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Abstract

Recognition of prostate cancer is important prior to treatment, especially inside
the prostate peripheral zone where the majority of tumours occur. A clas-
sification framework for recognition of suspicious peripheral zone lesions by
region-based heterogeneity analysis in prostate T2w-Magnetic Resonance Im-
ages (MRI) is developed and evaluated. The most critical component in the
proposed framework is the feature extraction method. Four different novel fea-
tures are derived for a selected peripheral zone lesion, based on the heterogeneity
of the whole peripheral zone on the corresponding 2D MRI slice. When deriving
these features, in addition to the relative intensity distribution of regions within
the remaining peripheral zone, a distance function that measures the distance of
a region from the lesion is taken into account. This guarantees that the adjacent
regions, where the influence of the selected lesion is higher, are assigned a lower
weight in the computation of intensity discrimination.The developed features
were used to build a probabilistic Naive Bayes classifier using 108 peripheral
zone lesions in 3.0T T2-weighted MRI datasets for 56 patients, and evaluated
against the ground truth provided by an expert radiologist. Quantitative results
obtained using 5-fold cross-validation show that the classification performance
depends on the distance function used in feature extraction. A second order dis-
tance function achieves the best classification results (90.8% sensitivity, 92.3%
specificity, 91.5% accuracy, and 91.6 AUC), and significantly outperforms tra-
ditional image features found in the literature that are based on true intensities
and specific intensity within the peripheral zone.



1 Introduction

Improving treatments for prostate cancer is critical, and accurate recognition
of prostate cancer in terms of detection, diagnosis, staging and tracking is as
important as the treatment itself. Traditional physical diagnosis methods in-
cluding Digital Rectal Examination (DRE) and the Prostate Specific Antigen
(PSA) test fail to provide adequate sensitivity and specificity, and needle biop-
sies are known to cause morbidity [22]. Instead, medical imaging is proving
to be a more accurate non-invasive method of recognising prostate cancer [12].
In comparison with other popular imaging techniques used for imaging of the
prostate gland, including Transrectal Ultrasound (TRUS) and Computed To-
mography (CT), Magnetic Resonance Imaging (MRI) has several advantages,
including higher spatial resolution and contrast, better safety in terms of no ra-
diation involvement and availability of multiple MRI modalities [23]. Advances
in MRI technology facilitate scanning under higher strength magnetic fields, and
modern 3.0T MRI scanners provide higher quality images with higher resolution
and contrast, reduced noise and faster acquisition times [9].

Availability of high quality, higher order information with modern MRI tech-
nology allows computer based processing to play a significant role in assisting
medical experts make better decisions in prostate cancer recognition. MRI based
on a variety of different protocols, called multimodal MRI, appears to have great
potential for improving prostate cancer diagnosis and treatment planning, im-
proving both sensitivity and specificity at virtually all stages of prostate cancer
diagnosis and treatment.

T2w-MRI is the basic and most common MRI modality used in prostate
cancer recognition due to its wide availability, lower cost and faster acquisi-
tion compared to other more novel MRI modalities. Even though the usage of
multi-modalities of MRI in unified CAD algorithms is becoming popular and
successful, T2w-MRI alone can provide good accuracy of ROI classification,
when used with advanced feature extraction [10]. Many studies have applied
various supervised and unsupervised classification algorithms to classify ROIs
in T2w-MRI, however the selection of image features is the most important step
in achieving better accuracy [13]. Most cancers in the prostate are found in the
peripheral zone [17], therefore many studies focus on ROI classification in the
peripheral zone. A healthy prostate peripheral zone exhibits homogeneously
higher T2w-MRI signal intensity distribution. In the presence of a tumour,
however, T2w-MRI signals have lower values [8], which permits the utilisation
of region-based statistical intensity features for ROI classification. A tumour
ROI and a normal ROI are marked in two example prostate T2w-MRI slices
with manually segmented prostate boundary and the peripheral zone are shown
in Fig 1.1.

