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Abstract

Landmark detection and 3D localization are often an important step in the
analysis of medical images. This task, however, is challenging, due to the nat-
ural variability of human anatomical structures. We present a novel approach
to lumbar and thoracic vertebrae localization by combining Deep Reinforce-
ment Learning with Imitation Learning. The method involves navigating a 3D
bounding box to the target landmark, followed by adjustment of the bounding
box dimensions to enclose the region of interest (ROI). Two different 3D Con-
volutional Neural Networks (CNN) are used, one for learning the navigation
in the coordinate directions, the other for predicting the bounding box dimen-
sions. The algorithm is a modification of Deep Reinforcement Learning (Deep Q
Networks), with the random search for navigation replaced by guiding the move-
ment in an optimal coordinate direction using Imitation Learning. To improve
the accuracy of detection, three different architectures for CNNs are used and
the combined results provided to the next stage for analysis. Threefold cross
validation is used to evaluate localization performance on two separate datasets,
one each for the lumbar and thoracic spine. The method achieves mean 3D Jac-
card Index of 76.96%(Dice Coefficient 85.92%) on the lumbar spine dataset after
training on 115 Computed Tomography (CT) images and testing on 29. The
corresponding figures for the thoracic spine are Jacquard index of 74.39% (Dice
Coefficient 85%) after training on 105 and testing on 27. The results for this
new approach are promising and the method is applicable for localization of any
ROI in a 3D dataset.

Keywords:3D Localisation, Deep Reinforcement Learning, Imitation Learn-
ing, Convolution Neural Networks, Intersection Over Union



1 Introduction

Clinical examination of back pain and vertebral fractures requires analysis of the
thoracic and lumbar spine regions. Computed Tomography (CT) datasets are
more suited for this task as they provide better visualization of bone structures.
Automated computer aided analysis of spine datasets requires localization of
the Region of Interest (ROI) as a first step. Despite current approaches based
on Geometric structures, Machine Learning and Deep Learning, processing of
datasets in 3D continues to be a challenge. This paper presents a method based
on Deep Reinforcement Learning and Imitation learning to address this problem.

2 Related Work

Traditional methods for vertebrae detection require prior knowledge of vertebrae
locations, usually obtained from manual identification or statistical modelling,
and detectors based on Geometric structures [1, 2] and the Generalized Hough
Transform [3] have been used. Machine learning methods have also been em-
ployed along with feature de-scriptors: Support Vector Machines[4], Regression
Forests [5], Adaboost [6] and Deformable Parts Model [7]. Many methods re-
quire a priori knowledge of vertebrae visibility and are therefore difficult to
evaluate. The target ROI were also different, and the evaluation metrics were
not consistent. Recent papers on vertebrae localization employ deep learning
techniques using Deep Feed Forward neural networks [8], Multi-layered Percep-
tron (MLP) [9] and 3D CNN [10] . But these methods are focused on localization
of vertebrae only. This paper is motivated by the idea of finding a general ap-
proach to 3D bounding box localization of any ROI, drawing inspiration from
[11] for detecting 3D land-marks using Deep Reinforcement Learning. We pro-
pose a novel method, combining Deep Reinforcement learning and Imitation
learning to localize lumbar and thoracic spine from CT datasets ,

2.1 Contributions:

The main contributions include a methodology to:

i navigate to the ROI by combining Deep Reinforcement Learning and Im-
itation Learning

ii predict the bounding box sizes upon reaching the ROI

iii finetune the bounding box sizes

3 Background and Proposed Work

Deep Reinforcement Learning has seen major successes in recent times [12]
by combining the representation power of CNNs with Reinforcement learning.
Using a Markov Decision Process (MDP), an artificial agent can be trained to
achieve an intended goal. At any given time, an agent in a state st selects an
action at from action space A based on policy π(at|st) which represents the
agents behaviour. The agent is taken to state st+1 and receives a reward rt. In
an episodic problem, this process continues till a terminal state is reached. The
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expected return at the end of the episode is the discounted accumulated reward
with γ being the discount factor:

Rt =

∞∑
k=0

γkrt+kγε(0, 1] (3.1)

The goal is to maximize this reward. The expected future discounted rewards
for a given action a in a state s for a policy π is known as Q value and is given
by

Qπ(s, a) = E[R(t)|st = s, at = a] (3.2)

The optimal value function at any given state s for an action a is Q∗. Q learning
involves updating the action value as follows:

Q(st, at)← Q(st, at) +
[
r + γmaxat+1

Q(st+1, at+1)−Q(st, at)
]

(3.3)

where α is the learning rate. The agent has two choices in a state:

i explore by selecting a random action with probability ε

ii exploit using already gained knowledge by choosing an action with the
maximum Q value

After each episode, the state is reset to the initial value and the process repeated
until the Q value converges.

