
Effective and Efficient Dynamic Graph Coloring

Long Yuan1, Lu Qin2, Xuemin Lin1, Lijun Chang1, and Wenjie Zhang1

1 The University of New South Wales, Australia
{longyuan,lxue,ljchang,zhangw}@cse.unsw.edu.au

2 University of Technology, Sydney, Australia
lu.qin@uts.edu.au

Technical Report
UNSW-CSE-TR-201707

April 2017

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Graph coloring is a fundamental graph problem that is widely applied in a variety of
applications. The aim of graph coloring is to minimize the number of colors used to
color the vertices in a graph such that no two incident vertices have the same color.
Existing solutions for graph coloring mainly focus on computing a good coloring for a
static graph. However, since many real-world graphs are highly dynamic, in this paper,
we aim to incrementally maintain the graph coloring when the graph is dynamically
updated. Our proposal has two goals: high effectiveness and high efficiency. To achieve
high effectiveness, we maintain the graph coloring in a way such that the coloring result
is consistent with one of the best static graph coloring algorithms. To achieve high
efficiency, we investigate efficient incremental algorithms to update the graph coloring
by exploring a small number of vertices. The algorithms are designed based on the
observation that the number of verticeswith color changes after a graph update is usually
very small. We design a color-propagation based algorithm which only explores the
vertices within the 2-hop neighbors of the color-changed vertices. We then propose
a novel color index to maintain some summary color information and, thus, bound
the explored vertices within the neighbors of the color-changed vertices. Moreover,
we derive some effective pruning rules to further reduce the number of propagated
vertices. The results from extensive performance studies on real and synthetic graphs
from various domains demonstrate the high effectiveness and efficiency of our approach.

1 Introduction
Graph coloring is one of the most fundamental problems in graph analysis. Given a
graph G, graph coloring assigns each vertex in G a color, such that no two incident
vertices have the same color. The aim of graph coloring is to minimize the number of
different colors. Computing the optimal graph coloring is an NP-hard problem [18].
Applications. Graph coloring has been adopted in awide range of application scenarios.
For example:
(1) Nucleic Acid Sequence Design in Biochemical Networks. Given a set of nucleic
acids, a dependency graph is a graph in which each vertex is a nucleotide and two
vertices are connected if the two nucleotides form a base pair in at least one of the
nucleic acids. The problem of finding a nucleic acid sequence that is compatible with
the set of nucleic acids can be modelled as a graph coloring problem on a dependency
graph [1, 35].
(2) Air Traffic Flow Management. In air traffic flow management, the air traffic flow
can be considered as a graph in which each vertex represents a flight route and there is
an edge between two vertices if the corresponding two routes intersect. The airspace
congestion problem can be modelled as a graph coloring problem [9].
(3) Channel Assignment in Wireless Networks. In a wireless network, each device is
represented as a vertex, and the potential interference between two devices is represented
as an edge. The channel assignment problem in a wireless network aims to to cover
all devices (vertices) with the minimum number of channels (colors) such that no two
adjacent devices (vertices) use the same channel (color), which can be modelled as a
graph coloring problem [39, 8].
(4) Community Detection in Social Networks. In a social network, graph coloring
is used to compute seed vertices that can be expanded to high quality overlapping
communities in the network [28].
(5) A Key Step to Solve other Graph Problems. Graph coloring also serves as a key
step to solve other important graph problems, such as clique computation [31, 45, 2]
and graph partitioning [7].
Motivation. In the literature, plenty of algorithms that handle the graph coloring
problem in a static graph have been proposed, such as [42, 25, 37, 17, 36, 24, 44, 35].
However, many real-world graphs are highly dynamic [5, 14, 47, 26, 3, 46], which raises
the following two requirements for the graph coloring algorithms in this new scenario:
(1) Effectiveness. In dynamic graph coloring, besides minimizing the number of used
colors [38], coloring consistency is also an important issue to be considered in real
applications. Here, by consistency, we mean that the coloring result of the same graph
is independent of the graph updating orders. For example, in channel assignment in
wireless networks [39], power consumption is critical to the usability of mobile devices
[12] and WiFi is a prime source of their energy consumption [27]. Consistent coloring
result can avoid unnecessary channel changes triggered by themovement of othermobile
devices, which would save the power of the mobile devices. In graph partitioning, graph
coloring is used as a preprocessing step to classify vertices into different groups [7].
As the groups are classified based on the colors of vertices, consistent coloring result
can reduce the repartitioning costs when the graph is updated.
(2) Efficiency. In real applications, many graphs are large and frequently updated.
For example, in wireless networks, with the development of transportation facilities,

1

1

4

3

4

3

5

0

4

4

2

2

4

3
2

4
4

4
4

4

1

1

1

(a) The initial coloring

6

3

2

1

3

1

0

1

8

2

7

4

2
2

5
1

4
4

1

1

2

1

(b) Color by DC-Local (1st
test)

8

3

1

5

2

0

7

3

9

1

4

5

1
1

5
5

5
6

3

0

0

0

(c) Color by DC-Local (2nd
test)

1

4

3

4

3

5

0

4

4

2

2

4

3
2

4
4

4
4

4

1

1

1

(d) Color by our algorithm

Figure 1.1: Graph coloring on part of the rating network MoiveLens (the numbers
denote different colors)
the access devices are frequently inserted or removed because of the movement of
people [40]; the air traffic flow in air traffic flow networks changes as flights are delayed
or cancelled [29]; In the online social networks, the graphs are typically large and
continually evolving. For instance, Facebook has more than 1.3 billion users and
approximately 5 new users join Facebook every second [30]; Twitter has more than 300
million users and 3 new users join Twitter every second [30]. Therefore, high efficiency
is another requirement for a practical dynamic graph coloring algorithm.

In the literature, an algorithm denoted as DC-Local is proposed in [38] for the
dynamic graph coloring problem. Briefly, after an edge (u, v) is inserted/deleted in
a graph, DC-Local locally updates the graph coloring by adjusting only the colors of
vertices u and v and their neighbors in the graph. The time complexity for DC-Local
to handle each graph update is O(dmax2), where dmax is the maximum vertex degree
in the graph. This type of local update strategy may be efficient in practice, but if a
new color is introduced in a certain update, the algorithm will miss the opportunity
to reduce the number of colors globally and, therefore, may continue to increase the
number of colors in subsequent updates. Moreover, the graph coloring generated by
DC-Local is largely dependent on the order of the edges being inserted/deleted, and
may lead to inconsistent graph coloring if we obtain the same graph by different edge
insertion/deletion orders. The example below illustrates the drawbacks of DC-Local.
Example 1.1: We extract part of a rating network from theMoiveLens dataset (https:
//movielens.org/). Initially, we color the network using one of the best static graph
coloring algorithms. The coloring result, with 6 colors, is shown in Fig. 1.1 (a). Then,
as a test, we randomly remove some edges from the graph and add them back in a
random order, and repeat this 100 times. Obviously, the final graph is the same as the
initial graph. We conduct this test twice using DC-Local to update the graph coloring
with the same initial coloring in Fig. 1.1 (a). The results for the two tests are shown
in Fig. 1.1 (b) and Fig. 1.1 (c) respectively. We can see that (1) the number of colors
is significantly increased in both tests; and (2) the colorings of the two tests are largely
different. �

This example clearly shows the two main drawbacks of the existing solution: (1)
low coloring quality; and (2) inconsistent coloring result. Motivated by this, we aim
to design an efficient incremental graph coloring update algorithm that can overcome
these two drawbacks.
General Idea. Our general idea is simple: after each update of the graph, we aim to
update the graph coloring incrementally to make it exactly the same as the coloring
result obtained by one of the best static graph coloring algorithms. To do this, we
investigate one of the best static graph coloring algorithms, Global [42]. Briefly, given

2

a graph G, Global colors the vertices according to a global vertex order in which vertices
are sorted in decreasing order of their degrees in G (increasing order of their vertex
IDs for vertices with the same degree). For each vertex, Global assigns the vertex the
minimum possible color not assigned to its neighbors. Global has been widely adopted
in the literature because of its high efficiency in handling large graphs and its high
graph coloring quality in practice [31, 45, 2, 7]. To show that our idea is practically
applicable, we investigate two issues: effectiveness and efficiency.
Effectiveness. Our approach is able to overcome the twomain drawbacks of the existing
algorithm:
• High Coloring Quality. UnlikeDC-Local, which locally updates vertex colors without
considering global optimization, the coloring quality of our approach is the same as
one of the best static graph coloring algorithms, i.e., Global, which colors the graph
in a global vertex order. Therefore, we are able to achieve a much better coloring
quality than DC-Local.

• Consistent Coloring Result. Given Global’s unique global vertex order, its coloring
result is only dependent on the graph’s topology. Since the coloring result of our
approach is the same as Global’s, we can guarantee that the coloring result of our
approach is independent of the edge deletion/insertion order.

Example 1.2: We conduct the same test in Example 1.1 using our approach on the
graph shown in Fig. 1.1 (a). The initial coloring is computed using Global and the result
shown in Fig. 1.1 (d) is exactly the same as the initial coloring in Fig. 1.1 (a) since the
graph topology does not change. �

Efficiency. We design an algorithm that maintains the graph coloring incrementally
for each graph update without computing the coloring from scratch using Global. The
rationale is based on the observation that, in practice, very few vertices have color
changes after an edge insertion/deletion in the new coloring generated by Global. To
demonstrate this, we compute the average number of vertices ϕ whose colors changed
in each update on 10 real datasets from different application domains. According to the
results, the maximum ϕ across the 10 datasets is 40.43 and the average ϕ is only 11.4
(see Exp-5 in Section 6). This suggests the opportunity to explore only a small number
of vertices in the graph to update the graph coloring for each update.

Let ∆ be the set of vertices with color changes after a graph update. According to
the above discussion, |∆| is small in practice. Therefore, we aim to explore only those
vertices related to ∆ to achieve high efficiency. We first propose a color-propagation
based algorithm that iteratively recolors a vertex u and notifies its out-neighbors in an
oriented coloring graph to be further recolored if the color of u changes. Here, the
oriented coloring graph is a directed graph created based on the original graph. By
carefully assigning a priority for vertices to be recolored, we can guarantee that each
vertex is recolored once, at most, in each update. Such an approach may visit the 2-hop
neighbors of vertices in ∆. Therefore, we further propose a dynamic in-neighbor color
index I that maintains a summary of the color information of the in-neighbors for each
vertex in the oriented coloring graph. The index has a linear size to G and can be
maintained efficiently. With this index, we can determine whether the color of a vertex
will change in constant time prior to the color computation. Thus, the algorithm only
needs to explore the vertices in∆ and their neighbors to handle a graph update. The time
complexity of our algorithm is O(n∆ · log(n∆)) where n∆ is the number of vertices in ∆
and their neighbors. Such complexity is generally better than the complexity O(dmax2)
for DC-Local.

3

Contributions. We make the following contributions in this paper.
(1) A new idea to update graph coloring by considering global optimization. We
investigate the drawbacks of the existing algorithm using a local update and propose
a new idea to update the graph coloring by considering global optimization. Our
algorithm can achieve high coloring quality and coloring result consistency.
(2) An efficient coloring update algorithm with a bounded time complexity. We
propose a color-propagation based algorithm on an auxiliary graph called oriented
coloring graph. With a proper vertex propagation order, we bound the explored vertex
to be within the 2-hop neighbors of the vertices with color changes.
(3) Novel early pruning strategies to further improve the algorithm efficiency. We
propose a novel index, called DINC-Index, to efficiently determine whether the color
of a vertex will change before color computation occurs and, thus, bound the explored
vertices to be within the neighbors of vertices with color changes. We also explore
some pruning rules to reduce the number of propagated vertices to further improve
efficiency.
(4) Extensive performance studies on real and synthetic datasets from various domains.
We conduct extensive performance studies on real and synthetic datasets from various
application domains. The experimental results demonstrate that our proposed algorithm
can achieve both high effectiveness and high efficiency. Compared to DC-Local, our
approach can reduce more than half of the number of colors and is much more efficient
than DC-Local in most cases.
Outline. Section 2 provides the problem definition. Section 3 introduces the existing
algorithm for dynamic graph coloring. Section 4 analyzes the dynamic graph coloring
problem and presents our color propagation based algorithm. Section 5 explores
two optimization strategies to further improve the algorithm. Section 6 evaluates
our algorithms using extensive experiments. Section 7 reviews the related work and
Section 8 concludes the paper.

