
Scheduling Considerations for Voter Checking in

FPGA-based TMR Systems

Nguyen T.H. Nguyen1 Ediz Cetin2

Oliver Diessel1

1 University of New South Wales, Australia
{h.nguyentran,o.diessel}@unsw.edu.au

2 Macquarie University, Australia
ediz.cetin@mq.edu.au

Technical Report
UNSW-CSE-TR-201705

March 2017

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

Field-Programmable Gate Arrays (FPGAs) are susceptible to radiation-induced
Single Event Upsets (SEUs). A common technique for dealing with SEUs is
Triple Modular Redundancy (TMR) combined with Module-based configuration
memory Error Recovery (MER). By triplicating components and voting on
their outputs, TMR helps localize the configuration memory errors, and by
reconfiguring the faulty component, MER swiftly corrects the errors. However,
the order in which the voters of TMR components are checked has an inevitable
impact on the overall system reliability. In this paper, we outline an approach
for computing the reliability of TMR-MER systems that consist of finitely many
components. Using the derived reliability models we demonstrate that the system
reliability is improved when the critical components are checked more frequently
for the presence of configuration memory errors than when they are checked in
round-robin order. We propose a genetic algorithm for finding a voter checking
schedule that maximizes system reliability for systems consisting of finitely many
TMR components. Simulation results indicate that the mean time to failure
of TMR-MER systems can be increased by up to 100% when Variable-Rate
Voter Checking (VRVC) rather than round robin, is used. We show that the
power used to eliminate configuration memory errors in an exemplar TMR-MER
system employing VRVC is reduced while system reliability remains high. We
also demonstrate that errors can be detected 30% faster on average when the
system employs VRVC instead of round robin for voter checking.



1 Introduction

Space missions increasingly integrate many applications within a single SRAM-
based Field-Programmable Gate Array (FPGA) to reduce mass, power consump-
tion and to achieve high performance. The considerable amount of configuration
memory in these devices makes them susceptible to radiation-induced Single
Event Upsets (SEUs). Alleviating this vulnerability is of paramount importance
for the widespread use of SRAM-based FPGAs in space missions.

One approach to dealing with SEUs is to use Triple Modular Redundancy
(TMR) with Module-based Error Recovery (MER) [1, 2]. TMR-MER relies
on Dynamic Partial Reconfiguration (DPR) to correct configuration memory
errors. This approach is commonly triggered when repeated errors are detected
by the voter(s) associated with a TMR component and involves rewriting the
configuration memory of the module that has been found to be in error. However,
the order in which the voters of TMR components are checked has an inevitable
impact on the overall system reliability.

To improve the reliability of FPGA-based TMR-MER systems, the authors in
[3] proposed dynamically adjusting the order in which TMR voters are checked
for module errors rather than checking them sequentially. The approach was
implemented based on the idea that the more vulnerable components (e.g., those
comprising a greater number of essential bits [4] and longer recovery times) are
checked more frequently than less vulnerable ones. A question that work raised,
and which we here answer in the affirmative, is whether a static voter checking
schedule can be found to maximize system reliability.

It has also been noted that while TMR-MER is generally effective for mit-
igating SEUs affecting the configuration memory [5], it is not well suited for
protecting systems against multiple coincident SEUs that affect multiple modules
of a TMR component, thereby defeating the protection afforded by redundancy.
In this work, we investigate the reliability of TMR-MER systems consisting
of an arbitrary number of triplicated components operating in harsh radiation
environments, such as in geosynchronous orbit during solar flares and in high-
energy physics laboratories like the Large Hadron Collider located at CERN,
where multiple coincident SEUs are more probable [6]. Our main interest is in
determining the impact on overall system reliability of varying the order and
rate at which the voters of TMR components are checked for errors.

Our contributions are:

• To derive reliability models of TMR-MER systems that comprise finitely
many TMR components whose voters are checked in round-robin order
and at a variable rate. We refer to such a schedule as Variable-Rate Voter
Checking (VRVC). Previous work has primarily focused on the effects of
SEUs on SRAM FPGA-based systems while our analysis considers the
impact of multiple consecutive events, which is an important consideration
in providing a more accurate analysis of the system reliability.

• To propose a genetic algorithm (GA) for finding the optimal rate at which
to check all components so as to maximize the Mean Time To Failure
(MTTF) and the reliability of TMR-MER systems.

• To show that power consumed checking for errors can be reduced by
reducing the checking frequency. In this case, VRVC is capable of ensuring

1



a higher system reliability than round robin.

• To demonstrate that the Mean Time To Detect (MTTD) errors is reduced
by 30% on average when VRVC is used instead of round robin.

This paper is organized as follows: Section 2 briefly provides background
on the Xilinx FPGAs we use for hosting our applications and related work
on TMR-MER systems. Section 3 presents reliability models for TMR-MER
systems that consist of finitely many components whose voters are checked in
round-robin order or at a variable rate. Section 4 describes a GA to derive a voter
checking schedule that maximizes the system reliability. Section 5 describes
our experimental method, reports on our findings and discusses the results.
Concluding remarks and directions for further study are given in Section 6.

2 Background on FPGA and Related Work

Memory elements in an SRAM-based FPGA device can be classified into two
groups: configuration and user memory bits. The configuration memory bits
are used to specify the particular circuit mapped into the FPGA, whereas the
user memory bits, such as flip-flops or block RAMs, hold the current state of the
circuit. Unless the user design is dynamically reconfigurable, the contents of the
configuration memory bits should remain unchanged, while the contents of the
user memory bits may change on any clock cycle. Xilinx FPGA configuration
memory is organized into frames, which are the smallest addressable segment of
the configuration memory space. The frame size varies among FPGA families; in
the case of Xilinx 7–Series FPGAs, it consists of 101 32-bit words. Moreover, the
configuration memory bits account for the largest proportion of all the memory
cells in SRAM-based FPGAs e.g., more than 80% in the latest Xilinx FPGA
(UltraScale XCVU440). Therefore, there is a far greater probability of SEUs
occurring in configuration memory bits than in user memory bits. Since the
configuration memory upsets have the potential to alter the function of a look up
table (LUT) or the routing between nodes, they can lead to “permanent” errors
manifesting in user circuits until the altered configuration state is corrected. In
this work, we study the impact on reliability of multiple SEUs that affect the
configuration memory bits in TMR-MER systems.

