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Abstract

Computational needs for genome processing are often satiated by enormous
servers or by cloud computers. Even though there has been some work in im-
plementing some aspects of genome processing in GPUs and FPGAs, they are
often accelerators for such servers and not stand-alone systems. In this paper,
for the first time, we present a method to entirely move the alignment process
to embedded processors. Such a system is useful in a variety of situations where
significant networked infrastructure is not available, and where privacy is a con-
cern. A ring pipelined processor architecture for short read alignment, based on
partitioned genome references is shown. A timeout based alignment method is
proposed to prevent unnecessary exhaustive search. The proposed partitioning
method allows an entire human genome to be processed using small embedded
processors. Experimental results show that the proposed solution speeds up the
performance by approximately seven times with 16 embedded processors when
compared to a linear pipelined system. It is expected that the proposed solution
will to lead to a portable genome analyzing device, significantly reducing cost
and testing time.



1 Introduction

Genome analysis has two broad steps: DNA sequencing and the computations
necessary for the genome processing. Latest technology developments in DNA
sequencing reduce size and price of sequencing machines and speeds up the se-
quencing [17]. Furthermore, the performance gap between DNA sequencing and
genome processing computations is increasing [7]. Also, thumb size commercial
sequencers are now becoming available (for example, MinION sequencer [18]).
However, current genome processing computational platforms are still large and
expensive. We are still reliant on cloud servers or large computational servers
to process the genome. If a genome processing computing platform is designed
to be smaller and faster, portable genome processing devices will be possible.

Developing low-cost, faster, portable genome computing devices bring cost,
time and availability advantages to genome tests. Reducing genome sequencing
cost will allow greater prevalence of genome testing, which allows for personal-
ized treatment based on an individual’s genome. Reducing genome testing time
will allow a patient’s genome condition to be monitored frequently [11]. Porta-
bility will allow for field monitoring allowing identification of the root cause
of the fast spreading epidemics from affected areas, particularly from remote
locations [19]. With existing genome computing platforms, these benefits are
limited since considerable network infrastructure as well as costly computing
platforms are necessary. The non-reliance of cloud based systems further ad-
dresses privacy concerns. While FPGA based systems are fairly common to
accelerate parts of the genome computations, we find that with ever improving
algorithms, the redesign cost of repurposing FPGAs to be deeply prohibitive.

To create portable systems, genome computation must be moved to smaller
embedded processors. However, genome computation on embedded processors is
challenging for the following reasons: (1) embedded processors are typically less
powerful, they have smaller bit widths and a smaller memory footprint; and (2),
in embedded processors, existing genome algorithms are slow and not scalable as
these algorithms are not intended for embedded systems. For example, it is not
possible for the BWA-aln algorithm (a popular short read genome aligner) to be
executed on a single Tensilica processor (since processor’s memory footprint is
too small). Smaller caches in embedded processors further worsen the situation.

However, with the advent of MPSoCs with algorithmic and architectural
modifications, embedded processor based solutions could meet the need for per-
formance, cost, and portability. Pipelined processor architectures are more suit-
able for genome processing due to its high performance, lower cost, smaller area
and lower power consumption. Pipelined processor architectures are widely
used for many computationally intensive applications such as video and image
processing [8, 10, 9].

We present a ring pipelined processor architecture for short read genome
alignment using embedded processors. We partition the human genome refer-
ence to reduce memory accesses and the required memory footprint per pro-
cessor. Our solution speeds up the short read alignment and results are shown
for one million simulated reads aligned to the full human genome. Such an
architecture enables the full aligning of short reads to the full genome.
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1.1 Contributions

The contributions of this paper are as follows:
• for the first time, we show that genome processing can be performed on

embedded processors;
• to enable the implementation on embedded processors, a novel ring pipelined

architecture for short read genome alignment algorithms is presented;
• a method for load balancing amongst processors is given;
• a method (partitioning the reference genome) to reduce memory accesses and

footprint per processor is presented; and,
• the concept of a timeout threshold is introduced to enable faster alignment.

The rest of the paper is organized as follows. Section 2 summarizes the
background of short read genome alignment. In Section 3, short read genome
alignment performance improvements are analyzed. The proposed methodology
and architecture are explained in Section 4 and 5. In Section 6, MPSoC embed-
ded processor implementation is described. Experimental setup and results are
explained in Section 7. Finally, Section 8 concludes this paper.