2 Preliminaries
Consider an undirected and unweighted graph G = (V, E), where V(G) represents the
set of vertices and E(G) represents the set of edges in G. We denote the number of
vertices and the number of edges of G by n and m respectively. Every vertex has a
unique ID and we use id(u,G) to denote the id of vertex u. We use nbr(u,G) to denote
the set of neighbors of u for each vertex u ∈ V(G), i.e., nbr(u,G) = {v |(u, v) ∈ E(G)}.
The degree of a vertex u ∈ V(G), denoted by deg(u,G), is the number of neighbors of
u in G, i.e., deg(u,G) = |nbr(u,G)|. For simplicity, we use id(u), nbr(u) and deg(u) to
denote id(u,G), nbr(u,G) and deg(u,G) respectively if the context is self-evident. For
a graph G, we use dmax to denote the largest degree of vertices in G. We use N to
denote the set of non-negative integers.
Definition 2.1: (Graph Coloring) Given a graph G = (V, E), a graph coloring of G is
a function f : V → C from the set V of vertices to a set C of colors such that any two
incident vertices are assigned different colors, where C ⊂ N. �

For a graph G and a coloring f , we use | f (G)| to denote the number of colors used
in f . For a vertex u ∈ V(G), we use u.color = f (u) to denote the color of u assigned by
f .

4

Definition 2.2: (k-colorable) A graph G is k-colorable if there is a graph coloring of
G with at most k colors. �

Definition 2.3: (Chromatic Number) For a given graph, the chromatic number of G,
denoted by χ(G), is the smallest integer k for which G is k-colorable. �

Definition 2.4: (Optimal Graph Coloring) For a given graph G, the optimal graph
coloring, denoted by %(G), is a graph coloring of G such that |%(G)| = χ(G). �

Problem Statement. In this paper, we study the problem of dynamic graph coloring,
which is defined as follows: Given a graph G, compute the optimal graph coloring %(G)
of G when G is dynamically updated by insertion and deletion of edges.

Since computing the optimal graph coloring is an NP-hard problem [18], in this
paper, we resort to approximate solutions.
Remark. In this paper, we mainly focus on edge insertion/deletion. However, since
a vertex insertion/deletion can be regarded as a sequence of edge insertions/deletions
preceded/followed by the insertion/deletion of an isolated vertex, our techniques can be
directly extended to handle vertex insertions/deletions.

3 The Existing Solution
The state-of-the-art dynamic graph coloring algorithm is proposed in [38]. Before

introducing the algorithm, we first define saturation colors as follows.
Definition 3.1: (Saturation Colors) Given a graph G and a graph coloring f , for a
vertex u ∈ V(G), the saturation colors of u, denoted by SC(u) , is the set of colors that
f assigns to u’s neighbors, i.e., SC(u) = ∪v∈nbr(u){v.color}. �

The algorithm DC-Local is shown in Algorithm 1. When an edge (u, v) is inserted,
if u and v share the same color, DC-Local recolors the vertex with the small number of
saturation colors; otherwise DC-Local does nothing (line 1-7). When an edge (u, v) is
deleted, DC-Local recolors both u and v (line 8-10).

To recolor a specific vertex u,DC-Local tries to avoid increasing the number of colors
in current coloring based on SC(u) when recoloring u. Specifically, it first computes
the smallest color cmin which is not assigned to any neighbor of u (line 12-13). If cmin is
smaller than the maximum color in SC(u), cmin is assigned to u (line 14-15); otherwise,
it first scans each neighbor v of u and computes SC(v). Then it finds the color ccand
which is assigned to a neighbor v of u and the number of SC(v) is smaller than that of
any other neighbors of u (line 17-20). If ccand is smaller than cmin −1, DC-Local assigns
ccand to u and all the neighbors of u whose color is ccand are reassigned with the smallest
color not assigned to their neighbors (line 21-24). Otherwise, it colors u with cmin (line
26). For a given vertex u, procedure SmallestUnassignedColor is used to compute the
smallest color not assigned to any neighbor of u (line 27-31).
Theorem 3.1: The time complexity of DC-Local to handle an edge insertion/deletion is
O(dmax2). �

Proof: Let’s consider the edge insertion first. For a vertex u, SC(u) can be computed
in O(dmax) and procedure DC-Local-Recolor can finish in O(dmax2). Thus, for each
edge insertion, the time complexity of DC-Local-Ins is O(dmax2). The edge deletion
can be proved similarly as edge insertion. Thus, the theorem holds. �

Drawbacks of DC-Local. DC-Local maintains the graph coloring by only considering
recoloring the neighbors of the vertices in the inserted/deleted edge. However, it has

5

Algorithm 1 DC-Local(Graph G)
1: Procedure DC-Local-Ins(Graph G,Edge(u, v))
2: G.insert((u, v));
3: if u.color = v.color then
4: if |SC(u)| < |SC(v)| then
5: DC-Local-Recolor(u);
6: else
7: DC-Local-Recolor(v);

8: Procedure DC-Local-Del(Graph G,Edge(u, v))
9: G.delete((u, v));
10: DC-Local-Recolor(u); DC-Local-Recolor(v);

11: Procedure DC-Local-Recolor(Vertex u)
12: C← SC(u); C← {0, 1, . . . , deg(u)};
13: cmax ← max{c |c ∈ C}; cmin ← min{c |c ∈ C, c < C};
14: if cmin < cmax then
15: u.color← cmin;
16: else
17: mcolor[c] ← 0 for all c ∈ C;
18: for all v ∈ nbr(u) do
19: mcolor[v.color] ← max{mcolor[v.color], |SC(v)|};
20: ccand ← argminc∈C{mcolor[c]};
21: if ccand < cmin − 1 then
22: u.color← ccand;
23: for each v ∈ nbr(u), v.color = ccand do
24: v.color← SmallestUnassignedColor(v);
25: else
26: u.color← cmin;

27: Procedure SmallestUnassignedColor(Graph G,Vertex u)
28: C← {0, 1, . . . , deg(u)}, C← ∅;
29: for each v ∈ nbr(u) do
30: C← C ∪ {v.color};
31: return min{c |c ∈ C, c < C};

the following two drawbacks:
(D1) Inferior Coloring Quality. The assumption behind DC-Local is that the graph
coloring can bewell approximated just by local neighborhood exploration of the vertices
in the inserted/deleted edge. However, the assumption does not generally hold in practice
since local neighborhood exploration may miss the opportunities to reduce the number
of colors globally. As shown in Fig. 1.1, the number of colors used by DC-Local
increases from 6 to 10 after a sequence of edge insertions and deletions. The situation
is even worse when the graph is becoming large as verified in our experiment. Thus,
local neighborhood exploration is inadequate for the dynamic graph coloring problem.
(D2) Coloring Inconsistency. As shown in Fig. 1.1, the graph coloring generated
by DC-Local cannot keep consistent if we obtain the same graph with different edge
insertion/deletion orders. This makes the graph coloring generated by DC-Local not
robust in practice.

4 A New Approach
To overcome the drawbacks of DC-Local discussed in Section 3, we devise a new
algorithm for dynamic graph coloring. In our new algorithm, the graph is colored

6

from a global perspective rather than using local exploration, and this has the following
advantages:
(A1) High Coloring Quality. Unlike DC-Local, which recolors vertices locally within
the neighbors of the vertices in the inserted/deleted edge, our algorithm considers
dynamic coloring on a global scale. As a result, our algorithm can achieve the same
coloring quality as one of the best static graph coloring algorithms regardless of the
number of edge insertion/deletion operations.
(A2) Coloring Consistency. Additionally, DC-Local may result in inconsistent graph
colorings if we get the same graph with different edge insertion/deletion orders. How-
ever, the coloring result in our algorithm only depends on the topology of the graph
regardless of the edge insertions/deletions order.
(A3) High Efficiency. Although our algorithm considers recoloring the vertices on a
global scale and can achieve the same coloring quality as one of the best static graph
coloring algorithms, we do not need to compute the coloring from scratch every time
when an edge is inserted/deleted. Instead, our algorithm incrementally updates the
graph coloring by only exploring the vertices within the 2-hop neighbors of the vertices
with color changes. In practice, very few vertices need color changes; therefore, our
algorithm is able to achieve high efficiency.

In this section, we first analyze the dynamic graph coloring problem and propose a
basic algorithm that targets A1 and A2. Then, we improve the basic algorithm with a
prioritized vertex exploration that targets A3.

4.1 The General Idea
The key idea of our approach is that we aim to guarantee the quality by making
the coloring result consistent with one of the best static graph coloring algorithms.
Since the optimal graph coloring problem is an NP-hard problem [18], and there
is no polynomial-time n1−ε approximation algorithm for the optimal graph coloring
problem, unless NP=ZPP [48], existing static graph coloring algorithms resort to the
greedy approach. One of the best algorithms is Global [42] and it works as follows. It
colors vertices in decreasing order of their degrees (the vertices with the same degree
are sorted by the increasing order of their ids). For each vertex to be colored, it selects
the minimum possible color that is not assigned to its already colored neighbors. The
algorithm Global is shown in Algorithm 2.

Algorithm 2 Global(Graph G)
1: initialize each vertex u ∈ V(G) as uncolored;
2: for each u ∈ V(G) in non-increasing order of deg(u) do
3: u.color← GlobalColorV(G, u);

4: Procedure GlobalColorV(G, u)
5: C← {0, 1, . . . , deg(u)}, C← ∅;
6: for each v ∈ nbr(u) do
7: if v is colored then
8: C← C ∪ {v.color};
9: return min{c |c ∈ C, c < C};

Algorithm 2 first initializes the vertices in G as uncolored (line 1). Then it iterates
over the vertices in non-increasing order of their degrees (increasing order of their
vertex ids for vertices with the same degree) and assigns each vertex the color returned

7

by GlobalColorV (line 2-3). For a given vertex u, procedure GlobalColorV is used to
compute the smallest color not assigned to a neighbor of u (line 5-9). For a graph G, the
time complexity of Algorithm 2 is O(m+ n log n) and it colors G with at most dmax+ 1
colors.
Example 4.1: Consider the graph G in Fig. 4.1 (a). To color G, Algorithm 2 first
sorts the vertices in G based in their degrees. And the order in which Algorithm 2
colors the vertices is v5, v3, v4, v0, v1, v5, v6, v7, v8, v9, v10, v11. For v5, the smallest color
not assigned to a neighbor of v5 is 0, thus GlobalColorV assigns 0 to v5. Following the
order, Algorithm 2 colors all the vertices and the color of each vertex is shown in the
parentheses near the vertex in Fig. 4.1 (a). �

Algorithm Global is widely used in the literature due to its high efficiency and good
coloring quality in practice [31, 45, 2, 7]. Therefore, we use it to design our approach.
The essence of the algorithm Global is to find a coloring f such that the color of every
vertex in f satisfies the following property:
Definition 4.1: (Global Color Property γ)Given a graph G and a coloring f , the color
of u satisfies the global color property γ of G, denoted by u.color |= γ(G), if u.color =
min{c | c ∈ N, c < C(u)}, where C(u) = {v.color | v ∈ nbr(u) ∧ (deg(v) > deg(u) ∨
(deg(v) = deg(u) ∧ id(v) < id(u)))}. �

Based on Definition 4.1, the dynamic graph coloring problem can be redefined as
follows:
Definition 4.2: (Problem Definition∗) Given a graph G, we aim to maintain a graph
coloring f such that for each vertex u ∈ V(G), u.color |= γ(G) when G is dynamically
updated by insertion and deletion of edges. �

The approach designed based on Definition 4.2 can achieve A1 and A2 as the graph
coloring satisfying Definition 4.2 is the same as the graph coloring generated by the
algorithm Global.

A naive approach to maintain a graph coloring f satisfying Definition 4.2 is to
recompute the graph coloring using the algorithm Global for each graph update. Obvi-
ously, such an approach is impractical on large graphs. Therefore, we need to design
an incremental algorithm to maintain the global color property for all vertices in G. A
straightforward solution is to identify the set of vertices that violate the global color
property and then recolor these vertices. However, the recoloring for a certain vertex
will trigger other vertices to violate the global color property. To efficiently identify
the order to recolor vertices, we introduce an auxiliary graph named oriented coloring
graph in the next subsection.

