Using architectural modelling and simulation to
predict latency of blockchain-based systems

Rajitha Yasaweerasinghelage Mark Staples Ingo Weber

University of New South Wales, Australia
Data61, CSIRO, Australia

<firstname>.<lastname>Q@data6l.csiro.au

Technical Report
UNSW-CSE-TR-201704
February 2017

UNSW

SYDNEY

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, Australia

Abstract

Blockchain is an emerging technology for sharing transactional data and com-
putation without using a central trusted third party. It is an architectural
choice to use a blockchain instead of traditional databases or protocols, and this
creates trade-offs between non-functional requirements such as performance,
cost, and security. However, little is known about predicting the behaviour
of blockchain-based systems. This paper shows the feasibility of using archi-
tectural performance modelling and simulation tools to predict the latency of
blockchain-based systems. We use established tools and techniques, but explore
new blockchain-specific issues such as the configuration of the number of con-
firmation blocks and inter-block times. We report on a lab-based experimental
study using an incident management system, showing predictions of median
system level response time with a relative error mostly under 10%. We discuss
how the approach can be used to support architectural decision-making, during
the design of blockchain-based systems.

1 Introduction

Blockchain is an emerging technology which provides a shared distributed ledger
of transactions, allowing untrusting participants to interact without relying on
a central trusted third party. It is the underlying technology of the Bitcoin
[17] system and digital currency, but has since been used in a number of other
public and private blockchain systems [7] with different features and characteris-
tics. A number of studies have been conducted to explore the use of blockchain
concepts in areas such as financial markets [21], supply chains [25], and con-
sumer and business-to-business services [29]. In general, a blockchain can be
used as a database, or as a software connector [29], and with the support of
smart contracts [19], it can be used as a programmable environment for exe-
cuting business logic or conditional transactions on the blockchain network [25].
Blockchain is an architectural alternative to conventional technologies, and when
choosing between these alternatives there are trade-offs between non-functional
requirements such as data integrity, transparency, cost and performance. Some
literature explores blockchain security [9, 12, 23] and throughput [11] but, there
is little work on other non-functional requirements such as latency and cost. For
many applications, these could be significant when considering whether or how
to use a blockchain.

Consider latency, which can be a drawback for blockchains. In a blockchain
using Nakamoto consensus (longest chain wins) [17], to confirm a transaction, it
needs to be included in a block, which should be endorsed by dependent blocks,
known as confirmation blocks. On Bitcoin [17], the inter-block time is about
10 minutes and 6 confirmation blocks are often used [23], while on the public
Ethereum blockchain [7] the average block generation time is about 15s (as on
15 November 2016) [1], and 12! confirmation blocks are typically recommended.
Clearly, the latency for initial inclusion of a transaction is already higher than for
traditional systems, and a large number of confirmation blocks will multiply this
delay. Transaction delays can also arise from network delays, the transaction fee
offered, the number of transactions being processed, and the strategic decisions
made by miners. So, transaction inclusion times can vary widely.

Although longer than in conventional systems, these transaction latencies
may be acceptable for some use cases, if the other potential benefits of blockchain
can be achieved, such as decentralised trust. Nonetheless, it will still be impor-
tant to be able to accurately predict system-level latency during the design
phase, to assess the impact of this limitation on system requirements. Addi-
tionally, when using a blockchain there are many subsidiary design decisions,
such as choosing between public or private blockchain, deciding on the number
of confirmation blocks, and determining the integration with off-chain commu-
nication and enterprise systems. An inability to predict overall performance
may itself be a barrier to the adoption of blockchain technology.

In this paper, we propose a model-driven approach for predicting latency in
blockchain-based systems. The aim is that the approach supports early lifecycle
stages and helps compare design alternatives. Our contributions are:

e An approach for modelling blockchain-based systems using performance
modelling and simulation tools

Thttp://ethereun.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/
203#203

http://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203#203
http://ethereum.stackexchange.com/questions/183/how-should-i-handle-blockchain-forks-in-my-dapp/203#203

An evaluation of the accuracy of system-level latency predictions

e A comparison, using the tools, of the impact of the number of confirmation
blocks on latency

e A comparison, using the tools, of the impact of inter-block time on latency

e A comparison of candidate design alternatives for the use case’s business
process model

This technical report is a long version of paper [30] including additional de-
tails, background and details. This paper is structured as follows. In Section 2,
we outline previous work and related technologies. Section 3 discusses our ap-
proach for modelling and benchmarking transaction latency in blockchains. In
Section 5, we describe our approach to using the Palladio Component Model [3]
for modelling and simulation of the latency of blockchain-based systems, using
an incident management system as an illustrative example. The benchmark
data from Section 3 is used to configure these models. The accuracy of the
system-level predictions from this model is evaluated in Section 4 by comparing
the simulation predictions with measurements of a laboratory-based exemplar
system. We discuss some blockchain-specific modelling issues and future work
in Section 6, before concluding.

2 Background

This section briefly reviews background material related to this paper. We
describe blockchain technology, the use of blockchains for business process man-
agement, and performance modelling and simulation.

2.1 Blockchain

Blockchain is a technology introduced by Bitcoin [17] to support holding and
transferring of the Bitcoin digital currency. A blockchain is a distributed shared
ledger system which validates and stores the history of transactions. The
blockchain data structure uses blocks which are collections of transactions and
other block-related metadata. These blocks are chained into a linked list, where
a pointer from within a block is the cryptographic hash of the value of the
previous block. This creates a tamper-resistant historical record. There can
be many (thousands) active participants (often called ‘miners’) which jointly
operate a blockchain system, but the proper operation of any single author-
ity is not required for the overall system to establish transactional integrity,
non-repudiation, and consensus between participants about the contents of the
ledger. Large numbers of participants can act maliciously within the system,
without stopping its good overall operation.

