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Abstract

A team of learning machines is essentially a multiset of learning machines�

A team is said to successfully identify a concept just in case each member of

some nonempty subset of the team identi�es the concept� Team identi�cation

of programs for computable functions from their graphs has been investigated

by Smith� Pitt showed that this notion is essentially equivalent to function

identi�cation by a single probabilistic machine�

The present paper introduces� motivates� and studies the more di�cult

subject of team identi�cation of grammars for languages from positive data�

It is shown that an analog of Pitt�s result about equivalence of team func�

tion identi�cation and probabilistic function identi�cation does not hold for

language identi�cation� and the results in the present paper reveal a very

complex structure for team language identi�cation� It is also shown that for

certain cases probabilistic language identi�cation is strictly more powerful

than team language identi�cation�

Proofs of many results in the present paper involve very sophisticated

diagonalization arguments� Two very general tools are presented that yield

proofs of new results from simple arithmetic manipulation of the parameters

of known ones�
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� Introduction

Identi�cation of grammars �acceptors� for recursively enumerable languages from positive data by a
�single� algorithmic device is a well studied problem in Learning Theory� The present paper inves�
tigates the computational limits on language identi�cation by a �team� of �deterministic� machines�
A team of machines is essentially a multiset of machines� A team is said to identify a language if
each member of some nonempty subset of the team identi�es the language�

Identi�cation of programs for functions from their graph is another extensively studied area in
Learning Theory� For this related problem� L� Pitt �	
� 	�� established that team identi�cation is
essentially equivalent to identi�cation by a single probabilistic machine� He showed that for any
positive integer n and any probability p� if 
��n
� � p � 
�n� then the collections of computable
functions that can be identi�ed by a single probabilistic machine with probability at least p are
exactly the same as the collections of computable functions that can be identi�ed by a team of n
�deterministic� machines requiring at least one to be successful�

The present paper makes the following contributions to the study of team identi�cation of
languages�

�a� It is shown that an analog of Pitt�s connection between probabilistic function and team
function identi�cation does not hold for languages� In fact our results show that the structure
of team language identi�cation is far more complex than the simple structure of team function
identi�cation�

�b� For k � 	� the relationship between probabilistic language identi�cation with probabilities of
the form 
�k and team language identi�cation requiring at least 
�k of the machines to be
successful is established�

�c� Techniques to simplify complicated diagonalization arguments are presented�

�a� follows from one of our results �Theorem 
��� Results in Section ��� illustrate the com�
plexity of team language identi�cation� We achieve �b� by showing that for k � 	� probabilistic
identi�cation of languages with probability at least 
�k is strictly more powerful than team lan�
guage identi�cation where at least 
�k of the members in the team are required to be successful�
Proofs of results leading to this answer require very sophisticated diagonalization arguments� Two
very general results �Theorems � and �� are presented which allow us to prove new diagonalization
theorems by simple arithmetic manipulation of the parameters of known results�

We also suggest that a plausible reason for Pitt�s connection not holding for language identi��
cation may be the unavailability of negative data �information about what is not in the language�
to the learning agent� We argue this by showing that an analog of Pitt�s connection does hold
for language learning if the learning agent is also given negative information� It should be noted
that in the context of function identi�cation� where Pitt�s connection holds� negative information
is implicitly available to the learning agent because it can eventually determine if a given ordered
pair doesn�t belong to the graph of a function�

Rest of the paper is organized as follows� Section 	 informally discusses our main results and
motivates the study by describing scenarios which are partly modeled by team language learning�
Section � introduces the notation and Section � describes the de�nitions formally� Section � contains
proofs of our results�






� Discussion

In the present section we informally introduce the de�nitions and discuss some of our �ndings� The
main subject of our investigation is identi�cation of languages� However� with a view to compare
and contrast our results with analogous investigations in the context of function identi�cation� we
will present notions from both function identi�cation and language identi�cation� Usually� we will
�rst describe a notion in the context of function identi�cation followed by the description of an
analogous notion for language identi�cation�

Learning machines may be thought of as Turing machines computing a mapping from ��nite
sequences of data� into computer programs� A typical variable for learning machines isM� At any
given time� the input to a learning machine M is to be construed as a code for the data available
to M till that time� The output of M is taken to be a hypothesis conjectured by M in response
to the data available to it� For example� in the context of function learning� the input is an initial
segment of the graph of a function and the output is the index of a program in some �xed acceptable
programming system� We now describe what it means for a machine to learn a function�

Let N denote the set of natural numbers� Let f be a computable function and let n � N � Then�
the initial segment of f of length n is denoted f �n�� The set of all initial segments of computable
functions� ff �n� j f is a computable function and n � Ng� is denoted SEG� It is easy to see that
there exists a computable bijection between SEG and N � Members of SEG are inputs to machines
that learn programs for functions� and we avoid notational clutter by using f �n� to denote the code
for the initial segment f �n�� We also �x an acceptable programming system and the output of a
learning machine is interpreted as the index of a program in this system� We say thatM converges
on f to i just in case� for all but �nitely many n� M�f �n�� � i� The following de�nition is Gold�s
criterion for successful identi�cation of functions by learning machines�

De�nition � �
�� �a�MEx�identi�es f just in caseM� fed the graph of f � converges to a program
index for f � In this case we say that f � Ex�M��

�b� Ex denotes all such collections S of computable functions such that some machine Ex�
identi�es each function in S�

The class Ex is a set theoretic summary of the capability of single machines to Ex�identify
collections of functions�

L� Blum and M� Blum �	� and Barzdin �
� showed that the class Ex is not closed under union�
This result may be viewed as a fundamental limitation on building general purpose devices for
learning functions� and� to an extent� justi�es the use of heuristic methods in Arti�cial Intelligence�
However� this result also suggests a more general criteria of successful learning of functions in
which a team of machines is employed and success of the team is the success of any one or more
members in the team� The idea of team identi�cation for functions was �rst suggested by J� Case
and extensively studied by Smith �	�� ���� The next de�nition describes team identi�cation of
functions� Recall that a team of machines is essentially a multiset of machines�

De�nition � �a� A team of n machines� fM��M�� � � � �Mng� is said to Team
m
n Ex�identify a func�

tion f just in case at least m members in the team Ex�identify f � In this case we say that
f � Teamm

n Ex�fM��M�� � � � �Mng��
�b� Teamm

n Ex is de�ned to be the class of sets S of computable functions such that some team
of n machines Teamm

n Ex�identi�es each function in S�

Team�
nEx�identi�cation was investigated by Smith �	�� ��� and Team

m
n Ex�identi�cation was

studied by Osherson� Stob� and Weinstein �
��� Pitt �	
� noticed an interesting connection between

	



Team�
nEx�identi�cation and function identi�cation by a single probabilistic machine� Probabilistic

machines behave very much like computable machines except that every now and then they have
the ability to base their actions on the outcome of a random event like a coin �ip� �For a discussion
of probabilistic Turing machines see Gill �
���� The next de�nition informally describes probabilis�
tic identi�cation of functions� we delay the formal details of the probability of identi�cation till
Section ���� Below� P ranges over probabilistic machines�

De�nition � �	
� 	�� Let p be such that � � p � 
�
�a� P ProbpEx�identi�es f just in case P Ex�identi�es f with probability at least p� In this

case we say that f � ProbpEx�P��
�b� ProbpEx � fS j ��P��S � ProbpEx�P��g�

Pitt �	
� 	��showed that if 
��n 
� � p � 
�n� then Team�
nEx � ProbpEx� In other words�

the collections of computable functions that can be identi�ed by a single probabilistic machine with
probability at least p are exactly the same as the collections of computable functions that can be
identi�ed by teams of n deterministic machines requiring at least one to be successful�

Using the above connection� Pitt and Smith �	�� 	�� studied the general case of Teamm
n Ex�

identi�cation� in which the criterion of success requires at leastm out of nmachines to be successful�
They showed that for each m�n � � such that m � n� Teamm

n Ex � Team�
b n
m
cEx�

However� the story is completely di�erent for languages� We next describe preliminary notions
about language identi�cation�

A text for a language L is a mapping T from N into N � f�g such that L is the set of natural
numbers in the range of T � Intuitively� a text T for a language L is a presentation of elements
of L �possibly repeated� and no non�elements of L� ��s in the presentation may be thought of as
modeling pauses in data input� content�T � denotes the set of natural numbers in the range of T �
�Thus� the content of a text never includes ��� The initial sequence of text T of length n is denoted
T �n�� The set of all �nite initial sequences of N and ��s is denoted SEQ� It is easy to see that
there exists a computable bijection between SEQ and N � Members of SEQ are inputs to machines
that learn grammars �acceptors� for r�e� languages� We also �x an acceptable programming system
and interpret the output of a language learning machine as the index of a program in this system�
Then� a program conjectured by a machine in response to a �nite initial sequence may be viewed as
a candidate accepting grammar for the language being learned� We say thatM converges on text
T to i just in case for all but �nitely many n� M�T �n�� � i� The following de�nition introduces
Gold�s criteria for successful identi�cation of languages�

De�nition � �
��
�a�M TxtEx�identi�es a text T just in caseM� fed T � converges to a grammar for content�T ��
�b�M TxtEx�identi�es an r�e� language L just in caseM TxtEx�identi�es each text for L� In

this case we say that L � TxtEx�M��
�c� TxtEx denotes all such collections L of r�e� languages such that some machine TxtEx�

identi�es each language in L�

The class TxtEx is a set theoretic summary of the capability of machines to TxtEx�identify
collections of r�e� languages� We now de�ne team identi�cation of languages�

De�nition � �a� A team of n machines� fM��M�� � � � �Mng� is said to Team
m
n TxtEx�identify a

text T just in case at least m members in the team TxtEx�identify T �

�The general case of team function identi�cation was also studied by Osherson� Stob� and Weinstein �����
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�b� A team of n machines fM��M�� � � � �Mng is said to Team
m
n TxtEx�identify a language

L just in case fM��M�� � � � �Mng Team
m
n TxtEx�identify each text for L� In this case we write

L � Teamm
n TxtEx�fM��M�� � � � �Mng��

�c� Teamm
n TxtEx is de�ned to be the class of sets L of recursively enumerable languages such

that some team of n machines Teamm
n TxtEx�identi�es each language in L�

Note that in the above de�nition we have allowed the possibility that for a given language L�
di�erent machines in the team may be successful on di�erent texts for L� It can be shown that
an alternative formulation in which successful machines in the team are required to be successful
on all texts for L is equivalent to our de�nition in the sense that both formulations yield the same
collections of identi�able languages �the reader is directed to Fulk �
	� 
�� for arguments of such
equivalences��

Probabilistic language identi�cation is the subject of next de�nition� Again� as was the case
with probabilistic function identi�cation� we delay the formal details of probability of identi�cation
in the following de�nition to Section ����

De�nition � �	
� 	�� Let � � p � 
�
�a� P ProbpTxtEx�identi�es L just in case for each text T for L� P TxtEx�identi�es T with

probability at least p� In this case we write L � ProbpTxtEx�P��
�b� ProbpTxtEx � fL j ��P��L � ProbpTxtEx�P��g�

As already mentioned� the study of team language identi�cation not only turns out to be more
di�cult than team function identi�cation� but it also has many surprises� Below� we discuss some
of these unexpected results�

In the context of function identi�cation� we have the following result immediately following
from the results of Pitt and Smith �	���

Team�
�Ex � Team�

�Ex

The above result says that the collections of functions that can be identi�ed by teams employing
� machines and requiring at least 	 to be successful are exactly the same as those collections which
can be identi�ed by teams employing 	 machines and requiring at least 
 to be successful�

However� in the context of language identi�cation� we are able to show the following result
which says that there are collections of languages that can be identi�ed by teams employing �
machines and requiring at least 	 to be successful� but cannot be identi�ed by any team employing
	 machines and requiring at least 
 to be successful� � denotes proper superset�

Team�
�TxtEx � Team�

�TxtEx

As a consequence of the above result� which follows from our Theorem 
�� an analog of Pitt�s
connection does not hold for language identi�cation� This fact turns out to be somewhat surprising
because many results about function identi�cation were found to have analogous counterparts in
the context of language identi�cation� Even more surprising is the following result which follows
from our Theorem 