The design of TMR-MER systems to recover from configuration memory
errors in SRAM-based FPGAs has been described in a number of articles
[1, 3, 5, 7, 8]. These systems utilize a Reconfiguration Control Network (RCN)
such as a star-based [1, 7], a bus-based [5], or an ICAP-based network [8] to
convey the status of the individual TMR component voters to a Reconfiguration
Controller (RC), which determines whether configuration memory errors are
present. To determine whether any configuration memory upsets have occurred,
most TMR-MER systems check the voters of the TMR components in round-
robin order. Our work aims to enhance the system’s error detection capabilities
and thereby raise overall system reliability by checking the TMR component
voters for module errors at different rates.

Reliability models for TMR-MER systems have not yet been studied in
detail. When they are mentioned, Markov models are used to compute the
system reliability with the assumption that the recovery of modules of multiple
TMR components occurs independently [5]. While acceptable at low error rates,

2



the problem with this assumption at high error rates is that the methods for
correcting configuration memory errors are inherently sequential, hence the
models do not consider the effect of configuration memory errors on other TMR
components while a faulty module is being reconfigured.

3 Reliability Model

In this section, we introduce models that estimate the reliability of TMR-MER
systems. These models are then used to estimate the reliability of FPGA-based
designs in harsh radiation environments when multiple coincident upsets are more
probable1. We describe a general reliability model that has been widely used to
estimate the reliability of FPGA-based systems. Based on this general model,
we outline a procedure for estimating the reliability of TMR-MER systems that
consist of an arbitrary number of TMR components and whose voters are checked
in either round-robin order or at a variable rate.

3.1 General Reliability Model

The reliability of a TMR component k over time ∆t, Rk(∆t), can be expressed
w.r.t. the failure probability of the component, FPk(∆t), which is the sum of
the individual likelihoods that the component fails for all u SEUs that may affect
the device during ∆t. These relationships are given in [6] as:

Rk(∆t) = 1− FPk(∆t),

FPk(∆t) =

∞∑
u=1

P (Fk|Eu)P (Eu,∆t),
(3.1)

where event Fk is the failure of component k during the period of time ∆t and
event Eu is that u SEUs have occurred in the device during the period of time
∆t. Failure of TMR component k means that at least two of the three modules
suffer from errors and that the component’s voter therefore fails to produce the
correct output.

P (Fk|Eu) can be estimated for various values of u using the number of
sensitive bits per component, for which we use the number of essential bits
reported by the vendor’s tools as a worst case estimate. Sensitive bits are those
bits that cause a functional error if they change state, while essential bits are
those bits associated with the circuitry of the design [4].

P (Eu,∆t), the probability of event Eu occurring during ∆t, can be modelled
with a Poisson distribution, P (Eu,∆t) = e−ν ν

u

u! , where ν is the expected number
of SEUs suffered by the device during a period of time ∆t and is obtained from
the product of the failure rate of one configuration memory bit of a device (λbit),
the number of configuration memory bits of a device (nc) and the time period
(∆t): ν = λbit × nc ×∆t. λbit depends upon the radiation level, the IC process
technology and the circuit architecture of the FPGA fabric.

1Please note that the model presented does not take into account Multiple-bit upsets (MBUs)
i.e., more than one upset in a configuration word or frame from a single charged particle [9].
We plan to consider these in future work.

3



Once the failure probability of component k is known, the failure rate λk of
component k is given by [6]:

λk =
FPk(∆t)

∆t
. (3.2)

Since a TMR component can fail in different scenarios (see Fig. 3.1 and
associated discussion in Section 3.2) with different failure rates (λik), it is more
meaningful to compute the composite failure rate of each component (λck). This
parameter can be calculated for the expected proportions (ρik) in which each
scenario occurs:

λck =
∑
i=1

ρikλ
i
k. (3.3)

where
∑
ρik = 1.

Typically, a system contains N interdependent TMR components connected
in series such that the failure of any one TMR component causes the system to
fail. The failure rate of a series TMR system, λs, is the sum of all component
failure rates [10]. Furthermore, the MTTF of the series TMR system is given by
the reciprocal of the system failure rate. The system reliability is calculated as
follows:

Rs(t) = e−λs.t. (3.4)

In this paper, we do not consider the impact of non-redundant modules such as
the RCN, the RC and the voters on system reliability as these have the same
impact on all of the various system settings analysed in the following sections.

3.2 Failure Rates of TMR-MER Systems in which Voters
are Checked in Round-robin Order

Based on the general reliability model described in Section 3.1, we estimate
the failure rate of systems comprised of two TMR components connected in
series. Hereafter, we say that if the output of one module of a TMR component
repeatedly differs from that of the other two, that the component is suffering from
an “error”, and if, after the component suffers another one or more SEUs, the
outputs of the remaining two modules repeatedly differ, that the component has
“failed”. We also assume that once a faulty module is detected, it is dynamically
reconfigured to correct the error [5].

In a two-component system, a component may fail in one of four different
ways that are classified into two groups as shown in Fig. 3.1 using the notation
listed in Table 3.1. Note that Fig. 3.1 only describes the modes in which C1 can
fail; the modes in which C2 can fail can be derived in a similar manner.

Group 0: No other component suffers an error
– Case 1 (Fig. 3.1(1)): C1 suffers from two or more SEUs that cause it to

fail during the period of time between two consecutive checks of its voters (e.g.,
during ∆t1 – the period of time between O12 and O13).