When a properly formed transaction is received by a participant, it will
be validated and passed to their peers and so on, until it eventually reaches
every participant. Participants may include a number of transactions into a
block to append to the blockchain. Because there are many participants, there
may be multiple competing candidate “next blocks”. The Bitcoin blockchain
(and Ethereum) resolves this using Nakamoto consensus [17]: the longest chain

of blocks seen by a participant is by convention taken by them to be the au-
thoritative chain. In Bitcoin (and Ethereum), a valid block must also include
a solution to a difficult cryptographic puzzle. This proof-of-work mechanism
results in random leader election amongst participants for the creation of the
next block, because the time required to solve the cryptographic puzzle varies
probabilistically and in proportion to the computing power used by the partic-
ipant. Proof-of-work also demonstrates a kind of economic investment in the
operation of the blockchain system which at least partially aligns the incentives
of participants with the integrity of the system. A participant who successfully
creates a block can claim transaction fees and other mining rewards allowed
by the system, as a return on their investment in the operation of the system.
Other consensus mechanisms are possible. Proof-of-stake is similar to proof-
of-work in using Nakamoto consensus, but instead of using a computationally
(and electrically) expensive cryptographic puzzle, leader election and incentive
alignment are achieved by committing stakeholdings of the blockchain digital
currency. In private blockchains, traditional distributed consensus algorithms
can be used instead of Nakamoto consensus. Conventional algorithms provide
stronger transactional integrity properties and can be faster, but usually, are
limited to a smaller and potentially less-hostile group of participants.

The focus of the Bitcoin blockchain is digital currency transactions, but
as a general-purpose technology, blockchains can validate and store transac-
tions of any type. User-defined programs can also be carried in a transac-
tion and executed during validation. These programs, often called smart con-
tracts, run on the blockchain network infrastructure in a pay-per-executed-
instruction mode. Bitcoin allows only very simple straight-line smart contracts,
but Ethereum [7] provides a Turing-complete language called Solidity. Smart
contracts in Ethereum are first class elements which have access to blockchain
states, and the values being transferred. According to Omohundro et al. [19]
Ethereum is intended to create a basis for decentralised applications with busi-
ness logic defined in smart contracts.

2.2 Blockchain for Business Processes

In prior work, Xu et al. [29] explored a way of using blockchain as a connector
in architectures for blockchain-based systems. Weber et al. [25] further demon-
strated the architectural range of blockchains, by showing how they could be
used as a neutral ground for the model-driven execution of business processes.
This approach allows the integration of organisations without the need of a
trusted central coordinating authority. Weber et al. [25] use of blockchain to
facilitate a collaborative process in two ways: as a 1) choreography monitor
which stores the process execution status and provides immutable data storage;
or 2) active mediator by coordinating the collaborative process.

As the smart contracts in a blockchain can not interact directly with the ex-
ternal world, a trigger component connects the processes executing on blockchain
to enterprise systems by acting as an agent for an organisation. The trigger man-
ages keys, keeps track of the data payload in API calls, and can interact with
external services including other databases or web services. In addition to exe-
cuting and validating the core business process logic on the blockchain, some of
the framework logic is also managed and executed on the blockchain using pre-
configured smart contracts. For example, instances of a process monitor smart

contract on the blockchain are created by a transaction invoking a factory smart
contract, which contains a blueprint of the business logic. The blockchain-based
system we use below in our experimental evaluation is a business process system
using the approach from [25], which also measured transaction inclusion time
and utilized the incident management exemplar use case we use here.

2.3 Architectural Performance Modelling

Architectural models can be used to predict the non-functional properties in-
cluding latency, throughput, resource usage, and cost. These models can be
used by analytical solvers or simulation engines to predict non-functional per-
formance of a system at various stages of the development life cycle [5].

There are two types of performance models:

e Analytical performance models: capture performance aspects of the sys-
tem and serve as input for the analytical solvers. Petri nets (PN) [16],
Queueing Networks (QN) [4], Layered Queueing networks (LQN) [10] are
examples for common analytical models.

e Architecture-level performance models: capture key factors influencing the
performance of a system. Examples are the Palladio Component Model
(PCM) [3], UML profile for Schedulability, Performance and Time [28],
and Descartes Modelling Language [13]. Architectural models can be ei-
ther simulated or automatically converted to analytical models. Generally,
simulations take a longer time than the solvers to execute but may be more
flexible.

In this paper, we have used the Palladio workbench [3] for architecture mod-
elling of the latency of blockchain-based systems. Palladio was selected because
it is freely available, supports the simulation of architecture models, has a ‘UML-
like’ interface for model construction, and has proven flexibility for extensions
such as architectural optimisation [14, 8] and new qualities [26]. The modelling
concepts are well-aligned with component-based development and support the
re-use of constructed models and components. Other advantages include the
rich add-on development environment [2], ongoing support, and the large body
of previous work. PCM models can be used directly for simulations with en-
gines such as SimuBench or can be converted into an analytical model and solved
using tools such as Line Solver [20].

3 Performance Model Construction

This section first describes our approach to benchmarking transaction inclusion
times for blockchain. We then describe our approach for system-level perfor-
mance modelling, targeting systems using Weber et al.’s [25] method for business
process execution on the blockchain. These performance models are configured
using the benchmarking results.

