {O | POTxtEx -identifies T’}
is measurable.

Lemma 3 [22] Let P be a probabilistic machine and let T be a text. Then {O |
PO TxtEx®-identifies T} is measurable.

The following definition, motivated by the above lemma, introduces probability of identification
of a text.

Definition 19 [22] Let T be a text and P be a probabilistic machine equipped with a ¢-sided coin
(t > 2). Then, pr{°(P TxtEx -identifies 7) = pr({O | P¢ TxtEx"-identifies T}).

As in the case of function identification, there is no loss of generality in assuming a two sided
coin.

Lemma 4 (Adopted from [22, 23]) Let t,t' > 2. Let P be a probabilistic machine with a t-sided
coin. Then, there exists a probabilistic machine P’ with a t'-sided coin such that for each text T,
pry? (P TxtEx®-identifies T') = pr° (P TxtEx“-identifies T').

11

The next definition describes language identification by probabilistic machines. As in the func-
tion case, the above lemma frees us from specifying the number of sides of the coin, thereby allowing
us to talk about probability function prg® without specifying ¢. For this reason, we will refer to
pry® as simply pr in the sequel.

Definition 20 [22] Let 0 < p < 1.

(a) P Prob?TxtEx“-identifies L (written: L € Prob?TxtEx"(P)) just in case for each text
T for L pr(P TxtEx“-identifies T") > p.

(b) Prob’TxtEx® = {£ C £ | (3P)[L C Prob’TxtEx"*(P)]}.

5 Results

5.1 Team Language Identification with Success Ratio > 2

We first consider the problem of when can a team be simulated by a single machine.

In the context of function identification, Osherson, Stob, and Weinstein [18] and Pitt and Smith
[25] have shown that the collections of functions that can be identified by teams with success ratio
greater than one-half (that is, a majority of members in the team are required to be successful) are
the same as those collections of functions that can be identified by a single machine.

Theorem 1 [18, 25] (Vj,k | % > %)(Va)[TeamiEx“ = Ex“’].

Surprisingly, an analog of Theorem 1 for language identification holds for success ratio 2/3 as
opposed to success ratio 1/2 for function identification. Corollary 1 to Theorem 2 below says that
the collections of languages that can be identified by teams with success ratio greater than 2/3
(that is, more than two-thirds of the members in the team are required to be successful) are the
same as those collections of languages which can be identifies by a single machine.® Corollary 2 is
a similar result about TxtEx*-identification.

Theorem 2 (Vj, k| % > %)(Va)[TeamiTxtEx“ C TxtEx[(+1)/21-],
Corollary 1 (Vj,k | % > %)[TeamiTxtEx = TxtEx].
Corollary 2 (Vj,k | % > %)[TeamiTxtEX* = TxtEx"].

To facilitate the proof of Theorem 2 and other simulation results, we define the following
technical notion:

Let A™ be a nonempty finite multiset of grammars. We define grammar majority(A™) as
follows:

Wmajority(AM) = {z | for majority of g € A™, 2z € W,}.

Clearly, majority(A™) can be defined using the s-m-n theorem [28]. Intuitively, majority(A™)
is a grammar for a language that consists of all such elements that are enumerated by a majority
of grammars in A™. Below, whenever we use a set as an argument to majority we assume the
argument to be a multiset.

#Corollary 1 also appears in Osherson, Stob, and Weinstein [18], and may also be shown using an argument from
Pitt [22] about probabilistic language learning.

12

Proor orF THEOREM 2. Let j,k, and a be as given in the hypothesis of the theorem. Let £ be
Team; TxtEx"-identified by the team of machines {M;,M,,...,M;}. We define a machine M
that TxtEx[U+1)/21% dentifies L.

Let conv(M/', o) = max({|7| | 7 C o A M'(7) # M'(0)}). Let m§,mg, ..., mJ be a permutation
of 1,2,...,k, such that, for 1 <r <k, [(conv(Mpg, o), m]) < (conv(Mp,s, ,U),m;f_l_l)].

Let M(c) = majority({M,7(c), Mug(a),. .., Mm;r(a)})

It is easy to verify that if {M;,My,..., M} TeamiTxtEX“—identify L € L, then M
TxtEx/U+D/21 {dentifies L. |

A slightly better analysis of the errors committed by the simulation given in the above proof
shows that

. —k
Theorem 3 (Vj, k| j > 2k/3)(Va € (N U {+}))[Team, TxtEx" C TxtEx| =077 ~aJ].

Corollary 3 to Theorem 4 below says that the collections of languages that can be identified by
a team with success ratio 2/3 (that is, at least two-thirds of the members in the team are required
to be successful) are the same as those collections of languages that can be identified by a team of
three machines at least two of which are required to be successful. Corollary 4 is a similar result
about TxtEx*-identification with success ratio exactly 2/3.

Theorem 4 (Vj > 0)(Va)[Team3]TxtEx C Team’TxtExUt1)a],
Corollary 3 (Vj > 0)[Team3]TxtEx = Team2TxtEx].
Corollary 4 (Vj > 0)[Team§§TxtEX* = Team2TxtEx*].

Proor or THEOREM 4. Let j and a be as given in the hypothesis of the theorem. Suppose
{My,...,Ms3;} Teamg)]TxtExk—identify L. We describe machines Mj, M5, and MY such that

£ C Team’TxtExUTDe({M/], M}, M4}).
Let conv be as defined in the proof of Theorem 2. Let m{,m3,...,m3; be a permutation of
1,2,...,3j, such that, for 1 <r < 37, [(conv(Mpg, o), m7) < (conv(Mpz, ,0),m)]

M (0) = Mz (o).
M)(o) = majority({Mmg(U), Mmg(a), .. .,Mmgj(a)}).
Mj(0) = majority({M,7(0), Myg(a), ..., Mmng(U)})-

Now suppose T is a text for I, € L. Consider the following two cases.
Case 1: At least 2j + 1 of the machines in {My, Mjy,...,Ms;} converge on 7.

In this case clearly, M5 TxtExU*!) % identifies T. Moreover, M} (Mj) TxtEx(+1)-.
identifies 7" if M. 1] TxtEx®-identifies T' (does not TxtEx“-identifies 7).
ims— oo M)

Case 2: Not case 1.
In this case clearly, M} and M} TxtExU+1) ¢ identify T. |

Above proof can be modified to show the following result which says that probabilistic identi-
fication of languages with probability of success at least 2/3 is the same as team identification of
languages with success ratio 2/3.

13

Theorem 5 Prob?/°TxtEx = Team:TxtEx.

Theorem 6 below establishes that 2/3 is indeed the cut-off point at which team identification
of languages becomes more powerful than identification by a single machine.

Theorem 6 Team:TxtEx — TxtEx* # (.

Proor or THEOREM 6.

Let £ = {L | (3 distinct ay, a9 € {0,1,2})(for i = 1,2)[{y | (xs,y) € L} is non-empty and finite
and Wax({yl(z:w)ery) = LI}

Clearly, £ € Team2TxtEx. Suppose by way of contradiction some machine M TxtEx*-
identifies £. Without loss of generality, assume that M is order independent [2]. Then, by the
operator recursion theorem [4], there exists a 1-1 increasing, nowhere 0, recursive function p such
that W,;)’s can be described as follows.

Enumerate (0, p(0)) and (1, p(1)) in both W,y and W,q). Let og be such that content(og) =
{(0,p(0)),(1,p(1))}. Let W? denote W; enumerated before stage s. Go to stage 1.

Begin {stage s}

1. Enumerate W;(o) U W;’(l) in Wp(o), Ww. (1) Wp(Qs), and Wp(QS_H).

P
Enumerate (2, p(2s)) in W0y, Wp(2s)-
Enumerate (2, p(2s + 1)) in Wy, Wy2s11)-

Let 75 be an extension of o, such that content(ry) = W,

Let 7 be an extension of o, such that content(r;) = W,

2. Let z = 0. Dovetall steps 2a and 2b until, if ever, step 2b succeeds. If and when step 2b
succeeds, go to step 3.

(o) enumerated till now.

(1) enumerated till now.

2a. Go to substage 0.
Begin {substage s’}
Enumerate (4, 2) in Wy, Wp(2s)-
Enumerate (5,2) in Wy, Wy2s11)-
Let ¢ =2 + 1.
Go to substage s’ + 1.
End {substage s’}
2b. Search for ¢ € {0,1} and n € N such that M(r;0(4414,0)0(4414,1),...,{(4+17,n)) # M(o,).
3. If and when 2b succeeds, let 7, n be as found in step 2b.
Let 5 =
W0y enumerated till now
U W, (1) enumerated till now
U{{(d+:0),d+71),....(44+14,n)}.
4. Let 0541 = an extension of ;0 (441¢,0)0(4+4,1)o...0(44 ¢, n) such that content(osq1) = 5.
Enumerate 5 in W,).

