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Abstract

Segmentation of the prostate in MR images is an essential step that underpins
the success of subsequent analysis methods, such as cancer lesion detection inside
the tumour and registration between different modalities. This work focuses
on leveraging deep learning for analysis of longitudinal volumetric datasets,
particularly for the task of segmentation, and presents proof-of-concept for
segmentation of the prostate in 3D+T DCE-MRI sequences. A two-stream
processing pipeline is proposed for this task, comprising a spatial stream modelled
using a volumetric fully convolutional network and a temporal stream modeled
using recurrent neural networks with Long-Short-term Memory (LSTM) units.
The predictions of the two streams are fused using deep neural networks. The
proposed method has been validated on a public benchmark dataset of 17
patients, each with 40 temporal volumes. When averaged over three experiments,
a highly competitive Dice overlap score of 0.8688 and sensitivity of 0.8694 were
achieved. As a spatio-temporal segmentation method, it can easily migrate to
other datasets.



1 Introduction
Prostate cancer ranks third by incidence (and first in men) amongst 34 types
of cancers [1]. Efforts are increasingly directed at early stage diagnosis and
assessment of the extent of malignancy. While multiple treatment options are
available, their success depends on detection and diagnosis of tumours. Imaging of
the prostate is one of the most widely utilised methods for determining clinically
useful information that may be important in accurate and well-directed treatment
as well as prevention of treatment related morbidities [10]. Amongst various
imaging techniques available, including Computed-Tomography (CT) and Trans-
rectal Ultrasound (TRUS), Magnetic Resonance Imaging (MRI) with dedicated
sequences for prostate cancer is being increasingly adopted as standard clinical
practice, as it offers favourable qualities such as higher spatial resolution, better
soft tissue contrast and better safety in the sense of radiation involvement [16].
Novel MRI modalities have been introduced for prostate image acquisition, in
addition to traditional morphological T1-weighted and T2-weighted MRI. The
most popular and common novel prostate MRI modalities include diffusion
weighted MRI (DWI-MRI) and Dynamically Contrast Enhanced MRI (DCE-
MRI). DWI-MRI visualises water cell diffusion rates within soft tissue, while DCE-
MRI produces a temporal sequence of T1-weighted MR images that represent
perfusion of an administered contrast agent between blood vessels and extra-
cellular, extra-vascular regions within soft tissues [18].

Segmentation of the prostate in images is an essential procedure that under-
pins the success of further analysis for classification or recognition of disease [7].
However, prostate segmentation is a challenging task on any imaging protocol,
including different MRI modalities, as the prostate does not have a rigid bound-
ary, and it is surrounded by many other organs that show complex intensity
variations in images. Segmentation of the prostate in morphological MRI has
been addressed widely in the literature. Recently, segmentation methods based
on deep learning algorithms have achieved good success for many different organs,
including the prostate. For T2 MRI-based prostate segmentation, V-net [12] was
the first attempt at 3D volumetric end-to-end segmentation. Later, Yu et al. [19]
improved the performance by adding long and short Res-connections to the
networks. Moreover, densely connected layers were used in Auto-DenseSeg [2].
For prostate Diffusion MRI segmentation, Clark et al. [3] applied a modified
version of ResNet to process 2D slices.

Surprisingly, segmentation of the prostate in DCE-MRI has been limited.
Different from morphological MRI modalities, DCE-MRI is a set of volumes over
time, which gives rise to spatio-temporal (3D+T) datasets. Firjani et al.’s work [4]
is the state-of-art for DCE-MRI prostate segmentation. In their work, three
types of information are taken into account, namely intensity, spatial interaction
and shape information. Intensity refers to intensity differences between prostate
and non-prostate voxels over time. Spatial interaction indicates rotations and
deformations of the prostate view. When it comes to shape information, a shape
prior is learned from co-aligned 3D segmented prostate data. Their method was
evaluated on 270 DCE-MRI series from 15 independent subjects and achieved
DSC of 92% and sensitivity of 85%.