3.1 Benchmarking Transaction Inclusion on Blockchain

A key parameter for our architectural performance model is the transaction com-
mit time: the time taken from submitting a transaction until we have sufficient

100 =

90

80 -

] I Uncontrolled (Avg. inter-block time ~13.6s)

— = Controlled (Avg. inter-block time ~6.3s)]

Percentile (%)
wv
o

' Controlled (Avg. inter-block time ~2.3s)

20 1

10 -

0 20 40 60 80 100 120
Transaction Inclusion Time (s)

Figure 3.1: Transaction inclusion time measured on Ethereum (cumulative)

confidence that the transaction has been successfully included in the blockchain.
We benchmark this in a representative deployment of the blockchain to be used
by the client application, as described here. We start the clock on submis-
sion of a transaction, and stop the clock when the broadcasting node receives a
sufficient number of confirmation blocks after receiving a block which includes
the transaction. If 1 block is enough as confirmation, we call this transaction
inclusion time instead. The total time will depend on the transaction propaga-
tion time, inter-block time, transaction inclusion probability, block propagation
time, and the number of confirmation blocks. Our benchmark measurement
abstracts from these details to create a transaction inclusion time distribution
for our architectural performance model. Our benchmark measurements also
include latency overhead for our trigger code and the communication between
the trigger and the Ethereum node. However, this overhead is in milliseconds
range, compared to the seconds inter-block time, so is not significant; and in
any event, client applications using the blockchain encounter similar delays.

As discussed previously, the number of confirmation blocks is a design choice
for client applications using a blockchain. Although twelve confirmation blocks
are often recommended for the public Ethereum blockchain, the “right” number
depends on the business risk involved in the transaction, and on other trade-offs
with latency.

To demonstrate the approach, we ran benchmarks on a private Ethereum
blockchain. We used a private deployment to prevent flooding the public Ethereum
blockchain, to reduce our cost, and to be able to vary inter-block time. We used
one virtual machine to deploy the trigger and a go-Ethereum (Geth) full node
with mining disabled. The mining node was deployed on a different virtual ma-
chine. This situation would mimic practical deployment to some degree: each
organisation would deploy their own full node and trigger in a virtual machine
controlled by them, whereas miner node is operated on separate machines. Both

virtual machines run on one Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz core
each. The virtual machines were located in the same data center and had a
LAN connection. The trigger was implemented in Node.js version 4.2.6 using
Ethereum Javascript library (web3) version 0.15.3. Geth version 1.5.4-stable
was used, and the trigger was configured to use Remote Procedure Calls (RPC)
communication to interact with the Geth node.

For benchmarking latency, we submitted many transactions as follows. A
script invoked the trigger API, which submitted the transaction. The trigger
then listened to the blockchain for the announcement of a sufficient number of
confirmation blocks after observing a block including the transaction and for-
warded the result of successful inclusion back to the script. The script initiated
the next transaction directly afterward.

As a baseline, we report here the observations of transaction inclusion time
(i.e., where sufficient confidence of inclusion is judged to have occurred on seeing
the transaction in a block, as defined above). We ran the experiment on a
private blockchain, where we varied inter-block time, by either controlling the
complexity mechanism or leaving the default implementation (uncontrolled).
The mean inter-block time of the uncontrolled blockchain was 13.6s, in two
settings of controlled private blockchain settings, we measured mean inter-block
times of 2.3s and 6.3s.

For each of the three settings, we measured transaction inclusion time across
1000 transactions. The results are shown as cumulative distributions in Fig. 3.1.
While median transaction inclusion time was 25.8s for uncontrolled private
blockchain, it was 6.91s and 14.65s respectively for the two controlled private
blockchains with 2.3s and 6.3s mean inter-block time. It should be noted that
median transaction inclusion time would be higher on public blockchains, be-
cause of additional network delays and strategic transaction inclusion by miners.

3.2 Blockchain-Based System Performance Modelling

This section describes our approach for architectural performance modelling
of blockchain-based systems. We illustrate our approach using architectural
models for Weber et al.’s [25] method for business process execution on the
blockchain.

In our approach, we model the blockchain from the perspective of the client
application, as a component. So, we do not model the details of the blockchain
mining network, node inter-communication, or consensus algorithm. All of these
factors are aggregated in our abstract model and measurements. The client ap-
plication interacts with the blockchain through a local blockchain node, and
we model the resource and performance characteristics of this local blockchain
node running as a component. In the architecture of a scalable client applica-
tion, one may need to operate multiple blockchain nodes, each independently
participating in the blockchain system; in such cases, we would model those as
multiple deployed instances of the blockchain client. Note that these blockchain
clients do not need to be resource-intensive mining nodes attempting to create
new blocks on the blockchain. Instead, it is enough for these nodes to be just
submitting and observing transactions and blocks on the blockchain network.

o Triggerinterface

void customerSubmitProblem()
B void askFirstLevelSupport()
void askSecondlevelSupport()
void askDev()
void accMngerExplaintoCustomer()
void feedbackAccMnger()
void feedbackfirstLevelSupport()
void feedbackSecondLevelSupport()

void createlnstance()

void getDescription()

<<Provides>>

@ Trigger

tf SEFF <customerSubmitProblem>

ﬂ SEFF <askFirstLevelSupport>

tf SEFF <askSecondlevelSupport>

¥ SEFF <askDev>

ﬂ SEFF <accMngerExplaintoCustomer>
tf SEFF <feedbackAccMnger>

tf SEFF <feedbackfirstLevelSupport>
ﬂ SEFF <feedbackSecondLevelSupport>
tf SEFF <createlnstance>

tf SEFF <getDescription>

PassiveResourceCompartment
gasLimit <Capacity: 10000>

ComponentParameterCompartment

o GethClientInterface

void sendTransactionRequestToBlockchain()
void filter()

<<Requires>>

<<Provides>>

@ GethClient
ﬂ SEFF <sendTransactionRequestToBlockchain>
F7 SeFF <filter>
PassiveResourceCompartment

ComponentParameterCompartment

Figure 3.2: PCM Repository diagram

+ translateQuery
ResourceDemands
[DoublePDF[(264.0; 0.3)(375.0; 0.4)(475.0; 0.3)] <CPU>
FailureOccurrenceDescriptions

