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Abstract

Wildfires are increasingly common and responsible for widespread property
damage and loss of life. Rapid and accurate identification of damage to build-
ings and other infrastructure can heavily affect the efficacy of disaster response
during and after a wildfire. We have developed a dataset and a convolutional
neural network-based object detection model for rapid identification of collapsed
buildings from aerial imagery. We show that a baseline model built with crowd-
sourced data can achieve better-than-chance mean average precision of 0.642,
which can be further improved to 0.733 by constructing a new, more robust loss
function.



1 Introduction

Remote sensing is an important and widely used tool for disaster response in ur-
ban areas. There have been many studies to automate the assessment of natural
disasters such as earthquakes [5], floods and wild fires using machine learning
and computer vision techniques. Automatic assessment of building damage fol-
lowing natural disasters has been attempted across a variety of platforms from
UAV to satellite, and with different modalities such as optical and SAR imagery.
This can supplement traditional techniques such as ground-based field surveys
which can be slow and dangerous for personnel, and provide a rapid response
that is an essential part of disaster management.

Wildfires (termed bushfires in Australia) can cause large loss of human life
and substantial property damage. The worst natural disaster in recent Aus-
tralian history was the Black Saturday wildfires in the state of Victoria in 2009
which destroyed over 3500 homes and killed 173 people with an estimated cost
of 3.3 billion USD, with more recent events being the 2017 Northern Califor-
nian wildfires and the 2018 wildfires in Attica in Greece. The likelihood of
an increasing number of wildfires and severity is high due to expansion of the
wildland-urban interface [9] and the potential for climate change to prolong the
wildfire season.

Building collapse is a severe form of structural damage with no common scale
for assessment. Vertical imagery from aerial and satellite platforms can prove
useful, especially for wildfires in urban areas that often incinerate residential
buildings. Remote sensing imagery can detect roof damage, burn mark outline,
a debris curtain and sometimes severe facade destruction.

The leading methods for object detection are based on convolutional neural
networks (CNNs). In this paper we outline an approach that allows quick train-
ing of CNNs to detect and approximately localise collapsed and infact buildings
in urban areas. We use crowd-sourcing to annotate a large number of images
quickly, transfer learning from standard CNN architectures, and substitution
of the standard CNN loss function with a more robust alternative that allows
effective use of noisy, crowd-sourced data. This has the potential for deploy-
ment in near real-time and to allow improvement of first response times, thereby
improving outcomes for disaster relief.

We first review the state-of-art and discuss contributions in subsections IA
and B. In section II, we provide an in-depth description of the Single Shot
Multibox Detector (SSD) model for object detection along with a precise de-
scription of the changes to make it more robust to label noise. The experimental
methodology is in section III, results and discussion in section IV and concluding
remarks in section V .

1.1 Related Work

Application of CNNs is an active area of research in both computer vision and
remote sensing [18]. Object detection has been used in remote sensing for several
purposes including: counting wildlife on the African savannah [14], oil tanks
[17], and vehicles [16]. The domain differences between remote sensing and
computer vision have led to the development of novel CNN-based techniques
such as rotation-invariant CNNs [3]. The work most closely related to ours
[12] performs object detection with crowd-sourced data for disaster response
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applications, although they focus on animals rather than buildings. A review
of recent work on object detection in very high resolution optical imagery is
available [4].

Object detection is becoming increasingly common in remote sensing along-
side more traditional tasks such as scene or pixel-level classification [18]. Many
enumeration and tracking tasks do not require complete pixel-level classification,
and object detection models can be easier to develop because only localisation
information is required for training. Contemporary object detectors are almost
exclusively CNN based and typically come from two families: the first are so-
called region proposal methods such as region-proposal CNN [6] and second are
the single shot object detectors. Prominent examples of the latter are SSD [11],
and RetinaNet [10]. In this paper we use the highly competitive SSD method.

Crowdsourced data often suffers from noise although this can be amelio-
rated through careful data collection [8]. Early work using crowd-sourcing for
object localisation includes the LabelMe semantic segmentation dataset which
proved essential prototyping the process of obtaining labels for the large ob-
ject detection datasets that underpin deep learning research, such as ImageNet
and MSCOCO. Research in remote sensing using voluntary workers such as in
disaster response particularly earthquakes [1], has been discussed [12].

1.2 Contributions

We show that annotations for disaster imagery can be quickly crowd-sourced in
a manner suitable for training a CNN-based object detector; an object detector
can be effectively trained for detecting collapsed buildings using transfer learning
with a small amount of data; and the object detector loss function can be
modified for robustness, to take better advantage of crowdsourced annotations
and boost performance.