4.2 Oriented Dynamic Graph Coloring

Oriented Coloring Graph. Oriented coloring graph is constructed based on the total
order of vertices which is defined as follows:
Definition 4.3: (Total Order ≺) Given a graph G and two vertices u, v ∈ G, we define
u ≺ v if
• deg(u) > deg(v), or
• deg(u) = deg(v) and id(u) < id(v).
Obviously, ≺ defines a total order among all vertices in G. �

For two vertices u and v, if u ≺ v, we say u dominates v and v is dominated by u.
Based on Definition 4.3, we can assign a direction to each edge in G with respect to the

8

total order ≺, which results in a new graph called oriented coloring graph.
Definition 4.4: (Oriented Coloring Graph) Given a graph G = (V, E), the Oriented
ColoringGraph (OCG) G∗ = (V, E∗) of G is a directed acyclic graph such that for each
edge (u, v) ∈ E , if u ≺ v (v ≺ u), there is a directed edge from u to v (from v to u) in
G∗, denoted by <u, v> (<v, u>). �

Based on the total order ≺ used to define the oriented coloring graph, we can easily
obtain the following lemma:
Lemma 4.1: The oriented coloring graph G∗ of a graph G is a directed acyclic graph
(DAG). �

Proof: We can prove this by contradiction. Suppose that the OCG G∗ of G is not a
DAG, which means there is a cycle in G∗. Assume that the cycle consists of the directed
edges: <v1, v2>,. . . ,<vn−1, vn>, <vn, v1>. According to <vn, v1>, we can get vn ≺ v1.
And according to <v1, v2>,. . . ,<vn−1, vn>, we can get v1 ≺ vn. However, based on the
definition of ≺, it is impossible that for two vertices u and v such that u dominates v
and v also dominates u at the same time. Thus, the lemma holds. �

If there is a directed edge <u, v> in G∗, we say u is an in-neighbor of v and v is
an out-neighbor of u. For each vertex u ∈ G∗, we use nbr−(u,G∗) and nbr+(u,G∗) to
denote the set of its in-neighbors and out-neighbors in G∗ respectively. And we use
nbr(u,G∗) to denote nbr−(u,G∗)∪nbr+(u,G∗). For a vertex u, the in-degree of u, denoted
by deg−(u,G∗), is the number of in-neighbors of u and the out-degree of u, denoted
by deg+(u,G∗), is the number of out-neighbors of u. For simplicity, we use nbr−(u),
nbr+(u), nbr(u), deg−(u), and deg+(u) to denote nbr−(u,G∗), nbr+(u,G∗), nbr(u,G∗),
deg−(u,G∗), and deg+(u,G∗) respectively if the context is self-evident. When an edge
<u, v> is inserted into/deleted from G∗, we use G∗+<u, v>/G∗−<u, v> to represent the
new OCG after the update. We further define the OCG coloring on G∗ as follows:
Definition 4.5: (OCG Coloring) Given an OCG G∗ = (V, E∗), an OCG coloring is
a coloring f in which any two incident vertices u, v ∈ V are assigned with different
colors, i.e., <u, v> ∈ E∗ ⇒ u.color , v.color. �

Based on Definition 4.5, we have the following lemma:
Lemma 4.2: Given a graph G and its OCG G∗, f is an OCG coloring of G∗ if and only
if f is a graph coloring of G. �

Proof: This lemma can be proved by Definition 2.1 and Definition 4.5 directly. �
We also define the oriented global color property on OCG:

Definition 4.6: (OrientedGlobal Color Propertyσ)Given anOCG G∗ and a coloring
f , the color of u satisfies oriented global color property σ of G∗, denoted by u.color |=
σ(G∗), if u.color = min{c |c ∈ N, c <

⋃
v∈nbr−(u) v.color}. �

Based on Definition 4.6 and Lemma 4.2, our problem (Definition 4.2) is equivalent
to maintaining the oriented global color property for all vertices in the OCG. For
simplicity, we call theOCG coloring f ofG∗ in which u.color |= σ(G∗) for all u ∈ V(G∗)
as global oriented coloring of G∗ and denote it by Σ(G∗). Our aim is to maintain the
global oriented coloring Σ(G∗) when G∗ is dynamically updated.
Example 4.2: Consider the graph G in Fig. 4.1 (a), the corresponding OCG G∗ of G is
shown in Fig. 4.1 (b). In G∗, the direction of an edge is decided by the total order ≺. For
example, as v5 ≺ v0, we create a directed edge <v5,v0> in G∗. In Fig. 4.1 (b), we also
show Σ(G∗). The color of each vertex is shown in the parentheses near the vertex. It is
obvious that the color of each vertex in Σ(G∗) also satisfies the global color property of

9

(1)

v1

v2
v4

v0

(0)

(1)

(0)

(1)

v9

v9

v9

v9 v9

v5

v6

v7

v8

v9

v10

v11

v3

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(0)

(1)

(1)

(0)

(0)

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(0)

(1)

(1)

(0)

v1

v0

v2 v4

v3

v5

v6

v7

v8

v9

v10

v11

(a) G

(0) v1

v2

v4

v0

v3

v5 v7

v8

v6 v9

(1)

(2)

(1)

(3)

(0)

(0)

(1)

(0)

(1)

v1

v2
v4

v0

(0)

v5

v6

v7

v8

v9

v10

v11

v3

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(0)

(1)

(1)

(0)

(b) G∗

Figure 4.1: Oriented Coloring Graph
G. �

Given the OCG G∗, when an edge <u, v> is inserted/deleted, we aim to compute
Σ(G∗± <u, v>) by recoloring the vertices whose colors in Σ(G∗) violate σ(G∗±<u, v>).
Before showing how to maintain Σ(G∗) when G∗ is updated, we first introduce the
following lemma to reduce the scope of vertices to be recolored:
Lemma 4.3: Given an OCG G∗ and Σ(G∗), when an edge <u, v> is inserted/deleted,
for a vertex w ∈ V(G∗), w.color(Σ(G∗)) = w.color(Σ(G∗± <u, v>)) if w ≺ u in both G∗

and G∗±<u, v>. �

Proof: Based on Definition 4.2, Σ(G∗) and Σ(G∗± <u, v>) is the same as the coloring
generated by Global on G∗ and G∗± <u, v> respectively. Since w ≺ u in both G∗ and
G∗±<u, v>, which means the coloring order for the vertex w and the vertex colored
before w are the same for Global on G∗ and G∗± <u, v>. The lemma holds. �

According to Lemma 4.3, the colors of the vertices which always dominate u before
and after the update keep the same in Σ(G∗) and Σ(G∗± <u, v>). Thus, these vertices
do not need to be recolored. However, the colors of other vertices in Σ(G∗)may violate
σ(G∗±<u, v>). To maintain the oriented global color property, we recolor the vertices
in G∗±<u, v> using the following equation:

fnew(w) ← min{c |c ∈ N, c < ∪x∈nbr−(w) fold(x)} (4.1)

where fnew and fold are the graph colorings before and after the recoloring of w respec-
tively. Here, for brevity, although it is possible that two incident vertices have the same
color in fnew (fold), we still call fnew (fold) as a graph coloring. Based on Eq. 4.1, we
have:
Lemma 4.4: For a given G∗ and Σ(G∗), when an edge <u, v> is inserted/deleted, the
coloring f when Eq. 4.1 converges for all vertices w ∈ G∗ is Σ(G∗±<u, v>). �

Proof: We can prove this by contradiction. If the coloring is not Σ(G∗±)<u, v>, which
means there exists a vertex whose color violates σ(G∗±<u, v>). This is contradicts with
the given condition that Eq. 4.1 converges. Thus, the lemma holds. �

According to Lemma 4.4, we can obtain Σ(G∗±<u, v>) by iteratively recoloring
the vertices whose colors violate σ(G∗±<u, v>). The remaining problem is how to do
this efficiently. Lemma 4.3 reduces the scope of vertices to be recolored. However,
there are still a large number of vertices to be considered. Below, we introduce a color
propagation mechanism on the OCG G∗.
Color Propagation by the CAN Step. According to Eq. 4.1, a vertex w needs to be
recolored only if one of its in-neighbors changes its color. Therefore, when a vertex
w changes its color, we only need to notify its out-neighbors as the candidates to be
recolored. We do this using a CAN step with three operators CC, AC, and NC.
Definition 4.7: (Operator CC)Given an OCG G∗ and a vertex u in G∗, the CC operator

10

Collects the Colors C of u’s in-neighbors, i.e., it computes C = {⋃v∈nbr−(u) v.color}.
�

Definition 4.8: (Operator AC) Given an OCG G∗, a vertex u in G∗, and a set of colors
C, the AC operator Assigns the Color of u to be the smallest color not in C. It returns
true if the color of u changes and returns false otherwise. �

Definition 4.9: (Operator NC) Given an OCG G∗, a vertex u in G∗, and a boolean
indicator b, the NC operator Notifies the out-neighbors of u to reassign their Colors if
b is true. �

A CAN step is defined based on the above three operators:
Definition 4.10: (A CAN Step) Given an OCG G∗ and a vertex u in G∗, a CAN step
performs CC, AC and NC on u sequentially. �

According to Lemma 4.1, we can guarantee that the color propagation using the
CAN steps will not result in propagation loops.
The Seed Vertices Selection. To start the color propagation using the CAN step, we
first need to determine a set of seed vertices. It is worth noting that when an edge <u, v>
is inserted/deleted, it is not enough to just consider u and v as the seed vertices. This is
because after <u, v> is inserted/deleted, the degree of u and v will change. As the result,
the domination relation between u (v) and their neighbors will change. Consequently,
these vertices whose domination relation with respect to u (v) are changed may also
violate σ(G∗±<u, v>) and thus need to be considered as the seed vertices as well.
Specifically, we use the following two lemmas to determine the set of seed vertices for
edge insertion and deletion respectively.
Lemma 4.5: Given an OCG G∗, after inserting an edge <u, v>, it is adequate to
consider {{u, v} ∪ Iu ∪ Iv} as seed vertices to compute Σ(G∗+<u, v>), where Iu =
nbr−(u,G∗) ∩ nbr+(u,G∗+<u, v>) and Iv = nbr−(v,G∗) ∩ nbr+(v,G∗+<u, v>). �

Proof: We can prove this by contradiction. Suppose that it is inadequate to consider
{{u, v} ∪ Iu ∪ Iv} as seed vertices to compute Σ(G∗+<u, v>), which means there exists a
vertex w < {{u, v} ∪ Iu ∪ Iv} and w.color(Σ(G∗)) , w.color(Σ(G∗+<u, v>)), but it is not
notified by a CAN step during the color propagation procedure. According to Eq. 4.1,
the vertices in {{u, v} ∪ Iu ∪ Iv} lead to the color propagation as their in-neighbor
are changed in Σ(G∗+<u, v>). Based on the definition of CAN step, a vertex is not
notified iff the colors of its in-neighbors are not changed during the propagation. As
w is not notified during the color propagation procedure, we can derive that for all
the in-neighbors of w, their colors are the same in Σ(G∗) and Σ(G∗+<u, v>). Then we
can derive that the colors of w’s in-neighbors in Σ(G∗) and Σ(G∗+<u, v>) are the same
but the color of w in Σ(G∗) and Σ(G∗+<u, v>) are different, which contradicts with
Definition 4.6. Thus, the lemma holds. �

Lemma 4.6: Given an OCG G∗, after deleting an edge <u, v>, it is adequate to
consider {{u, v} ∪ Du ∪ Dv} as seed vertices to compute Σ(G∗−<u, v>), where Du =

nbr+(u,G∗) ∩ nbr−(u,G∗−<u, v>) and Dv = nbr+(v,G∗) ∩ nbr−(v,G∗−<u, v>). �

Proof: This lemma can be proved similarly as Lemma 4.5. �
With the seed vertices and the color propagation mechanism using the CAN step,

we are ready to design our algorithm to maintain Σ(G∗) after edge insertion/deletion.
Algorithm Design. Our algorithm DC-Orient to maintain Σ(G∗) is shown in Algo-
rithm 3. It contains two main procedures, namely, DC-Orient-Ins and DC-Orient-Del,
to handle the edge insertion and deletion respectively. Both DC-Orient-Ins and DC-

11

Algorithm 3 DC-Orient(OCG G∗)
1: Procedure DC-Orient-Ins(OCG G∗,Edge<u, v>)
2: Queue q← ∅;
3: S← OCG-Ins(G∗,<u, v>) (Algorithm 4);
4: for each w ∈ S do
5: q.push(w);
6: CAN (G∗, q);

7: Procedure DC-Orient-Del(OCG G∗,Edge<u, v>)
8: Queue q← ∅;
9: S← OCG-Del(G∗,<u, v>) (Algorithm 4);
10: for each w ∈ S do
11: q.push(w);
12: CAN(G∗, q);

13: Procedure CAN(OCG G∗,Queue q)
14: while q , ∅ do
15: u← q.pop();
16: C← CollectColor(u); //line 16-18 is a CAN step for u
17: b← AssignColor(u,C);
18: NotifyColor(u, b, q);

19: Procedure CollectColor(Vertex u) //the CC operator
20: C← ∅;
21: for each v ∈ nbr−(u) do
22: C← C ∪ {v.color};
23: return C;

24: Procedure AssignColor(Vertex u,Set C) //the AC operator
25: C← {0, 1, . . . , deg(u)};
26: cnew ← min{c |c ∈ C, c < C};
27: if (cnew , u.color)
28: u.color← cnew; return true;
29: else return false;

30: Procedure NotifyColor(Vertex u,Bool b,Queue q) //the NC operator
31: if (b = true) then
32: for each v ∈ nbr+(u) do
33: if v < q then q.push(v);

Orient-Del maintain a queue q to store the candidate vertices that need to be recolored
(line 2/line 8). When an edge <u, v> is inserted/deleted, DC-Orient-Ins/DC-Orient-Del
first invokes OCG-Ins/OCG-Del (introduced in Algorithm 4) to maintain the OCG G∗

and obtain the seed vertices in Lemma 4.5/Lemma 4.6 (line 3/line 9). It pushes these
vertices into q (line 4-5/line 10-11), and then invokes procedure CAN to iteratively
recolor vertices and conduct color propagation by using the CAN step (line 6/line 12).