Go to stage s + 1.
End {stage s}

Consider the following cases:
Case 1: All stages terminate.

14

In this case, let L = W) = Wyay € L. Let T = {J; 05. Clearly, T is a text for L. But, M on
T makes infinitely many mind changes (since the only way in which infinitely many stages can be
completed is by the success of step 2b infinitely often). Thus, M does not TxtEx™-identify L.
Case 2: Some stage s starts but does not terminate.

In this case, let Ly = W) = Wyas) € £ and Ly = W1y = Wyasq1) € L. Also, Ly, Ly are
infinitely different from each other. Let T; = 7,0 (441¢,0) o (4 +¢,1)o. ..o (441, n), where ¢ € {0,1}
and 7; is as defined in stage s. Now, M converges to M(o,) for both T} and T5. Since Ly, Ly are
infinitely different from each other, Wpy(,,) is infinitely different from at least one of L; and L.
Hence, M does not TxtEx*-identify at least one of L1 and Ls.

From the above cases we have that M does not TxtEx*-identify L. |

5.2 Diagonalization Tools

In order to avoid details and to simplify many diagonalization proofs in the sequel, we now show
how to generalize diagonalization arguments of the form TeaméTxtEx - TeamextEX £ 0.
In particular we show how, given a theorem of the above form, for parameters ¢, j, k, [satisfying
certain conditions and for new parameters ¢/, j', k', I’ satisfying certain conditions, we get a proof
of TeaméllTxtEx — Team} TxtEx # (.

We first define these conditions and then present a general result (Theorem 7 below) which
yields new diagonalization results from known ones. We would like to note that these conditions
are satisfied by all the diagonalization proofs in the present paper.

For a recursive function ¢, and 4, j,k,1 € Nt we define the predicate PROP(q, ,7,k,1) to be
true just in case given

(a) finite sets 51,92, 53, 4, 5%,
(b) a team of <[machines M,

such that S, S35, 94 are pairwise disjoint, 55 C Sg, card(S2) = j, and card(S)) < 4, then
Laiikl,51.50,9,50,5,.m € Teaml, o TxtEx(M), where

Ly i jk0,51,52,55,51,5) M = {L | the following conditions are satisfied
(a) 51 C L,
b) (Vz € Sy)[card({y | (z,y) € L}) = o],
c)card({z € Sy | max({y | (z,y) € L}) exists A Whax({yl(eyery) = L}) > 4,
d)(L=5)n{{z,y) |z €55 AN ye N} =0,
e

f
¥

We employ the above predicate to prove a theorem which given any known diagonalization of

the form Team;TxtEx — TeamextEX # (0, yields several related diagonalization results.

Vo € Sé)[max({y | <$,@/> € L}) = Q(‘917527537S47‘9£7M7$)]7

(
(
(
(e) (

() (V$ S Sé)[Sl - Wq(517527537547557/\47x) C 51U {<Z,y> | Z Q Ss Ay € N}]

Theorem 7 Let 1 < i< jand 0 <4y <i. If PROP(q,1,j,k,1), then, for ¢, 5" k') satisfying the
following conditions,

(a) i <1,

(b) k< K,

1 <14 - gl
(d)j' > j+i—i,
(e)1<i<j and1 <K <,

15

there exists a recursive ¢' such that, PROP(¢', ¢, j', k', I').

ProOF. Suppose 1,7, k,l,q,7', k' j', ', i1 are given as above. Without loss of generality we assume
i =1.

By a suitably padded version of the operator recursion theorem [4] there exists a recur-
sive, 1-1, ¢’ such that the sets Wq/(517527537547557M7x), may be defined as follows in stages.
We assume that the padding (to obtain ¢') is such that, for all Sy, 5%, 53,54, 5%, M, and z,
q'(S1, 52,53, 54, 55, M,) > max({y | (z,y) € 51}). Below, taking 57y, 53, 95, 54, 5%, M to be fixed
we refer to ¢'(51, g, 53, 54, 5%, M, z) by p(x). Without loss of generality we assume card(M) = ['.
Let S be a set of cardinality ¢ such that S5 C S¥ C 5. Let conv be as defined in the proof of
Theorem 2. For o, let Z, be the (lexicographic least) subset of M of cardinality £’ such that, for
each M € Z,, for each M’ € M — Z,,, conv(M, o) < conv(M/,).

For y € S5, enumerate Sy U {(z,p(2)) | = € 5} in Wy,). Let op be a sequence such that
content(cg) = 51 U {{z,p(z)) | « € SJ}. Let S5 be a set disjoint from 51,99, 93, 54 such that
card(S5) = i1. Let Sg be such that S5 C S¢ C 55U (S3 — 5%), and card(9¢) = j. Let Wps(x) denote

W,(») enumerated before stage s. Go to stage 0.

Stage s

Dovetail steps 1 and 2 until step 1 succeeds. If and when step 1 succeeds go to step 3.

1. Search for an extension 7 of o, such that Z, # Z. and content(7) — content(o,) C {(z,y) |z ¢

S3 U S5}
2. Let X2 = 56-
Let Xé = 55.

For w < [i/i1], let Yy, be pairwise disjoint subsets of 54 of cardinality ¢; each.
For w < |i/i1], let w,, be pairwise distinct numbers such that each is greater than max(5; U
S3U 854U 85U S Ufa | (Fy)[(.y) € W), for some 2 € 55}).
For w < [i/t1], let X3, = {u, | r < |i/ta] AN r# w}US3087.
For w < [i/t1] let Xyg, = {1y} U S4.
Let map be a mapping from S% to S5 such that for each w < [i/i1], map(Yy,) = Ss.
Go to substage 0.
Substage s’
For w < [i/i1], let My, = {M € Z,_ | (3y)[(vw,y) € WM(o),#] N (Vo' < [i/ir] | 0" #
w)(Vy) (v, ¥) & WM(o,),51]}-
For w < |i/i1], let X1 = Usey, [Wp(r) enumerated till now |.
Dovetail steps 2.1 and 2.2 until step 2.1 succeeds. If and when step 2.1 succeeds, go to
substage s’ + 1.
2.1 Search for an s > &, M € Z, — U,, My, such that (Fw < [¢/i1])(3y)[(vw,y) €
WM (ry,sr] A (V' < [ifir] | w' # w)(Vy)[(vwr, y) & WM(o.),s7]-
2.2 Lett=0.
repeat
For each w < |i/i1], for each z € Y, such that card(M,,) <{—(I'— k'), enumerate
WX X2, X0 X0 X (M= Zo) UMy map())t — %5 Y) | @ € 53U 55} in Wiy,
Lett =1+ 1.
forever

End substage s’

16

3. Let X = U,csy Wp(s) enumerated till now.
Let o441 be an extension of 7 such that content(o,4q) = content(7) U X U {(z,s) | 2 € 94}.

Enumerate content(osyq) into W), for z € 55
Go to stage s + 1.

End stage s

Let £ = Ly i1 1.5,,5,,5,51,5,m- We show that £ Z Teamf,/TxtEx(./\/l). We consider the
following cases.
Case 1: All stages terminate.

In this case, let 7" = |J, content(o,). Clearly, for all @ € 5y, W,y = content(T') €
L. Moreover at most k' — 1 of the machines in M converge on T. Thus £ ¢

Team/, TxtEx(M).
Case 2: Stage s starts but never terminates.

It is easy to see that there can be at most finitely many substages in each stage
which terminate. Let s be the substage in stage s which starts but never termi-
nates. Let M, be as defined in stage s, substage s’. For each w < Li/ilj, et
Lo = Loi ikt Xy wXe XawXew X (M—ZoJum, - Now for each w < [ifir], Ly,
L (since step 2.2 in stage s, substage s', makes, for each z € Y,, Wy,

Wa(X1 0. X2, Xa 10 X o0 X (M—So UM map(x)))- Also, for each w,w' < [ifir], w 7£ w',
Ly € Ly, M € My, (3y)[{tw,y) € Wno,) = Luw]. Also, for some w < L/hJ,

card(M,,) < L%J Thus, since £, ¢ Team} TxtEx((M — Z,.) U M,,), we have

£ ¢ Team} TxtEx(M). |

[l m

~

Note that if PROP(q,1,j,k,1), then Tearni TxtEx — TeamextEX # (. This is so because
L= Upmicaramy=ry Lo.i.j k1, {{0,code(M))} (1.} {0}0.0.m € Team;TxtEx — Team{TxtEx. As an
application of the above theorem, suppose Team;TxtEx — Teaml TxtEx # @ can be shown
using a suitable proof. Then the above theorem allows us to conclude that Tearnj_H»TxtEX -

Teamﬁ_katEx #) can be shown using a suitable proof. By suitable proof we mean a proof such
that for some g, PROP can be satisfied.