InfrastructureCallsCompartment

q}{ Required_GethClientInterface_Trigger.sendTransactionRequestToBlockchain
InputVariableUsage

OutputVariableUsage

Figure 3.3: RDSEFF diagram of operation transaction

Component Repository Model

In Weber et al’s [25] method, off-chain business systems interact with the
blockchain through trigger components. Fig. 3.2 shows an example model of a
trigger component interacting with an Ethereum blockchain client node (using
the Ethereum geth client), modelled as two components each exposing a rel-
evant interface. In a Palladio Component Model (PCM), operations provided
by a component are specified in an interface. The trigger interface provides
operations for each action in an example process. We here use an incident
management process as an example, described in Section 4.1. The trigger in-
terface also provides a createlnstance operation, which creates an instance of
a process monitor by invoking the factory smart contract for the business pro-
cess, pre-configured on the blockchain. The trigger translates API calls into
corresponding blockchain transactions and submits them for execution on the
blockchain through the locally-deployed Ethereum client.

Resource Demanding Service Effect Specifications (RDSEFF)

After modelling the components, interfaces, and their relationships, we then
model the non-functional behaviour of component operations. In PCM, the com-
ponent operation behaviour is specified in a RDSEFF. Each operation translates
an API call to a blockchain transaction and uses an external action to forward
the transaction to the blockchain node, as illustrated in Fig. 3.3. The resource
utilisation of each component is configured as a probability distribution func-
tion (PDF) constructed using benchmarks as described in Section 3.1. Each
operation is benchmarked and modelled separately to account for variation in
the operations and to demonstrate the capability of modelling their different
behaviours. For manual steps in the process, operator resolution time must be
separately benchmarked for inclusion into the model, but this is not dealt with

in this paper.

Usage Model

To simulate the execution of the system, we specify a usage model that cap-
tures representative use of the system at points of variation. Our illustrative
usage model in Fig. 3.4 reflects process flow in our example business process
for incident management, where the points of variation are optional branches
of the process. For the purpose of our laboratory experiments, we assumed
that at each stage of incident response (except for the final developer stage),
75% of issues received were resolved in that stage. The final developer support
stage resolves every request. Fig. 3.4 shows the branching probabilities used to
represent this behaviour.

Here we show a usage model as a single scenario with branching probabilities.
Variation in the possible resolution times, e.g., due to randomness in the path
taken, is explored through multiple simulation runs. However, it would also
possible to examine multiple usage scenarios separately, each using different
probabilities or execution/resolution times. This could be done to drill down
onto specific issues or opportunities regarding the design of the business process.

4 Evaluating System-Level Latency Predictions

In this section, we evaluate the prediction accuracy of our performance model.
We use an exemplar business process system and compare predictions from sim-
ulation with macro-level measurements. To this end, we used the same private
Ethereum environment as for the micro-level benchmarking (Section 3.1). How-
ever, rather than measuring latency at the micro level for transaction inclusion
time, we measure latency over entire business process execution instances and
compare those to predictions from our PCM model.

For this work, only business process’s end-to-end latency was considered. In
order to evaluate the accuracy of scenario latency, the simulated and measured
results are described using mean, median, quartiles and interquartile ranges,
and the variance and standard deviation were excluded due to the skewness
of the underlying distribution. The distributions are illustrated as cumulative
distributions diagrams. Medians and quantiles are illustrated using boxplot
diagrams. Additionally, relative errors are provided for each statistical values.

We reuse the incident management system from our previous work. To
make this paper self-contained, a brief overview of the implementation is given
in Section 4.1. The same implementation is used to evaluate the accuracy of
performance models. The generalisability of this approach is further discussed
in Section 5 for different business applications.

4.1 Incident Management Business Process Implementa-
tion
Throughout this paper, a case study process of Incident Management was used

as an example, as shown in Fig. 4.1. Further details are discussed below and
under experiment set up in Section 4.2.

$59001d SSOUISTI(] JUSTIOSRURUI JUSPIOUL JO WRISRIP [dpOW d3esn NDJ F'¢ 23 g

Wil AejpQ €R
dweNe ¢
<Aejagabesn>>

fowil Aeja@ €
dweNe ¢y
lAejagabesn>>

:awi) Aeja@ €
aweNe & >wnv_mm,wumt2:_5mmt._.sw
£<UONOY|[BDWRISAS> > peqpas) ae)ia1uliabbl L
PV/|[eDWRSAS> >

| S0 ¥ | 1L Aejpq 2
III -
dWeNe g

iy Bl [EETRERL VR INETTGIN N

Aejagabesn>>

I EETRCR IR IIETT RN

. Jagabesn>> 4
. 110V/[eDWIISAS> > ;
[
| s20%] U0295)|Se 2RI 66|
IIIIIIIIIIIIIIII 10V|[eDWRISAS> >
<<yduesg>> ﬁ
') = awi) Aejeq €
dWeNe &
||||||||||||||||||||||||||||||m|m,mﬁ.a| ||||||||||||||||||||||||||||| I <<Aejagabesn>>
EPRIERIVEVIFETSIIINR
. . V[[EDWR1SAS> >
| s20¥ |
<<youeig>> o

oQ dwiL Aejaq ¢
SWeNe ¢
<<Aejagabesn>>

Ix3196ujN2e 3dRIRIUI66 L
0112V/|[eDWISAS> >

“awL AejpQ €

dWeNe ¢y
<<Aejagabesn>>

1didsaqiebadeyanuebbl L
1<UO0NDY|[BDWIISAS> >

Q@ dwily AepQ
dWeNe g
<<Aepgabesn>>

(JNSJSWO01SNI 3R IRIUI66L
2<U0NDY|[BDWRISAS> >

szo ¥ |
|| “awL AeppQ €
dWeNe ¢y
. . <<Aejagabesn>>
| oW | ﬁuzmum:_anb,mumtmu::mm@ﬁ
e ————— £<UONDY|[EDWRISAS> >
<<youeig>>