Procedure CAN iteratively processes the CAN step (line 16-18) and maintains the
candidate vertices to be recolored in q. The recoloring procedure terminates when there
is no vertex in q (line 14). In a certain CAN step, it conducts the CC operator (line 16),
the AC operator (line 17), and the NC operator (line 18) sequentially.
• The CC operator is implemented as procedure CollectColor(u) (line 19-23). It simply
collects the set of colors C from the in-neighbors of u and returns C as defined in
Definition 4.7.

• The AC operator is implemented as procedure AssignColor(u,C) (line 24-29). Ac-
cording to Definition 4.8, it first computes the smallest color cnew which is not in C
(line 25-26). If cnew , u.color, it assigns cnew to u and returns true; otherwise it just

12

Algorithm 4 OCG-Maintain(OCG G∗)
1: Procedure OCG-Ins(OCG G∗,Edge<u, v>)
2: S← ∅; S← S ∪ u; S← S ∪ v;
3: add edge <u, v> in G∗;
4: for each u′ ∈ nbr−(u) do
5: if u ≺ u′ then
6: remove edge <u′, u> and add edge <u, u′> in G∗;
7: S← S ∪ u′;
8: process line 4-7 by replacing u with v and u′ with v′;
9: return S;

10: Procedure OCG-Del(OCG G∗,Edge<u, v>)
11: S← ∅; S← S ∪ u; S← S ∪ v;
12: remove edge <u, v> in G∗;
13: for each u′ ∈ nbr+(u) do
14: if u′ ≺ u then
15: remove edge <u, u′> and add edge <u′, u> in G∗;
16: S← S ∪ u′;
17: process line 13-16 by replacing u with v and u′ with v′;
18: return S;

returns false (line 27-29).
• The NC operator is implemented as procedure NotifyColor(u, b, q). Here b indicates
whether the color of vertex u changes, and q is the queue. According to Definition 4.9,
if the color of u changes, the procedure notifies all the out-neighbors of u to recolor
by pushing them into q if they have not been in q (line 31-33).

OCG Maintenance. OCG-Maintain (Algorithm 4) maintains the OCG G∗ and returns
the vertices defined in Lemma 4.5/Lemma 4.6. It contains two procedures, namely
OCG-Ins and OCG-Del, to handle the edge insertion and deletion respectively.

OCG-Ins uses S to store the vertices in Lemma 4.5. When an edge <u, v> is inserted,
OCG-Ins stores u and v in S based on Lemma 4.5 (line 2), and inserts edge <u, v> into
G∗ (line 3). Since the degree of vertices u and v increases by 1, the direction of edges
involving u or v may change based on Definition 4.3. OCG-Ins adjusts the direction of
edges involving u or v in line 4-8. Take the vertex u as an example. Since the degree
of u increases, it is possible that the vertices which belong to nbr−(u) before inserting
<u, v> belong to nbr+(u) after the insertion. OCG-Ins visits each vertex u′ ∈ nbr−(u) to
check the domination relation between u and u′. If their domination relation changes
after the edge insertion (line 5), OCG-Ins adjusts the direction of the edge (line 6) and
adds u′ in S (line 7). Finally, OCG-Ins returns S in line 9.

Similar to OCG-Ins, S is used to store the vertices in Lemma 4.6 in OCG-Del. When
an edge <u, v> is deleted, OCG-Del stores u and v in S based on Lemma 4.6 (line 11)
and deletes the edge <u, v> from G∗ (line 12). After that, it adjusts the direction of
edges involving u or v and adds the corresponding vertices to S according to Lemma 4.6
(line 13-17). Finally, OCG-Del returns S in line 18.
Example 4.3: Reconsider the OCG G∗ in Fig. 4.1 (b) and suppose that an edge <v5, v8>
is inserted. OCG-Ins first inserts <v5, v8> into G∗. After the insertion of <v5, v8>, the
degree of v8 increases from 4 to 5. As a result, the domination relationship between
v6 and v8 is changed. Therefore, OCG-Ins changes <v6, v8> to <v8, v6> in Fig. 4.2
(a). A similar change is also applied on the directed edge <v7,v8>. The changed edges
are shown in red lines in Fig. 4.2 (a). OCG-Ins returns the set {v5, v8, v6, v7} based on
Lemma 4.5.

Fig. 4.2 (b) shows a CAN step on vertex v8. It first collects the color set C of v8’s

13

(0) v1

v2

v4

v0

v3

v5 v7

v8

v6 v9

(1)

(2)

(1)

(3)

(0)

(0)

(1)

(0)

(1)

v1

v2
v4

v0

(0)

v5

v6

v7

v8

v9

v10

v11

v3

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(0)

(1)

(1)

(0)

(a) OCG maintenance

v1

v2

v4

v0

v3

v5 v7

v8

v6 v9

(0)

(2)

(1)

(3)

(0)

(0)

(1)

(0)

(1)

NC

N
C

v1

v2
v4

v0

(0)

v5

v6

v7

v8

v9

v10

v11

v3

(2)

(1)

(3)

(4)

(5)

(2)

(1)

(1)

(1)

(1)

(0)

NC

CC

(b) A CAN step on v8

Figure 4.2: Insertion of edge <v5, v8>

colorStep
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

q

Init 3 4 5 1 2 0 2 1 0 1 0 1 v5, v8, v6, v7
1.CAN(v5) 3 4 5 1 2 0 2 1 0 1 0 1 v8, v6, v7
2.CAN(v8) 3 4 5 1 2 0 2 1 1 1 0 1 v6, v7, v9, v11
3.CAN(v6) 3 4 5 1 2 0 2 1 1 1 0 1 v7, v9, v11
4.CAN(v7) 3 4 5 1 2 0 2 3 1 1 0 1 v9, v11
5.CAN(v9) 3 4 5 1 2 0 2 3 1 0 0 1 v11, v10
6.CAN(v11) 3 4 5 1 2 0 2 3 1 0 0 2 v10
7.CAN(v10) 3 4 5 1 2 0 2 3 1 0 1 1 v11
8.CAN(v11) 3 4 5 1 2 0 2 3 1 0 1 0 ∅

Figure 4.3: Steps of DC-Orient for inserting edge <v5, v8>

in-neighbors by CC operator. v5 is the only in-neighbors of v8 and its color is 0, thus
C = {0}. As the smallest color not in C is 1, AC changes the color of v8 from 0 to 1
and returns the true indicator for NC. NC notifies the set of out-neighbors v6, v7, v9, v11
of v8 by pushing them into q. And they will be recolored in the following CAN steps.
Such a process terminates when q is empty.

The recoloring procedure of DC-Orient-Ins when <v5, v8> is inserted is shown in
Fig. 4.3. For each step, we show the vertex on which the CAN step processes, the color
of each vertex, and the vertices in q after the CAN step. For example, at step 2, after
the CAN step for v8, the color of v8 is changed from 0 to 1 and two new vertices v9 and
v11 are pushed into q. DC-Orient-Ins finishes the recoloring procedure in 8 steps. The
color of each vertex satisfies the oriented global color property after the process. �

AlgorithmAnalysis. The correctness ofAlgorithm3 is shown in the following theorem:
Theorem 4.1: For a givenOCG G∗ and Σ(G∗), when an edge <u, v> is inserted/deleted,
the coloring returned by Algorithm 3 is Σ(G∗±<u, v>). �

Proof: We consider the edge insertion first. When an edge <u, v> is inserted, in line
3 of Algorithm 3, OCG-Ins can correctly maintain G∗ and return the vertices based
on Lemma 4.5. In line 16-18 of Algorithm 3, we implement a CAN step. As a CAN
step can recolor a vertex based on Eq. 4.1 and in line 14-15 we iteratively process
the vertices whose colors may violate σ(G∗+<u, v>) until there exists no such kind
of vertices. According to Lemma 4.4, when the recoloring procedure converges, the
coloring is Σ(G∗+<u, v>). Therefore, when an edge <u, v> is inserted, DC-Orient-Ins
can return Σ(G∗+<u, v>). A similar derivation also holds for the edge deletion. Thus,
the theorem holds. �

Since Σ(G∗) is only dependent on the topology of graph G∗, it is easy to see that
Algorithm 3 can guarantee the coloring consistency.

The time complex of Algorithm 3 is shown below:
Theorem 4.2: Let no be the number of vertices pushed in q in Algorithm 3, the time
complexity of Algorithm 3 to handle an edge insertion/deletion is O(no · dmax). �

14

Proof: Let’s consider the edge insertion first. For an edge insertion, DC-Orient-Ins first
invokes OCG-Ins to maintain G∗ (line 3), which can be finished in O(dmax). In the
recoloring procedure (line 6), we push/pop no vertices into/from q in line 18/15 and the
push/pop operation for a queue can be finished in O(1). Thus, the time complex for this
part is O(no). For each vertex u in q, both CollectColor (line 16) and AssignColor (line
17) can be finished in O(dmax). Thus, the time for this part is O(no · dmax). Therefore,
the time complex for an edge insertion is O(no ·dmax). The edge deletion can be proved
similarly as edge insertion. Thus, the theorem holds. �

4.3 Prioritized Dynamic Graph Coloring
As shown in Theorem 4.2, the time complexity of DC-Orient-Ins (DC-Orient-Del) de-
pends on the number of vertices pushed in q. However, such a number is not bounded
in Algorithm 3 since a vertex may be pushed into q for multiple times, we call it the
out-of-order NC problem.
Out-of-Order NC Problem. For a given OCG G∗, when an edge <u, v> is in-
serted/deleted, the reason that a vertex w may be pushed into q multiple times in
Algorithm 3 is that the colors of multiple in-neighbors of w are changed, which leads
to w to be pushed into q repeatedly by the NC operator. To illustrate this, consider the
following scenario: let w1 and w2 be two in-neighbors of w. In Algorithm 3, assume
that the color of w1 is changed at a CAN step t1, then w will be pushed into q as a result
of NC(w1). After that w is popped out from q and recolored at a CAN step t2. However,
the color of w2 is also changed at a CAN step t3 after t2, then w is pushed into q again
as a result of NC(w2).
Example 4.4: The out-of-order NC problem exists in the example in Fig. 4.3. When
an edge <v5, v8> is inserted in the OCG G∗ shown in Fig. 4.1 (b), it uses 8 CAN steps to
maintain Σ(G∗). Vertex v11 has two in-neighbors v8 and v10. At the CAN step 2, vertex
v8 is recolored and notifies v11 to be pushed into q. At the CAN step 6, vertex v11 is
popped out from q. However, at the CAN step 7, vertex v10 is recolored and notifies v11
to be pushed into q again. As a result, v11 is pushed into q twice. �

Prioritized Dynamic Graph Coloring. From the above discussion, we can see the
out-of-order NC problem is caused by the situation in which a vertex is recolored before
one of its in-neighbors. For example, in Example 4.4, the vertex v11 is recolored at
step 6 while its in-neighbors v10 is recolored at step 7 that causes v11 to be recolored
again. To resolve this problem, we need to postpone the recoloring of a vertex until
all its candidate in-neighbors have been recolored. In other words, we need to find an
appropriate order of vertices to be recolored such that when recoloring a certain vertex,
all its candidate in-neighbors have been recolored. Note that the OCG G∗ is a directed
acyclic graph (DAG) according to Lemma 4.1. Therefore, if we follow a topological
order of vertices in the DAG to recolor the vertices, the above condition can always be
satisfied. As a result, the out-of-order NC problem can be completely avoided.
Algorithm Design. We can obtain the topological order by assigning each vertex a
priority in the queue q. Since direction of edges in G∗ are assigned based on the ≺
relation, we can simply use the ≺ relation to define the vertex priority as follows.
Definition 4.11: (Vertex Priority) Given two vertices u and v, if u ≺ v, then u has a
higher priority than v in q. �

The prioritized dynamic graph coloring algorithm is shown in Algorithm 5, which
contains two procedures, namely, DC-Pri-Ins and DC-Pri-Del, to handle edge insertion

15

Algorithm 5 DC-Pri(OCG G∗)
1: Procedure DC-Pri-Ins(OCG G∗,Edge<u, v>)
2: PriorityQueue q← ∅;
3: S← OCG-Ins(G∗,<u, v>); (Algorithm 4)
4: for each w ∈ S do q.push(w);
5: CAN(G∗, q); (Algorithm 3)

6: Procedure DC-Pri-Del(OCG G∗,Edge<u, v>)
7: PriorityQueue q← ∅;
8: S← OCG-Del(G∗,<u, v>); (Algorithm 4)
9: for each w ∈ S do q.push(w);
10: CAN(G∗, q); (Algorithm 3)

colorStep
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

q

Init 3 4 5 1 2 0 2 1 0 1 0 1 v5, v8, v6, v7
1.CAN(v5) 3 4 5 1 2 0 2 1 0 1 0 1 v8, v6, v7
2.CAN(v8) 3 4 5 1 2 0 2 1 1 1 0 1 v6, v7, v9, v11
3.CAN(v6) 3 4 5 1 2 0 2 1 1 1 0 1 v7, v9, v11
4.CAN(v7) 3 4 5 1 2 0 2 3 1 1 0 1 v9, v11
5.CAN(v9) 3 4 5 1 2 0 2 3 1 0 0 1 v10, v11
6.CAN(v10) 3 4 5 1 2 0 2 3 1 0 1 1 v11
7.CAN(v11) 3 4 5 1 2 0 2 3 1 0 1 0 ∅