– Case 2 (Fig. 3.1(2)): C1 suffers an error from one or more SEUs during
the period of time between two consecutive checks of its voters (between O12

and O13 in Fig. 3.1(2)). Thereafter, C1 fails if one or more SEUs affect its
remaining working modules during the period of time that it is recovering from
the previous error (e.g., during ∆tr1 – from time O13 to the end of the recovery
process of C1).

4



Table 3.1: Notation

Symbol Definition

N Number of TMR components in the system

Ck Component k, k = 1..N

Okn Ck is observed for the nth time by checking its voter(s)

∆to The time period between successive voter observations
(assumed to be constant for a given system setting)

∆tdk The time period between two consecutive observations
of Ck

∆trk The time period to recover a faulty module of Ck

∆tk The total time period over which Ck can fail

∆tdij The time period between successive observations of Ci
and Cj

∆td′ij The average time period between two consecutive ob-
servations of Ci in the interval between two consecutive
observations of Cj

Group 1: One other component suffers an error
– Case 1 (Fig. 3.1(3)): C1 suffers from two or more SEUs that cause C1 to

fail during a period of time between two consecutive checks of its voters that is
longer than usual because the system is recovering from an error in C2. C1 fails
during the period of time that commences after it is observed to be without an
error (at O12), continues while C2 is checked and recovered, and finishes when
C1 is observed again at O13.

– Case 2 (Fig. 3.1(4)): C1 suffers an error from one or more SEUs during
the period of time between two consecutive checks of it (between O12 and O13)
while the system is recovering from an error in C2. C1 then fails if one or more
SEUs affect a second and/or third module of C1 while it is recovering from the
previous error.

To summarize, in case 1 of either group, component k fails, i.e., suffers
multiple errors to its different modules, between successive voter checks. In case
2, on the other hand, component k suffers an error to one of its modules during
this period, and then fails following subsequent upsets to its other modules while
recovering from the first error.

The failure probability of component k in case 1 of either group is computed
based on FPk(∆t) in Eq. (3.1) with corresponding ∆tk as shown in Figs. 3.1(1)
and 3.1(3). Component k fails only if, having suffered an error due to an SEU,
subsequent SEU(s) affect one of the remaining two functioning modules during
∆tk. If only one SEU occurs during ∆tk, the failure probability of component
k in case 1 is zero because one SEU cannot cause a malfunction of a TMR
component. Empirically, this failure probability is not exactly zero because there
are a few single configuration bits that do indeed cause the TMR design to fail
[11]. However, applying the techniques that are described in [11] removes such
bits from the TMR design.

The failure probability of component k in case 2 of either group is the product
of the probability that event Mk (i.e., that component k suffers an error) occurs
during the period of time ∆tdk as shown in Figs. 3.1(2) and 3.1(4) and that
component k fails during the period of time ∆trk given the occurrence of event

5



Δtd1

Δto

Δt1

Δtd1

(1) 

O11 O21 O12 O22 O13

C1 fails Time(t) 

(2) 

O11 O21 O12 O22 O13

C1 suffers an error Time(t) 

Δtr1

C1 fails 

O11 O21 O12 O22

C2 suffers an error Time(t) 

Δtr2 Δto

Δtd1 Δtr1

O13

C1 suffers an error 

(4)

C1 recovery 

Δto

Δt1

C1 suffers an error 

C1 fails 

C2 recovery 

Δto
O11 O21 O12 O22

C2 suffers an error Time(t) 

Δtr2 Δto

Δtd1

O13

C1 suffers an error 

(3)

Δt1

C1 fails 

C2 recovery 

C1 recovery 

Figure 3.1: Failures of component 1 in two-component systems in which the
voters are checked in round-robin order.

Mk. Event Mk occurs in component k only if at least one SEU affects one of
the three modules of the TMR component and none of the other SEUs affect
the two remaining working modules during ∆tk. Then the component k fails
only if at least one SEU affects one of the other two remaining working modules
during ∆trk.

Based on Eq. (3.2), the failure rate of component k (λik) in each case is
estimated using the corresponding ∆tk (Fig. 3.1).

The proportions ρik are calculated for the likelihood by which component
k fails in each case. For example, the likelihood of cases in group 0 occurring
depends upon the likelihood that component k suffers an error, while that of
cases of group 1 depends upon the likelihood that both components suffer an
error. It is obvious that the cases of group 0 are more likely to occur than those
of group 1.

The composite failure rate of component k (λck) is calculated by substituting
λik and ρik into Eq. (3.3). The system failure rate can be computed by summing
all λck.

The reliability of systems comprising any number of TMR components can
readily be computed by extending the approach we have outlined for two-
component systems. This involves considering all possible cases in which each

component may fail. In an N -component system, there are
∑N−1
g=0

∑(N−1
g )

s=1

∑2
i=1

cases in which a component may fail in one of N groups; each group g, where
g = 0..N–1, consists of

(
N−1
g

)
situations in which g other components suffer

an error first; and each situation involves two cases as summarized above. The
likelihood of each case occurring depends upon the likelihood of all involved

6



Δtd12 (x-1)Δtd’21

Δt1

Δtd1

(1) 

O11 O12 O13

C1 fails Time(t) 

O21 O2p O2(p+1) O2(2p)

C1 suffers an error 

Δtd1

(3) 

O11 O2p O12

C2 suffers an error Time(t) 

Δtr2

Δt1

C1 fails 

O13

C2 recovery 

C1 suffers an error 

O2(p+1) O2(p+x)

Figure 3.2: Failure of component 1 in systems employing variable-rate voter
checking

components suffering an error in each case.