It is also well known that the accuracy of ROI classification in T2w-MRI is
affected by inter-patient and inter-scan variations in signal intensity distribution,
therefore standardisation of images is important for effective feature extraction
[19]. Three methods are traditionally used to address this: statistical modelling
of voxels within the peripheral zone, within the whole prostate or even within
the whole image including the background [2, 14, 15, 20, 24, 25]; modelling of
the intensity variations of neighbouring organs in the MRI dataset [18,26]; and
heterogeneity analysis either in the peripheral zone or in the whole prostate [21].

Deriving features using region-based heterogeneity analysis within the prostate
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(a) (b)

Figure 1.1: Two different 2D prostate T2-MRI slices where the prostate bound-
aries are marked in green, and the peripheral zones are marked in black. A
normal ROI is marked in blue in (a), where an ROI is marked within a tumour
in (b).

or within the peripheral zone is a sound method for eliminating the bias towards
absolute T2w-MRI signal intensity values. Region-based heterogeneity analysis
techniques can derive features based on relative signal intensity variation of dif-
ferent regions within an organ, instead of absolute signal intensity values, and is
also a good method of bypassing image normalisation. However this approach
has not been used much in the literature, and the only study in this category [21]
presents an algorithm to detect tumours in the peripheral zone by analysing the
heterogeneity of pre-defined sub-regions of the peripheral zone.

This paper presents a novel method of feature extraction in the prostate pe-
ripheral zone by analysing the heterogeneity within the whole peripheral zone
in the same 2D slice of a T2w-MRI dataset. A set of intensity-based features is
derived for a marked ROI on a 2D T2w-MRI slice, where the divergence of the
ROI primarily from the remaining peripheral zone is measured, and secondar-
ily from the central gland. Importantly the features are constructed such that
relative intensities within a single MRI dataset are taken into account, and the
inter-patient and / or inter-scan intensity distribution variations are eliminated
from the feature extraction model. The derived heterogeneity-based features
are then used in computer-based supervised classification algorithms, and the
results achieved are tested against the ground truth marked by an expert ra-
diologist. Also the classification performance with the proposed features are
compared against the classification performance with absolute intensity-based
features alone.

The rest of the paper is organised as follows. The proposed feature extraction
method is described in section II. The experimental design with evaluation and
discussion of the results is in section III. Finally, section IV concludes the paper.
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2 Method

The implementation of the proposed method is carried out in two major steps:
(i) pre-processing of T2w-MRI datasets and (ii) feature extraction. These are
discussed now.

2.1 Data Pre-Processing

In order to reduce irregular noise, each MRI dataset is filtered using a three
dimensional Gaussian distribution function to obtain a filtered image signal
field I0 by convolving the original MRI signal field Imri with a Gaussian kernel
G:

I0(x, y, z) = Imri(x, y, z) ∗G(x, y, z) (2.1)

where

G(x, y, z) =
1

2πσ2
e−

x2+y2+z2

2σ2 (2.2)

The purpose of Gaussian filtering is to eliminate local irregularities (out-
liers) within smaller windows, therefore after subjective observation of Discrete
Fourier Transformation (DFT) outputs of 10 randomly selected ROIs, σ was
selected to have value 2. Then as the first step towards eliminating bias to-
wards the absolute T2w-MRI signal intensity of a voxel I0(x, y, z), the original
image voxels within the whole prostate gland (including the peripheral zone and
central gland) are normalised and represented as I(x, y, z):

I(x, y, z) = I0(x, y, z).
1

Imax(WG)− Imin(WG)
(2.3)

where Imax(WG) and Imin(WG) are the maximum and minimum absolute T2w
signal intensities within the whole prostate gland (WG) respectively.

2.2 Feature Extraction and Representation

Four different features are extracted for a selected ROI L within the prostate
Peripheral Zone PZ; these features emphasise the signal intensity of the ROI
relative to the rest of the peripheral zone and the Central Gland CG, based
on the fact that tumours in the peripheral zone show relatively lower T2w-
MRI signal intensities. To extract these features, heterogeneity is analysed only
on the 2D slice on which the ROI L is marked. To derive all the features
discussed below, the scaled intensity model (I(x, y, z) in eqn 2.3) is used. As
all the parameters are calculated on the same axial 2D slice on which the ROI
is marked, each pixel is notated with respect to the x and y coordinates only
(i.e. p(x, y)).