2 Methodology

The SSD detector is a fully convolutional network [11] consisting of a standard
image classification CNN used primarily as a feature extractor (usually VGG-
16 trained on ImageNet), then a succession of 7 new multiscale convolutional
layers which output a single tensor. The input image is split into parts and each
part allows multiple potential objects. The potential objects in each part are
called anchor boxes that are initialised with default values. The output tensor
(c+4) ·k ·m ·n encodes possible locations of objects of each class, where c is the
number of classes, k the number of anchor boxes, and m and n the number of
horizontal and vertical partitions. Finally non-maxima suppression is applied
to the predictions. SSD is typically very fast [11].

There are several types of noise common in crowdsourcing, including prob-
lems with registration of the bounding box, omission of a bounding box, or an
incorrect label on the bounding box. There are two common strategies to deal
with these types of label noise: either design a more complicated model that
can account for the noise generating process, or design a more robust model.
There are several examples of both e.g. [15] and [13]. We focus on the latter
strategy of increasing model robustness.
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Bounding box prediction is a structured prediction task. Given an object
category p, the jth predicted bounding box li, and the ith ground truth bound-
ing box gj , let xpij be a 0− 1 variable which indicates whether li matches with
gj . The loss function for SSD is a weighted sum of two loss functions [11]:

Ltotal(x, p, l, g) =
1

N
[(Lconf (x, p) + αLloc(x, l, g)] .

where Lconf (x) is the confidence loss, Lloc(x) the localisation loss, N the number
of anchor boxes, and α a tuneable parameter set to 1. The confidence loss
Lconf (x) is a softmax loss given by:

Lconf (x, c) = −
∑

i∈Pos

xpij log(ĉpi )−
∑

i∈Neg

log(ĉ0i )

where ĉpi = softmax(cpi ) =
exp(cPi )∑

p cpi
, Pos is the set of matched boxes, Neg is the

unmatched ground-truth boxes and cpi is the probability estimate of class p.
The localisation loss Lloc(x)) is the Huber or smoothed L1 regression loss

over the residuals between the predicted bounding box l and the ground truth
bounding box g:

L(x, l, g) =

N∑
i∈Pos

xkijsmoothL1
(l − g)

where

smoothL1
(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise.

The Huber loss is the L2 loss for small values of x and smoothly transitions to
the L1 loss when x > 1. This means that Huber loss is less sensitive to outliers
in the data.

We modify the standard SSD loss function to make it more robust to the
types of noise encountered in crowdsourcing, specifically omission noise on labels
and measurement noise on the bounding box sizes. We change the regression
loss from the smoothed L1 loss to the Tukey biweight loss [2]. We replace
the function softmax with the “softmax with self-training” or “softmax with
bootstrapping” [13], given by:

Lsoftconf =
∑

i∈Pos

(
βxpij + (1− β)cip

)
log(cip)

where β is yet another tuning parameter which we set to β = 0.9. This term
replaces the term

∑
i∈Pos x

p
ij log(cpi ) in the definition of Lconf . This modified

loss function attempts to enforce consistency in predictions by evaluating sam-
ples as a convex combination of the predictions and the true labels. The model
is therefore penalised less by omitted labels in the ground-truth data.

We modify the localisation loss by replacing smoothL1 with a loss function
even more robust to outliers, the Tukey biweight loss, given by

Ltukey(x) =

{
k2/6(1− (1− x

k )2)3 when |x| ≤ k
k2/6, otherwise.
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where k is a constant typically set to k = 4.685 where it produces 95% statistical
efficiency when the errors are normally distributed. The Tukey loss assigns zero
weight to errors beyond k = 4.685 when backpropagating errors through the
network.

3 Experiments and Results

3.1 Dataset

The region of interest is a 1.2km2 region in the Western Australian regional
town of Yarloop. The bushfire began on January 6, 2016 and lasted for 17 days.
Photogrammetric RGB data was captured on January 13, 2016 at +/- 15cm
ground resolution from a camera array on an aerial platform by the Nearmap
company. The data was processed into mosaics of orthorectified images by
Nearmap and a smaller subsection of the mosaics were selected as the region
of interest, as depicted in Figure 3.1. The mosaics were then subdivided into
200 tiles of size 900 × 800. Of these, 124 contain objects of the relevant type,
with 192 instances of destroyed buildings and 144 instances of intact buildings.
Approximately 80% of this was used for training and 20% for validation. A
further 120 tiles of the same area were collected for use as holdout test data.
These tiles contained 84 objects, of which 40 were destroyed buildings and 44
were intact buildings.

Figure 3.1: The region of interest in the larger photomosaic of the town of
Yarloop used for object detection task.

The data was annotated with labelled bounding boxes by two groups: work-
ers from the AWS Mechanical Turk crowd-sourcing platform, and two students
with some imagery analysis experience. The crowd workers were given brief in-
structions, but had no prior experience on remotely sensed images. Each image
in the training data was annotated by 3 crowd workers. In total 162 unique
workers were involved, with each worker annotating on average 9 labels. All
600 image annotations were collected in approximately 1.5 hours. Examples of
the worker annotations are shown in Figure 3.2 The annotations were screened
for low quality but none were found and all worker annotations ended up being
used.
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Figure 3.2: An example of annotations produced by 3 crowd workers for a single
image, blue annotations for collapsed buildings, green for intact buildings.