Deep Reinforcement Learning has been used in bounding box object localiza-
tion in 2D datasets [13]. However, bounding box localization in 3D has remained
a challenge due to high computational resource requirements. Recently Deep
Reinforcement Learning has been used for detection of anatomical landmarks
in 3D CT datasets [11] by training an artificial agent to navigate from a ran-
dom starting point towards the landmark and learning to move in the correct
direction in the three coordinates. Learning is achieved by performing random
searches, which is more appropriate for applications like gaming where there is a
need to determine strategies for navigation. For landmark detection, it is more
relevant and less complex for the agent to be trained in a guided manner. A
navigation strategy to locate a landmark, as illustrated in Figure 3.1, to move
in the coordinate direction at maximum distance from the current location to
the center of the ground truth should suffice. We posit that it is appropriate to
use a guided approach based on Imitation Learning.

Imitation learning is a paradigm for an agent to acquire skills by observing
an expert [14]. Unlike Reinforcement learning, where the task of associating a
state to actions is learned over several iterations, Imitation learning associate
states with actions chosen by the expert. This converts the task to one of
supervised learning of the mapping from states to expert actions.

The approach to localization in this work is to surround the ROI (lum-
bar/thoracic vertebrae) with 3D bounding boxes by combining the Deep Q
learning algorithm [12] with Imitation learning when searching for an ROI from
a predefined starting point in the image.
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Figure 3.1: Red arrows show a navigation trajectory. Blue arrows show possible
directions at each state

4 Method

4.1 Dataset and pre-processing

The dataset for vertebral analysis was provided by the Prince of Wales Hospital,
Randwick, NSW, Australia in an anonymized form after ethics clearance. The
CT datasets were acquired in a staged manner for both chest and abdominal
regions. Abdominal datasets are required for lumbar spine analysis and chest
datasets for thoracic spine analysis. The datasets were manually annotated and
verified by the radiologist to identify the two diagonally opposite corner points
of a 3D bounding box around the ROI using ITK-SNAP. The annotation process
using ITK-SNAP in the three planes is illustrated in Figure 4.1.

4.2 Algorithm for Training

The algorithm involves training two networks:

i the first network to navigate a preselected bounding box to the centre of
the ROI

ii the second network to predict the actual size of the bounding box sur-
rounding the ROI

Algorithm 1 Training by combining Deep Reinforcement Learning with Imi-
tation Learning for ROI Detection
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Figure 4.1: 3D Bounding Box annotation using ITK-SNAP shown by white
boxes in 3 planes.

Input: CT chest abdominal 3D datasets
Output: Policy function from which policy and action are selected for each

region within a bounding box, Bounding Box function that predicts the actual
bounding box coordinate sizes for each region within a bounding box
initialize Policy replay memory D
initialize Bounding Box replay memory B
initialize action-value function Q with random weights
for episodes from 1 to M
for each a range of starting points
for each dataset selected at random from the training set

set a bounding box with mean coordinate dimension
from the training set at a predefined starting point = s1
for steps from 1 to N

following ε−greedy policy select an action

at =


Imitation action with probability ε

argmaxa Q(st, a) otherwise
Correction is applied by Imitation function
if predicted direction is away from Target


execute action ai to shift image to st+1

store transition st, at in D
calculate the IOU of st with the ground truth
if it exceeds a threshold level store st,
ground truth bounding box coordinate sizes in B
set st = st+1

if bounding box centre has reached ground truth centre
set at = Terminate
store resulting transitions in D and B

break
end for
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Figure 4.2: Navigation of the bounding box to the Region of Interest (ROI).
The red bounding box is the target ROI

select random samples from D and train Policy
network with loss = mean square error between
actual and predicted

select random samples from B and train Bounding
Box network with loss = mean square error
between actual and predicted