3.3 Failure Rates of TMR-MER Systems employing VRVC

Variable-Rate Voter Checking (VRVC) is defined as a periodic schedule in which
component voters are checked at specific times and in which the more vulnerable
components’ voters are checked more frequently than those of the less vulnerable
ones. For example in a system of 4 components, one period of a schedule could be
4-3-4-2-4-3-4-2-3-1 in which each digit represents the component whose voters
are to be checked. In this case, component 4 is deemed more vulnerable and
hence checked more frequently when compared to the other components, and
component 1 is deemed least vulnerable and hence checked less frequently. In
this sub-section, we first consider a system that consists of two components and
then generalise the model to obtain the reliability of systems that consist of any
number of TMR components.

A 2-component system

Similar to the cases described in Section 3.2, we observe that C1 fails in one of
four different ways as partly depicted in Fig. 3.2 using the notation of Table
3.1. Note that p in Fig. 3.2 denotes the nominal number of times that C2 is
checked between two consecutive checks of C1 due to its greater susceptibility to
SEUs than C1’s. In case 1 of group 1 (Fig. 3.2(3)), we assume that the system
detects an error in C2 x checks after C1 is checked (at O12) where x varies from
1 to p. In this work, we associate with x = 1..p the number of checks that the
system performs before it detects an error in C2. Thus, each case of group 1
involves p sub-cases that have the same likelihood of both components suffering
an error (ρik). For example, given a schedule of two components in the following
order 1-2-2-2-2-1-2-2-2-2-1... where each digit denotes the observation of the
corresponding component, ∆td1 and ∆td2 in group 0 are 5∆to and 1.25∆to,
respectively. Both ∆td12 and ∆td′21 in group 1 are ∆to. Furthermore, with such
a schedule, there are four checks of C2 during the period of time between two
consecutive checks of C1. Thus, x = 1..4.

The observations of C2 differ slightly from those of C1. C2 may also fail

7



in one of four different ways, but the number of sub-cases in group 1 is only 1.
This is because between any two consecutive checks of C2, C1 is checked at most
once.

The above observations allow us to compute the system failure rate.

An N-component system

Without loss of generality, we assume that the components are numbered and
ranked k, k = 1..N into non-decreasing vulnerability order, and that component
k is therefore checked more frequently than component k–1. After the reconfigu-
ration of a faulty module is finished, the system checks all other components
in descending order of vulnerability before recommencing the planned schedule.
For example, in a system of 4 components, after component 2 is recovered,
components 4, 3 and 1 need to be checked in that order before resuming the
variable-rate schedule. If multiple errors occur in a sequence, the system checks
all other components that have not been reconfigured. In doing so, the system
is fair in reconfiguring all components of the system if an error is detected.

The system failure rate can be computed by considering all possible cases
in which each component may fail. A component k may also fail in different
groups g, g = 0..N–1 in which g other components suffer an error first. Each
group involves k−1P1

N−kPg−1 + N−kPg situations (nPk denotes k-permutations
of n). This is because group g includes k−1P1

N−kPg−1 situations in which the
first component to suffer an error, f , is such that the rank of f < k and N−kPg
situations in which the rank of f > k. Each situation involves two cases as
summarized in Section 3.2 and each case involves a number of sub-cases that
are schedule-dependent.

Most of the timing parameters for computing the composite failure rate of
one component (as partly shown in Fig. 3.2) differ from those of the others and
are not constant. Fortunately, we can statistically determine their average values
based on a real schedule as described in Section 4

4 Scheduling Voter Checks

We surmise the problem of statically determining the optimal number of voter
checks per period in an N -component system is NP-hard. We therefore propose
a genetic algorithm (GA), which is a probabilistic search method based on an
evolutionary approach, to heuristically determine the rate at which all triplicated
components in a system should be checked so as to maximize the system reliability.
Once the rate at which components should be checked has been determined,
we use a second GA, as detailed in [12], to generate a schedule in which the
determined number of voter checks are distributed as evenly as possible per
schedule period. The schedule produced by the second GA is needed to evaluate
the fitness of individual solutions to the first GA, which determines the number
of checks to be performed. The second GA is therefore nested within the first
GA’s evaluation function.

4.1 Proposed genetic algorithm

A typical GA requires a genetic representation of the solution domain and a
fitness function to evaluate the solution domain. Possible solutions (individuals)

8



are represented by a data structure called a chromosome. A chromosome is
composed of simple elements called genes. An initial population of possible
solutions is randomly created. As long as the stopping condition (e.g., exceeding
a given number of generations) has not been met, a new generation is created.
This involves computing the fitness value of each individual in the population.
Individuals that represent desirable solutions (e.g., high fitness values or small
system failure rates in our case) are selected with high probability to produce
offspring. In a crossover process, some parts of the selected individuals (parent
chromosomes) are combined to create a new individual (a child chromosome).
Furthermore, in a mutation process the child’s chromosome is randomly changed
to introduce new genetic information. The children created by crossover and
mutation are inserted into the new population, thereby replacing other low-fitness
individuals. In our work, a GA is used for finding the number of times each
TMR component should be checked per schedule period. The algorithm has the
following characteristics:

(i) Representation: The solution domain is a population (P ) in which each
chromosome in P is an array consisting of N genes (e.g., [d1 ... dN ]) representing
N TMR components. dk, k = 1..N , which are each greater than 0 and arranged
into monotonically increasing order, that represent the number of times that
each of the TMR components must be checked in one period of the schedule.

(ii) Initialization: An initial population is formed of individuals that are
created by generating N random numbers between 1 and an upper bound value
(e.g., 50) that are sorted into ascending order.

(iii) Evaluation: The fitness value is the system failure rate, as estimated
using the analysis outlined in Section 3, corresponding to each individual in
population P . Please note that individuals that do not satisfy the constraints on
dk and duplicate individuals are removed from the population before proceeding
to the next step.

(iv) Selection: A tournament selection is adopted for the application of
the selection procedure. This approach involves running several “tournaments”
among a few individuals chosen at random from the population. The individuals
with the best fitness are selected for the application of crossover and mutation.