2 Background

The entire genome of a living being is necessary for genealogy and health analy-
ses [20]. Since assembly of the genome from scratch (using the reads) is a time-
consuming process, an existing genome (referred to as the reference genome) is
used for reassembly of other individuals of the same species. The short reads
are aligned by comparing the reads and the reference [13]. The human genome
is around 3.2 billion base pairs and number of reads to be aligned is more than
a billion [4] (to speed up experiments, we use one million reads).

To speed up the alignment problem, graphs theory and dynamic program-
ming are used to index the reference and/or reads. Read alignment is one of
the most time-consuming algorithms in genome computations, therefore, re-
searchers continuously examine ways to reduce the execution time of alignment
algorithms [4].

One way of reducing the execution time is indexing the reference to facilitate
faster searching of the reference genome for a given read. There are two types
of indexing: hash-index and Farregina-Manzini (FM) Index [4]. In hash-index,
a hash table stores the location of each fixed length subsequence taken from
the reference genome. Hash index size of the human genome is more than 50
GB [21]. Modern read aligners use FM-index with Burrows-Wheeler Transform
as FM-index requires smaller memory (less than 4GB) [12, 13] and is faster
when compared to the hash-index. Please see [4] for more details about short
reads genome alignment.

The Burrows-Wheeler Aligner (BWA) is one of the fast and accurate align-
ment software suites available today and is widely used for read alignment [5].
“BWA-aln” is a short reads genome aligner based on FM-index. It requires only
2.3 GB memory for the index and associated auxiliary data for the full human
genome. “BWA-aln” is MESGA’s software component.

“BWA-aln” has three steps. In the first step, the FM-index and auxiliary
data are generated for the reference genome. This is a once only process and can
be done off-line as the reference genome is fixed. In the second step, the best
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alignment position is identified, this is the main and more time-consuming step
so we examine methods to speed up this step. Finally, alignment coordinates
are reported according to a standard format.

Hereafter, short reads are referred as reads and genome alignment is referred
as alignment.

3 Related Work

As computer clock speed has plateaued, alternate performance improvement
solutions have been developed for speeding up read alignments. Such perfor-
mance improvements have included multi-core CPUs and many-core GPUs [16].
Other techniques to speed up alignment have included software parallelism and
hardware accelerators.

3.1 Performance Improvement by Parallelism

Multi-threaded read alignment algorithms make use of available processors in a
system to gain performance [15]. Modern aligners are parallelized using multi-
threading [4]. However, performance does not increase with the number of
processors due to intensive random memory accesses and unbalanced loads be-
tween threads [2]. To reduce the memory accesses some researchers duplicate
the reference genome for high-performance computers [5] and some researchers
partitioned the reference to reduce the memory footprint [2].

For example, Chen et al. [5] implemented reference duplication for a hybrid
system (consisting of a 12 core Xeon processors and a 60 core Xeon Phi co-
processors). Few cores are grouped together as a logical unit and share a single
reference. Input data (short reads) are split into several subsets according to
the number of logical units and a subset is processed in a logical unit. Individ-
ual alignment time for a Xeon processor and Xeon Phi processor are used to
determine the size of the subsets of balancing the loads in the hybrid system.

GNUMAP [2] partition the hash index to reduce memory footprint in multi-
node high-performance clusters. However, performance is compromised by as
much as 10 times.

3.2 Short read Alignment Hardware Accelerators

Hardware accelerators are considered as another solution to increase the per-
formance of read alignment, for example, CUSHAW, CUSHAW2-GPU and
FHAST [3]. Graphical Processing Units (GPUs) and Field Programming Gate
Arrays (FPGAs) are utilized as hardware accelerators [4, 22].

GPUs together with CPUs are widely used in many parallelized short read
aligners. For example, CUSHAW is a short read algorithm which is based on
the FM-index [16]. Compared to other CPU based aligners, CUSHAW has
speed advantages for less than 51 base pair reads but it is slow for longer reads.
CUSHAW does not support gap alignment. However, its newer implementa-
tion, CUSHAW2-GPU, supports limited gap alignments [15]. CUSHAW2-GPU
makes use of heterogeneous computing architecture of CPUs and GPUs. Read
alignment algorithms are parallelized as inter-track hybrid CPU-GPU mode.
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Figure 3.1: MESGA’s Ring Pipelined Processor Architecture.

Also, GPUs, CPUs and system memory hierarchy are utilized for the optimiza-
tion.