end for
end for

end for

The algorithm is illustrated in Figure 4.2 in and the pseudo code in Algo-
rithm 1 The upper network in Figure 4.2 is the Policy network that is trained to
predict the coordinate direction of shift (action) for an image region bounded by
an initial preselected bounding box. In each coordinate direction, three levels of
movement in the positive and negative directions are permitted.The three levels
are coarse equalling a displacement by 25 voxels, fine by 10 voxels and very fine
by 1 voxel respectively. In each coordinate direction, 3 levels of movement of
the bounding box in both positive and negative directions requires 6 actions. In
all 18 actions are possible for the 3 coordinates. The Imitation function in Al-
gorithm 1 returns the action, which is the coordinate direction with maximum
distance from the ground truth centre. It also corrects predictions deviating
from the intended course. The appropriate level (i.e. coarse, fine or very fine)
is selected based on the distance. The starting point for the first navigation
trajectory is set at 20% of the coordinate sizes to eliminate margins and extract
meaningful information from the datasets. Thereafter the network is trained by
shifting the initial starting point by 25 voxels in the three coordinate directions
till 80% of coordinate sizes is reached, to help the model recover from unfamiliar
locations.

A final action called Terminate is used to indicate that the ground truth
centre has been reached. Thus, the network should predict 19 possible actions
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in all.
The Policy network is made up of three 3D Convolution Layers together with

Batch Normalization and RELU activation. The kernel size of first, second
and third Convolution layers are 7x7x7, 5x5x5 and 3x3x3 respectively. The
convolution layers are followed first by a fully connected layer and then by a
softmax layer for 19 possible actions. The network takes as input the data within
the bounding box shrunk by half. The convolution layers are followed first by a
fully connected layer and then by a softmax layer for 19 possible actions.

To evaluate a localization, we use Intersection over Union (IOU) of the
predict-ed bounding box with the ground truth. We use standard 50% threshold
level for IOU for detection, as used in ImageNet and Regions with CNN for 2D
bounding boxes [15, 16]. IOU is also known as Jaccard Index. We also report
Dice Coefficient (DC) which is the ratio of twice the intersection over sum of
the volumes ground truth and predicted bounding boxes.

The lower network in Figure 4.2 is the Bounding Box network, trained to
predict the three coordinate sizes of the ROI. As the preselected bounding box
is navigated, those regions whose IOU exceed a threshold level are stored along
with the ground truth sizes for training the Bounding Box network. The latter is
made up of three 3D Convolution Layers together with Batch Normalization and
RELU activation. The kernel size of first, second and third Convolution layers
are 7x7x7, 5x5x5 and 3x3x3 respectively. The network takes as input the data
within the bounding box shrunk by half. The convolution layers are followed
first by a fully connected layer and then by a RELU layer for 3 coordinate sizes.

In order to improve overall performance, it was decided to train two other
architectures of CNNs besides the above and the predicted bounding boxes using
all three stages are provided to the next stage for analysis. The architecture of
the second model consists of 6 convolution layers. The first 2 layers have kernel
size of 7x7x7, followed by 2 convolution layers with kernel size 5x5x5 and the
final 2 convolution layers having kernel size 3x3x3. Each convolution layer is
followed by Batch normalization. Max Pooling is added after the second and
fourth layer. . The third model has a convolution layer with 9x9x9 kernel and
a batch normalization preceding the architecture in the first model.

4.3 Testing Mode

In the testing mode there is no Imitation Learning involved during the naviga-
tion stage. Each test image was simply run for 25 steps which was found to be
sufficient to reach the ROI. The search also terminates when a Terminate action
is triggered or when a loop is detected between the states.

The bounding box prediction was run on all the steps and two different
methods were used to predict the size:

i the predicted size of the Terminating state

ii the mean size of the predicted bounding boxes of the last 10 states

5 Experiments and Results

The training was run for 25 episodes on a Keras/Tensorflow platform. The
learning rate was set to 0.00001. The starting point for navigation was set at
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Table 4.3: Performance of Localization of Lumbar and Thoracic Spine regions

20% of each coordinate size. The experiments were repeated three times, each
time splitting the dataset into 105 for training and 27 for testing for the lumbar
spine, and 115 for training and 29 for testing for the thoracic spine. The results
are shown in Table 4.3.The last column is the mean of the best bounding box
predicted by the three models.

6 Conclusion

We have presented a novel method of 3D localization that combines Deep Rein-
forcement Learning with Imitation Learning. Localization helps to narrow down
the focus and facilitate further analysis of the ROI. The method was applied to
localization of vertebrae regions in 3D CT datasets, however it can be applied
to any ROI in image datasets as the algorithm makes no assumptions on the
dataset. It is important to note that the number of variations in the datasets is
potentially huge. With a limited training set, the results are quite promising,
with best average Jaccard Index/Dice Coefficient of 76.96%/85.92% for Lumbar
spine and 74.39%/85% for Thoracic spine.
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