
DominoHash - a fast hash function for

bioinformatic applications suitable for custom

hardware acceleration

Arash Bayat Aleksandar Ignjatovic
Bruno Gaeta Sri Parameswaran

University of New South Wales, Australia
{a.bayat, bgaeta}@unsw.edu.au, {ignjat, sridevan}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201703

Feb 2017

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

The hash-table is a widely used data structure in bioinformatics, for database
searching as well as DNA-read mapping. Due to the increasing growth in the
size of sequenced data, hardware acceleration has been used to speed up re-
lated algorithms. We have developed an alternative hash function to Mur-
murHash, a hash function commonly used in bioinformatic applications. The
main advantage of the proposed hash function (DominoHash) is its suitabil-
ity for acceleration by custom design hardware. Software and hardware im-
plementations as well as the dataset used in our evaluation are available at
sites.google.com/site/dmhashf.
Supplementary data section is attached.



1 Introduction

When aligning a query sequence such as a DNA read, a protein or a gene with
a huge database sequence such as a genome or a library of proteins or genes,
scanning the entire database is not a practical solution; thus the database is
preprocessed and indexed into a hash-table. The index is then used to search
the database for regions of the database which are similar to a query sequence.
Finally, an optimal alignment algorithm is used to align the query to each of
the identified regions of similarity.

In order to index the database in a hash-table, fixed-length subsequences
along with their position are extracted from the database. Each subsequence
along with its position in the database forms a (key, pos) pair to be stored in the
hash-table index. The hash-table is able to return the paired pos for a given key.
At the time of the search, the position in the database of subsequences of the
query are identified using the hash-table index in order to identify regions of the
database similar to query. As an example, in [1], all overlapping subsequences
of length 21 bases (42-bit keys) are taken from the human reference genome
(about 3.2 billion keys) and indexed by hash-tables. Considering key as an
index to the table, a table of length 242 ' 4.4× 1012 entries is required to store
only about 3.2 billion keys. Such a sparse enormous table is neither efficient
nor manageable in computer memory.

In a hash-table, the hash function is responsible for mapping keys to the slots
of a smaller table which is large enough for storing all keys. Collisions occur in a
hash-table for two reasons: first, a key is paired with multiple poss (unavoidable
collision); second, the hash function maps two or more keys to the same slot
of the table (ideally this should not happen). A collision resolution function is
responsible for handling collisions. Since that collision resolution process comes
with computational costs, the hash function is expected to distribute keys over
the table as evenly as possible to reduce the chance of collisions. The present
research is focused on this hash function.

2 Design and Implementation

MurmurHash [2] is a non-cryptographic hash function used by DNA read map-
pers such as WHAM [3] and SNAP [1]. In this paper, we present DominoHash
as an alternative to MurmurHash. DominoHash is inspired by domino shows
where each domino tile falls down on and overlaps other tiles. Assume a table is
divided into sixteen blocks with four bits indices (from 0000 to 1111). Figure 2.1
illustrates the linear arrangement of blocks as well as considering every four con-
secutive blocks as a domino tile (a vertical rectangle of distinct colour). Let A
and B be the two most significant and two least significant bits of the block
index respectively, and C be the two least significant bits of the sum A + B. In
the block index, by replacing A with C, blocks of Figure 2.1 are rearranged in
a form which is shown in Figure 2.2. This operation is called domino-step and
results in blocks being scrambled throughout the table. Similar to domino tiles
fall down and overlaps each other.

Considering a bit representation of the key with Lk bits, to apply the
domino-step, it is possible to take any two bit-fields, A and B of length La

and Lb respectively where La < Lk and Lb < Lk, from any part of the key and

1



00 11

00 10

00 01

00 00

01 11

01 10

01 01

01 00

10 11

10 10

10 01

10 00

11 11

11 10

11 01

11 00

00 00                                                                   11 11

Figure 2.1: Normal arrangement of blocks

00 11

00 10

00 01

00 00

01 11

01 10

01 01

01 00

10 11

10 10

10 01

10 00

11 11

11 10

11 01

11 00

00 00                                                                   11 11

Figure 2.2: Arrangement of blocks after applying DominoHash

replace A with the La least significant bits of the sum A + B. Domino-step
can be repeated on different bit-fields several times, as needed to uniformize the
distribution of the data in the table. Bit-fields should be chosen carefully to
obtain a sufficiently uniform distribution with a minimal number of steps. Such
choice can be obtained using heuristics sketched in Supplementary Data.

For evaluation purpose, all possible overlapping subsequences of length 21
bases (42-bit keys) were extracted from the human genome, approximately 3.2
billion subsequences. A hash-table of size 232 was used to ensure there was
enough space to accommodate all the keys. In order to estimate the distribution
capability of each hash function, for each C (number of collisions), we counted
the number of keys (K) that are mapped to a table slot with C collisions.
Figure 2.3 represents K as a function of C for three different hash functions:
Baseline, MurmurHash and DominoHash. Details of these hash functions are
elaborated in Supplementary Data.