Many researchers use FPGAs as a hardware accelerator in high-performance
computers [3, 6]. The speed up is achieved by executing parallel streams in
FPGAs. One such example is FHAST [6], consisting of dual-core Intel Xeon
CPU and four Virtex-6 FPGAs. The algorithm is based on Bowtie, which is
another popular FM-index based aligner [12]. Speed up of 12× is achieved
compared to native Bowtie executing on eight cores. Internal queues are used
to buffer the data and thus reduce memory latency. To support n number of
mismatches, n + 1 exact matching blocks are used. Although it supports up to
101 base pair reads, it covers only 3% of the human genome.

Compared to the above works, MESGA is better in terms of implemen-
tation, purpose, and coverage. MESGA is based on MPSoC, which is cheap,
lower power and adaptable compared to GPUs and FPGAs. With customized
architecture for genome algorithms, MPSoC outperforms GPUs and FPGAs.

Duplicating the reference genome as in [5] is suitable for the high-performance
system but not for embedded systems as it is a memory expensive method. As
far as we know, the reference genome has not been divided in the FM-index
based aligners. In MESGA the FM-index is divided to improve the parallelism
and run read aligner for the full human genome on embedded processors.

GPU and FPGA accelerators have drawbacks. Limited memory in these ac-
celerators do not always allow the full human genome alignment [3]. Code mod-
ification too is a challenging tasks. Software algorithms need to be extensively
rewritten to support GPUs and algorithm need to be fine-tuned according to
the GPU architecture. Similarly, for FPGA accelerators, algorithms need to be
converted to hardware description languages. When algorithms change (as they
tend to), extensive code modifications are necessary [3]. Our solution, MESGA,
is suitable for any software algorithms with the minimal code changes. In other
systems, design parameters such as number of mismatches and gaps are limited
and cannot be changed. But MESGA supports all the features of the original
software.

In [5], processors’ loads are balanced using static timing and balancing is not
perfect for real data. In MESGA, loads are balanced amongst the processors by
ring pipelined architecture.
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4 Methodology

MESGA utilizes four methods to reduce the short read alignment time. These
are (1) MPSoC based ring pipelined processor architecture; (2) partitioning
the reference genome, indexing the partitioned genome, and storing the smaller
index; (3) a timeout based alignment failure detection; and (4), cache optimiza-
tion. The partitioning the reference genome enables short read alignment for
the full human genome using embedded processors with limited memory foot-
print. The timeout avoids excessive searching caused by the genome partition
(see Section 6 for the details).

In MESGA, memory footprint and accesses are reduced by carefully parti-
tioning the reference genome (if four processors are used the genome is divided
into four parts- with some overlap between the partitioned genomes). Then each
of the partitioned genomes are then indexed using the BWA index [13]. This
index is usually one-fourth the size (for the division of four) and can be stored
within a single processor’s memory footprint.

Each processor accesses one of the partitioned indices, so the memory ac-
cesses within each processor’s local memory are significantly reduced compared
to the original “BWA-aln” (approximately two times less if four processors are
used, since unmatched reads take a little longer searching for possible matches).
In MESGA’s pipelined architecture, processors are identical and execute the
same algorithm (“BWA-aln”) with different partitioned reference. Each proces-
sor tries to align reads to its own partitioned reference. Some reads are transfers
to the next processor based on a criterion. Note that, the passing criterion (cal-
culated using BWA-aln’s scoring system, which is automatically generated) has
two quality thresholds, 105 & 85 (perfect alignment score is 125). A read is
not passed to the next processor, if the alignment score exceeds 105. A read is
passed, but the current local alignment is kept if the score is between 85 and 105.
Finally, if the alignment score is below 85, then the read is passed without the
local alignment being recorded. If a read has been processed by all processors
and not once exceeded 105, then the best available alignment is used.

5 MESGA Architecture

MESGA’s ring pipelined architecture is shown in Fig. 3.1. In this figure, prepro-
cessors ids are indicated as Px, local memories are shown by MEMx, queues are
represented by array of rectangles (white is empty queue and filled in blue color
is a non-empty queue) and arrows represent data transfer paths (white is no
data transfer and filed in blue color is data transfer is active). Eight Processors
are connected in a ring and each processor has an input queue (which is the
output queue for the front processor), an external interface and a local memory.
Processors communicate unidirectionally using the queues. The external inter-
face provides a connection to the storage device where all the reads are stored.
Each processor can either receive from the storage device or the input queue.
The storage device is only read if the input queue is empty. The storage device
access time is excluded in our experiments.