Since all our diagonalization proofs can be easily modified to satisfy PROP, we will use Theo-
rem 7 1mphc1tly to obtain general theorems. Note that in the usage of the above theorem to obtain
Team; S TxtEx — Teaml/ TxtEx # () from Tearn TxtEx — Team/ TxtEx #), we will usually
only spe(:lfy the value of ¢; and leave the details of Verlfymg that the properties hold to the reader.

Theorem 7 allowed us to extend results of the form Tearn TxtEx — Team/TxtEx # to
related results of the form Tearn;«/,TxtEx — Tearnf,/TxtEX + (Z) for suitable values of 7/, 7/, k', and
l/

We now squeeze some more advantage out of this technique by showing a variant of Theorem 7
which allows us to extend dlagonahzatlon results of the form TeamTxtEx — Team; TxtEx* # ()
to related results of the form Team],TxtEx — Teaml/ TxtEx™ # (Z) for suitable values of ¢/, j', k',
and I’. To this end we define a predicate analogous to PROP.

For a recursive function ¢, and 4, j, k,{ € N1, we define the predicate PROPS(q, 1, j,k,[) to be
true just in case given

(a) finite sets Sy, 92, 53,54, 95,

17

(b) a team of [machines M,

such that S5, S3, Sy are pairwise disjoint, S5 C 53, card(S2) = j, and card(5}) < i, then
k
ﬁq,z’,j,k,l,sl,52,53,54,52;,/\/1 ¢ Team; TxtEx*(M), where

Lk d,S1,5,55,54,5), M = {L | the following conditions are satisfied

(a) 51 C L,
(b) (v € Sy)lcard({y | (,9) € L}) = o],
(¢) card({z € S2 | max({y | (z,y) € L}) exists AN Wiax((yl(zwiery) = L)) > 1,
() (L=51)N{(z,y)|z€S3s AN ye N} =0,

(e) (Vo € S3)[max({y | (v,y) € L}) = ¢(51, 52,95, 54, 53, M, @),

gf) (Vo € 53[5 € Wy(s,.8,,5:.5,5, M) S S1U{{z,y) |2 ¢ 53 A ye N}

We now employ the predicate PROPS to prove the following theorem which is analogous to
Theorem 7.

Theorem 8 Suppose 1 < i< jand0 < iy <i. If PROPS(q,t,7,k,l), then, for ¢, j' k') satisfying
the following conditions,

(a) i < i,
(b) k < [k/ - Lif{lj-‘)

(c) U <1+ F,
(d)]/Z]—I'Z_Zl;

()1 <i <jand1 <Kk <V,

there exists a recursive ¢' such that, PROPS(q', 7', 7', K',1").

Proor. Suppose i,7,k,l,q,¢,k',7',1', i1 are given as above. Without loss of generality we assume
V= 1.

By a suitably padded version of the operator recursion theorem [4], there exists a recursive, 1-1,
¢’ such that the sets Wii(51,52,85,54,55 M,z) Ay be defined as follows. We assume that the padding
(to obtain ¢') is such that, for all Sy, 53, 93, 94, 55, M, and 2, ¢'(51, 92, 53, S4, 5%, M, z) > max(y |
(z,y) € S1). Below, taking Sy, 952,93, 54,55, M to be fixed we refer to ¢'(51, 52, 93, 54, 55, M, z)
by p(z). Let 5% be a set of cardinality ¢ such that S} C S¥ C S5. Let conv be as defined in the
proof of Theorem 2. For o, let Z, be the (lexicographic least) subset of M of cardinality &’ such
that, for each M € Z,, for each M’ € M — Z,, conv(M, 0) < conv(M/, o).

For y € S5, enumerate Sy U {(z,p(2)) | = € 5} in Wy,). Let op be a sequence such that
content(cg) = 51 U {{z,p(z)) | « € SJ}. Let S5 be a set disjoint from 51,99, 93, 54 such that
card(S5) = i1. Let Sg be such that S5 C S¢ C 55U (S3 — 5%), and card(9¢) = j. Let Wps(x) denote

Wo(e) enumerated before stage s. Go to stage 0.

Stage s

Dovetail steps 1 and 2 until step 1 succeeds. If and when step 1 succeeds go to step 3.

1. Search for an extension 7 of o, such that Z, # Z. and content(7) — content(o,) C {(z,y) |z ¢

S3 U S5}
2. Let Xy = WP, where 2 is an element of Sy,
Let X2 = 56-

18

Let X} = 95.

Let My =M - Z,,.

For w < [i/i1], let Y, be pairwise disjoint subsets of S% of cardinality i; each.

For w < [i/i1], let u, be pairwise distinct numbers such that each is greater than max(.5; U
S3U 54U S5 U Sg).

For w < |i/i1], let X5, = {u, |7 < |i/ta] A r# w}US3US8Y.

For w < [i/t1], let Xyg, = {uy} U 4.

Let map be a mapping from 55 to S5 such that for each w < [i/i1], map(Yy) = S5.

Let t = 0.

repeat
For each w < |i/i1], for each z € Y,,, enumerate Wo(X1 X0, X0 X X My map())¢ 11 W)
Let t =1+ 1.

forever

3. Let X = Ul,esé/ Wy(») enumerated till now.
Let o441 be an extension of 7 such that content(o,4q) = content(7) U X U {(z,s) | 2 € 94}.
Enumerate content(os41) into Wy, for @ € 53
Go to stage s + 1.

End stage s

Let £ = Ly 110,555,555, M- We show that £ ¢ Teamf//TxtEx*(./\/l). We consider the
following cases.
Case 1: All stages terminate.

In this case, let T' = |J, content(a,). Clearly, for all @ € 59, W,y = content(T') €
L. Moreover, at most k' — 1 of the machines in M converge on T. Thus, £L ¢
Team/ TxtEx*(M).

Case 2: Stage s starts but never terminates.

Let My be as defined in stage s. For each w < |i/ir], let L, =
Lyiikl X1, X2, X0, X0, X5 M, - Now, for each w < [i/i1], Lo © L (since step 2 in
stage s, makes for each v € Yy, Wy = Wq(X1,X27X37w7X47w,Xé,M1,map(x)))' Also,
for each w < w' < [i/t1], Ly € Ly, Ly € Ly, Ly, and L,y are infinitely differ-
ent. Thus, for some w < [i/¢1], at most L%J of the machines in 7, , TxtEx*-

identify a non empty subset of £,,. Thus, since £,, € TeamextEX*(./\/ll), we have
£ ¢ Team} TxtEx*(M). |

Note that for all ¢ < j and k > [, there exists a ¢ such that PROP(q,¢,7,k,1)
(PROPS(q,i,j, k1))

5.3 Team Language Identification with Success Ratio 1

In the context of functions, the following result immediately follows from Pitt’s connection [23]
between team function identification and probabilistic function identification.

Theorem 9 [22, 25] (V5 > 0)[TeaméjEx = Team!Ex].

19

This result says that the collections of functions that can be identified by a team with success
ratio 1/2 are the same as those collections of functions that can be identified by a team employing
2 machines and requiring at least 1 to be successful. Consequently, Teaml!Ex = Team’Ex =
TeamZEx = - -, etc.

Surprisingly, in the context of language identification, we are able to show the following The-
orem 10 below which implies that there are collections of languages that can be identified by a
team employing 4 machines and requiring at least 2 to be successful, but cannot be identified by
any team employing 2 machines and requiring at least 1 to be successful. As a consequence of
this result, a direct analog of Pitt’s connection [22] for function inference does not lift to language
learning!

Theorem 10 Team?TxtEx — Team}TxtEx* # (.

Corollary 5 Team%j_HTxtEX — Team!TxtEx* # (.

ProOF oF THEOREM 10. By Theorem 6 TeamiTxtEx — Team|TxtEx* # (). Theorem now
follows by using Theorem 8, withi =¢ =2, 7=3, /=4, 1 =1, k=K =1,1=1,1"=2. |

Even more surprising is Corollary 6 to Theorem 11 below which implies that the collections
of languages that can be identified by teams employing 6 machines and requiring at least 3 to be
successful are exactly the same as those collections of languages that can be identified by teams
employing 2 machines and requiring at least 1 to be successful!