To date, there is no reported work on DCE-MRI prostate segmentation
based on deep learning algorithms. This motivated the work on segmentation of
the prostate DCE-MRI datasets by adopting deep learning algorithms. Video
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segmentation [6, 17] is a closely related problem that deals with 2D+T data,
and it is usually achieved using optical flow-based methods to track moving
objects. Another related work[5] is a longitudinal study where a structural MRI
is acquired at baseline and followup points. Since their goal is to track and
predict disease progression, the time between two MRI volume acquisitions is of
the order of months. In this work, the task is to segment, at acquisition time
itself, a volume of relatively stable size but gradually increasing contrast over a
relatively short period of a few seconds.

The work in this paper demonstrates the feasibility of deep learning for
spatio-temporal segmentation of the prostate in DCE-MRI datasets. A deep
learning framework is implemented for prostate segmentation using a publicly
available benchmark DCE-MRI dataset [11]. In this work, 3D spatial information
is extracted using a modified U-net architecture [13] and temporal information
is dealt with by utilising Long Short Term memory (LSTM) networks [8] on
voxels. Then the spatial and temporal information are fused together using a
Multi-Layer Perceptron (MLP) network. The main contributions include (i) a
novel method to combine spatial and temporal information in 3D+T datasets
and (ii) utilisation of LSTM for sequential information processing in biomedical
images.

2 Method
The problem can be defined as follows : given a sequence of t volumes {V1,V2,V3,
..., Vt}, an output voxel in patient volume V should be mapped to a binary mask
L {0,1} which indicates prostate or background. To achieve this, a step-by-step
approach based on a deep learning architecture is proposed.

The proposed approach is presented in Fig. 1. Since DCE-MRI is 4-
dimensional, using 4D kernels directly is computationally expensive and will
lead to parameter explosion, therefore the spatial and temporal components
are dealt with separately. On the 3D spatial data, an extension of U-net is
applied directly on each volume. Thus, the volumetric output is a sequence
of volumes, which was downsampled before fusion with sequential (temporal)
outputs. On the temporal front, the volumes of sequences are resampled into
voxel sequences, and each voxel sequence is evaluated with five separate LSTM
networks to obtain five probability outputs for each voxel. Then the outputs are
fused with a Multi-Layer Perceptron to obtain the final segmentation.

2.1 Spatial Volumetric Segmentation based on U-net
The original U-net [13] deals with 2D images, and in this work it is extended to
3D volumetric images. Spatial dropout layers [15] are added to U-net in order
to reduce the effects of over-fitting. The work in this section is similar to that
of Milletarì et al. [12], except that they replace the pooling with convolutional
layers. Two minor modifications to U-net are performed: acceleration with
Batch Normalisation Layer and reduction of overfitting with Spatial Dropout
Layer. Batch-Normalisation layers [9] are added to regularise training and reduce
internal co-variate shifts. The architecture of the modified U-net is shown in
Fig 2.2, while Table 2.1 shows the values of the parameters used in the proposed
network.
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Figure 2.1: Proposed deep fusion architecture where volumetric segmentation
is performed with a modified version of U-net, and the temporal segmentation
with an ensemble of LTSMs

Layer Type Kernel
Size Block Number

of Filters Block Number
of Filters

Convolution 5*5*5 Down1 32 Up1 32
Max Pooling 2*2*2 Down2 64 Up2 64
Up Sampling 2*2*2 Down3 128 Up3 128

Convolution (mid) 3*3*3 Down4 256 Up4 256
Binarisation 1*1*1 Down5 512

Table 2.1: Kernel Size of the Layers, and Number of Filters for Each Block

Figure 2.2: Modified U-net Architecture after adding batch normalization layers
in Down block and Dropout layers in Up block
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2.2 Temporal segmentation based on LSTM
In DCE-MRI, image contrast is enhanced by injection of a gadolinium (Gd)-based
contrast agent that decreases the relaxation time of water protons. Therefore,
the Region of Interest (RoI) in the image acquired after the injection should
show higher intensity values. In Fig. 3, intensity changes over time of a pair of
randomly selected prostate (red) and non-prostate(blue) voxels are shown. Based
on the difference in contrast over time between the pairs of voxels, common
sequential analysis methods may be used to address the segmentation problem.
A widely used deep learning architecture for sequential data is the Long Short
Term Memory(LSTM) [8], which is now utilised for this purpose.