MESGA’s novel architecture provides higher processor utilization and bet-
ter load balancing than a linear pipeline. In a linear pipelined architecture, a
processor only reads from its input queue (except for one processor which reads
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Table 5.1: MESGA Processor Configuration Range.
Min Configuration Max Configuration

Speed (MHz) 200 1092
Processor Size (mm2) 0.05 0.08
Processor Size(gates) 50168 85450
Processor Power (mW) 4.7 40

the storage device) and a processor is idle when its input queue is empty. How-
ever, in MESGA a processor receives data from the external interface when the
input queue is empty thus reducing the chances of a processor being idle. For
example, in Fig. 1, P1 is active although its input queue is empty as data come
from the external interface.

6 MESGA Implementation

6.1 MESGA Hardware Implementation

MESGA hardware is simulated using the Xtensa Modeling Protocol (XTMP)
simulator [1]. For time-sensitive experiments such as cache configuration analy-
sis, clock-accurate simulation is used and for other experiments, XTMP “Turbo”
feature was used to reduce the simulation time.

MESGA consists of up to sixteen 32-bit Tensilica LX6.0 processors. Proces-
sors are customized using the Xtensa development tool (RF-2016). By default,
each processor has 2GB RAM, 16MB ROM, 32kB instruction cache and 8kB
data cache with associativity 2. Inter-processor interface is a 32 bit width queue
of 64 kB (64 kB were chosen so that there was no blocking, a smaller size may
be chosen in the future after more analysis). Partitioned reference index and
auxiliary data are fetched from each processor’s local RAM. RAM is simulated
with write and read delay of 30 clocks and 10 clocks for a read request and block
read request. The reads are stored in multiple files; the number of files equals
the number of processors. These files are connected to each processor via the
external interface.

Table 5.1 summarizes the processor frequency, size, and power range. In all
our experiments, the clock frequency is set to 982 MHz and with this frequency,
the peak power is 37.5mW. The area of the processor is 0.08 mm2 at 28nm
technology.

6.2 MESGA Software Implementation

MESGA’s executes the latest “BWA-aln” (0.7.15). Some code modifications and
additional data structures are added to support embedded processors, pipelined
architecture, and partial reference. Alignment quality based transferring reads
and timeout based alignment failure detection are the other code changes.

In Algorithms1 & 2, qi and qo are input and output queues. Algorithm 1
shows the overall input data handling and task completion of the system. Lines
1 & 7, prioritizes the input queue to the external interface and reduces the
probability of the data stall due to previous processor’s output queue being full.
Lines 3 & 9 makes sure none of the reads are processed by a processor twice.
Line 14 sets a bit in a flag to indicate the processor has processed all reads from
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Algorithm 1 ReceiveNewData

1: if qi data available then
2: fetch data
3: if the data has processed by this processor then
4: ReceiveNewData
5: end if
6: AlignRead
7: else if file data available then
8: Read data
9: if the data has processed by this processor then

10: ReceiveNewData
11: end if
12: AlignRead
13: else
14: Set this processor finish flag
15: if all other processors finish then
16: Finish alignment
17: else
18: ReceiveNewData
19: end if
20: end if

1

its file, and if all bits corresponding to each processor in this flag are set then all
inputs from files have been processed. Based on this flag and all queues’ empty
status, processors complete the “BWA-aln” algorithm. Algorithm 2 shows time
out based failure detection and transferring a read to the next processor based
scoring.

Algorithm 2 AlignRead

1: if time < time out threshold then
2: if score < lower threshold then
3: push data to qo
4: else if score < higher threshold then
5: record alignment result
6: push data to qo
7: else
8: record the alignment result
9: end if

10: else
11: alignment fails
12: end if

2
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(a) Aln reads - full ref (b) Unaln reads - full ref

(c) Aln reads - partial ref (d) Unaln reads - partial ref

Figure 6.1: Read alignment execution time distribution.

Aligning reads within a partial reference may increase execution time. Most
reads will not belong to the reference in the processor, so most reads are un-
aligned. “BWA-aln” takes longer time for a read with many mismatches and
gaps. Thus, it takes a long time to decide that a read cannot be aligned. Fig. 6.1
shows execution time distribution for four cases: (a) is for successfully aligned
reads with the full reference; (b) for unaligned reads with the full reference; (c)
is for successfully aligned reads with partial reference (divided into 16 sections);
and (d), for unaligned reads with partial reference. The x-axis is number of
execution clocks in million for individual reads and the y-axis is the probability
of occurrence. Note that the x and the y axes have different range to show the
histogram details clearly. Execution time in (c) & (d) of aligned reads reduces
and increases respectively when the reference is divided. The threshold is set
as the maximum execution time of aligned reads (shown by the vertical lines)
with partitioned reference.