Theorem 11 (Vj)(Vi)[Teami?i%TxtExi C Team}TxtEx"U+1)],
Corollary 6 (Vj)[Teami?i%TxtEx = Team}TxtEx].

Corollary 7 (Vj)(Vi)[Team%ﬁlTxtExi C Team}TxtEx"[U+1/2]],
Corollary 8 (Vj)(Vi)[Team%ﬁlTxtExi C Teamé;!fSTxtExi'f(i+1)/21]

Proor or THEOREM 11. Suppose My, Mo, ..., My 1o Teami?i%TxtExi—identify L. Let M)
and M/, be defined as follows.
Let conv be as defined in the proof of Theorem 2. Let m{,m3,...,mJ,;,, be a permutation of
1,2,...,45 + 2, such that, for 1 <r < 4j + 2, [(conv(M,,5,0), m?) < (conV(MmgH,U),m;f_l_l)].
Let match(r,o) = max({n < |o| | card((content(a[n]) — W, ;) U (W, , — content(c))) < i}).
Let S, C [1 .. 27+ 1] be the (lexicographically least) set of cardinality j such that, for 1 <
rk <2j+1,[r €S, Ak & 5;] = [match(Mp,¢(0),0) > match(My,¢(0),0)].

M/ (o) = majority({Mpe(a), Mpg(a), ..., Mmng(U)})-
M) (o) = majority({MmgHz)(U), Mmgj+3(0), oM () JU{M,o(0) | 7 € S5}).

It is easy to see that the team {M/}, M}} witness that £ € Team}TxtEx*(+1), |

Finally, we settle the question for team success ratio 1/2 by establishing Theorem 13 below. We
would like to note that our proof of the following theorem turns out to be the most complicated in
the present paper.

a
M3j42

Theorem 12 (Vn € NT)[Team; ' TxtEx — Team}, TxtEx # (].

20

Proor or THEOREM 12. Consider the following class of languages.

L ={L|card({i < 4n | card({z | (i,2) € L}) < 00 A Winax({«|(i,c)ery) = L}) > 2n}.

It is easy to see that £ € Team?'TxtEx. Suppose by way of contradiction that the team
{Mo,M1,M;,...,Mjy,_1} are such that £ C Team} TxtEx({Mg,My,...,Mz,_1}). Then by
the implicit use of the operator recursion theorem [4], there exists a 1-1, recursive, increasing p
such that W,y may be described as follows.

Recall that [z .. 22] denotes the set {a | 2y < 2 < x2}. In the following argument, the bulk
of the work for diagonalization is done in step 5. Step 4 sets up the conditions for step 5 to act.
On the completion of step 5, step 6 easily achieves diagonalization using essentially the technique
developed in the proof of Theorem 6.

Let Ime be a function such that lme(M, o) = max({|7]| | 7 € ¢ A M(7) # M(0)}). Enu-
merate (0, p(0)),(1,p(1)),...,(2n—1,p(2n— 1)) in W0y, Wyy, - - -, Wyan—1)- Let ag be such that
content(og) = {(0,p(0)),(1,p(1)),...,(2n — 1,p(2n — 1))}. Let avail = 2n — 1 (intuitively, avail
denotes the least number such that, for all ¢ > avail, p(7) is available for diagonalization). Go to
stage 0.

Begin stage s
1. Let Z C[0..2n — 1] be such that, card(Z) = n and for ¢ € Z and for j € ([0 ..2n — 1] - 7),
Ime(M;, 05) < Ime(M;, 05).
2. Dovetail steps 3 and 4-6 until step 3 succeeds. If and when step 3 succeeds, go to step 7.
3. Search for an extension 7 of oy such that, for some ¢ € Z, M;(o,) # M;(7) and content(r) —
content(oy) C {(z,y) | « > 2n}.
4. Yor i < n,let ¢; = p(avail + 1 + 7).
Let avail = avail + n.
For @ < n, enumerate (2n + ¢, ¢;) into Wq).
For ¢ < n, enumerate W,y enumerated till now into W,y and W,,.
Let m = 1+ max({z [{{4n,2), (4n+ 1,2)} N (W, enumerated till now) # 0}).
Dovetail steps 4a and 4b until, if ever, step 4a succeeds. If and when step 4a succeeds, go to
step 5.

4a. Search for Y C Z such that card(Y) > n/2 and for each ¢ € Y, there exists an [€ {4n,4n + 1}
and an @ > m such that Wyy,(,,) enumerates ([, z).
4b. Let 7o be an extension of o, such that content(r) = W,
4b—0.
Begin substage 4b—t
4b.1.For i < n, let ¢}, = p(avail + 1 +1).
For i < n,let ¢2,; = p(avail + n + 1 + 9).
Let avail = avail + 2n.
Let Z' C ([0 .. 2n — 1] — Z) be such that card(Z’) = [n/2 + 1/2] and, for all : € Z’ and
JE(0..2n—-11-(ZU Z")), Ime(M;,) < lme(M;, 7).
4b.2.Let my = 1 + max({z | {(4n,z), (4n+ 1,2)} N (W) enumerated till now) # 0}).

For ¢ < n, enumerate W,y enumerated till now into Wq1+‘ and Wq2+‘.

(0) enumerated till now. Go to substage

For i < n and j < n, enumerate (3n 44, ¢, ;) into W,(;y and Wq1+ .
n+jy

For j < n, enumerate (4n,my) into W, and Wq1+ .
n+jy

For i < n and j < n, enumerate (3n 4 14,¢2,;) into W, and Wq2+ .
n+j

For j < n, enumerate (4n + 1,my) into W, and W .

Indy

21

4b.3.Search for a v extending 7 and 7 € Z’' such that M;(y) # M;(r) and content(y) —
content(ry) C {(3n+14,qp,), (Bn+i,¢2,) [1 <n}U{(4n,mq), (4n + 1,mq)}.
4b.4.1f and when such a v is found in step 4b.3.
Let S = content(y) UW),q) enumerated till now UW,, enumerated till now.
For i < n, enumerate .5 into Wy;y and Wy,.
Let 7441 be an extension of v such that content(ryy1) = 5.
Go to substage 4b—t + 1.
End substage 4b—t
. Let Y be as found in step 4a.
Let v=4n+2. X = {2 |z < n}.
while card(X) > 1 do
Let .5 = Uie(po . . 2n—1]-x)(Wp(;) enumerated till now).
For i€ ([0..2n — 1] - X), enumerate S in W,;).
(* Invariants maintained by the while loop at this point are:
(i) (v5,5" € ([0 .. 2n — 1] = X))[W,(;) enumerated till now = W,
merated till now].
(i) (Vj € Y)(3z [4n < mi(z) < v)[z € Wi, (o)ANVJ € [0. . 2n—1]-X)[z ¢
W,(;) enumerated till now]]
(iii) card(Y') > card(X)/2.
(iv) card(X) < m. %)
(* Moreover, after each iteration of the while loop, card(X) decreases (actually
card(X') nearly halves after each iteration) *).
For i < card(X), let ¢; = p(avail + 1 + 7).
Let avail = avail + card(X).
Let X7,X5 C ([0 .. 2n — 1] — X)) be such that, card(X;) = |[card(X)/2], card(X3) =
[card(X)/2] and X7 N Xy = 0.
For ¢ € Xy and j < card(X), enumerate W(s) enumerated till now into W, .
For ¢ < card(X) and j € X1 U X3 and k < card(X), enumerate (2n + 14, ¢;) into W,,(;) and
W,,.
Let 79 be an extension of o, such that content(7y) = W,, enumerated till now.
Go to substage 5—0.
Begin substage 5—t
For i < 2n — card(X), let qiard(X)-I—i = p(avail + 1 + 7).
For i < 2n — card(X), let anrd(X)—I—i = p(avail + 2n — card(X) + 1 4 7).
Let avail = avail +4n — (2 - card(X)).
Let Z' C([0..2n—1]— Z) be such that card(Z’) = card(Y") and, for all ¢ € Z’ and
JE(0..2n—-1]1-(ZU Z")), Ime(M;, 1) < lme(M;, 7).
Let my = 1+ max({z | {(v,2),(v+ 1,2)} N (W,, enumerated till now) # 0}).