[

10

juase oddns [9As] puz

Jadojanap a1emyos

woddns [aA3]
puz 40} %7eqpPa3) 9pIA0Id

Jadojanap dsy

-

Jadojanap alemyos)

Ccmmm uoddns [ans) puz)

juae poddns [9ns)] 1|

15| 10} }2eqPa3y)|

01d

Jageuey JUN0DY A3y

fucme wuoddns [aA3] L)

J3WO01SN dIA

uonnjos urejdxy

juas8e poddns 23] puz

Ja8euew yunodde | .

juasSe poddns [ans| puz

uoddns [2A3] puz Jsy
aNss| panjosal
uoddns [ans| puz

juase poddns |aA3) 3|

juage poddns [9A9] 15|

10} XDeqPady APINOId [X

X =

anss| panjosal Joddns [9A3] IS |

uoddns [9A3] IS| XSy

JaSeuey Junoddy Aay

[81°d ‘QT] woyy pajdepy ‘sseoold sseulsnq juetIeSeURUI JUSPIOU] :'f 2INST]

JaSeuey Junoddy Ay

JaSeuey Junoddy Ay

Ja8euey 3unoddy Aoy

anss| a|puey ued Jageue|y JUNODY Adyf

X uondusap wajqoud 199

-—

wa|qoud e SeH Jawoisn)

-

J3WO0ISNd dIA)

L J3WO0ISNd dIA)

11

The process model is shown in Fig. 4.1. There are four issue resolution
stages: account manager, first level support, second level support, and developer
support. When a customer report an issue first, account manager requests
problem description and attempt to solve the issue. If the issue is solved directly
feedback the customer. Otherwise, account manager asks first level support and
if first level support can not solve the issue ask second level support so on. At
each stage, if someone finds the solution feedback to the upper level and finally
account manager explains the solution to the customer.

In the blockchain, a trigger exposes APIs for each action. When a customer
submits an issue, the trigger creates a smart contract instance. Other actors can
interact with this smart contract instance via the trigger. The trigger updates
the status of the process by sending transactions via a full blockchain node
to that instance and keeps track of the process. For this experiment, it was
assumed that all actors interact with the same trigger. In general, for each
action, the trigger will invoke a transaction in a smart contract instance. When
the transaction is included in a block and that block is confirmed by a pre-
decided number of blocks, the system considers the action to have successfully
completed.

The factory smart contract, which acts as a process monitor as discussed in
Section 2.2, was compiled using Solidity compiler version 0.4.7 without enabling
optimisations. The factory smart contract was manually deployed on the private
blockchain and the trigger was configured to interact with the factory contract
before starting the benchmarking.

4.2 Experiment Setup

Macro-level Measurements A synthetic workload was generated which fol-
lows the same 75% resolution rate at each stage as in Section 3.1. Trigger oper-
ations were invoked by HTTP requests using an external python script deployed
separately was measured the time delay for the complete scenario. One second
delay was injected in between two case initiations. The experiment was run
for 1000 times (created 1000 process monitor instances) which was executed for
approximately 20 hours.

Simulation SimuCom simulation engine was used for executing PCM model
and executed for the same number of scenario executions. Simucom is the
standard simulation engine for PCM model simulation which uses model-2-text
transformations to translate PCM models into Java Code. Eclipse version 4.6.0
(Neon release) and Palladio Component model version 4.0.1 were used for mod-
elling and SimuCom version 4.0.1 was used for simulations. The simulation
was configured for the same number of measurements as the experiment (1000
measurements).

4.3 Comparing Measurement and Simulated Results

The measured and predicted latency distributions are illustrated as a cumula-
tive density diagram in Fig. 4.2. The cumulative distribution of the latency
is informative as it shows the percentile of process executions under specific
time. As shown in Fig. 4.2 the cumulative distribution highly coincides with
the results from the benchmark.

12

100

90 £

~
o

(o))
o

Measured

Simulated

B
o

Percentile (%)
ul
o

w
o

N
o

10

0 100 200 300 400 500 600
Process level latency (s)

Figure 4.2: Scenario latency - Cumulative distribution

600

+
500 |

400

latency (s)
w
o
o

N

o

o
T

|
158 8

Measured Simulated

Figure 4.3: Boxplot diagrams of measured and simulated scenario latency - Mea-
sured median is 132.83s, simulated median is 130.93s, relative error of median
is 1.42%, and relative error of 95" percentile is 14.6%

13

The simulation predicted the mean latency of the process scenario with a
relative error of 1.6%. The measured mean latency of the process was 136.29s
and the simulation predicts the mean latency as 134.08s where the standard
error of mean(SEM) is 1.27 and 1.07 respectively.

Further statistical measures are illustrated as boxplot diagram in Fig. 5.1a
which consists of a box whose bounds denote the first quartile (¢)1) and third
quartile (Q3) of the underlying data sample. Medians are denoted by a hori-
zontal line within the box. Maximums and minimums indicate by vertical lines
outside the box (whiskers). For many applications, 95% and 99% percentiles
are significant measures when considering the latency and the skewness of the
distribution. The PCM model predicted the 95% and 99% percentiles with a
relative error of 9.4% and 11.5% accuracy. Error in predicted maximum and
minimum are respectively 7.62% and 16.89%.

5 Architectural Decision Making

Design alternatives can be evaluated by predicting latency in example scenarios.
This lets us explore what-if questions in architectural decision making. Xu et
al. [29] have discussed blockchain system design alternatives, and the impact of
design decisions on quality attributes. Here we focus on latency.