The timeout threshold varies with the number of divisions and is shown in
Fig. 6.2. In Fig. 6.2 the reference is divided into 2, 4, 8 or 16, which is indicated
on the x-axis, and the y-axis represents timeout threshold in million clocks. This
is a decaying function.
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Figure 6.2: Timeout variation with number of reference division.

7 Experimental Setup and Results

To evaluate the proposed method’s performance improvement and alignment
accuracy, one million (all are 125 base pair length) synthetic reads were aligned
to the full human genome. The reads were simulated from the human genome
using dwgsim [14] (similar to the the original “BWA-aln” benchmark tests [13]
(0.09% SNP mutation rate, 0.01% indel mutation rate, and 2% uniform sequenc-
ing error rate).

Reads were divided equally into N groups and saved into separate files. N
is equal to the number of processors in the pipeline (N = 2, 4, 8 or 16). The
full human genome reference was partitioned into N with overlapping regions of
250 base pairs. Each segment was pre-processed and indexed separately off-line.

7.1 Execution Time

To compare the performance, four configurations were used with 2, 4, 8 or
16 processors. First, embedded processors are in a linear pipeline and each
processor has equal size of partitioned reference. All reads were fed to the first
processor. All reads are passed to next processor except the reads which were
aligned exactly (this is to simulate the original condition of running “BWA-aln”
with a full genome). Second, optimized linear pipeline, reference was divided in
progressively increasing size to balance the load between front end processors
and back end processors. Reads are passed to next processor according as
described in Section 4. The third experiment is with MESGA without timeout
and the final one is MEGSA with timeout.

Fig. 7.1 shows the speed up comparison for the four experiments. Single
processor timing was estimated, as the processor memory is not enough to hold
the full human genome. The single processor takes 16.8 hours to align 1 mil-
lion 125 base pair reads. Meantime, with 16 processors, MESGA speeds up
seven times with timeout and five times without timeout. The optimized linear
pipeline improves the performance by three-folds and linear pipeline with equal
reference shows almost no improvement for 16 processors (this is due to idling
of many of the processors).
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Figure 7.1: Read alignment speed up comparison.

7.2 Accuracy

To verify the accuracy of the output after code modification, the individual
alignment scores generated by baseline test (original “BWA-aln” running on an
Intel server) and MESGA (with timeout) are compared. Individual MESGA
read alignment score is compared with the baseline test. All alignment scores
of MESGA were the same as the baseline test score.

7.3 Cache Configuration and Power Analyses

Effect of the cache configuration on the performance of MESGA was analyzed in
XTMP simulation platform with cycle accurate timing. As the simulation takes
a longer time, this experiment was conducted with only 10,000 reads. Cache
size was changed from 0 to 32 kB and 1,2 and 4 cache associativities were tested.
Table 7.1 summarizes the execution time for different data cache configurations.
The top row shows the cache size and the left column shows the associativity.
Timing details are given in billion clock cycles. Although the timing is improved
when cache size increases, the rate plateaus. In these experiments, we found
that 8kB cache size with associativity of 2 is a suitable configuration.

Power consumption is estimated using the Tensilica processor design plat-
form (memory is not included in the estimation). The 16 processor system takes
600 mW at clock frequency of 982 MHz. The area size for 16 processors system
is 1.28 mm2.
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Table 7.1: Cache Performance Analysis. (clk. cycles)
Size (kB) 0 1 2 4 8 16 32
Asso.1 4.54 2.83 2.63 2.44 2.41 2.35 2.31
Asso.2 - 2.77 2.47 2.39 2.33 2.31 2.30
Asso.4 - - 2.47 2.34 2.33 2.33 2.30

8 Conclusions and Future Work

In this paper, we have proposed an MPSoC based embedded solution for short
read genome alignment. We introduced a ring pipelined architecture and parti-
tion reference genome to run “BWA-al” on embedded processors each with 2GB
memory. Experimental results show a speed up of seven times for 16 proces-
sors can be achieved with the same accuracy as original “BWA-aln” on an Intel
server.

In future work, this work will be extended to support long read genome
alignment and different aligners. Other steps in the genome computational
steps such as the variant caller will be ported to work on embedded processors.
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