For ¢ < 2n — card(X), enumerate W,, enumerated till now into W 0 and
card(X)+1

(]/) enu-

q?ard(X)-I-i‘

For ¢ < 2n — card(X), j € X; and k < card(X3), enumerate (2n 4 card(X) +
b qi&rd(X)+i> into W) Wag quard(x)ﬂ'

For i < 2n — card(X), j € Xy and k < card(X3), enumerate (v, mq)

into Wp(j) W,

’ 9k qiard(X)-I-i)
For ¢ < 2n — card(X), j € Xy and k < card(X;), enumerate (2n 4 card(X) +

. 2 .
2 qcard(x)+¢> into Wiy, Wacaraixep 40 quard(xm‘

22

For ¢« < 2n — card(X), j € Xy and k < card(Xy), enumerate (v 4+ 1,mq) into
Wiy, W.

p(3)> YW qcard(x5) 4k Wq?ard(X)+i .
Dovetail steps ba and bb until, if ever, one of them succeeds. If step 5a succeeds
before step 5b does, if ever, then go to step 5d. If step 5b succeeds before step
Ha does, if ever, then go to step 5c.
ba. Search fora Y’ C (Z—Y), such that card(Y') = card(Y') and, for each i € Y’ there
exists an [€ {v,v+ 1} and an @ > my such that Wy, (,,) enumerates (/,z).
5b. Search for an extension 7 of 7y and an ¢ € Z’ such that M;(7) # M;(y) and
content(vy) — content(r;) C {(2n + card(X) + i7qiard(X)—|—i>7 (2n + card(X) +
i qfard(X)_I_» | i < 2n —card(X)}U {(v,mq), (v + 1,m1)}.
He. Let v be as found in step 5ec.
Let S = content(y) UWj, enumerated till now UW,_ . _, enumerated till now.
For each j € [0 .. 2n — 1] = X, enumerate .5 into W,;y.
For each ¢ € {¢; | i < card(X)}, enumerate S into W,.
Let 7,41 be an extension of 4 such that content(ry1) = 9.
Go to substage 5—t + 1.
End substage 5—t
5d. Let Y’ be as found in step 5a.
Let Yy = {i € Y| Wpp,(,,) enumerates (v, z) for some z > my as observed in step 5a}.
Let Yo ={icY' -V} | WM, (o.) enumerates (v+1,) for some & > my as observed in step
ha}.
if card(Y;)/card(Xy) > 1/2, thenlet X = X;,Y =Y.
else let X = X5,Y =Y5.
endif
v=uv+2.
endwhile
(* Note that card(X) =1 and card(Y') > 1. *)
Let v = v 4 2.
Let go = p(avail + 1).
Let avail = avail + 1.
Let ig,¢1,...,%2,—1 be such that {p(i;)|j<2n}={p(j)|j€([0..2n—-1] - X)} U{qo}.
Let .S = {{2n,q0)} UUicpo . . 2n—1]—x (Wp(;) enumerated till now).
For i€ ([0..2n — 1] — X), enumerate S in W,).
Let 75 be an extension of o, such that content(ry) = W,
Go to substage 6—0.
Begin substage 6—t
For i < 2n—1and j < 2n,let ¢ ; = p(avail + 14 j - (2n — 1) +1).
Let avail = avail + 2n - (2n — 1).
Let Y/ C ([0 .. 2n — 1] — Z) be such that card(Y’) = card(Y) and, for i € Y’ and
Je(0..2n—-1]—-(ZUY")), Imec(M;, 1) < lme(M;, 7).
For ¢« < 2n — 1, j < 2n enumerate (2n + 1 + i,q{+i> into Wi,y
Let mq = 1 +max({z | (Jw,j | j < 2n)[(w,z) € W(;;) enumerated till now]}).
For j < 2n, enumerate (v + j,mq) into Woij)-
For j < 2n and ¢ < 2n — 1, enumerate W,) enumerated till now into qu_“

6a. Search for an extension vy of 7, and ¢ € ((Z UY') —Y), such that M;(7) # M;(y) and
content(y)—content(r;) C {(2n4+1+14,¢{ ;) | j < 2nAi <2n—1}U{(v+j,m1) | j < 2n}.

(o) enumerated till now.

23

6c. Let v be as found in step 6a.
Let .S = content(7) UU;<2, Wp(i;) enumerated till now.
For j < 2n, enumerate § into W, .
Let 7441 be an extension of 7, such that content(ry1) = 5.
Go to substage 6—t + 1.

End substage 6—t

7. If and when step 3 succeeds, let 7 be as found in step 3.
Let S = content(7) U U; <o, Wp(;) enumerated till now.

For i < 2n, enumerate 5" into Wy ;).

Let 0541 be as extension of 7 such that content(osq1) = S5.
Let avail = max({avail} U {z | (3¢ < 4n)[(z, p(z)) € S]}).
Go to stage s + 1.
End stage s
Now we consider the following cases.
Case 1: All stages terminate.
In this case, clearly Wyo) = Wya) = W) = ... = Wyan—1). Let L = Wyq. Clearly,
for i < 2n, max({x | (i,2) € L}) = p(i). Thus L € L. Also T = |J, 0, is a text for L.
However at most n — 1 of the machines Mg, My, ..., My, 1 converge on 7.

Case 2: Some stage s starts but does not terminate.

Let Z be as defined in stage s. Now for ¢ € Z and any text T such that ¢, C T,
and content(7") C content(oy) U {(z,y) | > 2n,y € N}, My(T) = M;(05). We now
consider following subcases. All step numbers and substages referred to below stand for
the corresponding steps and substages in stage s.

Case 2.1: In stage s the procedure does not reach step 5.

For i < n, let ¢; be as defined in step 4. Let m be as defined in step 4. Note

that the number of i’s in Z, such that (32 > m)(3 € {4n,4n + 1})[{l,2) €

WM, (0.)] is less than n/2. Let 7; be as defined in step 4b.

Case 2.1.1: All substages at step 4b terminate.
In this case, clearly for i < nand j < n, Wy, = Wy,. Let L = Wy .
Clearly, L € £. Moreover {(4n,z) | (4n,z) € L} is infinite. Also
because step 4a does not succeed and step 4b.3 succeeds infinitely
often, card({7 | M; TxtEx identifies L}) < ([n/2+1/2] = 1)+ n/2.
Thus L ¢ Team] TxtEx({Mg, My,...,My,_1}).

Case 2.1.2: Some substage 4b—1 at step 4b starts but does not terminate.

In this case, for ¢ < n, let ‘]%4-2'7%214-2'7 be as defined in step 4b.1 of

substage 4b—t. Clearly, W) = W) = -+ = W) = Wy =

P q

Wi = ...=Wi and W,, =W, =.-..=W, = =W, =
Tnt1 93n—1 q0 N In—1 I
2y, T T qu L Let Ly = Wy(o) and Ly = Wy,. It is easy to

see that Ly, Ly € £ and Ly # Ly. Moreover, for all i € Z U Z’, for
any text 1" for Ly or Ly such that 7, C T, M;(T) = M;(r). This,
along with the fact that step 4a does not succeed, implies that at
least one of Ly or Ly is TxtEx-identified by less than n — [n/2 +

1/2] + w of the machines in Mg, My, ..., My, _1.

24

Case 2.2: In stage s the procedure reaches step 5 but does not reach step 6.

Let X,Y be as in the last iteration of the while loop which is (partly) executed
in step 5. Also for at least card(Y) many ¢’s in Z, Wy, (0,) enumerates some
element (since step 4a/ba (in the previous while loop) succeeded) which is
neither in the language I defined in Case 2.2.1 below nor in Ly, Ly defined in
Case 2.2.2 below; thus, M; does not TxtEx-identify either of the languages
L, Ly and Ly. For ¢ < card(X), let ¢; be as defined in the last iteration of
the while loop in step 5. Let 7 be as defined in the last iteration of the while
loop in step 5.

Case 2.2.1: All substages in the last iteration of the while loop in step 5
terminate.

In this case, clearly for ¢ € ([0 .. 2n — 1] — X) and j < card(X),
Wiy = Wy, Let L = Wy, Clearly, I € L. Let T = |, 7. Moreover,
for less than card(Y) many ¢’s in ([0 .. 2n — 1] — Z), M; converges

on 7.

Case 2.2.2: Some substage 5—t in step 5 starts but does not terminate.
In this case, for i < (2n — card(X)), let qiard(X)-I—i and anrd(X)—I—i be
as defined in substage 5— of the last iteration of the while loop in
step 5. Clearly, for ¢ € Xy, j < card(X3) and k < 2n — card(X),

Wp(i) = ij = Wa axan” Also, for ¢ € X, j < card(X7) and
k< 2n — card(X), Wiy = chard(X2)+J = Wq?ard(x)+k' Let Ly = Wy,
and Ly = chard(X)—l' Clearly, both L and Lo are members of L.
Also, L1 # L.