The temporal segmentation based on LSTM is based only on voxel intensity
changes, and the data is managed with manual pre-processing. In order to apply
LSTM to the data, two pre-processing steps are required, as shown in Fig 2.4.
First, the data intensity is normalised for all patients to the range 0-255, to avoid
gaps in contrast for different patients. Secondly, volumetric sequential samples
(3D+T) are broken down into voxel sequential samples (1D+T). All prostate
voxels are selected as positive samples. All the non-prostate voxels cannot be
entirely used as negative samples, as the number of prostate voxels are very few
compared to the non-prostate ones, leading to very high data imbalance. As
this may lead to poor model learning, a similar number of negative samples to
the positive ones are selected instead, by randomly selecting negative voxels
near the prostate voxels inside a small 50*50*40 cube. After that, an LSTM
network is utilised to perform temporal segmentation over voxel intensity changes.
The input is an intensity sequence of length 32 and the intensities range over
0-64, with the original intensity range sequence length decreased to reduce the
training load from a limited number of samples. Finally, post-processing is used
to improve the performance of the LSTMs, including edge smoothing, removal
of noisy voxels by finding the biggest component, and removal of the bladder if
included in the output.

Figure 2.3: Different Behaviours of Intensity Changes Exhibited by Prostate and
Non-prostate Regions. Prostate voxel is red, non-prostate voxel is blue

2.3 Fusing Outputs with Multi-layer Perceptron
The outputs from the 3D U-net and the LSTM are fused by an Artificial Neural
Network (Multi-Layer Perceptron). In order to achieve this, the difference in
output sizes is a large hurdle to overcome. The outputs are volumes in the 3D
spatial domain, while they are voxel labels in the 1D temporal domain. In order
to fuse them together, the spatial volume outputs are transferred into voxel
outputs as shown in Fig 2.1.To make full use of the transitional values extracted,
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Figure 2.4: Flowchart of the Temporal Segmentation Process

outputs from the volumetric and temporal segmentations are treated as new
features to determine the final mixed outputs. The input to the Multi-Layer
Perceptron is a feature vector of length of 38, of which 32 are volumetric outputs
for each voxel, 5 are sequential outputs and the last feature is the distance of
the voxel to the prostate center, extracted from the volumetric output directly.
The new feature vector is trained on a Multi-Layer Perceptron of 2 Dense layers
with 200 neurons each. The dropouts for the Dense layers are 0.6 and ReLu is
used as the activation function. Then a binarisation layer with sigmoid function
is added. The network is evaluated with binary cross-entropy and optimised
with the Adam optimiser.

3 Experimental Results

3.1 Data
A publicly available dataset from the Initiative for Collaborative Computer
Vision Benchmarking [11] is used in this work1. This dataset contains T2, DCE
and DWI prostate MRI images for 17 patients. The DCE-MRI data includes
40 volumes over time for each patient. Of the 40 time sequences, 32 volumes
were selected and the original images were also re-scaled to 192*128*64 for
performance speedup reasons. The datasets were split randomly into 15 patients
for training and 2 for testing, and the experiments were repeated three times
for three different data splits. Results of all the experiments were evaluated
using three metrics, namely Dice Similarity Coefficient DSC, sensitivity SEN
and Volume Difference VD [20].

3.2 Spatial Volumetric output from U-net
The results are shown in Table 3 in the column labeled as Volumetric Output.
As 32 volumes were used for each patient, the total number of volumes used for
training and testing are 480 and 64 respectively. The average over 32 volumes
per patient for the 2 patients tested is reported as the volumetric output.