Feature I: Distance Weighted Specific Intensity within Peripheral
Zone

This feature emphasises the intensity difference of the selected ROI L against
the remaining pixels within the peripheral zone on the corresponding 2D T2w-
MRI slice. When computing this feature, the intensity difference of each pixel
within the rest of the prostate and the average intensity of the selected ROI L
is weighted by the Euclidean distance to the particular pixel from the geometric
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centroid of the ROI L. The motivation behind defining this feature is that
when the selected ROI L is part of a tumour, the tumour and its lower intensity
behaviour may spread to adjacent pixels [16]. Therefore it is important to give
higher weight to pixels that are farther away but still within the peripheral
zone when computing the specific intensity of the ROI L. Initially the unit
Euclidean distance of each pixel within the rest of the peripheral zone from the
ROI centroid cL(xL, yL) is calculated as:

d(x, y) =
1

D

√
(xL − x)2 + (yL − y)2 (2.4)

where:

D =
∑

{∀(x,y)|(x,y)∈PZ,(x,y)6∈L}

(√
(xL − x)2 + (yL − y)2

)
(2.5)

Obtaining the unit Euclidean distance for the pixels guarantees that the bias
towards the size of the ROI and the peripheral zone is eliminated. Then for each
pixel inside the rest of the peripheral zone, Distance Weighted Specific Intensity
(DWSI ) is calculated as:

DWSI (x, y) = (I(x, y)− Iµ(L)).f(d(x, y)) (2.6)

where Iµ(L) is the average intensity within the ROI L and f(d(x, y) can be a
linear or non-linear function of the unit Euclidean distance d. The values com-
puted for distance functions (i) f(d(x, y)) = d(x, y), (ii) f(d(x, y)) = d(x, y)2,
and (iii) f(d(x, y)) = log(d(x, y)), are represented as grey-levels with respect
to a marked ROI, in Fig 2.1. Finally the first feature value for the ROI L is
computed as the average of DWSI values for all the pixels inside the rest of the
peripheral zone:

DWSI µ(L) =
1

N

∑
{∀(x,y)|(x,y)∈PZ,(x,y) 6∈L}

(
DWSI (x, y)

)
(2.7)

where N is the number of pixels within the rest of the peripheral zone. A
graphical representation of DWSI when f(d(x, y)) = d(x, y)2 is given in Fig 2.2
and it illustrates the difference for the feature value for a tumour ROI and a
normal ROI.

Feature II: Distance Weighted Histogram Match against Identical
Lesions within Peripheral Zone

The intensity histogram of an ROI marked on a 2D T2w-MRI slice reflects the
T2w signal distribution within the ROI. The intuition behind this feature is
the fact that tumours have lower intensity, therefore their intensity histograms
are likely to be skewed towards lower intensity levels. To evaluate the intensity
distribution of a selected ROI L with respect to the rest of the peripheral zone,
the set of all possible similarly shaped and oriented ROIs ` = {`1, `2, ...`n} is
obtained by systematically moving the original ROI L inside the peripheral zone
on the same axial slice. The corresponding set of unit Euclidean distances (d =
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(a) (b)

(c) (d)

Figure 2.1: Distance function evaluation for each pixel within the rest of the
peripheral zone: (a) An ROI is annotated in red and the peripheral zone bound-
ary is annotated in blue on a 2D T2w slice, and the evaluation of the dis-
tance function is represented in grey-levels when (b) f(d(x, y)) = d(x, y), (c)
f(d(x, y)) = d(x, y)2, and (d) f(d(x, y)) = log(d(x, y)).