�

Team�
�TxtEx � Team�

�TxtEx

We actually complete the picture for team language identi�cation for success ratio 
�	 and as
a consequence of our results� we have the following result which says that probabilistic language
identi�cation with probability at least 
�	 is strictly more powerful than team identi�cation with
success ratio 
�	�

Prob
�
�TxtEx�

�
j

Team
j
�jTxtEx �� 	

�



The above �ndings are the subject of Section ���� Some of our proofs of the above results use two
diagonalization tools described in Section ��	� These tools� presented in the form of very general
theorems� allow us to prove new diagonalization results from simple arithmetic manipulation of
the parameters of known diagonalization arguments� For example� Theorem � allows us to employ
results of the formTeami

jTxtEx�Team
k
lTxtEx �� 	 to prove results of the formTeami�

j�TxtEx�

Teamk�

l� TxtEx �� 	 for �suitable� values of i�� j�� k�� l� obtainable under �certain conditions� from
i� j� k� l�

In Section ���� we again employ the tools of Section ��	 to give partial picture for success
ratios of the form 
�k� k � 	� For example� the following result sheds light on when introducing
redundancy in the team yields extra language learning ability�

�
k � 	��
 even j � 
��
i j j does not divide i��Teamj
j�kTxtEx �Teami

i�kTxtEx �� 	�

As a consequence of the above result� we have the following relationship between probabilistic
language identi�cation with probabilities of the form 
�k and team language identi�cation�

�
k � 	��Prob
�
kTxtEx�

�
j

Team
j
j�kTxtEx �� 	�

Thus� we are able to establish that for probabilities of the form 
�k� probabilistic language
identi�cation is strictly more powerful than team identi�cation where at least 
�k of the members
in the team are required to be successful�

In Section ���� we present results for some other success ratios and shed light on why general
results are di�cult to obtain�

Finally� in Section ���� we address the problem of why Pitt�s connection fails for language iden�
ti�cation from positive data� and conjecture that a plausible reason for probabilistic and team iden�
ti�cation behaving di�erently for language identi�cation is the unavailability of negative data� In
support of this conjecture� we consider a hypothetical learning criteria called InfEx�identi�cation�
This criteria is like TxtEx�identi�cation except that the learning machine is fed an informant of
the language instead of a text for the language being learned� An informant� unlike a text which
only contains information about what is in the language� contains information about both elements
and non�elements of the language�� We show that an analog of the Pitt�s connection holds for
probabilistic InfEx�identi�cation and team InfEx�identi�cation� as they turn out to be essentially
the same notions�

Before we undertake a formal presentation of our study� it is worth noting an aspect of team
identi�cation that cannot be overlooked� namely� it may not always be possible to determine which
members in the team are successful� This property seems to rob team identi�cation of any pos�
sible utility� However� we present below scenarios in which the knowledge of which machines are
successful is of no consequence� all that matters is some are�

First� consider a hypothetical situation in which an intelligent species� somewhere in outer space�
is attempting to contact other intelligent species �such as humans on earth� by transmitting radio
signals in some language �most likely alien to humans�� Being a curious species ourselves� we would
like to establish a communication link with such a species that is trying to reach out� For this
purpose� we could employ a team of� not necessarily cooperating� language learners each of which
perform the following three tasks in a loop�

�It is worth noting that the notion of informants is merely theoretical� as for any non�recursive r�e� language� the
only informants available are non�recursive� We consider informants purely for gaining a theoretical insight about
language learning�

�



�a� receive and examine strings of a language �eg�� from a radio telescope��

�b� guess a grammar for the language whose strings are being received�

�c� transmit messages back to outer space based on the grammar guessed in step 	�

If one or more of the learners in the team is actually� but� possibly unknowingly� successful
in learning a grammar for the alien language� a correct communication link would be established
between the two species�

Consider another scenario in which two countries� A and B� are at war with each other� Country
B uses a secret language to transmit movement orders to its troops� Country A� with an intention
to confuse the troops of country B� wants to learn a grammar for country B�s secret language so
that it can transmit con�icting troop movement instructions in that secret language� To accomplish
this task� country A employs a �team� of language learners� each of which perform the following
three tasks in a loop�

�a� receive and examine strings of country B�s secret language�

�b� guess a grammar for the language whose strings are being received�

�c� transmit con�icting messages based on the grammar guessed in step 	 �so that B�s troops
think that these messages are from B�s Generals��

If one or more of the learners in the team is actually� but possibly unknowingly� successful in
correctly learning a grammar for country B�s secret language� then country A achieves its purpose
of confusing the troops of country B�

In both the scenarios described above� we have a team of learners trying to infer a grammar for
a language from positive data� The team is successful� just in case� some of the learners in the team
are successful� It should be noted that the notion of team language identi�cation models only part
of the above scenario� as we ignore in our mathematical model the aspect of learners transmitting
messages back� We also mathematically ignore possible detrimental e�ects of a learner guessing
an incorrect grammar and transmitting messages that could interfere with messages from a learner
that infers a correct grammar �for example� the string �baby milk powder factory� in one language
could mean the string �ammunition storage� in another��� In no way are these issues trivial� we
simply don�t have a formal handle on them at this stage�

� Notation

Recursion�theoretic concepts not explained below are treated in �	��� N denotes the set of natural
numbers� f�� 
� 	� � � �g� N� denotes the set of positive integers� f
� 	� �� � � �g� �� �� and � denote�
respectively� membership� containment� and proper containment for sets�

� denotes unbounded but �nite� we let �
n � N��n � � � �� Unless otherwise speci�ed�
e� i� j� k� l� m� n� r� s� t� u� v� w� x� y� z� with or without decorations� range over N � a� b� c� with
or without decorations range over N � f�g� �m � � n� denotes the set fi jm � i � ng� We say that
a pair �i� j� is less than �k� l� i� �i � j � �i � j � k � l���

	 denotes the empty set� A� B� C� S� X� Y� Z� with or without decorations� range over subsets
of N � We reserve Am to range over multisets with elements from N � We usually denote �nite
sets by D� card�D� denotes the cardinality of the �nite set D� card�Am� denotes the number
of �not necessarily distinct� elements of the multiset Am� Similarly� set operations� �� �� �� set

�



di�erence� on multisets producing multisets can be de�ned �for example f
� 
� 	g�f
g� f
� 
� 
� 	g
and f
� 
� 	g�f
g� f
� 	g�� max� ��min� � denote the maximum and minimum of a set respectively�
We take min�	� to be  and max�	� to be ��

Let �� with or without decoration� range over partial functions� For a � �N � f�g�� we say that
�� is an a�variant of �� �written �� �

a ��� just in case card�fx j ���x� �� ���x�g� � a� Otherwise
we say that �� is not an a�variant of �� �written �� ��a ����

The set of all total recursive functions of one variable is denoted by R� f ranges over R� In
some situations q� g range over R� in other situations q� g range over natnum� In some situations
p ranges over R� in other situations p is a real number �construed as a probability�� For a partial
recursive function �� domain��� denotes the domain of � and range��� denotes the range of �� ��x��
i� x � domain���� ��x�� otherwise�

E denotes the class of all recursively enumerable languages� L� with or without decorations�
ranges over E � L� with or without decorations� ranges over subsets of E � � denotes a standard
acceptable programming system �also referred to as standard acceptable numbering� �	�� 	��� �i
denotes the partial recursive function computed by the ith program in the standard acceptable
programming system �� Wi denotes the domain of �i� Wi is� then� the r�e� set�language �� N�
accepted by ��program i� We can �and do� also think of i as �coding� a �type � �
��� grammar for
generating Wi�  denotes an arbitrary Blum complexity measure ��� for �� Wi�n denotes the set
fx � n j  i�x� � ng�

hi� ji stands for an arbitrary computable one to one encoding of all pairs of natural numbers
onto N �	��� Corresponding projection functions are �� and ��� �
i� j � N� ����hi� ji� � i and
���hi� ji� � j and h���x�� ���x�i � x �� Similarly� hi�� i�� � � � � ini denotes a computable one to one
encoding of all n�tuples onto N �

The quanti�ers �
�

 � and �

�
� � mean �for all but �nitely many� and �there exists in�nitely many��

respectively�

� De�nitions

��� Learning Machines

In De�nition � below� we formally introduce what we mean by a machine that learns a function�
and in De�nition �� we do the same for a machine that learns a language�

We assume� without loss of generality� that the graph of a function is fed to a machine in
canonical order� For f � R and n � N � we let f �n� denote the �nite initial segment f�x� f�x�� j
x � ng� Clearly� f ��� denotes the empty segment� SEG denotes the set of all �nite initial segments�
ff �n� j f � R � n � Ng� Note that f �n� � f�n� x�g is a new �nite initial segment of length n  

formed by extending f �n� suitably�

De�nition � �
�� A function learning machine is an algorithmic device which computes a mapping
from SEG into N �

The output of a function learning machine M on initial segment f �n�� denoted M�f �n��� is
interpreted as the index of a program in our �xed acceptable programming system ��

We now consider language learning machines� De�nition � below introduces a notion that
facilitates discussion about elements of a language being fed to a learning machine�

De�nition � A sequence � is a mapping from an initial segment of N into �N�f�g�� The content
of a sequence �� denoted content���� is the set of natural numbers in the range of �� The length of

�



�� denoted by j�j� is the number of elements in �� For n � j�j� the initial segment of � of length n
is denoted by ��n��

Intuitively� ��s represent pauses in the presentation of data� We let �� 	 � and 
� with or without
decorations� range over �nite sequences� SEQ denotes the set of all �nite sequences� �� � k denotes
the concatenation of k at the end of sequence ��� where � � �� � k is de�ned as follows�

��x� �

�
���x� if x � j��j�
k if x � j��j�

De�nition 	 A language learning machine is an algorithmic device which computes a mapping
from SEQ into N �

The output of a language learning machineM on �nite sequence �� denotedM���� is interpreted
as the index of a program �a grammar� in our �xed acceptable programming system ��

The set of all �nite initial segments� SEG� can be coded onto N � Also� the set of all �nite
sequences of natural numbers and ��s� SEQ� can be coded onto N � Thus� in both De�nitions � and
�� we can view these machines as taking natural numbers as input and emitting natural numbers
as output� Henceforth� we will refer to both function�learning machines and language�learning
machines as just learning machines� or simply as machines� We letM� with or without decorations�
range over learning machines�

��� Function Identi�cation

In De�nition 
� below we spell out what it means for a learning machine on a function to converge
in the limit�

De�nition �
 Suppose M is a learning machine and f is a computable function� M�f�� �read�

M�f� converges� �� ��i��
�

 n� �M�f �n�� � i�� If M�f��� then M�f� is de�ned � the unique i

such that �
�

 n��M�f �n�� � i�� otherwise we say thatM�f� diverges �written� M�f����

The next de�nition introduces Gold�s criteria for successful identi�cation of a function�

De�nition �� �
�� 	� �� Let a � N � f�g�
�i� M Exa�identi�es f �written� f � Exa�M�� �� ��i j �i �a f��M�f�� � i��
�ii� Exa � fS j ��M��S � Exa�M��g�

Case and Smith ��� motivate anomalies �or� mistakes� in the �nal programs in De�nition 


from the fact that physicists sometimes do employ explanations with anomalies� The a � � case
was introduced by L� Blum and M� Blum �	� and the other a � � cases were �rst considered by
Case and Smith ����

��� Language Identi�cation

De�nition �� A text T for a language L is a mapping from N into �N � f�g� such that L is the
set of natural numbers in the range of T � The content of a text T � denoted content�T �� is the set
of natural numbers in the range of T �

�



Intuitively� a text for a language is an enumeration or sequential presentation of all the objects
in the language with the ��s representing pauses in the listing or presentation of such objects� For
example� the only text for the empty language is just an in�nite sequence of ��s�

We let T � with or without superscripts� range over texts� T �n� denotes the �nite initial sequence
of T with length n� Hence� domain�T �n�� � fx j x � ng�

In De�nition 
� below we spell out what it means for a learning machine on a text to converge
in the limit�

De�nition �� SupposeM is a learning machine and T is a text� M�T �� �read� M�T � converges�

�� ��i��
�

 n� �M�T �n�� � i�� If M�T ��� then M�T � is de�ned � the unique i such that �

�



n��M�T �n�� � i�� otherwise we say that M�T � diverges �written� M�T ����

De�nition �� �
�� �� 	�� Let a � N � f�g�
�i� M TxtExa�identi�es T � �M�T �� and WM�T � �

a content�T ���
�ii� M TxtExa�identi�es L �written� L � TxtExa�M�� �� M TxtExa�identi�es each text for
L�
�iii� TxtExa � fL j ��M��L � TxtExa�M��g�

��� Team Identi�cation

A team of learning machines is any multiset of learning machines� We let M� with or without
decorations� range over teams of machines� In describing teams of machines� we use the notation
for sets with the understanding that these sets are to be treated as multisets� Also� set operations�
�� �� �� set di�erence� etc�� on teams result in multiset of machines�

De�nition 
� introduces team identi�cation of functions and De�nition 
� introduces team
identi�cation of languages�

De�nition �� ���� 
�� Let a � N � f�g and let m�n � N��
�a� Let f � R� A team of n machines fM��M�� � � � �Mng is said to Teamm

n Ex
a�identify

f �written� f � Teamm
n Ex

a�fM��M�� � � � �Mng�� just in case there exist m distinct numbers
i�� i�� � � � � im� 
 � i� � i� � � � �� im � n� such that each of Mi� �Mi�� � � � �Mim Exa�identi�es f �

�b� Teamm
n Ex

a � fS j ��M��M�� � � � �Mn��S � Teamm
n Ex

a�fM��M�� � � � �Mng��g�

De�nition �� Let m�n � N� and a � N � f�g�
�a� A team of n machines fM��M�� � � � �Mng is said to Team

m
n TxtEx

a�identify T just in case
there exist m distinct numbers i�� i�� � � � � im� 
 � i� � i� � � � � � im � n� such that each of
Mi� �Mi�� � � � �Mim TxtExa�identi�es T �

�b� Let L � E � A team of n machines fM��M�� � � � �Mng is said to Teamm
n TxtEx

a�
identify L �written� L � Teamm

n TxtEx
a�fM��M�� � � � �Mng�� just in case fM��M�� � � � �Mng

Teamm
n TxtEx

a�identify each text for L�
�c� Teamm

n TxtEx
a � fS j ��M��M�� � � � �Mn��S � Teamm

n TxtEx
a�fM��M�� � � � �Mng��g�

For both Teamm
n Ex

a�identi�cation criteria and Teamm
n TxtEx

a�identi�cation criteria� we refer
to the fraction m�n as the success ratio of the criteria� In the following� for i � j� we take
Teami

jTxtEx
a � f	g�

�



��� Probabilistic Identi�cation

A probabilistic learning machine may be thought of as an algorithmic device which has the added
ability of basing its actions on the outcome of a random event like a coin �ip� More precisely� let
t be a positive integer greater that 
� Then� a probabilistic machine P may be construed as an
algorithmic machine that is equipped with a t�sided coin� The response of P to input � not only
depends upon � but also on the outcomes of coin �ips performed by P while processing �� We
make these notions precise below� we closely follow Pitt �		� 	���

Let Nm denote the set f�� 
� 	� � � � � m� 
g� An oracle for a t�sided coin� t � 
� also referred to
as a t�ary oracle� is an in�nite sequence of integers i�� i�� i�� � � � such that for each j � N � ij � N t�
�A typical variable for oracles is O��

Clearly� N�
t � the in�nite Cartesian product of N t with itself� denotes the collection of all t�sided

coin oracles� Observe that a t�ary oracle is somewhat like a text for the �nite language N t� and
notations for texts carry over to oracles� that is� the nth member of O is denoted On and the initial
�nite sequence of O of length n is denoted O�n�� The set fO�n� j O is a t�ary oracle and n � Ng
is the collection of all �nite t�ary sequences� �A typical variable for �nite t�ary sequences is ���
Similarly� the length of a �nite t�ary sequence � is denoted j�j� for n � j�j� the nth member of � is
denoted by �n and the initial sequence of length n in � is denoted by ��n��

Let � be a �nite t�ary sequence and P be a probabilistic machine equipped with a t�sided coin�
Let � � SEQ� Then� P���� denotes the output of P on � such that the result of any coin �ip
performed by P are �read� from �� that is� the outcome of the �rst coin �ip is ��� the outcome of the
second coin �ip is ��� and so on and so forth� If P performs more coin �ips than j�j in responding
to �� then P���� is unde�ned�

Similarly� we can describe the behavior of P for a given t�ary oracle O� PO behaves like P
except whenever P �ips its coin� PO reads the result of the coin �ip from the oracle O� that is� the
result of the �rst coin �ip is O�� the result of the second coin �ip is O�� and so on and so forth�

We now describe a probability measure on a single coin �ip� For a t�sided coin� let �N t�Bt� prt�
be a probability space on the sample space N t� where Bt is the Borel �eld fS j S � N tg and
prt � card�S��t� Intuitively� this measure simply says that the probability of the outcome of
�ipping a t�sided coin belonging to a set S � N t is card�S��t� We employ this measure to describe
a probability measure on t�ary oracles next�

The sample space of events for oracles of a t�sided coin is N�
t !the set of all in�nite sequences

of numbers less than t� Let B�t be the smallest Borel �eld of subsets of N�
t containing all the sets

Nj��
t �Aj�N

�
t � where for each j� Aj � Bt� Then� let �N

�
t �B

�
t � pr�t � be a probability space where

pr�t is de�ned as follows�
Given a nonempty set of n integers� i�� i�� i�� � � � � in� such that � � i� � i� � i� � � � � � in� let

Ai��i��i������in denote the set N
i���
t �Ai� �N i��i���

t �Ai� �N i��i���
t �Ai� � � � ��Ain �N�

t � where
each Aij � Bt� Then� pr

�
t is de�ned on B�t such that pr�t �Ai��i������in� �

Qn
j	� prt�Aij�� for each

choice of n integers i�� i�� � � � � in�
Clearly� sets Ai��i��i������in are measurable�

����� Probabilistic Function Identi�cation

Let P be a probabilistic machine equipped with a t�sided coin and let f � R� Then� the probability
of P Exa�identifying f is taken to be pr�t �fO j POExa�identi�es fg�� However� to be able to
compute such a probability� it needs to be established that the set fO j POExa�identi�es fg is
measurable� This is the subject of next lemma�


�



Lemma � �		� 	�� Let P be a probabilistic machine and let f � R� Then fO j PO Exa�identi�es fg
is measurable�

The following de�nition� motivated by the above lemma� introduces the probability of function
identi�cation�

De�nition �� �		� 	�� Let f � R and P be a probabilistic machine equipped with a t�sided coin
�t � 	�� Then� pr�t �P Exa�identi�es f� � pr�t �fO j PO Exa�identi�es fg��

The next lemma says that we do not sacri�ce any learning power by restricting our attention
to the investigation of identi�cation by probabilistic machine equipped with only a two�sided coin�

Lemma � �Adopted from �		� 	��� Let t� t� � 	� Let P be a probabilistic machine with a t�sided
coin� Then� there exists a probabilistic machine P� with a t��sided coin such that for each f � R�
pr�t� �P

� Exa�identi�es f� � pr�t �P Exa�identi�es f��

The next de�nition describes function identi�cation by probabilistic machines� The above
lemma frees us from specifying the number of sides of the coin� thereby allowing us to talk about
probability function pr�t without specifying t� For this reason� we will refer to pr�t as simply pr
in the sequel� Also� we are at liberty to use whatever value of the number of sides of a coin that is
convenient for the presentation at hand�

De�nition �� �		� 	�� Let � � p � 
�
�a�P ProbpExa�identi�es f �written� f � ProbpExa�P�� just in case pr�PExa�identi�es f� �

p�
�b� ProbpExa � fS � R j ��P��S � ProbpExa�P��g�

����� Probabilistic Language Identi�cation

Let P be a probabilistic machine equipped with a t�sided coin and let T be a text for some
language L � E � Then� the probability of P TxtExa�identifying T is taken to be pr�t �fO j
POTxtExa�identi�es Tg�� The next lemma establishes that the set fO j POTxtExa�identi�es Tg
is measurable�

Lemma � �		� Let P be a probabilistic machine and let T be a text� Then fO j
PO TxtExa�identi�es Tg is measurable�

The following de�nition� motivated by the above lemma� introduces probability of identi�cation
of a text�

De�nition �	 �		� Let T be a text and P be a probabilistic machine equipped with a t�sided coin
�t � 	�� Then� pr�t �P TxtExa�identi�es T � � pr�t �fO j PO TxtExa�identi�es Tg��

As in the case of function identi�cation� there is no loss of generality in assuming a two sided
coin�

Lemma � �Adopted from �		� 	��� Let t� t� � 	� Let P be a probabilistic machine with a t�sided
coin� Then� there exists a probabilistic machine P� with a t��sided coin such that for each text T �
pr�t� �P

� TxtExa�identi�es T � � pr�t �P TxtExa�identi�es T ��







The next de�nition describes language identi�cation by probabilistic machines� As in the func�
tion case� the above lemma frees us from specifying the number of sides of the coin� thereby allowing
us to talk about probability function pr�t without specifying t� For this reason� we will refer to
pr�t as simply pr in the sequel�

De�nition �
 �		� Let � � p � 
�
�a� P ProbpTxtExa�identi�es L �written� L � ProbpTxtExa�P�� just in case for each text

T for L pr�P TxtExa�identi�es T � � p�
�b� ProbpTxtExa � fL � E j ��P��L � ProbpTxtExa�P��g�

� Results

��� Team Language Identi�cation with Success Ratio � �
�

We �rst consider the problem of when can a team be simulated by a single machine�
In the context of function identi�cation� Osherson� Stob� and Weinstein �
�� and Pitt and Smith

�	�� have shown that the collections of functions that can be identi�ed by teams with success ratio
greater than one�half �that is� a majority of members in the team are required to be successful� are
the same as those collections of functions that can be identi�ed by a single machine�

Theorem � �
�� 	�� �
j� k j j
k �

�
���
a��Team

j
kEx

a � Exa��

Surprisingly� an analog of Theorem 
 for language identi�cation holds for success ratio 	�� as
opposed to success ratio 
�	 for function identi�cation� Corollary 
 to Theorem 	 below says that
the collections of languages that can be identi�ed by teams with success ratio greater than 	��
�that is� more than two�thirds of the members in the team are required to be successful� are the
same as those collections of languages which can be identi�es by a single machine�� Corollary 	 is
a similar result about TxtEx��identi�cation�

Theorem � �
j� k j j
k �

�
���
a��Team

j
kTxtEx

a � TxtExd�j�����e�a��

Corollary � �
j� k j j
k �

�
���Team

j
kTxtEx � TxtEx��

Corollary � �
j� k j j
k �

�
���Team

j
kTxtEx

� � TxtEx���

To facilitate the proof of Theorem 	 and other simulation results� we de�ne the following
technical notion�

Let Am be a nonempty �nite multiset of grammars� We de�ne grammar majority�Am� as
follows�
Wmajority�Am� � fx j for majority of g � Am� x � Wgg�

Clearly� majority�Am� can be de�ned using the s�m�n theorem �	��� Intuitively� majority�Am�
is a grammar for a language that consists of all such elements that are enumerated by a majority
of grammars in Am� Below� whenever we use a set as an argument to majority we assume the
argument to be a multiset�

�Corollary � also appears in Osherson� Stob� and Weinstein ����� and may also be shown using an argument from
Pitt ���� about probabilistic language learning�


	



Proof of Theorem �� Let j� k� and a be as given in the hypothesis of the theorem� Let L be
Team

j
kTxtEx

a�identi�ed by the team of machines fM��M�� � � � �Mkg� We de�ne a machine M

that TxtExd�j�����e�a�identi�es L�
Let conv�M�� �� � max�fj	 j j 	 � � � M��	� ��M����g�� Letm�

� � m
�
� � � � � � m

�
k be a permutation

of 
� 	� � � � � k� such that� for 
 � r � k� ��conv�Mm�
r
� ��� m�

r� � �conv�Mm�
r��

� ��� m�
r�����

LetM��� � majority�fMm�
�
����Mm�

�
���� � � � �Mm�

j
���g��

It is easy to verify that if fM��M�� � � � �Mkg Team
j
kTxtEx

a�identify L � L� then M

TxtExd�j�����e�a�identi�es L�
A slightly better analysis of the errors committed by the simulation given in the above proof

shows that

Theorem � �
j� k j j � 	k����
a � �N � f�g���Teamj
kTxtEx

a � TxtEx
b �j�k
b��j��k�����c �ac��

Corollary � to Theorem � below says that the collections of languages that can be identi�ed by
a team with success ratio 	�� �that is� at least two�thirds of the members in the team are required
to be successful� are the same as those collections of languages that can be identi�ed by a team of
three machines at least two of which are required to be successful� Corollary � is a similar result
about TxtEx��identi�cation with success ratio exactly 	���

Theorem � �
j � ���
a��Team�j
�jTxtEx

a � Team�
�TxtEx

�j����a��

Corollary � �
j � ���Team�j
�jTxtEx � Team�

�TxtEx��

Corollary � �
j � ���Team�j
�jTxtEx

� � Team�
�TxtEx

���

Proof of Theorem �� Let j and a be as given in the hypothesis of the theorem� Suppose
fM�� � � � �M�jg Team

�j
�jTxtEx

k�identify L� We describe machines M�
��M

�
�� and M�

� such that

L � Team�
�TxtEx

�j����a�fM�
��M

�
��M

�
�g��

Let conv be as de�ned in the proof of Theorem 	� Let m�
� � m

�
� � � � � � m

�
�j be a permutation of


� 	� � � � � �j� such that� for 
 � r � �j� ��conv�Mm�
r
� ��� m�

r� � �conv�Mm�
r��

� ��� m�
r�����

M�
���� �Mm�

�
����

M�
���� � majority�fMm�

�
����Mm�

�
���� � � � �Mm�

�j
���g��

M�
���� � majority�fMm�

�
����Mm�

�
���� � � � �Mm�

�j��
���g��

Now suppose T is a text for L � L� Consider the following two cases�
Case �� At least 	j  
 of the machines in fM��M�� � � � �M�jg converge on T �

In this case clearly� M�
� TxtEx

�j����a�identi�es T � Moreover�M�
� �M

�
�� TxtEx

�j����a�
identi�es T ifM

lims��m
T �s�
�

TxtExa�identi�es T �does not TxtExa�identi�es T ��

Case �� Not case 
�

In this case clearly� M�
� and M

�
� TxtEx

�j����a identify T �

Above proof can be modi�ed to show the following result which says that probabilistic identi�
�cation of languages with probability of success at least 	�� is the same as team identi�cation of
languages with success ratio 	���


�



Theorem � Prob���TxtEx � Team�
�TxtEx�

Theorem � below establishes that 	�� is indeed the cut�o� point at which team identi�cation
of languages becomes more powerful than identi�cation by a single machine�

Theorem � Team�
�TxtEx �TxtEx� �� 	�

Proof of Theorem ��

Let L � fL j �� distinct x�� x� � f�� 
� 	g��for i � 
� 	��fy j hxi� yi � Lg is non�empty and �nite
and Wmax�fyjhxi�yi�Lg� � L�g�

Clearly� L � Team�
�TxtEx� Suppose by way of contradiction some machine M TxtEx��

identi�es L� Without loss of generality� assume that M is order independent �	�� Then� by the
operator recursion theorem ���� there exists a 
�
 increasing� nowhere �� recursive function p such
that Wp�i��s can be described as follows�

Enumerate h�� p���i and h
� p�
�i in both Wp��� and Wp���� Let �� be such that content���� �
fh�� p���i� h
� p�
�ig� Let W s

i denote Wi enumerated before stage s� Go to stage 
�

Begin fstage sg


� Enumerate W s
p���

S
W s

p��� in Wp����Wp����Wp��s�� and Wp��s����

Enumerate h	� p�	s�i in Wp����Wp��s��

Enumerate h	� p�	s 
�i in Wp����Wp��s����

Let 	� be an extension of �s such that content�	�� � Wp��� enumerated till now�

Let 	� be an extension of �s such that content�	�� � Wp��� enumerated till now�

	� Let x � �� Dovetail steps 	a and 	b until� if ever� step 	b succeeds� If and when step 	b
succeeds� go to step ��

	a� Go to substage ��
Begin fsubstage s�g

Enumerate h�� xi in Wp����Wp��s��
Enumerate h�� xi in Wp����Wp��s����
Let x � x 
�
Go to substage s�  
�

End fsubstage s�g
	b� Search for i � f�� 
g and n � N such thatM�	i�h�i� �i�h�i� 
i� � � � � h�i� ni� ��M��s��

�� If and when 	b succeeds� let i� n be as found in step 	b�

Let S �

Wp��� enumerated till nowS
Wp��� enumerated till nowS
fh�  i� �i� h� i� 
i� � � � � h�  i� nig�

�� Let �s�� � an extension of 	i � h� i� �i� h� i� 
i� � � �� h� i� ni such that content��s��� � S�

Enumerate S in Wp����

Go to stage s 
�

End fstage sg

Consider the following cases�
Case �� All stages terminate�


�



In this case� let L � Wp��� � Wp��� � L� Let T �
S
s �s� Clearly� T is a text for L� But� M on

T makes in�nitely many mind changes �since the only way in which in�nitely many stages can be
completed is by the success of step 	b in�nitely often�� Thus�M does not TxtEx��identify L�
Case �� Some stage s starts but does not terminate�

In this case� let L� � Wp��� � Wp��s� � L and L� � Wp��� � Wp��s��� � L� Also� L�� L� are
in�nitely di�erent from each other� Let Ti � 	i �h� i� �i� h� i� 
i� � � ��h� i� ni� where i � f�� 
g
and 	i is as de�ned in stage s� Now� M converges to M��s� for both T� and T�� Since L�� L� are
in�nitely di�erent from each other� WM��s� is in�nitely di�erent from at least one of L� and L��
Hence� M does not TxtEx��identify at least one of L� and L��

From the above cases we have thatM does not TxtEx��identify L�

��� Diagonalization Tools

In order to avoid details and to simplify many diagonalization proofs in the sequel� we now show
how to generalize diagonalization arguments of the form Teami

jTxtEx � Teamk
lTxtEx �� 	�

In particular we show how� given a theorem of the above form� for parameters i� j� k� l satisfying
certain conditions and for new parameters i�� j�� k�� l� satisfying certain conditions� we get a proof
of Teami�

j�TxtEx� Teamk�
l� TxtEx �� 	�

We �rst de�ne these conditions and then present a general result �Theorem � below� which
yields new diagonalization results from known ones� We would like to note that these conditions
are satis�ed by all the diagonalization proofs in the present paper�

For a recursive function q� and i� j� k� l � N�� we de�ne the predicate PROP�q� i� j� k� l� to be
true just in case given

�a� �nite sets S�� S�� S�� S�� S
�
��

�b� a team of � l machinesM�

such that S�� S�� S� are pairwise disjoint� S�� � S�� card�S�� � j� and card�S��� � i� then
Lq�i�j�k�l�S��S��S��S��S���M

�� Teamk
card�M�TxtEx�M�� where

Lq�i�j�k�l�S��S��S��S��S
�
��M

� fL j the following conditions are satis�ed

�a� S� � L�
�b� �
x � S���card�fy j hx� yi � Lg� ���
�c� card�fx � S� j max�fy j hx� yi � Lg� exists � Wmax�fyjhx�yi�Lg� � Lg� � i�
�d� �L� S�� � fhx� yi j x � S� � y � Ng � 	�
�e� �
x � S����max�fy j hx� yi � Lg� � q�S�� S�� S�� S�� S���M� x���
�f� �
x � S����S� � Wq�S��S��S��S��S���M�x� � S� � fhz� yi j z �� S� � y � Ng��
g

We employ the above predicate to prove a theorem which given any known diagonalization of
the form Teami

jTxtEx� Teamk
lTxtEx �� 	� yields several related diagonalization results�

Theorem � Let 
 � i � j and � � i� � i� If PROP�q� i� j� k� l�� then� for i�� j �� k�� l� satisfying the
following conditions�

�a� i� � i�
�b� k � k��
�c� l� � l dk� � k�

bi�i�c
e�

�d� j� � j  i� i��
�e� 
 � i� � j� and 
 � k� � l��


�



there exists a recursive q� such that� PROP�q�� i�� j�� k�� l���

Proof� Suppose i� j� k� l� q� i�� k�� j �� l�� i� are given as above� Without loss of generality we assume
i� � i�

By a suitably padded version of the operator recursion theorem ��� there exists a recur�
sive� 
"
� q� such that the sets Wq��S��S��S��S��S���M�x�� may be de�ned as follows in stages�
We assume that the padding �to obtain q�� is such that� for all S�� S�� S�� S�� S

�
��M� and x�

q��S�� S�� S�� S�� S
�
��M� x� � max�fy j hx� yi � S�g�� Below� taking S�� S�� S�� S�� S

�
��M to be �xed

we refer to q��S�� S�� S�� S�� S
�
��M� x� by p�x�� Without loss of generality we assume card�M� � l��

Let S��� be a set of cardinality i such that S�� � S��� � S�� Let conv be as de�ned in the proof of
Theorem 	� For �� let Z� be the �lexicographic least� subset of M of cardinality k� such that� for
eachM � Z� � for each M

� � M� Z� � conv�M� ��� conv�M�� ���
For y � S��� � enumerate S� � fhx� p�x�i j x � S���g in Wp�y�� Let �� be a sequence such that

content���� � S� � fhx� p�x�i j x � S���g� Let S
 be a set disjoint from S�� S�� S�� S� such that
card�S
� � i�� Let S� be such that S
 � S� � S
 � �S� � S��� �� and card�S�� � j� Let W s

p�x� denote
Wp�x� enumerated before stage s� Go to stage ��

Stage s

Dovetail steps 
 and 	 until step 
 succeeds� If and when step 
 succeeds go to step ��


� Search for an extension 	 of �s such that Z�s �� Z� and content�	�� content��s� � fhx� yi j x ��
S� � S���g�

	� Let X� � S��

Let X �
� � S
�

For w � bi�i�c� let Yw be pairwise disjoint subsets of S��� of cardinality i� each�

For w � bi�i�c� let uw be pairwise distinct numbers such that each is greater than max�S� �
S� � S� � S
 � S� � fx j ��y��hx� yi � W s

p�z� for some z � S���g��

For w � bi�i�c� let X��w � fur j r � bi�i�c � r �� wg � S� � S��� �

For w � bi�i�c let X��w � fuwg � S��

Let map be a mapping from S��� to S
 such that for each w � bi�i�c� map�Yw� � S
�

Go to substage ��

Substage s�

For w � bi�i�c� let Mw � fM � Z�s j ��y��huw� yi � WM��s��s� � � �
w� � bi�i�c j w
� ��

w��
y��huw�� yi �� WM��s��s� �g�
For w � bi�i�c� let X��w �

S
x�Yw �Wp�x� enumerated till now ��

Dovetail steps 	�
 and 	�	 until step 	�
 succeeds� If and when step 	�
 succeeds� go to
substage s�  
�

	�
 Search for an s�� � s�� M � Z�s �
S
wMw� such that ��w � bi�i�c���y��huw� yi �

WM��s��s�� � � �
w� � bi�i�c j w
� �� w��
y��huw�� yi �� WM��s��s�� ��

	�	 Let t � ��
repeat

For each w � bi�i�c� for each x � Yw such that card�Mw� � l� �l��k��� enumerate
Wq�X��w �X��X��w �X��w�X �

���M�Z�s��Mw�map�x���t� fhx� yi j x � S� � S���g in Wp�x��
Let t � t  
�

forever

End substage s�


�



�� Let X �
S
x�S���

Wp�x� enumerated till now�

Let �s�� be an extension of 	 such that content��s��� � content�	��X � fhx� si j x � S�g�

Enumerate content��s��� into Wp�x�� for x � S��� �

Go to stage s 
�

End stage s

Let L � Lq��i��j��k��l��S��S��S��S��S
�
��M

� We show that L �� Teamk�
l� TxtEx�M�� We consider the

following cases�
Case �� All stages terminate�

In this case� let T �
S
s content��s�� Clearly� for all x � S��� � Wp�x� � content�T � �

L� Moreover at most k� � 
 of the machines in M converge on T � Thus L ��
Teamk�

l� TxtEx�M��

Case �� Stage s starts but never terminates�

It is easy to see that there can be at most �nitely many substages in each stage
which terminate� Let s� be the substage in stage s which starts but never termi�
nates� Let Mw be as de�ned in stage s� substage s�� For each w � bi�i�c� let
Lw � Lq�i�j�k�l�X��w�X��X��w�X��w �X

�
���M�Z�s��Mw

� Now for each w � bi�i�c� Lw �
L �since step 	�	 in stage s� substage s�� makes� for each x � Yw � Wp�x� �
Wq�X��w�X��X��w �X��w�X �

���M�S�s��Mw�map�x���� Also� for each w�w� � bi�i�c� w �� w��
Lw � Lw� M � Mw� � ��y��huw� � yi � WM��s� � Lw�� Also� for some w � bi�i�c�

card�Mw� � b k�

bi�i�c
c� Thus� since Lw �� Teamk

lTxtEx��M� Z�s� � Mw�� we have

L �� Teamk�

l� TxtEx�M��

Note that if PROP�q� i� j� k� l�� then Teami
jTxtEx � Teamk

lTxtEx �� 	� This is so because

L �
S
fMjcard�M�	lg Lq�i�j�k�l�fh��code�M�ig�f������jg�f�g�����M � Teami

jTxtEx � Teamk
lTxtEx� As an

application of the above theorem� suppose Teami
jTxtEx � Teamk

l TxtEx �� 	 can be shown

using a suitable proof� Then the above theorem allows us to conclude that Teami
j�iTxtEx �

Teamk
l�kTxtEx �� 	 can be shown using a suitable proof� By suitable proof we mean a proof such

that for some q� PROP can be satis�ed�
Since all our diagonalization proofs can be easily modi�ed to satisfy PROP� we will use Theo�

rem � implicitly to obtain general theorems� Note that in the usage of the above theorem to obtain
Teami�

j�TxtEx � Teamk�

l� TxtEx �� 	 from Teami
jTxtEx � Teamk

lTxtEx �� 	� we will usually
only specify the value of i� and leave the details of verifying that the properties hold to the reader�

Theorem � allowed us to extend results of the form Teami
jTxtEx � Teamk

lTxtEx �� 	 to

related results of the form Teami�

j�TxtEx�Teamk�

l� TxtEx �� 	 for suitable values of i�� j �� k�� and
l��

We now squeeze some more advantage out of this technique by showing a variant of Theorem �
which allows us to extend diagonalization results of the form Teami

jTxtEx�Teamk
l TxtEx

� �� 	

to related results of the form Teami�

j�TxtEx �Teamk�

l� TxtEx
� �� 	 for suitable values of i�� j�� k��

and l�� To this end we de�ne a predicate analogous to PROP�
For a recursive function q� and i� j� k� l � N�� we de�ne the predicate PROPS�q� i� j� k� l� to be

true just in case given

�a� �nite sets S�� S�� S�� S�� S
�
��


�



�b� a team of l machinesM�

such that S�� S�� S� are pairwise disjoint� S
�
� � S�� card�S�� � j� and card�S��� � i� then

Lq�i�j�k�l�S��S��S��S��S���M
�� Teamk

lTxtEx
��M�� where

Lq�i�j�k�l�S��S��S��S��S���M
� fL j the following conditions are satis�ed

�a� S� � L�
�b� �
x � S���card�fy j hx� yi � Lg� ���
�c� card�fx � S� j max�fy j hx� yi � Lg� exists � Wmax�fyjhx�yi�Lg� � Lg� � i�
�d� �L� S�� � fhx� yi j x � S� � y � Ng � 	�
�e� �
x � S����max�fy j hx� yi � Lg� � q�S�� S�� S�� S�� S

�
��M� x���

�f� �
x � S����S� � Wq�S��S��S��S��S
�
��M�x� � S� � fhx� yi j x �� S� � y � Ng�

g

We now employ the predicate PROPS to prove the following theorem which is analogous to
Theorem ��

Theorem � Suppose 
 � i � j and � � i� � i� If PROPS�q� i� j� k� l�� then� for i�� j �� k�� l� satisfying
the following conditions�

�a� i� � i�
�b� k � dk� � k�

bi�i�c
e�

�c� l� � l k��
�d� j� � j  i� i��
�e� 
 � i� � j� and 
 � k� � l��

there exists a recursive q� such that� PROPS�q�� i�� j�� k�� l���

Proof� Suppose i� j� k� l� q� i�� k�� j �� l�� i� are given as above� Without loss of generality we assume
i� � i�

By a suitably padded version of the operator recursion theorem ���� there exists a recursive� 
"
�
q� such that the sets Wq��S��S��S��S��S���M�x� may be de�ned as follows� We assume that the padding
�to obtain q�� is such that� for all S�� S�� S�� S�� S

�
��M� and x� q��S�� S�� S�� S�� S

�
��M� x� � max�y j

hx� yi � S��� Below� taking S�� S�� S�� S�� S
�
��M to be �xed we refer to q��S�� S�� S�� S�� S

�
��M� x�

by p�x�� Let S��� be a set of cardinality i such that S�� � S��� � S�� Let conv be as de�ned in the
proof of Theorem 	� For �� let Z� be the �lexicographic least� subset of M of cardinality k� such
that� for each M � Z� � for eachM� � M� Z� � conv�M� �� � conv�M�� ���

For y � S��� � enumerate S� � fhx� p�x�i j x � S���g in Wp�y�� Let �� be a sequence such that
content���� � S� � fhx� p�x�i j x � S���g� Let S
 be a set disjoint from S�� S�� S�� S� such that
card�S
� � i�� Let S� be such that S
 � S� � S
 � �S� � S��� �� and card�S�� � j� Let W s

p�x� denote
Wp�x� enumerated before stage s� Go to stage ��

Stage s

Dovetail steps 
 and 	 until step 
 succeeds� If and when step 
 succeeds go to step ��


� Search for an extension 	 of �s such that Z�s �� Z� and content�	�� content��s� � fhx� yi j x ��
S� � S���g�

	� Let X� � W s
p�x�� where x is an element of S

��
� �

Let X� � S��


�



Let X �
� � S
�

Let M� �M� Z�s �

For w � bi�i�c� let Yw be pairwise disjoint subsets of S
��
� of cardinality i� each�

For w � bi�i�c� let uw be pairwise distinct numbers such that each is greater than max�S� �
S� � S� � S
 � S���

For w � bi�i�c� let X��w � fur j r � bi�i�c � r �� wg � S� � S
��
� �

For w � bi�i�c� let X��w � fuwg � S��

Let map be a mapping from S��� to S
 such that for each w � bi�i�c� map�Yw� � S
�

Let t � ��

repeat

For each w � bi�i�c� for each x � Yw � enumerateWq�X��X��X��w�X��w �X �
��M��map�x���t inWp�x��

Let t � t 
�

forever

�� Let X �
S
x�S���

Wp�x� enumerated till now�

Let �s�� be an extension of 	 such that content��s��� � content�	��X � fhx� si j x � S�g�

Enumerate content��s��� into Wp�x�� for x � S��� �

Go to stage s 
�

End stage s

Let L � Lq��i��j��k��l��S� �S��S��S��S���M
� We show that L �� Teamk�

l� TxtEx
��M�� We consider the

following cases�
Case �� All stages terminate�

In this case� let T �
S
s content��s�� Clearly� for all x � S��� � Wp�x� � content�T � �

L� Moreover� at most k� � 
 of the machines in M converge on T � Thus� L ��
Teamk�

l� TxtEx
��M��

Case �� Stage s starts but never terminates�

Let M� be as de�ned in stage s� For each w � bi�i�c� let Lw �
Lq�i�j�k�l�X��X��X��w�X��w �X

�
��M�

� Now� for each w � bi�i�c� Lw � L �since step 	 in
stage s� makes for each x � Yw � Wp�x� � Wq�X��X��X��w �X��w�X �

��M��map�x���� Also�
for each w � w� � bi�i�c� Lw � Lw� Lw� � Lw� � Lw and Lw� are in�nitely di�er�
ent� Thus� for some w � bi�i�c� at most b

k�

bi�i�c
c of the machines in Z�s � TxtEx

��

identify a non empty subset of Lw� Thus� since Lw �� Teamk
l TxtEx

��M��� we have
L �� Teamk�

l� TxtEx
��M��

Note that for all i � j and k � l� there exists a q such that PROP�q� i� j� k� l�
�PROPS�q� i� j� k� l���

��� Team Language Identi�cation with Success Ratio �
�

In the context of functions� the following result immediately follows from Pitt�s connection �	��
between team function identi�cation and probabilistic function identi�cation�

Theorem 	 �		� 	�� �
j � ���Teamj
�jEx � Team�

�Ex��


�



This result says that the collections of functions that can be identi�ed by a team with success
ratio 
�	 are the same as those collections of functions that can be identi�ed by a team employing
	 machines and requiring at least 
 to be successful� Consequently� Team�

�Ex � Team�
�Ex �

Team�
�Ex � � � �� etc�

Surprisingly� in the context of language identi�cation� we are able to show the following The�
orem 
� below which implies that there are collections of languages that can be identi�ed by a
team employing � machines and requiring at least 	 to be successful� but cannot be identi�ed by
any team employing 	 machines and requiring at least 
 to be successful� As a consequence of
this result� a direct analog of Pitt�s connection �		� for function inference does not lift to language
learning�

Theorem �
 Team�
�TxtEx�Team�

�TxtEx
� �� 	�

Corollary � Team
j
�j��TxtEx �Team�

�TxtEx
� �� 	�

Proof of Theorem ��� By Theorem � Team�
�TxtEx � Team�

�TxtEx
� �� 	� Theorem now

follows by using Theorem �� with i � i� � 	� j � �� j� � �� i� � 
� k � k� � 
� l � 
� l� � 	�
Even more surprising is Corollary � to Theorem 

 below which implies that the collections

of languages that can be identi�ed by teams employing � machines and requiring at least � to be
successful are exactly the same as those collections of languages that can be identi�ed by teams
employing 	 machines and requiring at least 
 to be successful�

Theorem �� �
j��
i��Team�j��
�j��TxtEx

i � Team�
�TxtEx

i��j�����

Corollary � �
j��Team�j��
�j��TxtEx � Team�

�TxtEx��

Corollary � �
j��
i��Teamj��
�j��TxtEx

i � Team�
�TxtEx

i�d�j�����e��

Corollary � �
j��
i��Teamj��
�j��TxtEx

i � Team
j��
�j��TxtEx

i�d�j�����e�

Proof of Theorem ��� Suppose M��M�� � � � �M�j�� Team
�j��
�j��TxtEx

i�identify L� Let M�
�

andM�
� be de�ned as follows�

Let conv be as de�ned in the proof of Theorem 	� Let m�
� � m

�
� � � � � � m

�
�j�� be a permutation of


� 	� � � � � �j  	� such that� for 
 � r � �j  	� ��conv�Mm�
r
� ��� m�

r� � �conv�Mm�
r��

� ��� m�
r�����

Let match�r� �� � max�fn � j�j j card��content���n���Wr�j�j�� �Wr�n � content����� � ig��
Let S� � �
 � � 	j  
� be the �lexicographically least� set of cardinality j such that� for 
 �

r� k � 	j  
� �r � S� � k �� S��� �match�Mm�
r
���� ��� match�Mm�

k
���� ����

M�
���� � majority�fMm�

�
����Mm�

�
���� � � � �Mm�

�j��
���g��

M�
���� � majority�fMm�

�j��
����Mm�

�j��
���� � � � �Mm�

�j��
���g � fMm�

r
��� j r � S�g��

It is easy to see that the team fM�
��M

�
�g witness that L � Team�

�TxtEx
i��j����

Finally� we settle the question for team success ratio 
�	 by establishing Theorem 
� below� We
would like to note that our proof of the following theorem turns out to be the most complicated in
the present paper�

Theorem �� �
n � N���Team�n
�nTxtEx� Teamn

�nTxtEx �� 	��

	�



Proof of Theorem ��� Consider the following class of languages�
L � fL j card�fi � �n j card�fx j hi� xi � Lg� ��Wmax�fxjhi�xi�Lg� � Lg� � 	ng�

It is easy to see that L � Team�n
�nTxtEx� Suppose by way of contradiction that the team

fM��M��M�� � � � �M�n��g are such that L � Teamn
�nTxtEx�fM��M�� � � � �M�n��g�� Then by

the implicit use of the operator recursion theorem ���� there exists a 
�
� recursive� increasing p
such that Wp��� may be described as follows�

Recall that �x� � � x�� denotes the set fx j x� � x � x�g� In the following argument� the bulk
of the work for diagonalization is done in step �� Step � sets up the conditions for step � to act�
On the completion of step �� step � easily achieves diagonalization using essentially the technique
developed in the proof of Theorem ��

Let lmc be a function such that lmc�M� �� � max�fj	 j j 	 � � �M�	� �� M���g�� Enu�
merate h�� p���i� h
� p�
�i� � � � � h	n� 
� p�	n� 
�i in Wp����Wp���� � � � �Wp��n���� Let �� be such that
content���� � fh�� p���i� h
� p�
�i� � � � � h	n � 
� p�	n � 
�ig� Let avail � 	n � 
 �intuitively� avail
denotes the least number such that� for all i � avail� p�i� is available for diagonalization�� Go to
stage ��

Begin stage s


� Let Z � �� � � 	n� 
� be such that� card�Z� � n and for i � Z and for j � ��� � � 	n � 
�� Z��
lmc�Mi� �s� � lmc�Mj � �s��

	� Dovetail steps � and �"� until step � succeeds� If and when step � succeeds� go to step ��

�� Search for an extension 	 of �s such that� for some i � Z� Mi��s� �� Mi�	� and content�	� �
content��s� � fhx� yi j x � 	ng�

�� For i � n� let qi � p�avail  
  i��

Let avail � avail  n�

For i � n� enumerate h	n i� qii into Wp����

For i � n� enumerate Wp��� enumerated till now into Wp�i� and Wqi �

Let m � 
 max�fx j fh�n� xi� h�n 
� xig � �Wp��� enumerated till now� �� 	g��

Dovetail steps �a and �b until� if ever� step �a succeeds� If and when step �a succeeds� go to
step ��

�a� Search for Y � Z such that card�Y � � n�	 and for each i � Y � there exists an l � f�n� �n 
g
and an x � m such that WMi��s� enumerates hl� xi�

�b� Let 	� be an extension of �s such that content�	�� � Wp��� enumerated till now� Go to substage
�b!��

Begin substage �b!t

�b�
�For i � n� let q�n�i � p�avail  
  i��
For i � n� let q�n�i � p�avail  n 
  i��
Let avail � avail  	n�
Let Z� � ��� � � 	n � 
�� Z� be such that card�Z�� � dn�	  
�	e and� for all i � Z� and
j � ��� � � 	n� 
�� �Z � Z���� lmc�Mi� 	t� � lmc�Mj � 	t��

�b�	�Let m� � 
 max�fx j fh�n� xi� h�n 
� xig � �Wp��� enumerated till now� �� 	g��
For i � n� enumerate Wp��� enumerated till now into Wq�n�i

and Wq�n�i
�

For i � n and j � n� enumerate h�n i� q�n�ii into Wp�j� and Wq�n�j
�

For j � n� enumerate h�n�m�i into Wp�j� and Wq�n�j
�

For i � n and j � n� enumerate h�n i� q�n�ii into Wqj and Wq�n�j
�

For j � n� enumerate h�n 
� m�i into Wqj and Wq�n�j
�

	




�b���Search for a 
 extending 	t and i � Z� such that Mi�
� �� Mi�	t� and content�
� �
content�	t� � fh�n i� q�n�ii� h�n i� q�n�ii j i � ng � fh�n�m�i� h�n 
� m�ig�

�b��� If and when such a 
 is found in step �b���
Let S � content�
� �Wp��� enumerated till now �Wq	 enumerated till now�
For i � n� enumerate S into Wp�i� and Wqi �
Let 	t�� be an extension of 
 such that content�	t��� � S�
Go to substage �b!t  
�

End substage �b!t

�� Let Y be as found in step �a�

Let v � �n 	� X � fx j x � ng�

while card�X� � 
 do

Let S �
S
i���� � � �n����X��Wp�i� enumerated till now��

For i � ��� � � 	n � 
��X�� enumerate S in Wp�i��
�� Invariants maintained by the while loop at this point are�

�i� �
j� j� � ��� � � 	n � 
� � X���Wp�j� enumerated till now � Wp�j�� enu�
merated till now��

�ii� �
j � Y ���x j �n � ���x� � v��x � WMj��s���
j � �� � � 	n�
��X��x ��
Wp�j� enumerated till now ��

�iii� card�Y � � card�X��	�
�iv� card�X� � n� ��

�� Moreover� after each iteration of the while loop� card�X� decreases �actually
card�X� nearly halves after each iteration� ���

For i � card�X�� let qi � p�avail  
  i��
Let avail � avail  card�X��
Let X�� X� � ��� � � 	n � 
� � X� be such that� card�X�� � bcard�X��	c� card�X�� �
dcard�X��	e and X� �X� � 	�

For i � X� and j � card�X�� enumerate Wp�i� enumerated till now into Wqj �
For i � card�X� and j � X� �X� and k � card�X�� enumerate h	n i� qii into Wp�j� and
Wqk �

Let 	� be an extension of �s such that content�	�� � Wq	 enumerated till now�
Go to substage �!��
Begin substage �!t

For i � 	n� card�X�� let q�card�X��i � p�avail  
  i��

For i � 	n� card�X�� let q�card�X��i � p�avail  	n� card�X�  
  i��

Let avail � avail  �n� �	 � card�X���
Let Z� � ��� � � 	n� 
��Z� be such that card�Z�� � card�Y � and� for all i � Z� and
j � ��� � � 	n� 
�� �Z � Z���� lmc�Mi� 	t� � lmc�Mj� 	t��

Let m� � 
  max�fx j fhv� xi� hv 
� xig � �Wq	 enumerated till now� �� 	g��
For i � 	n � card�X�� enumerate Wq	 enumerated till now into Wq�

card�X��i
and

Wq�
card�X��i

�

For i � 	n � card�X�� j � X� and k � card�X��� enumerate h	n  card�X� 
i� q�card�X��ii into Wp�j��Wqk �Wq�

card�X��i
�

For i � 	n� card�X�� j � X� and k � card�X��� enumerate hv�m�i
into Wp�j��Wqk �Wq�

card�X��i
�

For i � 	n � card�X�� j � X� and k � card�X��� enumerate h	n  card�X� 
i� q�card�X��ii into Wp�j��Wqcard�X���k

�Wq�
card�X��i

�

		



For i � 	n � card�X�� j � X� and k � card�X��� enumerate hv  
� m�i into
Wp�j��Wqcard�X���k

�Wq�
card�X��i

�

Dovetail steps �a and �b until� if ever� one of them succeeds� If step �a succeeds
before step �b does� if ever� then go to step �d� If step �b succeeds before step
�a does� if ever� then go to step �c�

�a� Search for a Y � � �Z�Y �� such that card�Y �� � card�Y � and� for each i � Y �� there
exists an l � fv� v 
g and an x � m� such that WMi��s� enumerates hl� xi�

�b� Search for an extension 
 of 	t and an i � Z� such that Mi�	t� �� Mi�
� and
content�
� � content�	t� � fh	n  card�X�  i� q�card�X��ii� h	n  card�X� 

i� q�card�X��ii j i � 	n� card�X�g � fhv�m�i� hv 
� m�ig�
�c� Let 
 be as found in step �c�

Let S � content�
� �Wq	 enumerated till now �Wqcard�X���
enumerated till now�

For each j � �� � � 	n� 
��X � enumerate S into Wp�j��
For each q � fqi j i � card�X�g� enumerate S into Wq�
Let 	t�� be an extension of 
 such that content�	t��� � S�
Go to substage �!t 
�

End substage �!t
�d� Let Y � be as found in step �a�

Let Y� � fi � Y � j WMi��s� enumerates hv� xi for some x � m� as observed in step �ag�
Let Y� � fi � Y ��Y� jWMi��s� enumerates hv
� xi for some x � m� as observed in step
�ag�

if card�Y���card�X�� � 
�	� then let X � X�� Y � Y��
else let X � X�� Y � Y��
endif

v � v  	�

endwhile

�� �� Note that card�X� � 
 and card�Y � � 
� ��

Let v � v  	�

Let q� � p�avail  
��

Let avail � avail  
�

Let i�� i�� � � � � i�n�� be such that fp�ij� j j � 	ng � fp�j� j j � ��� � � 	n� 
��X�g � fq�g�

Let S � fh	n� q�ig �
S
i��� � � �n����X�Wp�i� enumerated till now��

For i � ��� � � 	n� 
��X�� enumerate S in Wp�i��

Let 	� be an extension of �s such that content�	�� � Wp��� enumerated till now�

Go to substage �!��

Begin substage �!t

For i � 	n� 
 and j � 	n� let qj��i � p�avail  
  j � �	n� 
�  i��
Let avail � avail  	n � �	n� 
��
Let Y � � ��� � � 	n � 
� � Z� be such that card�Y �� � card�Y � and� for i � Y � and
j � ��� � � 	n� 
�� �Z � Y ���� lmc�Mi� 	t� � lmc�Mj � 	t��

For i � 	n� 
� j � 	n enumerate h	n 
  i� qj��ii into Wp�ij��
Let m� � 
 max�fx j ��w� j j j � 	n��hw� xi �Wp�ij� enumerated till now�g��
For j � 	n� enumerate hv  j�m�i into Wp�ij��
For j � 	n and i � 	n� 
� enumerate Wp�ij� enumerated till now into Wqj��i

�

�a� Search for an extension 
 of 	t and i � ��Z � Y �� � Y �� such that Mi�	t� �� Mi�
� and
content�
��content�	t� � fh	n
i� qj��ii j j � 	n�i � 	n�
g�fhvj�m�i j j � 	ng�

	�



�c� Let 
 be as found in step �a�
Let S � content�
� �

S
j��nWp�ij� enumerated till now�

For j � 	n� enumerate S into Wp�ij��
Let 	t�� be an extension of 	t such that content�	t��� � S�
Go to substage �!t  
�

End substage �!t

�� If and when step � succeeds� let 	 be as found in step ��

Let S � content�	� �
S
i��nWp�i� enumerated till now�

For i � 	n� enumerate S into Wp�i��

Let �s�� be as extension of 	 such that content��s��� � S�

Let avail � max�favailg � fx j ��i � �n��hi� p�x�i � S�g��

Go to stage s 
�

End stage s

Now we consider the following cases�
Case �� All stages terminate�

In this case� clearly Wp��� � Wp��� � Wp��� � � � � � Wp��n���� Let L � Wp���� Clearly�
for i � 	n� max�fx j hi� xi � Lg� � p�i�� Thus L � L� Also T �

S
s �s is a text for L�

However at most n� 
 of the machinesM��M�� � � � �M�n�� converge on T �

Case �� Some stage s starts but does not terminate�

Let Z be as de�ned in stage s� Now for i � Z and any text T such that �s � T �
and content�T � � content��s� � fhx� yi j x � 	n� y � Ng� Mi�T � � Mi��s�� We now
consider following subcases� All step numbers and substages referred to below stand for
the corresponding steps and substages in stage s�
Case ���� In stage s the procedure does not reach step ��

For i � n� let qi be as de�ned in step �� Let m be as de�ned in step �� Note
that the number of i�s in Z� such that ��x � m���l � f�n� �n  
g��hl� xi �
WMi��s�� is less than n�	� Let 	t be as de�ned in step �b�
Case ������ All substages at step �b terminate�

In this case� clearly for i � n and j � n�Wp�i� � Wqj � Let L � Wp����
Clearly� L � L� Moreover fh�n� xi j h�n� xi � Lg is in�nite� Also
because step �a does not succeed and step �b�� succeeds in�nitely
often� card�fi jMi TxtEx identi�es Lg� � �dn�	  
�	e� 
� n�	�
Thus L �� Teamn

�nTxtEx�fM��M�� � � � �M�n��g��

Case ������ Some substage �b!t at step �b starts but does not terminate�

In this case� for i � n� let q�n�i � q
�
n�i� be as de�ned in step �b�
 of

substage �b!t� Clearly� Wp��� � Wp��� � � � � � Wp�n��� � Wq�n
�

Wq�n��
� � � � � Wq��n��

and Wq	 � Wq� � � � � � Wqn�� � Wq�n
�

Wq�n��
� � � � � Wq��n��

� Let L� � Wp��� and L� � Wq	 � It is easy to

see that L�� L� � L and L� �� L�� Moreover� for all i � Z � Z�� for
any text T for L� or L� such that 	t � T � Mi�T � � Mi�	t�� This�
along with the fact that step �a does not succeed� implies that at
least one of L� or L� is TxtEx�identi�ed by less than n � dn�	 