(v) Crossover : We use a uniform crossover method, which randomly selects
genes from the first and the second parent to generate an offspring. For example,
with N = 3, two chromosomes [1 3 5] and [2 4 6] may create an offspring of [1 4
5] or [2 3 5]. The probability of crossover is a user-defined value (e.g., 0.25, as
we expect that on average an offspring inherits 25% genes of the first parent and
75% genes of the second parent).

(vi) Mutation: Mutation alters one or more genes with a probability equal
to the mutation rate (e.g., 10%) of a parent selected during the tournament. For
example, with N = 3, assuming the second gene of the chromosome [1 2 5] is
selected for mutation. A new value is generated by randomly adding 1 to or
subtracting 1 from the mutated number, thus the chromosome after mutation
would be [1 3 5] assuming addition was selected.

After the mutation function is finished, a new population is created and the
evaluation procedure is repeated. When the GA function meets the stopping
condition, it terminates and returns the best individual of the current population.

9



4.2 Scheduling of voter checks

Calculating the system failure rate requires all timing parameters, most of which
can only be obtained from a real schedule. A real schedule must ensure fair voter
checking among all TMR components. These voter checks, in turn, are required
to be evenly distributed so that the temporal gap between any two consecutive
checks of the same TMR component is as constant as possible. The problem of
creating such a sequence of voter checks belongs to the class of Response Time
Variability Problems (RTVP) [13], which arises whenever products, clients, jobs
or, as in this work, voter checks need to be sequenced in such a way that the
variability in the period between the instants at which they receive the necessary
resource is minimized.

Unfortunately, the RTVP is NP-hard [13]. To solve our RTVP, we utilize
the GA that is detailed in [12] to find the optimal schedule of voter checks.

4.3 Mean time to detect (MTTD) errors

The MTTD errors is defined as the average elapsed time interval between a
configuration bit being affected by a fault and the instant that the erroneous
TMR module is detected. The MTTD (in units of ∆to) can be estimated as
follows:

MTTD =

∑N
k=1 ek

D
2dk∑N

k=1 ek
(4.1)

where ek denotes the number of errors that occur in component k and D =
∑N

1 dk
denotes the length of one period of the voter checking schedule. If the voters are
checked in round-robin order, dk = 1,∀k, D = N , and thus MTTD = N

2 .

5 Experimental Analysis

We use Matlab to evaluate and compare the MTTF and reliability of TMR-MER
systems employing VRVC with identical systems that use round-robin order for
voter checking. We also evaluate the MTTD errors of both approaches by means
of a fault injection experiment on an implemented sample system.

5.1 Experiments

We conducted three experiments.
Experiment 1 - Simulations: We computed the MTTFs of simulated TMR

systems containing 2–5 and 10 components. We assumed that voters could be
checked in 1µs in each system that we simulated. We then varied the voter
checking period from 1µs to 1s in order to evaluate its impact on the reliability
of systems that employ both VRVC and round-robin voter checking.

For the 2-component system, we conducted a case study with components
containing 100,000 and 1,000,000 essential bits; and reconfiguration times of
0.2ms and 2ms, respectively. A brute force search was conducted to find the
optimal results.

For the systems involving between 3 and 10 components, the number of essen-
tial bits per TMR module was chosen randomly in a range varying from 10,000
to 2,000,000 bits using each of uniform, quadratic and exponential distributions.

10



The recovery time of a TMR module is given as the product of the number
of its Configuration Frames (CFs) and the reconfiguration time per CF. We
assumed that 30% of the configuration memory bits per CF were essential. Once
a faulty module is detected, it should be recovered as quickly as possible. The
reconfiguration time per CF was therefore assumed to be 2µs, corresponding to
the highest throughput of the ICAP, and 60µs, which in our system is needed to
retrieve a frame of data from off-chip memory when it is operated at 100MHz.

As detailed in Section 4, two GAs were implemented to obtain a schedule to
yield the best possible system reliability. It should be noted that fine tuning the
parameters of a GA is almost always a difficult task [14, 15]. In this work, we
undertook preliminary experimentation using the following parameter values;
further experimentation will be undertaken in the future to assess the full
potential of our approach. The GA to determine the ratios in which components
should be checked was initialised with 100 random chromosomes in which
the value of each gene was randomly chosen in a range from 1 to 50. Since
the simulation experiments are time-consuming, particularly for 10-component
systems, we decided that the GA should be terminated after 100 generations.
In addition, the crossover rate and the mutation rate were set to 25% and 10%,
respectively. As discussed, we implemented the GA from [12] to find the best
distribution of checks once the check rate was determined.

Table 5.1: Bit failure rates in GEO [16]

Orbit
Altitude (km)/

Solar Worst Worst Peak

Inclination
Min Week Day 5-Min

λ (SEUs/Bit/s)

GEO 35,768/0o 1.71E-13 2.16E-11 7.34E-11 2.66E-10

For each distribution, we performed 5 runs and calculated the average ratio of
the estimated MTTF for the TMR-MER system employing VRVC to that using
round-robin sequencing for voter checks. For each run, we varied the bit failure
rates as listed in Table 5.1. The “high radiation level” of bit failure rates as
shown in Table 5.1 for Xilinx 7-series FPGAs [17] at Geosynchronous Equatorial
Orbit (GEO) were derived using the CREME96 model [18] assuming 2.54mm
aluminium shielding and a total number of device configuration memory bits
(nc) of 77,845,216. These parameters were also used in Experiment 2.

Experiment 2 - Implementation: We compared the reliability of an exemplar
system comprising 9 TMR components (Fig. 5.1), using VRVC and round robin
for voter checking in the four orbit conditions of Table 5.1. We also evaluated
the trade-off between reliability and power consumption for both methods with
the Reconfiguration Controller (RC) operating at clock frequencies of 100MHz,
50MHz, 20MHz, and 10MHz.