3.2 Model training

The model was trained using ADAM [7] with an initial learning rate of 10−3,
which was learning rate slowly lowered to 10−5 for at most 100 epochs. We
stopped training early after 8 epochs if there was no change to loss function at
the lowest learning rate. Because of the small data size we performed numerous
data augmentations including random adjustment of hue, saturation, contrast
and brightness, geometric transformations of the images such as rotations and
reflections, as well as random crops. Training took place on a server with a
GeForce GTX Titan X 12GB graphics card, with Intel Xeon E5-2620 processor
and 32GB of RAM.

Figure 3.3: An example of model predictions for the object detection task.

We took a robust approach to aggregating the data from noisy sources by
making three copies of each image and associating one set of annotations from
each of the annotators with a copy. We compared this against a gold standard
of annotations performed by the second group, and also against sampling one
annotation per image to simulate the effect of a single annotator.

Transfer learning, or domain adaptation, has proven useful in tackling the
problem of insufficient data for training. This involves building a model on
domain A where data is plentiful and subsequently training it on a small amount
of data on domain B. We can achieve good model performance in situations
where it is not possible to train a CNN from scratch. This approach is used in
this work.

Experimental metrics in object detection differ from those used in image
level classification or semantic segmentation. Commonly used metrics include
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average precision (area under the precision recall curve), and mean average
precision. An object is labelled as true positive if the intersection over union
(IOU) score of the two bounding boxes is greater than some threshold (typically
0.5). Due to class imbalance in image detection datasets, average precision and
recall are calculated for each image and averaged over all the images in the
dataset. Finally, the mean average precision (mAP) is calculated as the average
over all object classes. These metrics are preferred because the notion of a true
negative is algorithm dependent.

We consider the following variants in our experiments: “Gold” refers to the
vanilla SSD detector trained on the gold standard data, “Crowd” refers to an
SSD detector trained with all the crowd annotations and redundant images,
and “Random Crowd” refers to sampling random annotations for each image
from the crowd. “Geom” refers to whether the geometric transformations were
included in addition to the photometric augmentations, “Boot” refers to whether
the bootstrap cross-entropy replaces the usual cross-entropy, and “Tukey” refers
to whether the Tukey biweight loss replaces the smoothed Huber loss.

4 Results and discussion

Ablation test results on the holdout Yarloop test images are in Table 4. Despite

Model mAP AP damaged AP intact
Gold + Geom 0.686 0.674 0.698
Gold 0.582 0.476 0.687
Crowd + Tukey + Boot + Geom 0.733 0.696 0.77
Crowd + Boot + Geom 0.705 0.646 0.764
Crowd + Geom 0.648 0.59 0.706
Crowd 0.642 0.596 0.642
Random Crowd 0.475 0.435 0.515

Table 4.1: Overview of ablative testing results on Yarloop dataset.

the very small data size, transfer learning proved to be quite effective even with
a base model with as many parameters as VGG-16. We were not able to directly
train even a shallow 7 layer CNN model on our dataset to an acceptable level of
performance. Of the changes that we tested, strongest gains resulted from using
the bootstrap cross-entropy instead of vanilla cross-entropy. We suspect that
this performance boost would also extend to the gold standard data, although
we have not tested this. It was surprising that crowd-sourced data was able
to beat the performance of gold standard data. Occasionally when using the
Tukey loss, the model rapidly diverged within 20 iterations in the first epoch,
which has been observed before [2].

The geometric transformations were helpful on the gold standard data and
provided an important boost. Interestingly they do not appear as helpful on the
crowd-sourced data. In future work it might be suitable to either drop geometric
transformations or render them redundant by building rotation invariance into
the model as outlined elsewhere [3]. This would be helpful as the geometric
augmentations slow down model convergence.
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5 Conclusion

In this work, we have studied the utility of a CNN-based object detector trained
on a small dataset with noisy, crowd-sourced labels. We show that by modify-
ing the SSD loss function to include some well-known robust alternatives, we
can construct a model that is more tolerant to omission and registration of
bounding boxes derived from crowd annotations. Our experiments validate this
approach and suggest that crowd-sourced imagery may be fruitfully used for
other applications in remote sensing that use high resolution optical imagery.
While crowd-sourcing allows rapid annotation of large quantities of data, there
are non-trivial complexities in applying it effectively. Crowd-sourcing instruc-
tions need to be very clear and verified with either gold standard annotations
or machine learning based screening techniques. Nevertheless, CNN-based ob-
ject detectors can be made remarkably robust to label noise from crowd-sourced
data.
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