�	e n���dn������e
� of the machines in M��M�� � � � �M�n���

	�



Case ���� In stage s the procedure reaches step � but does not reach step ��

LetX� Y be as in the last iteration of the while loop which is �partly� executed
in step �� Also for at least card�Y � many i�s in Z� WMi

��s� enumerates some
element �since step �a��a �in the previous while loop� succeeded� which is
neither in the language L de�ned in Case 	�	�
 below nor in L�� L� de�ned in
Case 	�	�	 below� thus� Mi does not TxtEx�identify either of the languages
L� L� and L�� For i � card�X�� let qi be as de�ned in the last iteration of
the while loop in step �� Let 	t be as de�ned in the last iteration of the while
loop in step ��
Case ������ All substages in the last iteration of the while loop in step �
terminate�

In this case� clearly for i � ��� � � 	n � 
� � X� and j � card�X��
Wp�i� � Wqj � Let L � Wq	 � Clearly� L � L� Let T �

S
t 	t� Moreover�

for less than card�Y � many i�s in ��� � � 	n � 
� � Z�� Mi converges
on T �

Case ������ Some substage �!t in step � starts but does not terminate�

In this case� for i � �	n� card�X��� let q�card�X��i and q�card�X��i be
as de�ned in substage �!t of the last iteration of the while loop in
step �� Clearly� for i � X�� j � card�X�� and k � 	n � card�X��
Wp�i� � Wqj � Wq�

card�X��k
� Also� for i � X�� j � card�X�� and

k � 	n� card�X�� Wp�i� � Wqcard�X���j
� Wq�

card�X��k
� Let L� � Wq	

and L� � Wqcard�X���
� Clearly� both L� and L� are members of L�

Also� L� �� L��
Also since steps �a� �b do not succeed in substage �!t� at least

one of L�� L� is TxtEx�identi�ed by less than n many machines in
fM��M�� � � � �M�n��g�

Case ��	� In stage s the procedure reaches step ��

In this case� for each i � Y � WMi��s� enumerates an element �due to com�
pletion of all iterations of the while loop in step �� which neither is in the
language� L� de�ned in Case 	���
 below nor belongs to any language in
fLj j j � 	n � 
g de�ned in Cases 	���	 below� thus� Mi does not TxtEx
identify either L or any language in fLj j j � 	n � 
g� Let 	t be as de�ned
in step ��
Case ��	��� All substages in step � terminate�

In this case clearly� for i � ��� � � 	n � 
� � X�� Wp�i� � Wq	 � Let
L � Wq	 � Clearly� L � L� Let T �

S
t 	t� Now� the number of i�s in

��� � � 	n� 
��Z� such thatMi converges on T is � card�Y �� Thus�
L �� Teamn

�n�fM��M�� � � � �M�n��g��

Case ��	��� Some substage �!t at step � starts but does not terminate�

In this case for j � 	n and i � 	n� 
� let qj��i be as de�ned in step
substage �!t� Also� let i�� � � � � i�n�� be as de�ned in substage �!t�
Clearly� for j � 	n and i � 	n� 
� Wp�ij� � W

q
j
��i
� Let Lj � Wp�ij��

Clearly� each of the languages in fLi j i � 	ng belong to L and are
pairwise distinct� Now for i � 	n� let Ti be a text for Li such that
	t � Tk� Now it is easy to verify that� for each j � Z�Y � and i � 	n�

	�



Mj�Ti� � Mj�	t�� Since� for each j � ��Z � Y �� � Y �� Mj�	t�� can
each be grammars for at most one of L�� L�� � � � � L�n��� we have that
fL�� L�� � � � � L�n��g �� Teamn

�n�fM��M�� � � � �M�n��g��

From the above cases it follows that L �� Teamn
�nTxtEx�

The above diagonalization can be generalized to show the following�

Theorem �� �
n�m � N� j 	n does not divide m��Team�n
�nTxtEx� Teamm

�mTxtEx �� 	��

We omit a proof of the theorem because a simple modi�cation of our proof of Theorem 
	 su�ces�
The only changes required are that in the diagonalization procedure instead of searching for � r

machines to converge to a grammar �or� for � r converged grammars to output a particular value��
we search for � r � m�n machines �or� grammars� in this case� Thus� at the end of step �� we
will have at least dm�ne of the m converged machines converge to a grammar which enumerates
something �extra�� Step � then utilizes the fact that Team�n

�n��TxtEx can diagonalize against
Teamr

wTxtEx� if r�w � 	n���n� 
�� We leave the details to the reader�

Corollary 	 �
m�n � N���Teamm
�mTxtEx � Teamn

�nTxtEx� �m divides n
W
m is odd���

Corollary �
 Prob���TxtEx�
S
mTeamm

�mTxtEx �� 	�

The above corollary establishes that probabilistic identi�cation of languages with probability
of success at least 
�	 is strictly more powerful than team identi�cation of languages with success
ration 
�	� In the next section� we establish a similar result for the ratio 
�k� k � 	�

��� Team Language Identi�cation for Success Ratio �
k
� k � ��

We now employ Theorem � to show the following using Theorem 
��

Theorem �� �
k � 	��
 even j � 
��
i j j does not divide i��Teamj
j�kTxtEx�Team

i
i�kTxtEx ��

	��

Proof� By Induction on k� Note that base case �k � 	� follows by Theorem 
�� Now suppose
Team

j
jkTxtEx�Team

i
ikTxtEx �� 	� Using Theorem � with i� � �� we have Team

j
�k���jTxtEx�

Teami
�k���iTxtEx �� 	�

We do not know if the above theorem can be extended to show that� �
k � 	��
 even j � 
��
i j
j does not divide i��Teamj

j�kTxtEx� Teami
i�kTxtEx

� �� 	��

Corollary �� �
a � N��
k � 	��
 even j � 
��
i j j does not divide i�
�Teamj

j�kTxtEx� Teami
i�kTxtEx

a �� 	��

Corollary �� �
k � 	��Prob��kTxtEx �
S
j Team

j
j�kTxtEx �� 	��

We next present some more applications of Theorems � and ��

Theorem �� For m � n � N�� r � �
Teamm

r�mTxtEx �Teamn
r�nTxtEx �� 	�

Proof� If m is even then the theorem follows from Theorem 
�� Suppose m is odd� Then
by Theorem 
�� Teamm��

�m��TxtEx � Teamn
�nTxtEx �� 	� Thus� we have Teamm

�m��TxtEx �
Teamn

�nTxtEx �� 	� Using Theorem � with i� � 
� we get Team
m
�mTxtEx�Teamn

�nTxtEx �� 	�
Using Theorem � repeatedly with i� � � we get the result�

	�



Theorem �� For r � N � Team�
���rTxtEx �Team�

�rTxtEx
� �� 	�

Proof� The theorem is trivially true for r � �� Since Team�
�TxtEx � TxtEx� �� 	 and

Team�
�TxtEx � Team�

�TxtEx� we have Team
�

TxtEx�Team�

�TxtEx
� �� 	� Using Theorem �

repeatedly with i� � 
� we get Team
�
���rTxtEx�Team�

�rTxtEx
� �� 	� for r � 
�

Theorem �� For each r � �� Team�
�rTxtEx� Team

j
jrTxtEx �� 	� if j is not divisible by 	�

Proof� As a Corollary to Theorem 
� below we have Team�

TxtEx � Team

j

b 
j� c
TxtEx �� 	�

Using Theorem � with i� � 
� we get Team�
TxtEx � Team

j

b 
j
� c�d�j��e

TxtEx �� 	� and then

Team�
�TxtEx� Team

j
�jTxtEx �� 	� Now again using Theorem � repeatedly with i� � �� we get

Team�
�rTxtEx�Team

j
jrTxtEx �� 	� for r � ��

A generalization of the above theorem shows that

Theorem �� For all i� for each r � i� Teami
i�rTxtEx�Team

j
j�rTxtEx �� 	� if j is not divisible

by i�

��� On the Di�culty of Obtaining General Results

Despite the useful tools of Section ��	� general results are di�cult to come by for success ratio
� 
�	 and for between success ratio 
�	 and 	��� In this section� we present two results� the �rst
�Theorem 
�� illustrates the kind of results that we can obtain �using the methods of section ��	��
the second �Theorem 	
� sheds light on why general results are di�cult to obtain�

Corollary 
� below gives a hierarchy when more than half of the team members are required to
be successful�

Theorem �	 Suppose n � dm � �r��
r�� e� Team

r��
�r��TxtEx� Teamm

n TxtEx
� �� 	�

Proof� Clearly� Teamr��
r��TxtEx�Team

d mr
r�� e

n�m TxtEx� �� 	 �since d mr
r��e � n�m�� Theorem now

follows by using Theorem � with i� � 
�

Corollary �� �
r��Teamr��
�r��TxtEx� Teamr��

�r��TxtEx
� �� 	��

A generalization of a detailed proof of Theorem 
� can be used to show the following Theorem 	��
We omit the details�

Theorem �
 �
p� r j p � r��
�r����Team

r��
�r��TxtEx�ProbpTxtEx �� 	��

Theorem 	
 below shows that there exist i� j� k� l such that

Teami
jTxtEx � Teamk

l TxtEx for
i
j ��

k
l � and both

i
j and

k
l are � �

� �

Thus� we cannot hope to prove a general theoremwhich separatesTeami
jTxtEx andTeam

k
lTxtEx

whenever i
j ��

k
l �

Theorem �� Team
��TxtEx � Team�

�TxtEx�

Corollary �� Team
��TxtEx � Team�

�TxtEx�

	�



Proof of Theorem ��� Given a team fM�� � � � �M��g� we will construct three learning ma�
chines M�

��M
�
�� andM

�
� such that the team fM�

��M
�
��M

�
�g Team

�
�TxtEx�identi�es any language

Team
��TxtEx�identi�ed by the team fM�� � � � �M��g� Let conv be as de�ned in the proof of

Theorem 	� Let m�
� � m

�
� � � � � � m

�
�� be a permutation of 
� 	� � � � � 

� such that� for 
 � r � 

�

��conv�Mm�
r
� ��� m�

r� � �conv�Mm�
r��

� ��� m�
r����� Let match be as de�ned in the proof of Theo�

rem 

 �with i � ��� Let similar�i� j� n� � max�fn� � n jWi�n� � Wj�n�Wj�n� � Wi�ng�� Intuitively�
similar computes the closeness between two grammars� It denotes the point where it appears that
the languages accepted by the two grammars di�er�

Let r�� � � � � � r
�
 be a permutation of m�

� � � � � � m
�
 � be such that for 
 � l � ��

�match�Mr�
l
���� ��� r�l � � �match�Mr�

l��
���� ��� r�l����

M�
� on � outputs

majority�Mr��
����Mr��

����Mr��
����Mr��

����Mr�

����Mm�

�
����Mm�

�
�����

Suppose a text T is given for L � Team
��TxtEx�fM�� � � � �M��g�� Clearly� for 
 � j � ��

limn��m
T �n�
j exists� Let M � fM

lims��m
T �s�
j

j 
 � j � �g� Now� M�
� TxtEx�identi�es T if at

least 	 of the machines in M converge to a wrong grammar on T � M�
��M

�
� will be constructed

so that if at least � of the machines in M converge� on T � to a correct grammar� then M�
��M

�
�

TxtEx�identify T � Otherwise� at least one ofM�
��M

�
� TxtEx�identi�es T � Note that at least � of

the machines in M TxtEx�identify T �
M�

� on � outputs G��Mm�
�
���� � � � �Mm�


���� and M�

� on � outputs G��Mm�
�
���� � � � �Mm�


�����

where G�� G� are as de�ned below�
Given g�� g�� � � � � g� WG��g������g��WG��g������g� is de�ned as follows�
Let n� � �� m
� � m	� � �� For 
 � i � �� let g�i�� � gi� Let G�

��� � G��g�� � � � � g� and
G�

��� � G��g�� � � � � g�� We will enumerate elements inWG��g������g�� WG��g������g� in stages� G
�
��s� G

�
��s

will be a permutation of G��g�� � � � � g�� G��g�� � � � � g� and g���s� � � � � g
�
�s will be a permutation of

g�� � � � � g� This is just for the ease of presentation�

Begin fstage sg

Search for n � ns such that there exist distinct p�� p�� p� � �
 � � ��� such that similar�g�r�s� g
�
l�s� n� �

ns� for r� l � fp�� p�� p�g�

If and when such an n is found� let ns�� � n�

Let p�� p�� p� � �
 � � �� be such that p�� p�� p� are distinct and
min�similar�g�p��s� g

�
p��s� n�� similar�g

�
p��s� g

�
p��s� n�� similar�g

�
p��s� g

�
p��s� n�� is maximized�

Let p�� p
� p� � �
 � � �� � fp�� p�� p�g be such that p�� p
� p� are distinct and
min�similar�g�p��s� g

�
p
�s� n�� similar�g

�
p��s� g

�
p��s� n�� similar�g

�
p
�s� g

�
p��s� n�� is maximized�

Let m
s�� � min�similar�g
�
p��s� g

�
p��s� n�� similar�g

�
p��s� g

�
p��s� n�� similar�g

�
p��s� g

�
p��s� n���

Let m	s�� � min�similar�g�p��s� g
�
p
�s

� n�� similar�g�p��s� g
�
p��s

� n�� similar�g�p
�s� g
�
p��s

� n���

If card�fp�� p�� p�g
T
f
� 	� �g�� 
� then let G�

��s�� � G�
��s and G

�
��s�� � G�

��s�

Enumerate Wg�p��s�m�s�� �Wg�p� �s�m�s�� �Wg�p��s�m�s�� in WG���s��
�

Enumerate Wg�p��s�m�s�� �Wg�p
 �s�m�s�� �Wg�p��s�m�s�� in WG���s��
�

Let g�i�s�� � g�pi�s for 
 � i � ��

Let g��s�� � g�pleft�s� where pleft � ��
 � � ��� fp�� � � � � p�g��

Go to stage s 
�

End fstage sg

	�



It is easy to see that if at least � of the �rst � converging machines TxtEx�identify T � then both
M�

� and M
�
� do� We prove below that at least one of M�

��M
�
� TxtEx�identify T � if it is TxtEx�

identi�ed by at least � of the �rst seven converging machines� It is su�cient to show that if at least
� of g�� � � � � g are grammars for a language L� then at least one of G��g�� � � � � g�� G��g�� � � � � g��
accepts L� For r � 
� let W s

Gr
denote WGr enumerated before stage s� It is easy to show by

induction that� before stage s following hold�

� W s

G���s
� Wg���s�m�s �Wg���s�m�s �Wg���s�m�s �

	� W s
G���s

� Wg���s�m�s �Wg�
�s�m�s �Wg���s�m�s �

�� W s
G���s

� Wg���s�ns
�Wg���s�ns

�Wg���s�ns
�

�� W s
G���s

� �Wg���s�m�s �Wg�
�s�m�s �Wg���s�m�s� � W s
G���s

�

�� �
x � W s
G���s

��� distinct j� k � �� � ����x � Wg�j�s�ns
� � x � Wg�

k�s
�ns ��

�� m
s � m	s�
Thus� if at least � of g�� � � � � g are grammars for L� then at least one of

G��g�� � � � � g�� G��g�� � � � � g�� enumerates L�
A generalization of the above method can be used to show that�

Theorem �� �
p � �����ProbpTxtEx � Team�
�TxtEx��

Theorem �� �
l�� l�� k�� k� � 
 j l� � �l��	 � 
� k� � �k��	  dk��l����
l�

e��Teaml�
l�
TxtEx �

Teamk�
k�
TxtEx �� 	��

Proof� Since l���l��l�
� � 	�� and k���k��d
k� ��l����

l�
e� � 	��� we have� Teaml�

l��l���TxtEx�

Teamk�

k��d
k���l����

l�
e
TxtEx �� 	� Now using Theorem � with i� � 
� we get Teaml�

l�
TxtEx �

Teamk�
k�
TxtEx �� 	�

Iterating the above method we get�

Theorem �� �
w��
l�� l�� k�� k� � 
 j l� � �l�
�  w�l� � 
� � k� � �k�

�  w �

dk��l����
l�

e��Teaml�
l�
TxtEx�Teamk�

k�
TxtEx �� 	��

Theorem �� �
l�� l�� k�� k� � 
 j l� � �l��	 � 
� k� � k� 
�
� � d

k��l����
l�

e��Teaml�
l�
TxtEx �

Teamk�
k�
TxtEx� �� 	��

Proof� Since l���l� � l�  
� � 	�� and dk��l� � 
��l�e��k� � k�� � 	��� we have�

Teaml�
l��l���TxtEx � Team

d
k���l����

l�
e

k��k�
TxtEx� �� 	� Now using Theorem � with i� � 
� we get

Teaml�
l�
TxtEx� Teamk�

k�
TxtEx �� 	�

Theorem �� �
k� l j k � 	l����Teamk
lTxtEx � Team�

�TxtEx��

Proof of Theorem ��� By Corollary � we know that for any m and n� such that m � n�	�
Teamm

n TxtEx � Team�
�TxtEx� Suppose machines M��M�� � � � �Ml are given� For 	 �� S �

f
� 	� � � � � lg� let M�
S � M

�
S denote the two machines which Team�

�TxtEx�identify any language

which is Team
bcard�S���c��
card�S� �identi�ed by machines fMigi�S �

We now de�ne Ma�Mb� and Mc which Team�
�TxtEx�identify any language which is

Teamk
lTxtEx�identi�ed by fMig�	i	l� Let conv be as de�ned in the proof of Theorem 	� Sup�

pose � is given� Let S� � f
� 	� � � � � lg be the lexicographically least set of cardinality k such

	�



that� for each i � S� and each i� � f
� 	� � � � � lg � S�� conv�Mi� �� � conv�Mi�� ��� Then� let
Ma��� � majority�fMr��� j r � S�g��

Let match�i� �� � max�fx � j�j j �content���x�� � Wr�j�j� � �Wr�x � content����g�� Let
X� � S� be a �lexicographically least� set of cardinality dk�	e such that for each i � X� and each
i� � S� �X�� match�Mi���� �� � match�Mi����� ���

LetMb��� �M�
f��������lg�X�

��� andMc��� �M�
f��������lg�X�

����

Now� suppose fMig�	i	l Team
k
lTxtEx�identify content�T �� Then� S � limn�� ST �n� consists

of a subset �of f
� 	� � � � � lg� of cardinality k such that� for each i in S�Mi converges on T �
Now� if majority of machines in S� TxtEx�identify T then so doesMa� If majority of machines

in S do not TxtEx�identify T � then X � limn��XT �n� exists and the elements of X do not
TxtEx�identify T � this implies that at least k of fM��M�� � � � �Mlg � fMi j i � Xg do� Thus� at
least one ofMb� Mc TxtEx�identi�es T �

An extension of the above proof yields the following result�

Theorem �� �
k� l� i j k � 	l����Teamk
lTxtEx

i � Team�
�TxtEx

i�d k
� e��

We end this section by stating results that provide more evidence of the complexity of team
identi�cation of languages� The �rst collection of results �Corollary 
� just below to Theorem 	�
above together with Theorems 	� and 	� below� show that there exist identi�cation classes A� B�
and C such that A � B� but both A� C and B� C are incomparable to each other�

Corollary �� Team�
TxtEx � Team�

�TxtEx�

Theorem �� Team�
�TxtEx�Team�

TxtEx �� 	�

Proof� Follows from team function hierarchy of Smith ����� �
n � N���Team�
nEx � Team�

n��Ex��
and Pitt�s connection for functions �	��� �
p j � � p � 
��
n��
��n 
� � p � 
�n� Team�

nEx �
ProbpEx��

Theorem �	 Team�

TxtEx�Team�

�TxtEx �� 	�

Proof� By Theorem 
� Team�
�TxtEx � Team�

�TxtEx �� 	� The theorem now follows using
Theorem � with i� � 
�

Theorem �
 Team�
TxtEx�Team�


TxtEx �� 	�

Proof� Team�

TxtEx � Team�

�TxtEx �� 	 by Corollary 
�� Theorem now follows using Theo�
rem � with i� � 
�

Our second collection of results �Theorem �
 and �	 below� shows that sometimes allowing
successful members in the team to make a �nite� but unbounded� number of mistakes compensates
for weaker teams� More speci�cally� Theorem �
 below shows that all such collections of languages
that can be identi�ed by teams of � machines requiring at least � to be successful can be identi�ed
by some team of � machines requiring at least 	 to be successful if successful members of this
latter team are allowed to converge to grammars which make a �nite� but unbounded� number of
mistakes� On the other hand� Theorem �	 shows that there are collections of languages that can
be identi�ed by teams of � machines requiring at least � to be successful� but which collections
cannot be identi�ed by any team of � machine requiring at least 	 to be successful if the number
of mistakes allowed in the �nal grammars of the successful members of the latter team is bounded
in advance�

��



Theorem �� Team

�TxtEx � Team�

�TxtEx
��

Proof� We omit the proof� The idea is similar to that used in Theorem 	
�

Theorem �� �
j � N��Team

�TxtEx �Team�

�TxtEx
j �� 	��

We omit the proof of the above theorem� The idea is similar to that used in proving Theorem 
	�
We �nally note that many additional results can be shown to hold for team language identi��

cation� We do not present them here because they are of partial nature only�

��	 Team and Probabilistic Identi�cation of Languages from Informants

Finally� we consider identi�cation from both positive and negative data� Identi�cation from texts
is an abstraction of learning from positive data� Similarly� learning from both positive and negative
data can be abstracted as identi�cation from informants� The notion of informants� de�ned below�
was �rst considered by Gold �
���

De�nition �� A text I is called an informant for a language L just in case content�I� � fhx� 
i j
x � Lg � fhx� �i j x �� Lg�

The next de�nition formalizes identi�cation from informants�

De�nition �� �a�M InfEx�identi�es L �written� L � InfEx�M�� just in case M� fed any infor�
mant for L converges to a grammar for L�

�b� InfEx � fL j ��M��L � InfEx�M��g�

We can similarly de�ne ProbpInfEx�identi�cation and Teamm
n InfEx�identi�cation� The fol�

lowing result says that Pitt�s connection holds for language identi�cation if the machines are also
presented with information about what is not in the language� This result strongly suggests that
the complications arising in the study of team TxtEx�identi�cation may be due to the lack of
negative data�

Theorem �� �
p j 
��n 
� � p � 
�n� �Team�
nInfEx � ProbpInfEx��

A close inspection of Pitt�s proof for function identi�cation yields a proof for the above theorem�
we omit details�

� Conclusions

The present paper studied the computational limits on team identi�cation of r�e� languages from
positive data� It was shown that the notions of probabilistic language identi�cation and team
function identi�cation turn out to be di�erent� In fact� it was established that for probabilities of the
form 
�k� probabilistic identi�cation of languages is strictly more powerful than team identi�cation
of languages where at least 
�k of the members in the team are required to be successful�

We also presented two very general tools that allowed us to easily prove new diagonalization
results from known ones� Some results were also presented which shed light on the di�culty of
obtaining general results� An attempt was made to pinpoint the reason behind why probabilistic
identi�cation is di�erent from team identi�cation for languages by showing that an analog of Pitt�s
connection holds for language identi�cation if the learning agent is also presented with negative
information�

�




Finally we note that results from �		� could be used to show that for TxtBc�identi�cation �see
��� for de�nition�� if i � j�	� then Teami

jTxtBc � TxtBc � Thus� team inference with respect to
TxtBc�identi�cation behaves differently from team inference with respect to TxtEx�identi�cation�
A study of probabilistic and team identi�cation for TxtBc�identi�cation on the lines of the present
paper is open� We would also like to note that the structure of team language identi�cation is similar
to the structure of �nite identi�cation �identi�cation without any mind changes� of functions by a
team for success ratios � 	�� �see �
���� For other success ratios� the structure of team language
identi�cation is di�erent from �nite identi�cation of functions by a team ��� 

� 
�� �
� 
�� �� ���
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