Figure 4.4: Steps of DC-Pri for inserting edge <v5, v8>

and edge deletion respectively. DC-Pri-Ins (DC-Pri-Del) shares a similar framework as
DC-Orient-Ins (DC-Orient-Del) except that the queue is replaced with a priority queue
at line 2 (line 7). Here, the priority of vertices in the priority queue is based on
Definition 4.11.
Example 4.5: We still use the OCG G∗ in Fig. 4.1 (b) to demonstrate the process
of DC-Pri. Suppose that the edge <v5, v8> is inserted, the corresponding G∗ after the
insertion of <v5, v8> is the same as that in Example 4.3, which is shown in Fig. 4.2 (a).
When <v5, v8> is inserted, the recoloring procedure of DC-Pri-Ins is shown in Fig. 4.4.
For each step, we show the vertex on which the CAN step process, the color of each
vertex, and the vertices in the priority queue q after the CAN step. Due to the vertex
priority, the vertex v11 is recolored after its in-neighbor v10. Therefore, v11 is only
recolored once. As a result, DC-Pri-Ins finishes the recoloring procedure in 7 steps
while DC-Orient-Ins finishes the procedure in 8 steps. �

AlgorithmAnalysis. The correctness ofAlgorithm5 is shown in the following theorem:
Theorem 4.3: For a givenOCG G∗ and Σ(G∗), when an edge <u, v> is inserted/deleted,
the coloring returned by Algorithm 5 is Σ(G∗±<u, v>). �

Proof: We prove this theorem by proving that for a vertex w which are pushed into q
multiple times in DC-Orient, if we postpone the recoloring of w until all its candidate
in-neighbors are recolored, the correctness of DC-Orient still holds. Based on Defini-
tion 4.6, the multiple recolorings of w do not affect the colors of its in-neighbors in
DC-Orient. Thus, if we postpone the recoloring of w in DC-Orient, for the in-neighbors
of w, we can still obtain their colors in Σ(G∗± <u, v>) correctly. As a result, we can
still obtain the color of w in Σ(G∗± <u, v>) correctly if we postpone its recoloring. We
can prove that the colors of w’s out-neighbors are not affected by the postponement
similarly. Thus, the theorem holds. �

Because of the introduction of vertex priority, we have:
Theorem 4.4: To handle a certain edge insertion/deletion, each vertex is recolored at

16

most once in Algorithm 5. �

Proof: According to Lemma 4.5, Lemma 4.6 and Definition 4.11, for a vertex u,
the colors of its in-neighbors have been decided before recoloring its color. Besides,
according to Eq. 4.1, the recoloring of u do not affect its in-neighbors colors. Thus, the
colors of u’s in-neighbors will not be changed after the color reassignment of u, which
means u will not pushed into q again after its recoloring. Thus, the lemma holds. �

We have the following theorem on the number of vertices processed by Algorithm 5:
Theorem 4.5: For a given OCG G∗, when an edge <u, v> is inserted/deleted, let ∆
be the set of vertices whose colors in Σ(G∗) and Σ(G∗±<u, v>) are different, then the
number of vertices pushed in q by Algorithm 5 can be bounded by:

n∆ = | ∪u∈∆ nbr(u) ∪ ∆| (4.2)
Obviously n∆ is only related to ∆. �

Proof: Let η be the number of vertices pushed in q. According to Theorem 4.3, the
vertices in ∆ are pushed into q in Algorithm 5. Besides, based on Definition 4.10, the
neighbors of the vertex in ∆ are pushed into q by operator NC. Since in Algorithm 5,
we can obtain the correct color for each vertex with recoloring it only once, thus, the
vertices pushed into q are just the vertices in ∆ together with their out-neighbors, i.e.,
η = | ∪u∈∆ nbr+(u) ∪ ∆|. It is obvious that η ≤ n∆. Thus, the lemma holds. �

The time complexity of Algorithm 5 is shown below:
Theorem 4.6: The time complexity of Algorithm 5 to handle an edge insertion/deletion
is O(n∆ · (dmax + log(n∆))). �

Proof: Let’s consider the edge insertion first. Let η be the number of vertices pushed
into q. For an edge insertion, DC-Orient-Ins first invokes OCG-Ins to maintain G∗ (line
3), which can be finished in O(dmax). In the recoloring procedure (line 5), we push/pop
η vertices into/from q and the push/pop operation for a priority queue can be finished
in O(1)/O(log η) if we implement the priority queue as the Fibonacci heap. Thus, the
time complex for this part is O(η · log η). For each vertex u in q, both CollectColor and
AssignColor can be finished in O(dmax). Thus, the time for this part is O(η · dmax).
Since η can be bounded by n∆ based on Theorem 4.5, the time complexity of DC-Pri-Ins
isO(n∆(dmax+ log(n∆))). The edge deletion can be proved similarly. Thus, the theorem
holds. �

Remark. Comparing to Theorem 4.2, n∆ in Theorem 4.6 can be well bounded by the
number of vertices in ∆ and their neighbors according to Theorem 4.5. Note that ∆ is
the set of vertices whose colors in Σ(G∗) and Σ(G∗±<u, v>) are different, not just u or
v. Consequently, Algorithm 5 only explores vertices within the 2-hop neighbors of the
vertices in ∆. On the other hand, no in Theorem 4.2 cannot be bounded. According to
our experiments in Section 6, we have no >> n∆ in practice. Therefore, Algorithm 5 is
a significant improvement of Algorithm 3. �

5 Early Pruning
In this section, we aim to further improve the performance of our algorithm using early
pruning strategies.

5.1 Solution Overview
In Theorem 4.6, the time complexity of Algorithm 5 depends on two factors: n∆ and
dmax. Although n∆ can be well bounded according to Theorem 4.5, dmax can be

17

large. In this section, we try to eliminate the factor dmax from the time complexity and
further reduce the factor n∆. Below, we show why the factor dmax is involved in the
time complexity of DC-Pri. Note that in DC-Pri, two types of vertices are pushed in the
priority queue q:
• Type-1: the set of vertices whose colors in Σ(G∗±<u, v>) and Σ(G∗) are different,
i.e., the vertices in ∆.

• Type-2: the set of vertices that are (1) out-neighbors of the type-1 vertices; and (2)
not type-1 vertices.

For every vertex w in q, we will process w using the CAN step. As a result, for each
type-2 vertex w, we need to collect all its in-neighbors by the CC operator because
we do not know whether w is a type-2 vertex in CC. Since a type-2 vertex is a 1-hop
neighbor of a type-1 vertex. This indicates that we need to explore the 2-hop neighbors
of some type-1 vertices, which results in the factor dmax in the time complexity. Based
on this, to eliminate the dmax factor, we should avoid exploring neighbors of type-2
vertices. Below, we revisit the three operators to find possible early pruning strategies.
Revisit the CC Operator. In CC, we need to visit all the in-neighbors of a vertex
u because we do not know whether u is a type-2 vertex. Note that u’s in-neighbors’
colors uniquely determine the color of u. Therefore, if we can maintain some useful
information of u’s in-neighbors’ colors based on which whether u is a type-2 vertex can
be quickly determined, we can avoid exploring the in-neighbors of u if u is a type-2
vertex.
Revisit the AC Operator. In AC, we compute a minimum possible color for a vertex u
by visiting all the colors in a set C. If we know a priori whether u is a type-2 vertex, we
can avoid the color computation for those type-2 vertices.
Revisit the NC Operator. In NC, for a type-1 vertex u, we need to push all the out-
neighbors of v into q. If we can find some conditions to quickly determine whether the
color change of u will cause the color change of v, we can prune v by not pushing it
into q, and thus reduce the number of the candidates.
The General Ideas. Based on the above analysis, we design two early pruning strate-
gies, namely, early color computation and notification pruning. The former targets on
eliminating dmax factor by improving the CC and AC operators, and the latter targets
on reducing the n∆ factor by improving the NC operator.
• Early Color Computation. The general idea of early color computation is to deter-
mine whether a vertex u is a type-2 vertex in CC rather than in AC by maintaining
some summary information about u’s in-neighbors’ colors. To do this, we introduce
a Dynamic In-Neighbor Colors Index (DINC-Index). With the index, we can deter-
mine whether u is a type-2 vertex in O(1) time. The DINC-Index has linear space
consumption and can be maintained efficiently. With early color computation, we
can eliminate the dmax factor in the time complexity (Theorem 4.6) and completely
avoid exploring the neighbors of type-2 vertices.

• Notification Pruning. The early color computation effectively reduces the cost spent
on exploring the neighbors of type-2 vertices. However, it cannot reduce the number
of type-2 vertices. To handle this, we further propose notification pruning, which
aims to reduce the number of type-2 vertices by optimizing the NC operator. Briefly
speaking, based on some effective pruning rules, when a vertex changes its color, we
only need to notify a subset of its out-neighbors rather than the whole out-neighbors
to be added into q. With notification pruning, we can reduce the n∆ factor in the time
complexity (Theorem 4.6).

18

Algorithm 6 DC∗(OCG G∗)
1: Procedure DC∗-Ins(OCG G∗,Edge<u, v>)
2: PriorityQueue q← ∅;
3: S← DINC-Index-Ins(G∗, I, <u, v>); (Algorithm 7)
4: for each w ∈ S do q.push(w);
5: CAN∗(G∗, q,I);

6: Procedure DC∗-Del(OCG G∗,Edge<u, v>)
7: PriorityQueue q← ∅;
8: S← DINC-Index-Del(G∗, I, <u, v>); (Algorithm 7)
9: for each w ∈ S do q.push(w);
10: CAN∗(G∗, q,I);

11: Procedure CAN∗(OCG G∗,PriorityQueue q, DINC-Index I)
12: while q , ∅ do
13: u← q.pop();
14: cnew ← CollectColor∗(u); (Algorithm 7)
15: if cnew , ∅ then
16: cold ← u.color;
17: AssignColor∗(I, u, cnew); (Algorithm 7)
18: NotifyColor∗(u, cold, q); (Algorithm 9)

Algorithm Framework. Our algorithm DC∗ is shown in Algorithm 6, which follows
a similar framework of Algorithm 5. It contains two main procedures DC∗-Ins and
DC∗-Del to handle edge insertion and deletion respectively. In DC∗-Ins (line 1-5), when
an edge <u, v> is inserted into G∗, we first initialize q to be ∅. In line 3, we maintain the
OCG G∗ as well as the DINC-Index I. The details of DINC-Index and its maintenance
will be introduced in Section 5.2. Line 4 pushes all seed vertices into q and line 5
recolors the vertices using color propagation by invoking a new algorithm CAN∗ which
is the optimizedCAN algorithm using early pruning. TheDC∗-Del procedure (line 6-10)
follows a similar framework as DC∗-Ins.

The CAN∗ algorithm is shown in line 11-18. It follows a similar framework as
CAN but uses the improved CC, AC, and NC, which are implemented as CollectColor∗,
AssignColor∗, and NotifyColor∗ respectively. Here, for each vertex u in q, CollectColor∗
returns the new color of u if it changes, and ∅ otherwise (line 14). And AssignColor∗ and
NotifyColor∗ will be invoked only if the color of u changes (line 15-18). ForNotifyColor∗,
it takes both the old color and the new color of u to determine whether an out-neighbor
of u needs to be pushed into q (line 16 and line 18).

5.2 Early Color Computation
In this subsection, we discuss how to improveCC and AC using early color computation.
As shown in Section 5.1, we design a Dynamic In-Neighbor Colors Index (DINC-Index)
to maintain some summary information about the in-neighbors’ colors for each vertex.
Dynamic In-Neighbor Colors Index (DINC-Index). A DINC-Index I contains the
following two components:
• Color Counts I.cntu(c): the number of u’s in-neighbors whose color is c for each
vertex u ∈ V(G∗) and color c ≤ deg−(u).

• Recolor Candidates I.Cu: the set of colors that are smaller than u.color and not
assigned to any in-neighbor of u.
The rationale behind the DINC-Index is as follows. First, it is adequate to maintain

the color counts for c ≤ deg−(u) in I.cntu(c) for our goal, which is based on the

19

following lemma:
Lemma 5.1: Given an OCG G∗ and the graph coloring Σ(G∗), for any vertex u, we
have u.color ≤ deg−(u). �

Proof: This lemma can be proved by Definition 4.6 directly. �
According to Lemma 5.1, we can uniquely determine the color of u using I.cntu(c)

for all c ≤ deg−(u). Therefore, we do not need to maintain the color counts for those
colors c > deg−(u). This property is the key to bound the space consumption of the
DINC-Index. Based on Lemma 5.1 and the definition of the DINC-Index, we can easily
derive the following equation:

I.Cu = {c |c < u.color,I.cntu(c) = 0} (5.1)

It is easy to derive the following lemma regarding I.Cu .
Lemma 5.2: Given an OCG G∗, a graph coloring is Σ(G∗) if and only if I.Cu = ∅ for
all u ∈ V(G∗). �

Proof: This lemma can be proved by Definition 4.6 and Eq. 5.1 directly. �
Based on Lemma 5.2, we can easily derive the following lemma.