5.1 Choice of Inter-Block Time

In a public blockchain, the target inter-block time is fixed. However, in private
blockchains, it can be varied as a design choice. This reduces transaction inclu-
sion time, which can reduce system-level latency. When evaluating inter-block
time alternatives, we use the same models, but modify the transaction inclusion
time parameter.

We conducted an experimental evaluation of the accuracy of our simulation
for various transaction inclusion times, on a private blockchain. The results are
shown as boxplots in Fig. 5.1.

For the default inter-block time of 13.6s, the measured and simulated median
process latency was 132s and 130.93s respectively. For inter-block times of 6.3s
and 2.3s, the median measured latencies were 64.7s and 28.1s, and the median
simulated latencies were 71.1s and 30.7s respectively. The relative errors of
median were 1.4%, 9.6%, and 9.4%, while the relative error of 95" percentiles
were 14.6%, 8.5%, and 0.7% respectively.

5.2 Choice of Number of Confirmation Blocks

The vulnerability of blockchain-based systems to double-spending attacks can be
reduced by increasing the number of confirmation blocks [23]. This introduces
additional latency to the system. We measured the transaction commit time
with 6 and 12 blocks separately and populated the model as mentioned above.
We ran a separate experiment for benchmarking the latency of the BP with 1,
6, and 12 confirmation blocks. The results are illustrated as boxplot diagrams
in Fig. 5.2.

We used a controlled blockchain for this experiment with mean inter-block
time of approx. 2.3s. The measured median process latencies with 1, 6, and 12

14

600

+
500 | .

400

latency (s)
w
o
o

N

o

o
T

|
158 8

Measured Simulated

(a) For 13.6s average inter-block time: median time (measured 132s, simu-
lated 130s), relative error (median 1.4%, 95t percentile 14.6%)

600

500 |- .

400 | ,

latency (s)
w
o
o

N

o

o
T

; i
N L

Measured Simulated

(b) For 6.3s average inter-block time: median time (measured 64.7s, simu-
lated 71.1s), relative error (median 9.6%, 95" percentile 0.7%)

600

500 |- s

400 8

300 | s

latency (s)

N
o
o
T
+
I

Measured Simulated

(c) For 2.3s average inter-block timeldmedian time (measured 28.1s, simu-
lated 30.7s), relative error (median 9.4%, 95" percentile 8.5%)

Figure 5.1: Boxplot diagrams of measurement and simulated results for trans-
action inclusion time under various inter-block times.

450

400 |- ,

350 | .

N w

w o

o o
T T

I I

latency (s)
>
o

0 1 ——
Measured Simulated

(a) 1 confirmation block: median time (measured 28.1s, simulated 30.7s),
relative error (median 9.4%, 95" percentile 8.5%)

450

400 | ,

350 | .

latency (s)
N N w
o w o
o o o
"

iy

w

o
T

%
Q]

Measured Simulated

w
o
T

- F - Ao

(b) 6 confirmation blocks: median time (measured 81.5s, simulated 81.7s),
relative error (median 0.2%, 95" percentile 6.7%)

450

400

350 |

%
I
I
I
150 - E s
-4

Measured Simulated

N w

w o

o o
T T

latency (s)
>
o

(¢) 12 confirmation blocks: median e (measured 152s, simulated 164s),
relative error (median 0.2%, 95" percentile 12.3%)

Figure 5.2: Boxplot diagrams of measured and simulated confirmation time for
varying numbers of confirmation blocks. Average inter-block time was 2.3s.

160

140 | + + 4
T

120} . .
@ 100 | 1
9
© sof .
g
© 60} i

|

40} ! i

= = |

0

Measured Simulated

Figure 5.3: Measured and simulated latency of modified BP. Median time (meas.
26.8s, sim. 27.6s), relative error (median 2.9%, 95" percentile 0.3%).

blocks confirmation were 28.1s, 81.5s, and 152s respectively while the simulation
predicted 30.7s, 81.7s, and 164s. The relative errors of median predictions were
9.4%, 0.2%, and 0.2% and the relative errors of 95 percentiles were 8.5%, 6.7%,
and 12.3% respectively.

5.3 Process Level Changes

It is straightforward to use architectural performance models to evaluate process-
level changes. In our approach, the process is defined by the Palladio usage
model. Performance models can also be useful for estimating the impact on
latency of process redesign [22] such as task elimination, process integration, or
task composition. These are modelled by changing the workflow. Most of the
BP control flow patterns [24] can be directly translated to Palladio component
model patterns.

We experimented with a changed process model, where the account manager
assigns issues directly to second-level support (skipping the first level) in 5% of
cases. We used a private Ethereum blockchain with a mean inter-block time
of 2.3s. The results are shown in Fig. 5.3. The median process latency was
measured as 26.8s, vs. simulation as 27.6s. The relative error of median was
2.9% and the relative error of 95" percentile was 0.3%.

6 Discussion and Future Work

In this section, we discuss some of the limitations of our approach and eval-
uation, and propose possible extensions and other uses for our performance
models.

17

6.1 Limitations

The transaction inclusion-time benchmarks we reported in Section 3 are not in-
tended to be generalisable. Instead, they illustrate our approach to benchmark-
ing transaction inclusion time in order to configure an architectural performance
model. In particular, our laboratory experiments were performed on a private
deployment of Ethereum with only one mining node. This means that there are
no significant network delays for transaction or block propagation among peers,
and there is no occurrence of uncles (short-lived alternate competing recent
histories). The occurrence of uncles can affect transaction inclusion time. We
recommend benchmarking end-to-end latency in the target blockchain platform
in order to account for all sources of delay and variation in transaction inclusion.

Similarly, our experiments on Ethereum use Nakamoto consensus and proof-
of-work. We expect our modelling approach would be usable for proof-of-stake
consensus, after benchmarking transaction inclusion times in those systems. Our
general approach would be applicable in blockchains using classical distributed
consensus algorithms, but the stronger transaction commit semantics supported
by those algorithms means that confirmation blocks would not be required.