{d(`1), d(`2), ...d(`n)}) from the centroid cL(xL, yL) of ROI L to the centroid
ci(xi, yi) of each ROI `i in ` is computed as:

d(`i) =
1

D̂

√
(xL − xi)2 + (yL − yi)2 (2.8)

where

D̂ =

n∑
i=1

√
(xL − xi)2 + (yL − yi)2 (2.9)

when `i is the ROI obtained by moving L by xL − xi and yL − yi signed pixel
distances along the x and y axes respectively inside the peripheral zone. Then
using the scaled intensity model I(x, y), the grey-level histogram hL of the
original ROI L and the histogram hi for each ROI `i in ` are obtained. As
all the datasets are scaled during initial DICOM data processing to have pixel
intensity values between 0 and 255 (8-bit unsigned integer), each histogram h
is 8-bit and contains 256 equally distributed bins [0 − 255]. Each histogram is
normalised such that the sum of frequencies in all bins is 1:

255∑
b=0

h(b) = 1 (2.10)

Then each histogram hi is subtracted bin-wise from hL to obtain a signed
histogram vector for L relative to each ROI `i in `:
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(a) (b)

(c) (d)

Figure 2.2: DWSI value for the pixels within the rest of the peripheral zone in
grey-levels, where f(d(x, y)) = d(x, y)2: (a) a tumour ROI is annotated in red,
(b) scaled grey-levels for DWSI in and around the tumour ROI (DWSI µ(L) =
0.3973), (c) a normal ROI is annotated in green, and (b) scaled grey-levels for
DWSI in and around the normal ROI (DWSI µ(L) = −0.2009).

δhi(b) = hL(b)− hi(b) (2.11)

Based on each histogram difference δhi a Distance Weighted Histogram Dif-
ference feature (DWHD) is computed for each li as:

DWHD(i) = f(d(`i))

255∑
b=1

(
δhi(b).(255− b)

)
(2.12)

where f(d(`i)) is a linear or non-linear function of d(`i). Finally the second
feature value for the ROI L is computed as the average of DWHD values for all
ROIs in `:

DWHDµ(L) =
1

n

n∑
i=1

DWHD(i) (2.13)

Intermediate results when computing the feature DWHD(L) for a tumour
ROI and a normal ROI are shown in Fig 2.3. Clearly the computed feature
value DWHD(L) serves as a logically comparable feature for histograms of a
tumour ROI and a normal ROI selected from two different patients.
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Figure 2.3: DWHD value distribution for centroids of ROIs in `, where f(d(`)) =
d(`)2: (a) tumour ROI is annotated in red, (b) normal ROI is annotated in
green, histograms for the tumour ROI and for the normal ROI are presented in
(c) and (d) respectively, the calculated DWHD values around the tumour ROI
(DWHDµ(L) = 0.3026) and around the normal ROI (DWHDµ(L) = −0.1184)
are shown in (e) and (f) respectively.
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Feature III: Histogram Difference Against the Rest of the Peripheral
Zone

The third feature exploits the difference between the intensity distribution of
the selected ROI L and the rest of the peripheral zone. The motivation for this
feature is the fact that histograms of the tumours are mainly skewed towards
the lower end of intensities compared to the rest of the peripheral zone. 8-
bit (256 bins) unit histograms HL for the ROI L, and HR for the rest of the
peripheral zone, are computed exactly as described already in section 2.2. Then
the bin-wise signed Difference of Histograms within Peripheral Zone HPZ δ is
computed:

HPZ δ =

255∑
b=0

(
HL(b)−HR(b)

)
(2.14)

To compute the final feature value for L, each bin difference is weighted by
the additive inverse of the bin label value:

HPZ δ(L) =

255∑
b=0

(
HPZ δ(b).(255− b)

)
(2.15)

Step by step formulation of HPZ δ for a tumour ROI and a normal ROI is
illustrated in Fig 2.4.