Lemma 5.3: Given an OCG G∗, after an edge insertion/deletion, a vertex u changes its
color in a certain CAN step if and only if either I.Cu , ∅ or I.cntu(u.color) , 0.
(1) If I.Cu , ∅, the new color of u can be computed as

u.color = min{c |c ∈ I.Cu};
(2) If I.cntu(u.color) , 0, the new color of u can be computed as

u.color = min{c |c ∈ N,I.cntu(c) = 0}. �

Proof: Based on the definition of DINC-Index, if I.Cu , ∅, then the colors in I.Cu
are the colors which are assigned to u’s in-neighbor before the update but not assigned
to any in-neighbor of u after the update. Based on Definition 4.6, u has to change its
color to the minimum color in I.Cu; if I.Cu = ∅ but I.cntu(u.color) , 0, which means
all the colors that are not bigger than u.color are assigned to u’s in-neighbors after the
update. Then, we have to reassign u’s color based on Definition 4.6; Otherwise, based
on Definition 4.6, the color of u satisfies σ(G∗±<u, v>) and its color does not need to
change. Thus, the lemma holds. �

Based on Lemma 5.3, if we canmaintain theDINC-Index, we can determine whether
a vertex u will change its color in a CAN step in O(1) time. And if u will change its
color, we can compute the new color of u using I.Cu and I.cntu . Next, we show how
to maintain the DINC-Index without affecting the overall time complexity.
The DINC-Index Maintenance. The algorithm to maintain the DINC-Index I is shown
in Algorithm 7. We first introduce two procedures Color-Ins and Color-Dec to maintain
I.cntu(c) and I.Cu by inserting and deleting a color c in the DINC-Index for vertex u.
Color-Ins is shown in line 1-4. Based on the definition of DINC-Index, we only consider
the case of c ≤ deg−(u) (line 2). In this case, we increase I.cntu(c) by 1 (line 3). As
we can guarantee that I.cntu(c) , 0, we remove c from I.Cu if c ∈ I.Cu according
to Eq. 5.1. Similarly, in Color-Dec (line 5-8), if c ≤ deg−(u) (line 6), we first decrease
I.cntu(c) by 1 (line 7), and if I.cntu(c) = 0 and c < u.color, we add c into I.Cu
according to Eq. 5.1 (line 8). Obviously, the time complexity for both Color-Ins and
Color-Dec is O(1). Below we introduce the procedures to maintain the DINC-Index I.

Procedure DINC-Index-Ins maintains the DINC-Index I and the OCG G∗ when an
edge <u, v> is inserted, which is shown in line 9-20. Line 10-15 is similar to the
procedure OCG-Maintain in Algorithm 4. The only difference is that, for each edge

20

Algorithm 7 DINC-Index Maintenance
1: Procedure Color-Ins(DINC-Index I, Vertex u, Color c)
2: if c ≤ deg−(u) then
3: I.cntu(c) ← I.cntu(c) + 1;
4: if c ∈ I.Cu then I.Cu ← I.Cu \ {c};

5: Procedure Color-Dec(DINC-Index I, Vertex u, Color c)
6: if c ≤ deg−(u) then
7: I.cntu(c) ← I.cntu(c) − 1;
8: if I.cntu(c) = 0 and c < u.color then I.Cu ← I.Cu ∪ {c};

9: Procedure DINC-Index-Ins(OCG G∗, DINC-Index I, Edge <u, v>)
10: S← ∅; S← S ∪ u; S← S ∪ v; add edge <u, v> in G∗;
11: for each u′ ∈ nbr−(u) do
12: if u ≺ u′ then
13: remove edge <u′, u> and add edge <u, u′> in G∗; S← S ∪ u′;
14: Color-Ins(I, u′, u.color); Color-Dec(I, u, u′.color);
15: process line 11-14 by replacing u with v and u′ with v′;
16: Color-Ins(I, v, u.color);
17: for each w ∈ nbr−(v) do
18: if w.color = deg−(v) then
19: Color-Ins(I, v, w.color);
20: return S;

21: Procedure DINC-Index-Del(OCG G∗, DINC-Index I, Edge <u, v>)
22: S← ∅; S← S ∪ u; S← S ∪ v; remove edge <u, v> in G∗;
23: for each u′ ∈ nbr+(u) do
24: if u′ ≺ u then
25: remove edge <u, u′> and add edge <u′, u> in G∗; S← S ∪ u′;
26: Color-Ins(I, u, u′.color); Color-Dec(I, u′, u.color);
27: process line 23-26 by replacing u with v and u′ with v′;
28: Color-Dec(I, v, u.color);
29: I.cntv(deg−(v) + 1) ← 0;
30: return S;

<u′, u> that needs to be reversed in G∗, we insert the color u.color to the DINC-Index
for u′ and delete the color u′.color from the DINC-Index for u (line 14) to maintain the
DINC-Index. In line 16, we insert u.color to the DINC-Index for v as the edge <u, v>
is inserted. Line 17-19 handles a special case: Since we only consider the colors
c ≤ deg−(v) in the DINC-Index for v, after inserting <u, v>, deg−(v) increases by 1, so
we should add all vertices in nbr−(v) whose color is deg−(v) to the DINC-Index for v.
Procedure DINC-Index-Del handles the deletion of an edge <u, v> (line 21-30). Line 22-
27 follows a similar way as line 10-15 tomaintain theOCG G∗ and adjust theDINC-Index
by considering the reversed edges. Line 28 deletes u.color from the DINC-Index for v
due to the deletion of <u, v>. In line 29, since deg−(v) decreases by 1 and we only
consider the colors c ≤ deg−(v) in I.cntv , we simply set I.cntv(deg−(v) + 1) to be 0.
Algorithm Design. The new operators CC and AC are implemented as CollectColor∗
and AssignColor∗ respectively, which are shown in Algorithm 8. In CollectColor∗
(line 1-4), according to Lemma 5.3, if I.Cu , ∅, we return min{c |c ∈ I.Cu} (line 2);
otherwise, if I.cntu(u.color) , 0, we return min{c |c ∈ N,I.cntu(c) = 0} (line 3);
otherwise, we return ∅ which indicates that the color of u is not changed after the CAN
step (line 4). In AssignColor∗ (line 5-8), we first remove the old color of u, and insert
the new color of u in the DINC-Index for each out-neighbor of u (line 6-7). We then
assign the new color to u and set I.Cu to be ∅ since u does not need to be recolored

21

Algorithm 8 Early Color Computation with DINC-Index

1: Procedure CollectColor∗(DINC-Index I, Vertex u)
2: if I.Cu , ∅ then return min{c |c ∈ I.Cu};
3: if I.cntu(u.color) , 0 then return min{c |c ∈ N,I.cntu(c) = 0};
4: return ∅;

5: Procedure AssignColor∗(DINC-Index I, Vertex u, Color cnew)
6: for each v ∈ nbr+(u) do
7: Color-Dec(I, v, u.color); Color-Ins(I, v, cnew);
8: u.color← cnew; I.Cu ← ∅;

again (line 8).
AlgorithmAnalysis. The space complexity of theDINC-Index is shown in the following
theorem:
Theorem 5.1: The space consumption of DINC-Index is O(m). �

Proof: For each vertex u, both I.cntu and I.Cu can be bounded by deg−(u), thus, the
total size of the DINC-Index is O(m). �

The time complexity for the algorithm with DINC-Index is:
Theorem 5.2: The time complexity of the algorithm with DINC-Index to handle an edge
insertion/deletion is O(n∆ · log(n∆)). �

Proof: This theorem can be proved similarly as Theorem 4.6. The only difference is
that we can determine whether a vertex u will change its color in aCAN step inO(1) time
with DINC-Index. Therefore, in a recoloring procedure of DC-Pri, we have to explore
the in-neighbors of type-2 vertices while with DINC-Index, this part of exploration can
be totally avoid in the algorithm. As a result, in the recoloring procedure of DC-Pri, the
total time for CollectColor and AssignColor can be bounded by O(n∆ · dmax) while with
DINC-Index, this part can be bounded by O(n∆). Thus, the total time complexity with
DINC-Index can be bounded by O(n∆ log(n∆)). �

Comparing Theorem 5.2 with Theorem 4.6, the factor dmax is eliminated from the
time complexity. Therefore, the algorithm with DINC-Index for early color computation
is more efficient than algorithm DC-Pri (Algorithm 5).

5.3 Notification Pruning
In this subsection, we explore pruning rules to improve the NC operator. Specifically,
when the color of a vertex u changes, for one of its out-neighbors v, we aim to find
some rules that can guarantee that the color of v is not affected by the color change of
u, and thus we do not need to push v into q.

In Fig. 5.1, we consider different cases when the color of a vertex u changes and
show how the change of u’s color affects the color of its out-neighbor v. In Fig. 5.1, the
colors of u and v before a CAN step are shown in the parentheses near the vertices. In a
CAN step, we suppose that the color of u changes. The color change of u is shown near
it. For example, in Fig. 5.1 (a), (2) → (3)means the color of u changes from 2 to 3. For
ease of presentation, we use u.old and u.color to represent the colors of u before and
after the CAN step and we use v.color to represent the color of v. We consider different
cases to show how the change of u’s color affects the color of v.

We consider different cases based on the relationship among u.old, u.color and
v.color. A direct classification criteria is based on the relation between u.color and
v.color. If u.color = v.color, then the color of v has to be reassigned as its color
conflicts with u’s. Therefore, we have the following case:

22

u

v
(3)

(2) (3)

(a) case 1

u

v
(4)

(2) (3)

(b) case 2

u

v
(4)

(3) (2)

(c) case 3

u

v
(3)

(4) (2)

(d) case 4

u

v
(3)

(2) (4)

(e) case 5

u

v
(2)

(3) (4)

(f) case 6

u

v
(2)

(4) (3)

(g) case 7

Figure 5.1: Notification Pruning

Algorithm 9 Notification Pruning
1: Procedure NotifyColor∗(Vertex u, Color cold, PriorityQueue q)
2: for each v ∈ nbr+(u) do
3: if v < q and (u.color = v.color or cold < v.color) then
4: q.push(v);

� case 1: u.color = v.color, which is shown in Fig. 5.1 (a). In this case, v has to be
recolored.

Now we consider the cases in which u.color , v.color. We first consider the cases
in which u.color < v.color, and we have the following three cases:
� case 2: u.old < u.color, which is shown in Fig. 5.1 (b). When the color of u changes

from 2 to 3, v is possible to be recolored with color 2.
� case 3: u.color < u.old < v.color, which is shown in Fig. 5.1 (c). When the color of

u changes from 3 to 2, v is possible to be recolored with color 3.
� case 4: u.old > v.color, which is shown in Fig. 5.1 (d). In this case, the color of u is

changed from 4 to 2. The color of v is 3, which means that colors 0, 1, and 2 have
been assigned to v’s other in-neighbors. Therefore, we can not find a possible
smaller color for v. As a result, the color change of u does not lead to the color
change of v in this case.

Then we consider the cases in which u.color > v.color, and we have the following
three cases:

� case 5: u.old < v.color, which is shown in Fig. 5.1 (e). When the color of u changes
from 2 to 4, v is possible to be recolored with color 2.

� case 6: v.color < u.old < u.color, which is shown in Fig. 5.1 (f). In this case, the
color of u changes from 3 to 4, and the color of v is 2. We cannot find a smaller
color for v. Therefore, the color change of u does not lead to the color change of
v.

� case 7: u.old > u.color, which is shown in Fig. 5.1 (g). In this case, the color of u
changes from 4 to 3, and the color of v is 2. We cannot find a smaller color for
v. Therefore, the color change of u does not lead to the color change of v.

Summarizing the above cases, we find that when u.color , v.color, whether the
color change of u affects the color change of v only depends on the relation between
u.old and v.color. If u.old < v.color (cases 2, 3, 5), it is possible that the color of v
changes; otherwise (cases 4, 6, 7), the color of v is not affected by the color change of u.
Therefore, we have the following three rules to determine whether v should be notified
by adding it to q.

23

Rule 1 If u.color = v.color, v should be notified for recoloring;
Rule 2 If u.color , v.color and u.old < v.color, v should be notified for recoloring;
Rule 3 If u.color , v.color and u.old > v.color, v does not need to be notified for

recoloring.
AlgorithmDesign andAnalysis. Based on the above three rules, the newNC algorithm,
which is implemented as NotifyColor∗, is shown in Algorithm 9. For all the out-
neighbors v of u (line 2), if v is not in q and v satisfies either rule 1 or rule 2 above, we
should notify v by adding v to the priority queue q (line 3-4). The time complexity of
the final algorithm DC∗ (Algorithm 6) with all the early pruning strategies is shown in
the following theorem.
Theorem 5.3: The time complexity of Algorithm 6 to handle an edge insertion/deletion
is O(n∗

∆
· log(n∗

∆
)), where n∗

∆
≤ n∆. �

Proof: This theorem can be proved similarly as Theorem 5.2. �
Comparing to Theorem 5.2, DC∗ (Algorithm 6) reduces n∆ to be n∗

∆
which is usually

much smaller than n∆ in practice.