The exemplar system consisted of the 9 TMR components listed in Table
5.2. These TMR components were: a single MAC-based 21-tap Finite Impulse
Response (FIR) filter with 16-bit signal width; an 8-to-3-bit Block Adaptive
Quantizer (BAQ); an 8,096-word deep 32-bit FIFO; three 32-bit Shift Registers
(SRs) having different lengths and a variety of combinational functions between
the stages; and three 32-bit Binary Search Trees (BSTs) of different heights and
a variety of combinational functions at each node. Due to power limitations, all
9 TMR components were operated at 10MHz.

11



RC

FIR

FIFO BAQ SR3

BST2BST1

BST3

SR2

SR1

BST2

BST3

SR3

SR3

BST2BST3

Figure 5.1: System layout for Experiments 2 and 3

An RC using the ICAP-based voter checking approach [8] was used to read the
voter status bits. The RC includes a MicroBlaze (MB) processor connected to an
External Memory Controller (EMC), a DMA Controller (DMAC) and the AXI
HWICAP IP accessed via an AXI bus. The MB processor configuration is created
with minimal features. The AXI HWICAP IP combines with EMC and DMAC
to reconfigure faulty modules and is also used for flipping configuration memory
bits during the fault injection experiment described in the next sub-section.

Table 5.2 lists the recovery times (tr) for each TMR module. The recovery
time is the time interval between an error being detected in a module until the
last word of the partial bitstream used to recover that module is written to the
AXI HWICAP IP.

The designs were implemented on a Xilinx Artix-7 XC7A200TFBG484-1
FPGA using Vivado 2014.4 with default settings.

Experiment 3 - Fault injection: We performed a fault injection experiment
to assess the MTTD errors of the system of Experiment 2.

The RC was used to manage the fault injection process. The RC received
a random configuration bit address generated by a host PC. The RC read the
corresponding frame, flipped the addressed bit and wrote the frame back using
the HWICAP to emulate an SEU. Note that we did not inject faults into the RC
in order to avoid corrupting it during the experiment. Of the 18,300 configuration
frames in the Artix-7 XC7A200TFBG-484 targeted in our study, 17,330 frames
were contained in the design under test. Once a fault was injected, the RC
waited for 10ms and checked the error status of all voters and reported which
component, if any, was in error.

5.2 Results and Discussions

Through these experiments, it was demonstrated that the use of VRVC improves
TMR-MER system reliability and the MTTD errors over the use of round robin
for voter checking. The results are detailed in the following:

12



10
−6

10
−4

10
−2

10
0

10
−1

10
1

10
3

10
5

∆ t
o
 (s)

(a)

M
T

T
F

 (
y
e

a
rs

)

 

 

Round robin
Variable rate

10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

R
a

ti
o

∆ t
o
 (s)

(b)

 

 

10
−6

10
−4

10
−2

10
0
0

5

10

15

20

p

Ratio
p

Figure 5.2: GEO worst week results: (a) MTTF (years) of the round-robin and
variable-rate voter checking approaches. (b) Peak MTTF ratio achieved when
varying the voter checking rate relative to checking voters in round-robin order,
and the corresponding rate p at which C2 is checked relative to C1.

Results of 2-5 and 10 component systems

2-component system (GEO worst week results) Fig. 5.2(a) shows that
a better MTTF is achieved by applying VRVC, while Fig. 5.2(b) shows that the
number of checks p needed to obtain the best result varies depending on ∆to.
Moreover, the MTTF of VRVC improves significantly as ∆to is increased and,
in this case study, the MTTF was observed to be as much as 70% greater than
when round robin is used for voter checking.

Systems of 3-5 and 10 components The ratios of MTTFs for systems
employing VRVC to those checking voters in round-robin order are higher when
the differences in component vulnerabilities are larger and/or when ∆to is
increased (Fig. 5.3). It can be observed that the ratios are almost independent
of the orbital/radiation conditions and that the improvement is significant as
∆to is increased.

Fig. 5.3 also shows that when the number of essential bits of all TMR
components are exponentially distributed, the average ratios are more than
60% better for all simulated systems and as much as 100% better in 5 and 10
component systems, while when they are uniformly and quadratically distributed,
the average ratios are up to 20% better and 40% better, respectively.

We observed that the increments of the ratios of MTTFs of VRVC to round
robin are not consistent. We believe that these observations relate to the relative
reconfiguration times (tr) of the modules, which also influence system reliability.

Example design results

Table 5.2 provides the number of essential bits (ne) and the recovery times (tr)
of the nine components. It also presents the number of checks (dk) made per
schedule period of each component so that the system MTTFs were maximized
when the RC was operated at different clock frequencies under the GEO worst
week condition (we observed similar dk for the other GEO conditions). The
time period between successive voter observations (∆to) was 71µs, 142µs, 355µs

13



10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

2

2.2

2.4

∆ t
o
 (s)

(3 − 2µs)

R
a
ti
o

10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

2

2.2

2.4

∆ t
o
 (s)

(4 − 2µs)

10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

2

2.2

2.4

∆ t
o
 (s)

(5 − 2µs)

10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

2

2.2

2.4

∆ t
o
 (s)

(10 − 2µs)

10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

2

2.2

∆ t
o
 (s)

(3 − 60µs)

R
a
ti
o

10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

2

2.2

∆ t
o
 (s)

(4 − 60µs)

10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

2

2.2

∆ t
o
 (s)

(5 − 60µs)

10
−6

10
−4

10
−2

10
0

1

1.2

1.4

1.6

1.8

2

2.2

∆ t
o
 (s)

(10 − 60µs)

 

 

Uniform Quadratic Exponential

Figure 5.3: Average ratios of MTTFs for VRVC to those for round robin for
systems consisting of 3, 4, 5, and 10 components for the four orbit conditions
when the assumed reconfiguration time per frame is 2µs or 60µs.