Feature IV: Intensity Distribution Difference Against the Central
Gland

This feature exploits the difference of the intensity distribution of a selected
ROI L and the intensity distribution of the Central Gland CG on the same
2D T2w-MRI slice. The central gland, in comparison with the homogeneously
higher intensity distribution of the peripheral zone, shows a mixture of low to
high intensities [4] in a healthy prostate. Thus before comparing the intensity of
ROI L against the central gland, the intensity distribution of the central gland is
separated into higher and lower regions. Unsupervised k-means clustering [7] is
used to separate the intensity distribution of the central gland into two clusters
J := {low(CG), high(CG)} with respective cluster means c := {lowµ(CG),
highµ(CG)}.

(J, c) = arg min
J,c

2∑
i=1

∑
{∀(x,y)|(x,y)∈CG}

||I(x,y) − ci||
2

(2.16)

Then to compute the Intensity Distribution Difference against the Central
Gland (ICGδ) for the ROI L, the mean of the lower intensity cluster of the
central gland is subtracted from the mean intensity Iµ(L) within the ROI L as
follows:

ICGδ(L) = Iµ(L)− lowµ(CG) (2.17)

2.3 Summary of the Derived Features

The expected behaviour of relative values of each derived feature of the proposed
model for tumour ROIs and for normal ROIs is shown in Table 2.1.
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Figure 2.4: Top two rows present formulation of HPZ δ for a tumour ROI
(HPZ δ(L) = 42.619): (a) ROI belongs to a tumour region, marked in red, (b)
histogram for the tumour ROI, (c) histogram for the rest of the peripheral zone,
and (d) bin-wise differences of the unit histograms. Bottom two rows show the
formulation of HPZ δ for a normal ROI (HPZ δ(L) = −26.866) in similar order
as in (a), (b), (c) and (d)

Table 2.1: Expected behaviour of relative values of each derived feature

Feature
Expected behaviour in

tumour ROIs
Expected behaviour in

normal ROIs
DWSI µ(L) higher lower
DWHDµ(L) higher lower
HPZ δ(L) higher lower
ICGδ(L) higher lower
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3 Experiments

3.1 Dataset

A T2w-MRI dataset acquired on a General Electric (GE) Healthcare - Discov-
ery MR750w 3.0T MRI scanner, for 56 patients of age ranging from 48 to 73
years, was used to evaluate the proposed feature extraction framework. A senior
radiologist affiliated to a tertiary public hospital and private practice supported
this research by collecting and anonymising patient data, providing image an-
notations and verifying the results of experiments. A total of 108 ROIs with 40
positive ROIs and 68 negative ROIs were annotated in T2w-MRI scans of 56
patients. 5-fold cross validation [11] was repeated 5 times to evaluate the ex-
periments. ROIs were split at patient-level in each training / testing iteration.
The number of negative and positive ROIs in each patient dataset is different,
therefore the composition of negative and positive ROIs within different training
/ testing iterations within different repetitions vary slightly.

3.2 Experiment I

A first set of experiments was performed to determine the best order of the dis-
tance function, in calculation of features DWSI µ(L) (section 2.2) and DWHDµ(L)
(section 2.2). To evaluate each these features, their feature values were calcu-
lated using a range of orders of distance functions, and used in single-feature bi-
nary classification. The evaluated distance functions were: f(d) = 1

d2 , f(d) = 1
d ,

f(d) = 1, f(d) = log(d), f(d) = d, f(d) = d2, f(d) = d3, f(d) = d4, f(d) = d5

and f(d) = d6 for both the features.

3.3 Experiment II

As the main goal of the second set of experiments was to evaluate the proposed
feature extraction protocol, generic Naive Bayes Classifier [1] was used as a
probabilistic binary classifier. For comparison, two basic intensity features and
their combination were used as reference features to train and test the classifier
separately:

1. absolute average intensity I0µ(L) of each marked ROI L:

I0µ(L) =
1

NL

∑
{∀(x,y)|(x,y)∈L}

I0(x, y) (3.1)

where NL is the number of pixels within the ROI L.