Our focus in this paper is on latency, not throughput or scalability. We have
therefore benchmarked latency and evaluated predictions under low demand. In
our experiments, we observed low CPU load, so assume that CPU utilisation did
not impact latency. In real-world situations, latency is affected by high demand,
resource bottlenecks, and architectural mechanisms (e.g., load balancing) used
for scalability. We expect that for a particular use case, if a representative
load can be used on a representative deployment of a blockchain, then latency
benchmarking could be performed as we have described in this paper. A full
treatment is left for future work.

In a blockchain-based system, in addition to CPU, network, and disk there
are other resources. We have not modelled smart contract gas consumption, gas
limits, and public blockchain transaction fees, although these may able to be
modelled as passive resources, as discussed below in Section 6.3.

We have used only one example system for this initial evaluation of our
approach. However, the architectural performance and simulation approach we
have used is largely consistent with the previous body of work in this field which
has been applied to a variety of application systems [3, 20]. Our approach should
similarly apply to other systems.

6.2 Evaluating Other Kinds of Design Alternatives

In Section 5 we showed that the architectural performance modelling approach
can be used to simulate design alternatives for blockchain configuration, and
provided empirical evaluation about the accuracy of those simulation results.
Palladio can be used to model and predict resource utilisation and to compare
different deployment architectures. Frameworks such as PerOpteryx [14] can
be used to automatically search for and define architectures that maximise pre-
dicted system performance. We do not illustrate automatic optimisation in this
paper. However, we do discuss below how the simulation model may be used to
explore some other design issues.

18

Using Blockchain as a Component

using blockchain as a software component is an architectural decision [29]. As
discussed earlier, a challenge is that latency can be significantly higher for
blockchains that for traditional databases. Another concern will be uncertainty
about the upper bound for latency. Acceptable latency levels depend on the
system requirements and should be considered before using a blockchain.

Performance models can help us compare design alternatives. The off-chain
portion of a system can be modelled conventionally. We have used standard
functionality for modelling, so off-chain and on-chain components can appear in
the same model. This can aid visualisation and improve system understanding
[8].

The accuracy of performance models of traditional cloud and database based
systems has been previously studied [6, 8]. The off-chain portion of a blockchain-
based system can be modelled using these approaches. The granularity of the
system model involves a trade-off between model complexity, simulation time,
and the accuracy of the predictions.

One approach to assess the impact of introducing blockchain to a traditional
system is to construct the performance models for the traditional systems us-
ing conventional methods, and then injecting the transaction commit delays
in the places where blockchain interactions will be added. This facilitates the
evaluation of the overall impact to the system, if the blockchain is added as a
component, but with a slightly higher prediction error. If further precision is
needed, the models can be constructed following the methodology in Section 3.

6.3 Execution Cost Modelling

Estimating the cost of software systems using performance modelling and sim-
ulation has been previously studied [8, 15]. Component cost and hardware
cost can be modelled for blockchain-based systems in the same way. However,
blockchain-based systems have other costs including blockchain gas cost for invo-
cation and deployment (Gas is the internal currency for transaction or contract
usage fees in Ethereum [27]). The cost model for blockchains is different to con-
ventional systems, and so simulation-based approaches for cost modelling are
expected to be useful design tools.

The gas consumption of a transaction or smart contract creation depends
on the size of the payload (=200 gas per byte), the gas price for address alloca-
tions if it involves contract creation (32,000 gas), the complexity of the smart
contract, and the base transaction gas price (21,000 gas). The details of the
cost associated with contract creation are provided by Wood [27]. Ether is the
crpyto-currency for Ethereum, analogous to Bitcoins. Gas translates to Ether
with a gas price, and Ether to USD or other currencies through exchange rates
— thus, any operation on the public Ethereum blockchain can be understood to
cost real money. Generally, the use of smart contracts is more expensive than
regular function invocation.

One way to model gas consumption may be as a passive resource in Palladio.
A large amount of gas could be allocated at the beginning and be consumed in
each operation (which should be estimated analytically or by running a bench-
mark). Simulation results can show the state of each passive resource over the
time, which here would reflect gas consumption. Currently, PCM does not sup-

19

port bulk acquisition of passive resources. This could be modelled using looping
and by passing the gas amount as a parameter for each operation.

6.4 Modelling Block Gas Limits

In Ethereum, the block gas limit is a parameter defined by miners, which can be
a limiting factor to throughput and thus latency of the system, particularly if the
transaction frequency and gas consumption per transaction are high. Modelling
gas limit is nontrivial for public blockchains: the gas limit is dynamic and the
gas amount that remains available in a block depends on the interactions of
other parties.

7 Conclusion

In this paper, we have proposed and evaluated an approach for predicting the
latency of blockchain-based systems using architectural performance modelling
and simulation. For an illustrative experimental system in a laboratory envi-
ronment, our predictions had a relative error of mostly under 10%. We further
demonstrated the capability of using these performance models to support eval-
uation of design alternatives that would be encountered in architectural design.
Some of these decisions are about blockchain-specific issues, such as inter-block
time or the number of confirmation blocks. Some decisions about a blockchain-
based system may be about system-level design options but are impacted by
latency arising from the blockchain-related factors. The proposed architectural
models also provide a basis for future research into optimal system configura-
tion, cost, and other non-functional properties. This technical report serves as
long version of a conference paper [30].

Bibliography
[1] Ether stats, November 2016.
[2] Palladio component model addons, October 2016.

[3] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component
model for model-driven performance prediction. Journal of Systems and
Software, 82(1):3-22, 2009.

[4] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S Trivedi.
Queueing networks and Markov chains: modeling and performance evalu-
ation with computer science applications. John Wiley & Sons, 2006.