Table 5.2: Results of mapping 9 TMR components to Xilinx Artix-7
XC7A200TFBG-484 FPGA

Design
Essential Bits RC tr (ms) – # checks (dk)

ne 100MHz 50MHz 20MHz 10MHz

BST3 1,833,235 26.7 – 47 49.5 – 45 72.4 – 47 118.7 – 49

SR3 1,403,647 19.6 – 41 43.8 – 40 64.0 – 39 104.9 – 46

BST2 793,534 11.0 – 28 24.5 – 31 35.8 – 34 58.7 – 36

SR2 515,904 8.5 – 27 21.7 – 29 31.7 – 33 52.0 – 29

SR1 285,914 6.8 – 26 13.6 – 24 19.9 – 25 32.6 – 25

BST1 281,604 2.6 – 23 5.9 – 23 8.6 – 20 14.0 – 25

BAQ 48,963 1.3 – 15 3.0 – 18 4.4 – 18 7.1 – 14

FIFO 41,842 3.5 – 12 7.8 – 12 11.4 – 13 18.7 – 13

FIR 12,042 1.2 – 08 2.6 – 11 3.9 – 10 6.3 – 11

and 711µs when the RC was operated at 100MHz, 50MHz, 20MHz and 10MHz,
respectively.

Fig. 5.4 confirms the results of the previous sub-section that the reliability
of the exemplar system using VRVC is always higher than when round robin is
used for voter checking over all operating frequencies and across the four GEO

14



0 5

0.9999985

0.9999990

0.9999995

1.0000000

Years
(Solar Min)

R
e
lia

b
ili

ty

0 5
0.97

0.98

0.99

1

Years
(Worst Week)

0 5
0.7

0.8

0.9

1
100MHz

50MHz

20MHz

10MHz

Years
(Worst Day)

0 5
0

0.2

0.4

0.6

0.8

1

Years
(Peak 5 Min)

 

 

Round robin VSE

Figure 5.4: Reliabilities of using round-robin and VRVC approaches in the four
orbit conditions

Table 5.3: MTTF ratio and power consumption

RC operating frequency 100MHz 50MHz 20MHz 10MHz

MTTF Ratio 1.18 1.17 1.25 1.30

Power RC 252(0%) 196(-22%) 163(-35%) 152(-40%)

(mW) RC+TMR components 456(0%) 394(-14%) 357(-22%) 344(-25%)

conditions.
Table 5.3 reports two metrics. The first is the ratio of MTTF for systems

employing VRVC to those checking voters in round-robin order (the ratios are
similar for all four orbit conditions). The second is the power consumption of
the RC itself and the RC including the 9 components as well as the percentage
decrease in the power consumption with the RC operating at various clock
frequencies relative to the RC operating at 100MHz (the RC can employ either
VRVC or round robin).

The TMR-MER system using VRVC is more reliable than the same system
using round robin when the available power in the system is constrained. Fig.
5.4 shows that the system reliabilities are proportional to the rates at which
the system recovers from errors. However, for the sake of energy saving in
space-based applications in long-term missions, the checking frequencies may be
decreased [19]. For example, when the RC runs at 10MHz compared to 100MHz,
the energy consumption of the RC itself is reduced by 40% and that of the whole
system is reduced by 25% (Table 5.3). In this case, the ratio of MTTF for VRVC
to that obtained using round robin for voter checking increases from 18% for
the RC operating at 100MHz to 30% at 10MHz (Table 5.3).

Fault injection results

Errors are detected 30% faster on average when using VRVC instead of round
robin. Table 5.4(a) provides the average number of errors in each component that
we found after four trials of one million injected faults. Table 5.4(b) tabulates
the MTTD errors using both the round-robin and VRVC approaches as well as
the percentage reduction from round robin to VRVC when the RC is operated
at different clock frequencies. The MTTDs are calculated using Eq. (4.1) with

15



Table 5.4: (a) Number of errors found in components, (b) MTTD in ∆to units

Design # Errors ek (%)

BST3 38,828 (39.1)

SR3 26,701 (26.9)

BST2 13,830 (13.9) Freq. Round robin VRVC %reduction

SR2 9,643 (9.7) 100MHz 4.5 3.2 28

SR1 4,522 (4.6) 50MHz 4.5 3.3 27

BST1 4,053 (4.1) 20MHz 4.5 3.1 31

BAQ 684 (0.7) 10MHz 4.5 2.9 35

FIFO 696 (0.7) (b)

FIR 396 (0.4)

(a)

the number of checks listed in Table 5.2 and the average number of errors in
each design tabulated in Table 5.4(a).

5.3 Further Discussion

Of considerable concern is that much of the additional logic used to implement
and support TMR-MER may be implemented in a non-redundant manner such
as the RC, the RCN and voters, and therefore introduces additional single points
of failure. Nevertheless, irrespective of the configuration memory error recovery
approach taken, FPGA-based TMR systems inevitably include non-redundant
components such as the clock network, ICAP and off-chip ports, which also
introduce single points of failure when used. Therefore, in order to further
improve system reliability, the unreplicated modules need to be triplicated, if
possible, and considered as TMR components. Since these components may be
spread across the whole device, a standard partial reconfiguration design flow
[20] cannot be used. One solution is to use FMER [21] that combines scrubbing
and MER to recover configuration memory errors. In this case, our reliability
model can also be applied to find a voter checking schedule that enhances, if not
maximizes, system reliability.

A limitation of the proposed reliability model is that the number of failure
cases increases exponentially with the number of TMR components. Approx-
imation methods that reduce the complexity of the reliability models will be
considered in the next stage of our work.

Finally, it should be noted that in our work we have neglected the additional
system vulnerability that arises from the additional memory needed to store the
schedule. However, this overhead is in the order of tens of bytes and should not
pose a concern for overall system reliability.