6 Performance Studies
In this section, we show our experimental results. All of our experiments are conducted
on a machine with an Intel Xeon 2.9 GHz CPU (8 cores) and 16 GB main memory,
running Linux (Red Hat Enterprise Linux 6.4, 64bit).
Datasets. We evaluate the algorithms on ten real-world graphs and two synthetic
graphs. All the real-world graphs are downloaded from KONECT (http://konect.
uni-koblenz.de/networks/). For the synthetic graphs, we generate two types
of graphs byGTGraph (http://www.cse.psu.edu/~kxm85/software/GTgraph/),
as follows:
• Power-law graphs: A power-law graph is a random graph in which edges are randomly
added such that the degree distribution follows a power-law distribution.

• SSCA: A SSCA graph contains a collection of randomly sized cliques and also
random inter-clique edges.

ID DatasetG Type |V (G) | |E(G) | Avg Degree
D0 MoiveLens Rating 150,433 10,000,054 132.95
D1 AS Computer 1,696,415 11,095,298 13.08
D2 Epinion Rating 996,744 13,668,320 27.42
D3 Libimseti Social 220,970 17,359,346 157.11
D4 Baidu Hyperlink 2,141,300 17,794,839 16.62
D5 LastFM Interaction 1,085,612 19,150,868 35.28
D6 WikiTalk Communication 2,987,535 24,981,163 16.72
D7 Flickr Social 2,302,925 33,140,017 28.78
D8 Trec Text 2,285,379 151,632,178 132.69
D9 WikiEnglish Hyperlink 18,268,992 172,183,984 18.84
D10 PL0 Power-law 1,048,576 15,728,640 30.00
D11 SSCA0 SSCA 1,048,576 30,965,547 59.06

Table 6.1: Datasets used in Experiments

Algorithms. We implement and compare five algorithms:
• DC-Local: Algorithm 1 (Section 3).
• DC-Orient: Algorithm 3 (Section 4.2).
• DC-Pri: Algorithm 5 (Section 4.3).
• DC-Index: DC-Pri + DINC-Index (Section 5.2).

24

• DC∗: Algorithm 6 (Section 5.1).
DC-Local is the state-of-the-art dynamic graph coloring algorithm in the literature,

which is introduced in Section 3. The remaining algorithms are proposed in this
paper. DC-Orient and DC-Pri are presented in Section 4.2 and Section 4.3, respectively.
DC-Index combines the early color computation strategy DINC-Index (Section 5.2) to
DC-Pri. DC∗ is our final algorithm and uses all the pruning strategies. All algorithms
are implemented in C++. The time cost of algorithms are measured as the amount of
wall-clock time elapsed during the program’s execution. Since the number of colors
used by our algorithms are the same, we only show the number of colors used by DC∗
when comparing the effectiveness of the algorithms.
Exp-1: Coloring Quality. We compare the coloring quality of the five algorithms in
this experiment. To test the coloring quality, we remove all the edges and just keep
the vertices for each dateset as the initial graph. Then we increasingly insert 5% of
the edges of the dataset into the initial graph and record the number of colors for each
algorithm. Fig. 6.1 shows the results on all datasets.

From Fig. 6.1, we can see: 1) as the percentage of inserted edges increases, the
number of colors used by each algorithm increases as well. This is because as the
number of edges increases, the relations among vertices become more complex. As
a result, more colors are needed to avoid color conflict between adjacent vertices. 2)
our algorithm DC∗ uses much less colors than DC-Local. For example, on Libimseti
(Fig. 6.1(b)), when 80% of the edges are inserted, the number of color used by DC-Local
is 64 while that of DC∗ is only 34. This is because DC-Local recolors the graph just
based on the local neighbor information while DC∗ considers the dynamic coloring in a
global scope. 3) the difference on the number of used colors between DC-Local and DC∗
becomes larger and larger as the percentage of inserted edges increases. For example,
on Trec (Fig. 6.1 (d)), the difference is 7 when 5% of the edges are inserted while it
increases to 37 when 80% of the edges are inserted. This is also because DC-Local
uses the local neighbor information while DC∗ exploits the global information of the
graph. As the graph is becoming large, the local information increasingly deviates
from optimal solution. Thus, the gap between the number of colors used by these two
algorithms becomes larger and larger as the number of inserted edges increases.
Exp-2: Coloring Consistency. In this experiment, we compare the coloring consis-
tency of the algorithms. We extract 20% of the edges from each graph as the edge pool
and take the remaining part as the initial graph. We color the initial graph by Global.
To test the coloring consistency, for each updating procedure, we sample 25% (5% of
the original graph) of edges in the pool and then insert the sampled edges into the initial
graph and delete these edges randomly. The final graph is the same as the initial graph
when the updating procedure finishes and we record the number of colors used by each
algorithm. We conduct the updating procedure five times. Fig. 6.2 shows the results on
all datasets.

In Fig. 6.2, on every dataset, the number of colors used by DC∗ keeps the same when
the graph is updated. For example, on Trec (Fig. 6.2 (d)), the number of used colors
is always 33. This is because the final graph is the same as the initial graph for each
updating procedure and DC∗ can guarantee its generated coloring for the same graph
is the same regardless of the order in which the edges are inserted/deleted. On the
other hand, the number of colors used by DC-Local increases sharply at first and then
keeps stable. For example, on Flickr (Fig. 6.2 (c)), its number of used color increases
from 149 to 209 after 3 updating procedures and flows around 209 afterwards. The
reason for the sharp increment is that DC-Local performs the recoloring based on local

25

10
28
46
64
82

100

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(a) MoiveLens

 10
 20
 30
 40
 50
 60

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(b) Libimseti

15
56
97

138
179
220

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(c) Flickr

10
22
34
46
58
70

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(d) Trec

7
18
29
40
51
62

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(e) AS

5
11
17
23
29
35

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(f) Epinion

8
17
25
34
42
51

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(g) Baidu

5

11

17

23

29
34

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(h) LastFM

10
30
50
70
90

110

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(i) WikiTalk

10
23
36
49
62
75

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(j) WikiEnglish

15
61

107
153
199
245

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(k) PL0

5
12
19
26
33
40

10% 20% 30% 40% 50% 60% 70% 80%

#C
ol

or
s

DC-Local
DC*

(l) SSCA0

Figure 6.1: Coloring Quality

26

50
59
68
77
86
95

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(a) MoiveLens

32
36
40
44
48
52

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(b) Libimseti

140
158
176
194
212
230

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(c) Flickr

30
36
42
48
54
60

0 1 2 3 4 5
#C

ol
or

s

DC-Local
DC*

(d) Trec

43
47
51
55
59
63

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(e) AS

18
22
26
30
34
38

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(f) Epinion

27
31
35
39
43

48

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(g) Baidu

19
23
27
31
35
39

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(h) LastFM

70
78
86
94

102
110

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(i) WikiTalk

40
46
52
58
64
70

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(j) WikiEnglish

140
160
180
200
220
240

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(k) PL0

32
34
36
38
40
42

0 1 2 3 4 5

#C
ol

or
s

DC-Local
DC*

(l) SSCA0

Figure 6.2: Coloring Consistency

27

1

10

100

1K

10K

100K

Moive AS Epinion Libimseti Baidu LastSong WikiTalk Flickr Trec WikiEnglish PL0 SSCA0

T
im

e
(µ

s)

DC-Local DC-Orient DC-Pri DC-Index DC*

Figure 6.3: Average Processing Time

10

100

1K

10K

100K

Moive AS Epinion Libimseti Baidu LastSong WikiTalk Flickr Trec WikiEnglish PL0 SSCA0

#V
er

tic
es

DC-Orient DC-Pri/DC-Index DC*

Figure 6.4: Average Number of Vertices Pushed in q

information alone and the local exploration leads to a bad coloring comparing to our
approach when the graph is continuously updated. The reason for the stable movement
after several updating procedures is that when the number of colors exceeds the optimal
solution too much, we can easily find a coloring with such number of colors.
Exp-3: Processing Time for Each Update. In this experiment, we evaluate the
efficiency of the five algorithms on all datasets. We randomly extract 20% of the edges
from each graph as the edge pool and take the remaining part as the initial graph. We
insert the edges from the pool into the initial graph and delete these edges randomly
and record the processing time for each update. We color the initial graph by Global at
the beginning and finish the experiment when each edge in the pool has been inserted
and deleted once. The average processing time for each update are shown in Fig. 6.3.

As Fig. 6.3 shows, among our proposed algorithms, DC-Orient consumes the most
time while DC-Pri only performs better than DC-Orient on all datasets. This is because
the priority queue used in DC-Pri can reduce the unnecessary color reassignment caused
by the out-of-order NC problem in DC-Orient. DC-Index further reduces the average
processing time comparing to DC-Pri on all datasets. This is because using DINC-
Index can avoid exploring the neighbors of type-2 vertices. DC∗ has the least average
processing time among our proposed algorithms and its average processing time for
each update is < 1 ms on all datasets. This is a natural result of the combination of
the two proposed early pruning strategies. For example, on WikiTalk, the average time
of DC∗ is 104 µs while that of DC-Index is 216 µs. Comparing to DC-Local, DC∗ is
more efficient on ten of the twelve datasets. For example, on WikiEnglish, the average
processing time of DC∗ is 129 µs while that of DC-Local is 318 µs. This is consistent
with our analysis. Therefore, DC∗ is very efficient comparing to the other algorithms.
Exp-4: Number of Vertices pushed in q. In this experiment, we compare the average
number of vertices pushed in q of our proposed algorithms for each update. We conduct
the experiment similarly as Exp-3 and the results are shown in Fig. 6.4. As shown in
Fig. 6.4, DC-Pri and DC-Index have the same average number of vertices pushed in q.

From Fig. 6.4, we can see: 1) for our proposed algorithms, the average number
of vertices pushed in q is small comparing to |V | of the graph. For example, on
WikiEnglish, the average number of DC-Orient, DC-Pri/DC-Index and DC∗ are 3035,
545 and 81 respectively while |V | of WikiEnglish is 18, 268, 992. The reason for
the small average number of vertices pushed in q is that we adopt the incremental
computation strategy and we can achieve the global coloring quality without processing
all the vertices in the graph. 2) the average number of DC-Pri/DC-Index is smaller than
that of DC-Orient, and DC∗ has the least average number among these algorithms. For

28

Dataset ID D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
ϕ 4.77 9.88 14.86 1.09 10.58 2.01 3.21 24.09 3.27 40.43

Table 6.2: ϕ for each update

DC-Orient DC-Pri DC-Index DC*

0

125

250

375

500

20% 40% 60% 80% 100%P
ro

ce
ss

in
g

T
im

e
(µ

s)

(a) Trec (Vary |V |)

0

125

250

375

500

20% 40% 60% 80% 100%P
ro

ce
ss

in
g

T
im

e
(µ

s)

(b) Trec (Vary |E |)

10

100

1K

10K

20% 40% 60% 80% 100%P
ro

ce
ss

in
g

T
im

e
(µ

s)

(c) WikiEnglish (Vary |V |)

10

100

1K

10K

1 2 3 4 5P
ro

ce
ss

in
g

T
im

e
(µ

s)

(d) WikiEnglish (Vary |E |)

Figure 6.5: Scalability
example, the average number of DC-Orient, DC-Pri/DC-Index and DC∗ on Baidu are
613, 186 and 30 respectively. The reason that DC-Pri/DC-Index has a smaller average
number than DC-Orient is that DC-Pri/DC-Index can avoid the out-of-order notification
problem due to the priority queue. And because the notification pruning can further
reduce the unnecessary notifications, the average number of DC∗ is smaller than that of
DC-Pri/DC-Index.
Exp-5: ϕ for each update. Table 6.2 shows the ϕ (average number of vertices whose
colors are changed) when an edge is inserted/deleted for the ten datasets used in our
experiment. To compute ϕ, we insert and delete 10000 edges in a random manner for
each dataset. And when an edge is inserted/deleted, we compute the new coloring by
the Global algorithm and record the number of vertices whose colors are changed.

As Table 6.2 shows, when an edge is inserted/deleted, ϕ is very small comparing to
|V | for each dataset. From example, on D1, ϕ for each update is 9.88 while |V | of D1 is
1, 696, 415. Moreover, the maximum ϕ for the ten datasets is 40.43 and the average ϕ
for these ten datasets is only 11.4. Therefore, the number of vertices whose colors are
changed is very small in practice, which confirms our observation in Section 1.
Exp-6: Scalability Testing. We vary |V | and |E | from 20% to 100% of two large
datasets Trec and WikiEnglish to test the scalability of our proposed algorithms. We
conduct the experiment the same as Exp-3 on each dataset and the results are shown in
Fig. 6.5.