Also since steps ba, bb do not succeed in substage 5—t, at least

one of Ly, Ly is TxtEx-identified by less than » many machines in
{M07 M17 ceey M?n—l}-

Case 2.3: In stage s the procedure reaches step 6.

In this case, for each 7 € Y, Wy (,,) enumerates an element (due to com-
pletion of all iterations of the while loop in step 5) which neither is in the
language, L, defined in Case 2.3.1 below nor belongs to any language in
{L; | j < 2n — 1} defined in Cases 2.3.2 below; thus, M; does not TxtEx
identify either L or any language in {L; | j < 2n — 1}. Let 7 be as defined
in step 6.
Case 2.53.1: All substages in step 6 terminate.

In this case clearly, for i € ([0 .. 2n — 1] = X), W5y = Wy,. Let

L =W,,. Clearly, L € L. Let T = |J, ¢. Now, the number of i’s in

([0..2n—1]— Z) such that M; converges on T"is < card(Y"). Thus,

L € Teamgn({l\/lo, Ml, ey Mgn_l}).
Case 2.53.2: Some substage 6—t at step 6 starts but does not terminate.

In this case for j < 2n and ¢ < 2n — 1, let q{+i be as defined in step
substage 6—1t. Also, let 2g,...,%2,_1 be as defined in substage 6—t.

Clearly, for j < 2n and ¢ < 2n =1, Wy,) = Wq{“- Let Lj = Wy,

Clearly, each of the languages in {L; | i < 2n} belong to £ and are
pairwise distinct. Now for ¢ < 2n, let T; be a text for IL; such that
7 C Ty. Now it is easy to verify that, for each 7 € ZUY' and ¢ < 2n,

25

M;(T;) = M;(r;). Since, for each j € (ZUY')-Y), M;(7), can
each be grammars for at most one of Lg, L1, ..., Lo,_1, we have that
{Lo, Ll, ey Lgn_l} g Teamgn({l\/lo, Ml, ey Mgn_l}).

From the above cases it follows that £ ¢ Team}, TxtEx. |
The above diagonalization can be generalized to show the following.

Theorem 13 (VYn,m € NT | 2n does not divide m)[Team’' TxtEx — Team}, TxtEx # (].

We omit a proof of the theorem because a simple modification of our proof of Theorem 12 suffices.
The only changes required are that in the diagonalization procedure instead of searching for > r
machines to converge to a grammar (or, for > r converged grammars to output a particular value),
we search for > r - m/n machines (or, grammars) in this case. Thus, at the end of step 5, we

will have at least [Z%] of the m converged machines converge to a grammar which enumerates

2n
something ‘extra.” Step 6 then utilizes the fact that Team3”_ ;TxtEx can diagonalize against

Team TxtEx, if r/w > 2n/(4n — 1). We leave the details to the reader.

Corollary 9 (Vm,n € N1)[Team, TxtEx C Team}, TxtEx < [m divides n\/ m is odd]].
Corollary 10 Prob!/?TxtEx — U,, Team]: TxtEx # (.

The above corollary establishes that probabilistic identification of languages with probability
of success at least 1/2 is strictly more powerful than team identification of languages with success
ration 1/2. In the next section, we establish a similar result for the ratio 1/k, k > 2.

1

5.4 Team Language Identification for Success Ratio ;, & > 2.

We now employ Theorem 7 to show the following using Theorem 13.

Theorem 14 (Vk > 2)(V even j > 1)(Vi | j does not divide i)[Tearn;.kTxtEx—Teamj.katEx #
0].

Proor. By Induction on k. Note that base case (k = 2) follows by Theorem 13. Now suppose

Tearn;katEX —Team!, TxtEx # (. Using Theorem 7 with i; = 0, we have Teamfk_l_l)ijtEx—

Tearnfk_H)iTxtEx £ 0. i
We do not know if the above theorem can be extended to show that, (Vk > 2)(V even j > 1)(Vi |
j does not divide i)[Tearnj,katEx — Team; , TxtEx* # {].

Corollary 11 (Ya € N)(Vk > 2)(V even j > 1)(Vi | j does not divide i)
[Team? , TxtEx — Team; , TxtEx" #].

Corollary 12 (Vk > 2)[Prob'/*TxtEx — U, Tearn;.katEX £ 0].
We next present some more applications of Theorems 7 and 8.

Theorem 15 Form >n € N, r >3
Team”, TxtEx — Team TxtEx # (.

Proor. If m is even then the theorem follows from Theorem 14. Suppose m is odd. Then
by Theorem 14, Team?JisztEx — Teamj, TxtEx # (. Thus, we have Teamy, , TxtEx —
Teamf, TxtEx # (). Using Theorem 7 with i; = 1, we get Team$!, TxtEx — Team}, TxtEx # (.
Using Theorem 7 repeatedly with ¢; = 0 we get the result. |

26

Theorem 16 For r € N, Teamj,, TxtEx — Team3, TxtEx™ # (.

ProOOF. The theorem is trivially true for r = 0. Since TeamiTxtEx — TxtEx* # 0§ and
Team3TxtEx C Team)TxtEx, we have Team; TxtEx — Team3TxtEx* # (). Using Theorem 8
repeatedly with i; = 1, we get Teamj_, TxtEx — Team3, TxtEx* # (), for r > 1. |

Theorem 17 For each r > 3, Teamj, TxtEx — Team?TTxtEx £ 0, if j is not divisible by 3.

Proor. As a Corollary to Theorem 19 below we have Team:TxtEx — Team]f’—]] TxtEx # 0.
3

Using Theorem 7 with i1 = 1, we get Team>TxtEx — Team]L5—JJ+[2j/3]TXtEX # 0, and then
. 3

TeamjTxtEx — TearnngxtEx # (. Now again using Theorem 7 repeatedly with 7; = 0, we get

Team3, TxtEx — Team?TTxtEx £ 0, for r > 3. |

A generalization of the above theorem shows that

Theorem 18 For all ¢, for each r > 1, Teamj,TTxtEX — Tearn;.TTxtEx £ 0, if j is not divisible
by 1.

5.5 On the Difficulty of Obtaining General Results

Despite the useful tools of Section 5.2, general results are difficult to come by for success ratio
< 1/2 and for between success ratio 1/2 and 2/3. In this section, we present two results: the first
(Theorem 19) illustrates the kind of results that we can obtain (using the methods of section 5.2),
the second (Theorem 21) sheds light on why general results are difficult to obtain.

Corollary 13 below gives a hierarchy when more than half of the team members are required to
be successful.

Theorem 19 Suppose n < [m - 2;;_—+H Team)} TxtEx — Team” TxtEx* # 0.

syl
n—m

Proor. Clearly, Team|] TxtEx — Team TxtEx™ # { (since [25] > n—m). Theorem now

follows by using Theorem 8 with ¢ = 1. |

Corollary 13 (Vr)[Teamgjf3TxtEx — Teamg;'ilTxtEx* £ 0].

A generalization of a detailed proof of Theorem 19 can be used to show the following Theorem 20.
We omit the details.

Theorem 20 (Vp,r | p > 2Tr—|:|-11)[Team), TxtEx — Prob’TxtEx #].

Theorem 21 below shows that there exist 7, j, k,[such that

Team;TxtEx = Team; TxtEx for & # %, and both ¢ and % are < %
j j

Thus, we cannot hope to prove a general theorem which separates TeaméTxtEX and TeamextEX
whenever % + %

Theorem 21 Team], TxtEx C TeamiTxtEx.

Corollary 14 Team!, TxtEx = TeamiTxtEx.

27

Proor oF THEOREM 21. Given a team {M;j,...,M;j;}, we will construct three learning ma-
chines M/, M}, and M4 such that the team {M/, M}, M4} Team?TxtEx-identifies any language
Team!, TxtEx-identified by the team {Mj,...,Mj;}. Let conv be as defined in the proof of
Theorem 2. Let m{,m3,...,m{; be a permutation of 1,2,...,11, such that, for 1 < r < 11,
[(conv(Myz,0),m7) < (conv(Mpe, ,0),mi)]. Let match be as defined in the proof of Theo-
rem 11 (with ¢ = 0). Let similar(7, j,n) = max({n; < n | W;,, CW,; AW, CW,;,}). Intuitively,
similar computes the closeness between two grammars. It denotes the point where it appears that
the languages accepted by the two grammars differ.

Let r{,...,7% be a permutation of mj,...,m5, be such that for 1 < [< 6.
(match(Mye(a),0),77) > (match(M,g (0),0),1{;;).