2. ratio between average intensity of the ROI L and the whole of the periph-
eral zone on the corresponding 2D T2w-MRI slice (Ir (L)):

Ir (L) =

1
NL

∑
{∀(x,y)|(x,y)∈L} I0(x, y)

1
NPZ

∑
{∀(x′,y′)|(x′,y′)∈PZ} I0(x′, y′)

(3.2)

where NL is the number of pixels within the ROI L and NPZ is the number
of pixels within the whole peripheral zone.

The reference features are listed in Table 3.1. Each feature set was used to train
and test a Naive Bayes Classifier using 5-fold cross validation.
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Figure 3.1: AUC against the order of distance function when calculating the
feature DWSI µ(L).

3.4 Results and Evaluation

Area Under the Curve (AUC), when using the computed values of DWSI µ(L)
with different orders of the distance functions in single-feature binary classifi-
cation, is given in Fig 3.1. Similarly for the feature DWHDµ(L), AUC against
the order of distance functions is presented in Fig 3.1.

By analysing the ROCs, it is clear that the optimal order for the distance
function, when calculating both DWSI µ(L) and DWHDµ(L), is 2. Perfor-
mance on classification gradually degrades when increasing / decreasing the
order of the distance functions above / below 2. Distance functions of order 2
are named Quadrance in rational geometry [5], and are known to assign progres-
sively greater weights to more distant objects compared to order-1 Euclidean
distance. However these results are purely experimental at this stage, with no
known clinical reasoning.

Based on the above results, the quadratic distance function was selected
(f(d) = d2) for the second set of experiments, where the classification results
for the reference feature sets in Table 3.1 were compared with the results of the
classification based on the features of the proposed model. ROC curves for the
whole proposed feature set and the reference feature sets are shown in Fig 3.3.
In Fig 3.4, the sensitivity, specificity, accuracy and AUC of each feature set are
summarised, with error-bars indicating the standard deviation of each measure
under 5-fold cross validation.

The results show that the proposed region-based heterogeneity-based fea-
tures perform better than the traditional intensity features in terms of sensi-
tivity, specificity, accuracy and AUC. Sensitivity is generally the most desired
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feature DWHDµ(L).

Table 3.1: Summary of the reference feature sets

Feature Set Content
ref-I I0µ(L)
ref-II Ir (L)
ref-III I0µ(L), Ir (L)
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Figure 3.4: Sensitivity, specificity, accuracy and AUC of classifier using differ-
ent feature sets, where standard deviations for cross-validation iterations are
presented as error-bars.

performance measure in CAD frameworks. ROC analysis also shows that the
proposed feature extraction framework works well with the Naive Bayes classi-
fier.

For comparison, the proposed feature set was trained on two other classifiers,
Support Vector Machine with linear kernel [6], and Random Forest classifier [3].
Summarised results for these classifiers are shown in Fig 3.5, and exhibit similar
behaviours to Naive Bayes classifier.

4 Conclusion

A novel feature extraction method for prostate T2w-MRI has been proposed in
this paper. Four different novel features are derived for a selected peripheral
zone lesion, based on the heterogeneity of the whole peripheral zone on the
corresponding 2D MRI slice. When deriving these features, in addition to the
relative intensity distribution of the regions within the remaining peripheral
zone, a distance function that measures the distance of a specific region from
the ROI was taken into account. This guarantees that adjacent regions, where
the influence of the selected lesion is higher, are assigned a lower weight in the
computation of intensity discrimination.

The developed features were used to train a Naive Bayes classifier. Quan-
titative results show that the accuracy, sensitivity and specificity depend on
the distance function used in feature extraction. The classifier yields the best
results of sensitivity 90.8%, specificity 92.3%, accuracy 91.5%, and AUC 91.6
with 5-fold cross validation on the dataset, when a quadratic distance function
is used. Two other classifiers trained on the same dataset yield similar results.
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Figure 3.5: Classification results with error-bars for different classifiers trained
on the proposed novel features.

15



Further experiments show that the regional heterogeneity-based features lead to
significantly better classification results, compared to traditional image features
based on local intensities of ROIs alone.
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