3.3 Sequential Output from LSTM networks
Five LSTM models were trained to evaluate the method for temporal segmenta-
tion. Taking the variety of negative samples into consideration, all negative sam-
ples for each model were re-selected each time, instead of using cross-validation

1http://i2cvb.github.io/
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Experiment 1(%)
Volumetric Output LSTM Output Fused Output

DSC 83.38 ± 0.40 71.02± 3.43 84.97 ± 4.89
SEN 84.81 ± 7.01 73.43 ± 4.69 83.84 ± 7.72
VD 15.42 ± 2.96 5.54 ± 3.66 4.98 ± 4.28

Experiment 2(%)
DSC 85.33 ±3.50 77.89 ± 3.20 89.07 ± 0.84
SEN 82.95 ± 8.81 90.15 ± 2.55 88.69 ± 1.17
VD 9.52 ± 9.14 24.39 ± 10.36 0.88 ± 0.78

Experiment 3(%)
DSC 77.73 ± 6.74 71.93 ± 2.22 86.58 ± 1.40
SEN 87.93 ± 4.8 80.00 ± 5.60 88.30 ± 3.94
VD 23.35 ± 5.53 17.61 ± 11.35 8.46 ± 5.13

Average(%)
DSC 82.15±4.91 73.61±4.24 86.88± 2.96
SEN 85.23±6.71 81.19±8.22 86.94±4.60
VD 16.10±7.94 18.02±13.11 4.77±4.54

Table 3.1: Summary Results of Three Different Experiments Conducted using
the Proposed Fusion Pipeline.

(a) (b) (c) (d) (e)

Figure 3.1: Illustration of post-processing carried out for patient 1 using the
axial slice 31: (a) output of LSTM, (b) largest component, (c) removal of the
bladder, (d) ground truth, and (e) overlap between the prediction and ground
truth

over a single set. The results are shown in Table 3 in the column labelled as
LSTM Output. Some illustrative sample outputs are in Figure 5. In some slices,
the bladder is also picked as part of the prostate. In these cases, even expert
manual observation can barely distinguish any intensity changes between the
prostate and bladder. Therefore the bladder is sliced off in the post processing
stage, by identifying 20% of the whole length of the identified white regions
along the y axis, shown in Figure 5(b).

3.4 Fused output
The results after fusion are also shown in Table 2 in the Fused Output column.
From the results, clearly the spatial volumetric output is improved by addition
of the temporal segmentation output, with a DSC improvement of 4.73% on
average.The LSTM outputs themselves are not satisfactory. This may be due
to intra-patient variations, the amount of agent injected and other factors.
Nevertheless, the LSTM outputs do improve volumetric only outputs. An
example of the results for slices 22, 32 and 42 of one patient is shown in Figure
6. The yellow region (TP) is overlapping parts of the predicted zone and the
ground truth zone. The red region represents False Positives (FP), while the
green region represents False Negatives (FN).
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Figure 3.2: Overlap between the Ground Truth and the Prediction for 2D patient
scans for a selected patient in Experiment 3, for three different MRI slices. First
column shows 22nd, 23rd and 42th prostate slices (top to bottom), and the
second column shows the respective volumetric outputs, the third column shows
he respective LSTM outputs and the fourth column shows the respective Fused
outputs.

4 Discussion and Conclusion
A novel deep fusion pipeline is proposed that utilises both the volumetric and
temporal information captured from DCE-MRI sequences. LSTMs are used to
handle DCE-MRI based temporal features, while convolutional neural networks
are used for volumetric processing. A sequence of ablative testing has been
performed to test the efficacy of the proposed method. As can be seen, temporal
segmentation is often inferior to spatial segmentation, however with the novel
method proposed to combine spatial and temporal information, equal or better
results are achieved consistently, compared to spatial segmentation alone.

As an extension of this work, a deep fusion pipeline that can handle both
spatial and temporal sequences end-to-end without post-processing is being
built. This will ultimately make pre-trained models available to the wider
medical imaging community. The proposed methodology for spatio-temporal
segmentation can easily be migrated to other biomedical applications where
multi-dimensional datasets arise [14].
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