As shown in Fig. 6.5 (a) and (c), the average processing time of our proposed algo-
rithms for each update increases when |V | increases. This is because as |V | increases,
the neighbors for each vertex in the graph generally increases as well. As a result, more
vertices need to be reassigned their colors when an edge is inserted or deleted. Thus,
the average processing time increases as |V | increases. Of our proposed algorithms,

29

1

10

100

1K

Moive AS Epinion Libimseti Baidu LastSong WikiTalk Flickr Trec WikiEnglish PL0 SSCA0

 #
C

ol
or

s

Natural Random Global ID SL DLF

Figure 6.6: Static Graph Coloring Algorithms Comparison

DC∗ performs the best on all datasets. This is the result of the combination of the
proposed optimization strategies. On all the datasets, the average processing time of
DC∗ increases stably when |V | increases while other algorithms may increase sharply.
For example, on Trec (Fig. 6.5(a)), the average processing time of DC-Index has a sharp
increment when we vary |V | from 80% to 100% while DC∗ still increases stably. Thus,
DC∗ has a good scalability. In Fig. 6.5 (b) and (d), when we vary |E |, we can find a
similar trend as varying |V |.
Exp-7: Static Graph Coloring Algorithms Comparison. As our algorithms are
built on Global, in this experiment, we compare the number of colors used by Global
with other static graph coloring algorithms provided by ColPack on our experimental
datasets to show the effectiveness of Global. ColPack is an open-sourced static graph
coloring library (https://github.com/CSCsw/ColPack/) and is widely used in the
literature [19]. Besides Global, it provides five other static graph coloring algorithms.
All the provided algorithms share the same coloring framework which iterates over the
vertices and assigns each vertex the smallest color not assigned to a neighbor, but the
coloring orders of the algorithms are different. Specifically,
• Natural: it colors vertices in the order they appear in the input graph presentation.
• Random: it colors vertices in a uniformly random order.
• Global: it colors vertices in order of non-increasing degree (Algorithm 2 in Section 4).
• ID: it iteratively colors an uncolored vertex with the largest number of colored
neighbors.

• SL: it colors the vertices in the order induced by first removing the lowest-degree
vertices from the graph, then recursively coloring the resulting graph, and finally
coloring the removed vertices.

• DLF: it iteratively colors an uncolored vertex with the largest number of uncolored
neighbors. Note that DLF chooses the next uncolored vertex with the largest number
of uncolored neighbors, while ID choose the vertex with the largest number of colored
neighbors.

The experimental result is shown in Fig. 6.6.
In Fig. 6.6, Random uses the most number of colors on all datasets and Natural

use less colors than Random but more colors than the remaining algorithms. For the
remaining four algorithms, although the effectiveness of them are various on different
datasets, the number of colors used by them are very close. For example, the number of
colors used by Global, ID, SL and DLF on Flickr are 188, 191, 187 and 190, respectively.
The experimental result is consistent with the result in [19]. Therefore, Global is
competitive comparing with other state-of-the-art static graph coloring algorithms.

7 Related Work
Graph coloring is a fundamental problem in graph theory. Finding an optimal coloring
for a graph is NP-complete in general [18]. [48] further shows that for any ε > 0, there
is no polynomial-time n1−ε approximation algorithm for the optimal graph coloring
problem, unless NP=ZPP. Although some exact algorithms have been devised for this

30

problem, such algorithms can only handle very small graphs [33, 41, 23, 20]. Since the
exact algorithms do not work well in practice, many algorithms resorting to heuristics
are proposed in the literature [42, 25, 37, 17, 36, 13, 24, 43, 44, 35]. Among them,
Global [42] is the most popular due to its high efficiency in handling large graphs and
high graph coloring quality in practice [31, 45, 2, 7]. A comprehensive survey on the
graph coloring algorithms for static graphs can be found in [16].

There exist several studies on dynamic graph coloring problem in the literature. [11]
studies the dynamic graph coloring problem on trees and product graphs and proves
various dynamic chromatic number bounds on these types of graphs. [15] studies a
decentralized approach for graph coloring problem on vertex-centric distributed sys-
tems. DC-Local is the state-of-the-art dynamic graph coloring algorithm [38], which is
introduced in Section 3. Since DC-Local is the only dynamic graph coloring algorithm
in the literature which has competitive effectiveness and efficiency, we choose it as a
yardstick in our experiment.

The online graph coloring problem is closely related to our problem. Online
graph coloring problem assumes that the vertices are given one by one (with their
corresponding edges) and a color is assigned to the current vertex before the next vertex
is colored. Once a color is assigned to a vertex, changes are not allowed. [22] proves
that the lower bound of the performance ratio of any online graph coloring algorithm
is Ω(n/log2 n). [21] proposes an algorithm with such lower bound. [32, 34, 10] mainly
focus on coloring problem upon variants of online models and special classes of graphs.

Note that the dynamic coloring of a graph problem, which has a very similar name
as our problem, is also investigated in the literature, such as [4, 6]. However, a dynamic
coloring of a graph G is a proper coloring such that, for every vertex v ∈ V(G) with
degree at least 2, the neighbors of v receive at least 2 colors, which is totally different
from dynamic graph coloring studied in this paper.

8 Conclusion
In this paper, we study the dynamic graph coloring problem. As the existing method is
unable tomaintain a high quality graph coloring, we aim to design amethod that achieves
the same coloring quality as one of the best static graph coloring algorithms while
updating the coloring efficiently for dynamic graphs. We propose a color-propagation
based algorithm on the oriented coloring graph to bound the explored vertices within
the 2-hop neighbors of those vertices whose colors are changed in each graph update.
We further improve our algorithm by devising a novel dynamic in-neighbor colors index
and some pruning rules. The experimental results demonstrate the high effectiveness
and efficiency of our approach.

Bibliography
[1] I. Abfalter. Nucleic acid sequence design as a graph colouring problem. Ph.D Thesis, 2005.
[2] A. Aboulnaga, J. Xiang, and C. Guo. Scalable maximum clique computation using mapre-

duce. In Proc. of ICDE’13, pages 74–85, 2013.
[3] C. Aggarwal and K. Subbian. Evolutionary network analysis: A survey. ACM Computing

Surveys (CSUR), 47(1):10, 2014.
[4] S. Akbari, M. Ghanbari, and S. Jahanbekam. On the list dynamic coloring of graphs.

Discrete Applied Mathematics, 157(14), 2009.
[5] D.Alberts, G. Cattaneo, andG. F. Italiano. An empirical study of dynamic graph algorithms.

Journal of Experimental Algorithmics (JEA), 2:5, 1997.

31

[6] M. Alishahi. On the dynamic coloring of graphs. Discrete Applied Mathematics, 159(2),
2011.

[7] N. Armenatzoglou, H. Pham, V. Ntranos, D. Papadias, and C. Shahabi. Real-time multi-
criteria social graph partitioning: A game theoretic approach. In Proceedings of SIGMOD,
pages 1617–1628, 2015.

[8] B. Balasundaram and S. Butenko. Graph domination, coloring and cliques in telecommu-
nications. In Handbook of Optimization in Telecommunications, pages 865–890. Springer,
2006.

[9] N. Barnier and P. Brisset. Graph coloring for air traffic flow management. Annals of
operations research, 130(1-4), 2004.

[10] M. P. Bianchi, H.-J. Böckenhauer, J. Hromkovič, and L. Keller. Online coloring of bipartite
graphs with and without advice. Algorithmica, 70(1), 2014.

[11] P. Borowiecki and E. Sidorowicz. Dynamic coloring of graphs. Fundamenta Informaticae,
114(2), 2012.

[12] A. Carroll, G. Heiser, et al. An analysis of power consumption in a smartphone. InUSENIX
annual technical conference, volume 14, pages 21–21, 2010.

[13] M. Chams, A. Hertz, and D. De Werra. Some experiments with simulated annealing for
coloring graphs. European Journal of Operational Research, 32(2), 1987.

[14] C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In
Algorithms and theory of computation handbook, pages 9–28, 2010.

[15] A. Dutot, F. Guinand, D. Olivier, and Y. Pigné. On the decentralized dynamic graph
coloring problem. In Workshop of COSSOM, 2007.

[16] P. Galinier, J.-P. Hamiez, J.-K. Hao, and D. Porumbel. Recent advances in graph vertex
coloring. In Handbook of optimization. Springer, 2013.

[17] P. Galinier and J.-K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of
combinatorial optimization, 3(4), 1999.

[18] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[19] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen. Colpack: Software
for graph coloring and related problems in scientific computing. ACM Transactions on
Mathematical Software (TOMS), 40(1):1, 2013.

[20] S. Gualandi and F. Malucelli. Exact solution of graph coloring problems via constraint
programming and column generation. INFORMS Journal on Computing, 24(1), 2012.

[21] M. M. Halldórsson. Parallel and on-line graph coloring. Journal of Algorithms, 23(2),
1997.

[22] M. M. Halldórsson and M. Szegedy. Lower bounds for on-line graph coloring. In Proceed-
ings of SODA, pages 211–216, 1992.

[23] P. Hansen, M. Labbé, and D. Schindl. Set covering and packing formulations of graph
coloring: algorithms and first polyhedral results. Discrete Optimization, 6(2), 2009.

[24] J.-K. Hao and Q. Wu. Improving the extraction and expansion method for large graph
coloring. Discrete Applied Mathematics, 160(16), 2012.

[25] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing,
39(4), 1987.

[26] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community in large
and dynamic graphs. In Proceedings of SIGMOD, pages 1311–1322. ACM, 2014.

[27] J. Manweiler and R. Roy Choudhury. Avoiding the rush hours: Wifi energy management
via traffic isolation. In Proceedings of MobiSys, pages 253–266, 2011.

32

[28] F. Moradi, T. Olovsson, and P. Tsigas. A local seed selection algorithm for overlapping
community detection. In Proceedings of ASONAM, 2014.

[29] A. Mukherjee and M. Hansen. A dynamic rerouting model for air traffic flow management.
Transportation Research Part B: Methodological, 43(1):159–171, 2009.

[30] N. Ohsaka, T. Maehara, and K.-i. Kawarabayashi. Efficient pagerank tracking in evolving
networks. In Proceedings of KDD, pages 875–884, 2015.

[31] P. R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Appl. Math.,
120(1-3):197–207, 2002.

[32] L. Ouerfelli and H. Bouziri. Greedy algorithms for dynamic graph coloring. In Proceedings
of CCCA, 2011.

[33] J. Peemöller. A correction to brelaz’s modification of brown’s coloring algorithm. Com-
munications of the ACM, 26(8), 1983.

[34] S. V. Pemmaraju, R. Raman, and K. Varadarajan. Max-coloring and online coloring with
bandwidths on interval graphs. ACM Transactions on Algorithms, 7(3), 2011.

[35] Y. Peng, B. Choi, B. He, S. Zhou, R. Xu, and X. Yu. Vcolor: A practical vertex-cut based
approach for coloring large graphs. In Proceedings of ICDE, 2016.

[36] D. C. Porumbel, J.-K. Hao, and P. Kuntz. An evolutionary approachwith diversity guarantee
and well-informed grouping recombination for graph coloring. Computers & Operations
Research, 37(10), 2010.

[37] D. C. Porumbel, J.-K. Hao, and P. Kuntz. A search space cartography for guiding graph
coloring heuristics. Computers & Operations Research, 37(4), 2010.

[38] D. Preuveneers and Y. Berbers. Acodygra: an agent algorithm for coloring dynamic graphs.
Symbolic and Numeric Algorithms for Scientific Computing, 6:381–390, 2004.

[39] J. Riihijärvi, M. Petrova, and P. Mähönen. Frequency allocation for wlans using graph
colouring techniques. In WONS, volume 5, pages 216–222, 2005.

[40] C. Schindelhauer. Mobility in wireless networks. In International Conference on Current
Trends in Theory and Practice of Computer Science, pages 100–116, 2006.

[41] E. Sewell. An improved algorithm for exact graph coloring. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 26, 1996.

[42] D. J. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its
application to timetabling problems. The Computer Journal, 10(1):85–86, 1967.

[43] Q.Wu and J.-K. Hao. Coloring large graphs based on independent set extraction. Computers
& Operations Research, 39(2), 2012.

[44] Q.Wu and J.-K. Hao. An extraction and expansion approach for graph coloring. Asia-Pacific
Journal of Operational Research, 30(05), 2013.

[45] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k clique search. In
Proceedings of ICDE, 2015.

[46] A. Zaki, M. Attia, D. Hegazy, and S. Amin. Comprehensive survey on dynamic graph
models. International Journal OF ACSA, 7(2):573–582, 2016.

[47] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. Reachability queries on large dynamic graphs:
a total order approach. In Proceedings of SIGMOD, pages 1323–1334. ACM, 2014.

[48] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of STOC, pages 681–690, 2006.

33