MY on o outputs

majority(MTf(U)v Mrg(g)v Mrg(g)v Mrf(g)v Mrg(g)v Mmg(g)v Mmg(U))

Suppose a text T is given for I € Team], TxtEx({My,...,My;}). Clearly, for 1 < j < 7,

lim,, o0 mf[n] exists. Let M = {M s | 1 < j <7} Now, M} TxtEx-identifies T if at
§— 00 T)’L]

least 2 of the machines in M converge to a wrong grammar on 7. M}, M/, will be constructed
so that if at least 6 of the machines in M converge, on T, to a correct grammar, then M}, M}
TxtEx-identify 7. Otherwise, at least one of M/, M/, TxtEx-identifies 7. Note that at least 3 of
the machines in M TxtEx-identify 7.

M on o outputs Gy(Mus(0), ..., Myg(0)) and M) on o outputs Ga(Mys (o), ..., Myug(0)),
where (G1, G5 are as defined below.

Given g1,92, -+, 97, Wai(g1,.97) W (g1,....g7) 18 defined as follows.

Let ng = 0, mlg = m2p = 0. For 1 < i < 7, let gz’»70 = ¢;. Let G/LO = G1(¢1,...,97) and

G5 = G291, - -, g7). We will enumerate elements in We, (5, o), Way(gr,...97) i Stages. G o, G
will be a permutation of Gy(g1,...,97),G2(g1,--.,97) and g; , ..., g7 ; will be a permutation of
g1, - .., g7. This is just for the ease of presentation.

Begin {stage s}
Search for n > ng such that there exist distinct p1, p2, ps € [1 .. 7], such that similar(g; ,, g ;, n) >

ns, for v, € {p1, p2,p3}.

If and when such an n is found, let ny4q1 = n.

Let p1,p2,ps € [I .. 7] be such that py,pe,p3 are distinct and
min(similar(g,, s, gy, s> 7). similar(g,, , g, s 1), similar(g,, o, g,. 5,n)) is maximized.

Let pa,ps,ps € [.. 7 — {p1,p2,p3} be such that p4,ps,ps are distinct and
min(similar(g,, s, gp. s> n), similar(gy, o, g5, s 1), similar(g,, o, g, 5,n)) is maximized.

Let ml,y1 = min(similar(g,, ., 9,, s»7),similar(g,, o, g,. 5, n),similar(g,, o, gp. 7))

Let m2,4y = min(similar(g,, ,,9g,, s, 1), similar(g,, o, g, 5, n),similar(g,, ., g,. ;7))

If card({p1, p2, pa} ({1,2,3}) < 1, then let G ;| = G5 and G5y = G .

Enumerate VV%LSJMSJr1 U I/I/g1/3r4)757TrL15Jr1 U Wg;3757m15+1 in Wer

s+l
FEnumerate Wg1/34757m25+1 U Wg1/35757m25+1 U I/nglgwmgyr1 in WG5,5+1'
Let g} o1y =gy, s for 1 <a< 7.

Let g7 o114 = g%left,s’ where pleft € ([1 .. 7] —{p1,...,ps}).

Go to stage s + 1.

End {stage s}

28

It is easy to see that if at least 6 of the first 7 converging machines TxtEx-identify 7', then both
M/ and M) do. We prove below that at least one of M}, M/, TxtEx-identify T, if it is TxtEx-
identified by at least 3 of the first seven converging machines. It is sufficient to show that if at least
3 of ¢g1,...,97 are grammars for a language L, then at least one of G1(¢1,...,97), Ga(g1,...,97),
accepts L. For r < 1, let Wg denote W¢, enumerated before stage s. It is easy to show by
induction that, before stage s following hold.

1. éﬂ =Wy U Wgéys,mls U ngys,mls'

2. éé D) ngyymzs U ngys,TrL?s U WgéstrL?s'

3. éﬂ C Wg{ys,ns N Wgéys,ns N ngys,ns'

4, éé — [ng,svm% U ngys,m% U Wgéys,m%] - WSLS.

5. (Vz € Wséys)(EI distinct j,k € [4:7])[z € Wg;,yns] Nz € Wg2757n5].

6. mls; > m2;.

Thus, if at least 3 of ¢1,...,97 are grammars for L, then at least one of
G1(91,---,97), G2(¢1,...,97), enumerates L. |

A generalization of the above method can be used to show that,

Theorem 22 (Vp > 5/8)[Prob?TxtEx C Team:TxtEx].

Theorem 23 (Viy,l3,k1,ke > 1 | Iz > 5l1/2 — 1,ky < 3k1/2 + [mlfl;ll})[TeamngtEx —
Team],z; TxtEx # 0].

Proovr. Since l1/(lz—l1+1) <2/3 and kq/(ka— [%1_1)}) > 2/3, we have, Tearng_ll_HTxtEx—

Tealrni1 [kl,(ll_l)]TxtEX # (. Now using Theorem 7 with i1 = 1, we get TearnngtEx —
- [T—

Teamgi TxtEx # (. |

Iterating the above method we get,

Theorem 24 (Yw)(Viy,l3, ki, ke > 1 | o > % + wlly — 1) ANk < % +ow -
[M})[Tealmg1 TxtEx — Tealrng1 TxtEx # (].
1 2 2

Theorem 25 (Viy,l3,k1,ke > 1 | la > 5l1/2 — 1,k < k1 + % . [%;U})[TeamngtEx —
Team],z; TxtEx" # (].

Proor. Since I1/(lz — hH + 1) < 2/3 and [ki(ly — 1)/l1]/(k2 — k1) > 2/3, we have,
ki-(l —1)
Tearng_ll_HTxtEx — Team,£2_klll TxtEx* # (. Now using Theorem 8 with iy = 1, we get

Tearng TxtEx — Team],z; TxtEx # (. |
Theorem 26 (Vk,I |k > 21/5)[Team/TxtEx C Team}TxtEx].

Proor or THEOREM 26. By Corollary 7 we know that for any m and n, such that m > n/2,
Team” TxtEx C TeamlTxtEx. Suppose machines My, Mj,...,M; are given. For) # § C
{1,2,...,1}, let ML, M% denote the two machines which Team!TxtEx-identify any language
which is TeamCLZi:lc(lg)/ZJ+1—identiﬁed by machines {M,};cs.

We now define M,,M,;, and M. which Team!TxtEx-identify any language which is
TeamextEx—identiﬁed by {Mz’}lgz’gl- Let conv be as defined in the proof of Theorem 2. Sup-

pose o is given. Let 5, C {1,2,...,l} be the lexicographically least set of cardinality k& such

29

that, for each ¢ € 9, and each ¢ € {1,2,...,{} — 5,, conv(M;,0) < conv(M;,c). Then, let
M, (o) = majority({M,(c) | r € S, }).

Let match(i,o) = max({z < |o| | (content(o[z]) C W, ;) A (W, C content(c))}). Let
X, C 59, be a (lexicographically least) set of cardinality [k/2] such that for each i € X, and each
i' € 5, — X,, match(M;(o),) < match(M;(0),0).

Let My(o) = Mh,z,...,l}_xc(g) and M,(0) = M%Lz,...,l}—xa(g)-

Now, suppose {M;}1<i<; Team; TxtEx-identify content(7). Then, § = lim,_ ST[n) consists
of a subset (of {1,2,...,1}) of cardinality k such that, for each ¢ in 5, M; converges on T'.

Now, if majority of machines in 5, TxtEx-identify T then so does M,. If majority of machines
in 5 do not TxtEx-identify 7', then X = lim, . X[, exists and the elements of X do not
TxtEx-identify 7T'; this implies that at least & of {Mj, My,...,M;} —{M; | i € X} do. Thus, at
least one of M;, M. TxtEx-identifies T. |

An extension of the above proof yields the following result.

Theorem 27 (Vk,l,i|k > 21/5)[Team[TxtEx’ C Team}))TxtExi'[%”.

We end this section by stating results that provide more evidence of the complexity of team
identification of languages. The first collection of results (Corollary 15 just below to Theorem 27
above together with Theorems 28 and 29 below) show that there exist identification classes A, B,
and C such that A C B, but both A, C and B, C are incomparable to each other.

Corollary 15 Team2TxtEx C Team}TxtEx.
Theorem 28 Team!TxtEx — Team:TxtEx # ().

Proo¥. Follows from team function hierarchy of Smith [30], (Vn € N*)[Team,Ex C Team) ,Ex],
and Pitt’s connection for functions [23], (Vp |0 < p < 1)(Vn)[1/(n+ 1) < p < 1/n = Team!Ex =
Prob?Ex]. |

Theorem 29 Team’TxtEx — Team!TxtEx # (.