[5] Andreas Brunnert, André van Hoorn, Felix Willnecker, Alexandru Danciu,
Wilhelm Hasselbring, Christoph Heger, Nikolas Herbst, Pooyan Jamshidi,
Reiner Jung, Joakim von Kistowski, et al. Performance-oriented devops:
A research agenda. arXiv preprint arXiv:1508.04752, 2015.

[6] Andreas Brunnert, Christian Vogele, and Helmut Krcmar. Automatic Per-
formance Model Generation for Java Enterprise Edition (EE) Applications,
pages 74-88. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

20

[7]

8]

[10]

[11]

[15]

Vitalik Buterin. Ethereum white paper: a next generation smart contract
& decentralized application platform. www3.ethereum.org, 2013.

Thijmen De Gooijer, Anton Jansen, Heiko Koziolek, and Anne Koziolek.
An industrial case study of performance and cost design space exploration.
In Proceedings of the 3rd ACM/SPEC International Conference on Perfor-
mance Engineering, pages 205-216. ACM, 2012.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining
is vulnerable. In International Conference on Financial Cryptography and
Data Security, pages 436—454. Springer, 2014.

Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, and Salem
Derisavi. Enhanced modeling and solution of layered queueing networks.
IEEE Transactions on Software Engineering, 35(2):148-161, 2009.

Luciano Garcia-Banuelos, Alexander Ponomarev, Marlon Dumas, and Ingo
Weber. Optimized execution of business processes on blockchain. arXiv
preprint, 2016.

Vincent Gramoli. On the danger of private blockchains. In Workshop on
Distributed Cryptocurrencies and Consensus Ledgers (DCCL’16), 2016.

Samuel Kounev, Fabian Brosig, and Nikolaus Huber. The Descartes mod-
eling language. Dept. of Computer Science, University of Wuerzburg, Tech.
Rep, 2014.

Anne Koziolek, Heiko Koziolek, and Ralf Reussner. PerOpteryx: auto-
mated application of tactics in multi-objective software architecture opti-
mization. In Proceedings of the joint ACM SIGSOFT conference—QoSA
and ISARCS, pages 33-42. ACM, 2011.

Anne Martens, Heiko Koziolek, Steffen Becker, and Ralf Reussner. Auto-
matically improve software architecture models for performance, reliability,
and cost using evolutionary algorithms. In Proc. of Joint WOSP/SIPEW
International Conference on Performance Engineering, pages 105-116.
ACM, 2010.

Michael K. Molloy. Performance analysis using stochastic Petri nets. IEEE
Transactions on computers, 100(9):913-917, 1982.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

Object Management Group. BPMN 2.0 by Example. www.omg.org/
spec/BPMN/20100601/10-06-02.pdf, June 2010. Version 1.0. Accessed
10/3/2016.

Steve Omohundro. Cryptocurrencies, smart contracts, and artificial intel-
ligence. AT matters, 1(2):19-21, 2014.

Juan F Pérez and Giuliano Casale. Assessing SLA compliance from Palladio
component models. In Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2013 15th International Symposium on, pages 409—
416. IEEE, 2013.

21

www.omg.org/spec/BPMN/20100601/10-06-02.pdf
www.omg.org/spec/BPMN/20100601/10-06-02.pdf

[21]

[29]

[30]

Marc Pilkington. Blockchain technology: principles and applications. Re-
search Handbook on Digital Transformations, edited by F. Xavier Olleros
and Majlinda Zhegu. Edward Elgar, 2016.

Hajo A. Reijers and S. Liman Mansar. Best practices in business pro-
cess redesign: an overview and qualitative evaluation of successful redesign
heuristics. Omega, 33(4):283-306, 2005.

Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv
preprint, 2014.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5-
51, 2003.

Ingo Weber, Xiwei Xu, Rgis Riveret, Guido Governatori, Alexander Pono-
marev, and Jan Mendling. Untrusted business process monitoring and
execution using blockchain. In Intél. Conf. Business Process Mgmt.(BPM),
Rio de Janeiro, Brazil, 2016.

Felix Willnecker, Andreas Brunnert, and Helmut Krcmar. Predicting en-
ergy consumption by extending the Palladio component model. In SOSP14
Symposium on Software Performance: Joint Descartes/Kieker/Palladio
Days 2014, page 177, 2014.

Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 2014.

Jing Xu, Murray Woodside, and Dorina Petriu. Performance analysis of a
software design using the UML profile for schedulability, performance, and
time. In International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 291-307. Springer, 2003.

Xiwei Xu, Cesare Pautasso, Liming Zhu, Vincent Gramoli, Alexander Pono-
marev, An Binh Tran, and Shiping Chen. The blockchain as a software
connector. In Proceedings of the 13th Working IEEE/IFIP Conference on
Software Architecture (WICSA), 2016.

Rajitha Yasaweerasinghelage, Mark Staples, and Ingo Weber. Predicting la-
tency of blockchain-based systems using architectural modelling and simu-
lation. In IEEFE International Conference on Software Architecture (ICSA).
IEEE, 2017.

22

	Introduction
	Background
	Blockchain
	Blockchain for Business Processes
	Architectural Performance Modelling

	Performance Model Construction
	Benchmarking Transaction Inclusion on Blockchain
	Blockchain-Based System Performance Modelling

	Evaluating System-Level Latency Predictions
	Incident Management Business Process Implementation
	Experiment Setup
	Comparing Measurement and Simulated Results

	Architectural Decision Making
	Choice of Inter-Block Time
	Choice of Number of Confirmation Blocks
	Process Level Changes

	Discussion and Future Work
	Limitations
	Evaluating Other Kinds of Design Alternatives
	Execution Cost Modelling
	Modelling Block Gas Limits

	Conclusion