6 Concluding Remarks and Future Work

In this paper, we have presented reliability models for TMR-MER systems that
consist of an arbitrary number of components whose voters are checked in either
round-robin order or at variable rates. We have proposed a genetic algorithm to
derive a voter checking schedule that has the potential to significantly enhance
the system reliability. We assert that any FPGA-based TMR system that uses a

16



reconfiguration control network to provide random access to component voters
can benefit from using variable-rate scheduling to prioritize checks of more
vulnerable components. The benefits become more significant as the radiation
level increases and/or as the checking frequency decreases.

The results show that using VRVC improves the mean time for the system
to fail by up to 70% in a case study of a two-component system compared to
checking voters in a round-robin manner. The improvements were found to be
over 60%, 40% and 20% in case studies of systems consisting of 3–5, and 10
components with assumptions that the numbers of essential bits of each of the
TMR components are exponentially, quadratically and uniformly distributed,
respectively. We have also shown that the power consumption of TMR-MER
systems can be significantly reduced by reducing the operating clock frequency of
the RC without compromising system reliability. Finally, through fault injection
testing, we demonstrated that the mean time to detect errors can be reduced by
30% when using VRVC instead of round robin.

Our future work considers adaptive scheduling of voter checks based on the
radiation level of the surrounding environment with the aim of optimizing the
system reliability and power consumption. Another direction is to consider
a user-defined metric (e.g., criticality level of each TMR component) in the
reliability models. This is because some components such as clock managers are
more critical than others, although they are small in terms of the number of
their essential bits.

Acknowledgements

This research was supported in part by the Australian Research Council’s Linkage
(LP140100328) and Discovery (DP150103866) Projects funding schemes.

Bibliography

[1] C. Bolchini, A. Miele, and C. Sandionigi, “A novel design methodology for
implementing reliability-aware systems on SRAM-based FPGAs,” IEEE
Transactions on Computers, vol. 60, no. 12, pp. 1744–1758, 2011.

[2] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of radiation
effects in SRAM-based FPGAs for space applications,” ACM Comp. Surveys
(CSUR), vol. 47, no. 2, 2015.

[3] N. T. H. Nguyen, E. Cetin, and O. Diessel, “Dynamic scheduling of voter
checks in FPGA-based TMR systems,” in FPT, Dec 2016, pp. 169–172.

[4] R. Le, “Soft error mitigation using prioritized essential bits,” Xilinx
XAPP538 (v1.0), 2012.

[5] D. Agiakatsikas, N. T. H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, and
L. Gong, “Reconfiguration control networks for TMR systems with module-
based recovery,” in IEEE International Symposium on Field-Programmable
Custom Computing Machines, May 2016, pp. 88–91.

[6] P. Ostler, M. Caffrey, D. Gibelyou, P. Graham, K. Morgan, B. Pratt,
H. Quinn, and M. Wirthlin, “SRAM FPGA reliability analysis for harsh
radiation environments,” IEEE Transactions on Nuclear Science, vol. 56,
no. 6, pp. 3519–3526, Dec 2009.

17



[7] M. Straka, J. Kastil, Z. Kotasek, and L. Miculka, “Fault tolerant system
design and SEU injection based testing,” Microprocessors and Microsystems,
vol. 37, no. 2, pp. 155–173, 2013.

[8] F. Veljkovic, T. Riesgo, and E. de la Torre, “Adaptive reconfigurable voting
for enhanced reliability in medium-grained fault tolerant architectures,” in
AHS, June 2015, pp. 1–8.

[9] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-
induced multi-bit upsets in SRAM-based FPGAs,” IEEE Transactions on
Nuclear Science, vol. 52, no. 6, pp. 2455–2461, Dec 2005.

[10] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2007.

[11] L. Sterpone and M. Violante, “A new reliability-oriented place and route
algorithm for SRAM-based FPGAs,” IEEE Transactions on Computers,
vol. 55, no. 6, pp. 732–744, June 2006.

[12] A. Garca-Villoria and R. Pastor, “Solving the response time variability
problem by means of a genetic algorithm,” European Journal of Operational
Research, vol. 202, no. 2, pp. 320 – 327, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221709003567

[13] A. Corominas, W. Kubiak, and N. M. Palli, “Response time variability,”
Journal of Scheduling, vol. 10, no. 2, pp. 97–110, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10951-006-0002-8

[14] T. Back, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evolutionary
Computation, 1st ed. Bristol, UK, UK: IOP Publishing Ltd., 1997.

[15] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Transactions on evolutionary computation,
vol. 3, no. 2, pp. 124–141, 1999.

[16] D. Heynderickx, B. Quaghebeur, E. Speelman, and E. Daly, “ESAs SPace
ENVironment Information System (SPENVIS): a WWW interface to models
of the space environment and its effects,” in 38th Aerospace Sciences Meeting
and Exhibit, American Institute of Aeronautics and Astronautics, vol. 371,
2000.

[17] D. Hiemstra and V. Kirischian, “Single event upset characterization of the
Kintex-7 Field Programmable Gate Array using proton irradiation,” in 2014
IEEE Radiation Effects Data Workshop (REDW), July 2014, pp. 1–4.

[18] A. Tylka, J. Adams, P. Boberg, B. Brownstein, W. Dietrich, E. Flueckiger,
E. Petersen, M. Shea, D. Smart, and E. Smith, “CREME96: A revision of
the cosmic ray effects on micro-electronics code,” IEEE Transactions on
Nuclear Science, vol. 44, no. 6, pp. 2150–2160, Dec 1997.

[19] I. Herrera-Alzu and M. Lopez-Vallejo, “Design techniques for xilinx virtex
fpga configuration memory scrubbers,” IEEE Transactions on Nuclear
Science, vol. 60, no. 1, pp. 376–385, Feb 2013.

[20] UG909: Vivado Design Suite User Guide - Partial Reconfiguration (v2016.1)
April 6, 2016.

[21] D. Agiakatsikas, E. Cetin, and O. Diessel, “FMER: A hybrid configuration
memory error recovery scheme for highly reliable FPGA SoCs,” in FPL,
Sept 2016, pp. 88–91.

18