ProoF. By Theorem 10 Team?TxtEx — TeamiTxtEx # (. The theorem now follows using
Theorem 7 with 1 = 1. |

Theorem 30 Team:TxtEx — Team:TxtEx # (.

ProoF. Team:TxtEx — Team3TxtEx #) by Corollary 13. Theorem now follows using Theo-
rem 7 with ;1 = 1. |

Our second collection of results (Theorem 31 and 32 below) shows that sometimes allowing
successful members in the team to make a finite, but unbounded, number of mistakes compensates
for weaker teams. More specifically, Theorem 31 below shows that all such collections of languages
that can be identified by teams of 8 machines requiring at least 5 to be successful can be identified
by some team of 3 machines requiring at least 2 to be successful if successful members of this
latter team are allowed to converge to grammars which make a finite, but unbounded, number of
mistakes. On the other hand, Theorem 32 shows that there are collections of languages that can
be identified by teams of 8 machines requiring at least 5 to be successful, but which collections
cannot be identified by any team of 3 machine requiring at least 2 to be successful if the number
of mistakes allowed in the final grammars of the successful members of the latter team is bounded
in advance.

30

Theorem 31 TeamTxtEx C TeamiTxtEx*.
ProOF. We omit the proof. The idea is similar to that used in Theorem 21. |
Theorem 32 (Vj € N)[Team]TxtEx — Team?TxtEx’ # 0)].

We omit the proof of the above theorem. The idea is similar to that used in proving Theorem 12.
We finally note that many additional results can be shown to hold for team language identifi-
cation. We do not present them here because they are of partial nature only.

5.6 Team and Probabilistic Identification of Languages from Informants

Finally, we consider identification from both positive and negative data. Identification from texts
is an abstraction of learning from positive data. Similarly, learning from both positive and negative
data can be abstracted as identification from informants. The notion of informants, defined below,
was first considered by Gold [15].

Definition 21 A text [is called an informant for a language L just in case content([l) = {(z,1) |
v e L}U{{z,0) | ¢ L.

The next definition formalizes identification from informants.

Definition 22 (a) M InfEx-identifies L (written: L € InfEx(M)) just in case M, fed any infor-
mant for L converges to a grammar for L.

(b) InfEx = {£ | (3M)[£ C InfEx(M)]}.

We can similarly define Prob”InfEx-identification and Team'InfEx-identification. The fol-
lowing result says that Pitt’s connection holds for language identification if the machines are also
presented with information about what is not in the language. This result strongly suggests that
the complications arising in the study of team TxtEx-identification may be due to the lack of
negative data.

Theorem 33 (Vp| 1/(n+ 1) < p < 1/n) [Team! InfEx = Prob”InfEx].

A close inspection of Pitt’s proof for function identification yields a proof for the above theorem;
we omit details.

6 Conclusions

The present paper studied the computational limits on team identification of r.e. languages from
positive data. It was shown that the notions of probabilistic language identification and team
function identification turn out to be different. In fact, it was established that for probabilities of the
form 1/k, probabilistic identification of languages is strictly more powerful than team identification
of languages where at least 1/k of the members in the team are required to be successful.

We also presented two very general tools that allowed us to easily prove new diagonalization
results from known ones. Some results were also presented which shed light on the difficulty of
obtaining general results. An attempt was made to pinpoint the reason behind why probabilistic
identification is different from team identification for languages by showing that an analog of Pitt’s
connection holds for language identification if the learning agent is also presented with negative
information.

31

Finally we note that results from [22] could be used to show that for TxtBe-identification (see
[5] for definition), if 7 > j/2, then TearnéTxth = TxtBc . Thus, team inference with respect to
TxtBc-identification behaves differently from team inference with respect to TxtEx-identification.
A study of probabilistic and team identification for TxtBc-identification on the lines of the present
paper is open. We would also like to note that the structure of team language identification is similar
to the structure of finite identification (identification without any mind changes) of functions by a
team for success ratios > 2/3 (see [17]). For other success ratios, the structure of team language
identification is different from finite identification of functions by a team [9, 11, 10, 31, 17, 8, 7].

Acknowledgements

We would like thank John Case for suggesting this investigation, providing helpful critical com-
ments, and discussing various aspects of this work. We would also like to express our gratitude
to Mark Fulk and Dan Osherson for supporting us during this research at various stages. Lata
Narayanan and Rajeev Raman provided helpful discussion.

References

[1] J. M. Barzdin. Two theorems on the limiting synthesis of functions. In Theory of Algorithms
and Programs, Latvian State University, Riga, 210:82-88, 1974. In Russian.

[2] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125-155, 1975.

[3] M. Blum. A machine independent theory of the complexity of recursive functions. Journal of
the ACM, 14:322-336, 1967.

[4] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15-32, 1974.

[5] J. Case and C. Lynes. Machine inductive inference and language identification. Lecture Notes
in Computer Science, 140:107-115, 1982.

[6] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193-220, 1983.

[7] R. P. Daley, B. Kalyanasundaram, and M. Velauthapillai. Breaking the probability 1/2 barrier

in fin-type learning. In Proceedings of the Workshop on Computational Learning Theory, pages
203-217. A. C. M. Press, 1992.

[8] R. P. Daley, L. Pitt, M. Velauthapillai, and T. Will. Relations between probabilistic and team
one-shot learners. In L. Valiant and M. Warmuth, editors, Proceedings of the Workshop on
Computational Learning Theory, pages 228-239. Morgan Kaufmann Publishers, Inc., 1991.

[9] R. Freivalds. Functions computable in the limit by probabilistic machines. Mathematical
Foundations of Computer Science, 1975.

[10] R. Freivalds. Finite identification of general recursive functions by probabilistic strategies. In
Proceedings of the Conference on Algebraic, Arithmetic and Categorical Methods in Computa-
tion Theory, pages 138-145. Akedemie-Verlag, Berlin, 1979.

32

[11] R. Freivalds. On the principle capabilities of probabilistic algorithms in inductive inference.
Semiotika Inform, 12:137-140, 1979.

[12] M. Fulk. A Study of Inductive Inference machines. PhD thesis, SUNY at Buffalo, 1985.

[13] M. Fulk. Prudence and other conditions on formal language learning. Information and Com-
putation, 85:1-11, 1990.

[14] Gill. Computational complexity of probabilistic turing machines. STAM Journal of Computing,
1977.

[15] E. M. Gold. Language identification in the limit. Information and Control, 10:447-474, 1967.

[16] J. Hopcroft and J. Ullman. Introduction to Automata Theory Languages and Computation.
Addison-Wesley Publishing Company, 1979.

[17] S. Jain and A. Sharma. Finite learning by a team. In M. Fulk and J. Case, editors, Proceedings
of the Third Annual Workshop on Computational Learning Theory, Rochester, New York,
pages 163-177. Morgan Kaufmann Publishers, Inc., August 1990.

[18] D. Osherson, M. Stob, and S. Weinstein. Aggregating inductive expertise. Information and
Control, 70:69-95, 1986.

[19] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to Learning
Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

[20] D. Osherson and S. Weinstein. Criteria of language learning. Information and Control, 52:123—
138, 1982.

[21] L. Pitt. A characterization of probabilistic inference. In Proceedings of the 25th Symposium
on the Foundations of Computer Science, 1984.

[22] L. Pitt. A characterization of probabilistic inference. PhD thesis, Yale University, 1984.
[23] L. Pitt. Probabilistic inductive inference. Journal of the ACM, 36:383-433, 1989.

[24] L. Pitt and C. Smith. Probability and plurality for aggregations of learning machines. In
Proceedings of the 14th International Colloguium on Automata, Languages and Programming,
1987.

[25] L. Pitt and C. Smith. Probability and plurality for aggregations of learning machines. Infor-
mation and Computation, 77:77-92, 1988.

[26] H. Rogers. Godel numberings of partial recursive functions. Journal of Symbolic Logic, 23:331—
341, 1958.

[27] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New
York, 1967. Reprinted by MIT Press, Cambridge, Massachusetts in 1987.

[28] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New
York, 1967. Reprinted, MIT Press 1987.

[29] C. Smith. The power of parallelism for automatic program systhesis. In Proceedings of the
22nd Symposium on the Foundations of Computer Science, 1981.

33

[30] C. Smith. The power of pluralism for automatic program synthesis. Journal of the ACM,
29:1144-1165, 1982.

[31] M. Velauthapillai. Inductive inference with bounded number of mind changes. In Proceedings
of the Workshop on Computational Learning Theory, pages 200-213, 1989.

34