As seen in Figure 2.3, compared to the Baseline, both MurmurHash and
DominoHash were successful in decreasing K for high C values and increasing

2



0

400

800

1200

1600

1 2 3 4 5 6 7 8 9

C:	Number	of	Collisions	

K:
	N
um

be
r	
of
	K
ey
s	(
M
illi
on
s) Baseline

Murmur

Domino

Figure 2.3: Distribution of keys based on the number of collisions of the slot of
the table that keys are mapped to them.

K for lower C values, which means there were fewer slots with a high number of
collisions and more slots with a small number of collisions or no collision (C = 1).
Both DominoHash and MurmurHash resulted in almost identical distributions.
However, the main feature of DominoHash is its suitability for implementation
using a custom design digital circuit which would makes DominoHash extremely
efficient.

In contrast to MurmurHash which uses large multiplications, DominoHash
is a series of small additions. While multiplication is considered to be a com-
plex operation for the hardware, addition results in minimum delay, area and
power consumption when implemented in a circuit. Although the DominoHash
function can be properly fitted in a custom design hardware, its performance
cannot exceed MurmurHash’s on a standard CPU for two reasons. First, modern
CPUs take advantage of pipelined multiplier as well as speculative out-of-order
instruction execution which compensate for the long multiplication delay of
MurmurHash. Secondly, DominoHash requires multiple bit-field extraction and
addition operations, each of which should be executed in a separate standard
instruction. However, in a custom design hardware, required bit-fields can be
hard-wired into custom sized adders.

We have implemented both MurmurHash and DominoHash in hardware us-
ing the Verilog language and synthesised them using Synopsis for 65-nanometer

Table 2.1: Syntesis Report for hardware implementations of MurmurHash and
DominoHash

Murmur Domino Improvement
Delay (ns) 6.2 2.2 2.8
Area (nm2) 11,820.2 854.6 13.8

Power
Consumption

(mW )
26.5 10.6 2.5

3



chip fabrication technology. These hardware implementations were verified to
be identical to the software implementation of the hash functions. Diagrams
of these implementations and additional details can be found in Supplemen-
tary Data. As shown in Table 2.1, DominoHash was 2.8 times faster and 13.8
times smaller than MurmurHash yet consumed 2.5 times less power using this
hardware setup.

3 Conclusion

The decline in the cost of DNA sequencing is resulting in high demand for
processing platforms that can handle enormous amounts of sequence data. With
the commodification of DNA sequencing, specialised computing hardware is
likely to gain considerable advantage over general processing platforms for DNA
sequence analysis. DominoHash is one step forward towards the development
of such a customised hardware platform for DNA sequence processing.

References

[1] Matei Zaharia and et al. Bolosky. “Faster and More Accurate Sequence
Alignment with SNAP”. In: arXiv (Nov. 2011).

[2] Austin Appleby. Murmurhash 3 (smhasher). Nov. 2010.

[3] Yinan Li, Jignesh M. Patel, and Allison Terrell. “WHAM”. In: ACM Trans-
actions on Database Systems 37.4 (Dec. 2012), pp. 1–39.

4



4 Supplementary Data

4.1 Software Implementation

Baseline hash function

For the Baseline hash function elaborated in Algorithm 1 only the right most
32 bits of key are taken. Baseline hash function is implemented as a single
instruction in software and has no hardware implementation. Note that in all
algorithms X[i : j] represent bit i to bit j of X.

Input: KEY 42-bit key
Output: EI 32-bit entry index

EI ← KEY [31 : 00];
Algorithm 1: Baseline hash functions

MurmurHash function

The core operation of MurmurHash is elaborated in Algorithm 2. This program
consists of three shift-XOR and two multiplication instructions.

Input: KEY 42-bit key
Output: EI 32-bit entry index
Data: D 64-bit variable

D ← KEY ⊕ (KEY � 33);
D ← D × FF51AFD7ED558CCD(hex);
D ← D ⊕ (KEY � 33);
D ← D × C4CEB9FE1A85EC53(hex);
D ← D ⊕ (KEY � 33);
EI ← D[31 : 00];

Algorithm 2: Core operation of MurmurHash function

DominoHash function

Domino-steps of the DominoHash function which is used in our experiment are
elaborated in 3. First, in the key bit-vector, the most significant 32 bits is added
to the least significant 32 bits to get all bits involved in the least significant 32
bits of the key. Note that this 32 bit addition is not a domino steps. Then the
right most 32 bits are divided into four 8-bit sections (A, B, C and D). Several
addition operations (domino-steps) are executed. Finally, all four 8-bit values
are merged back to form the output.

considering Q[A][B][C][D] as a four dimensional array, adding D to A (A← A + D)
is similar to scramble forth dimension in the first dimension. In the Domino-
Hash function of Algorithm 3, we scramble the second and the third and the
fourth dimension of array in the first dimension. Then we scramble the third
and the fourth dimension in the second dimension, and then the fourth dimen-
sion in the third dimension. Finally we scramble the first dimension in the forth
dimension. Such way we make sure that all dimension are scrambled well in
other dimension; thus a sufficiently uniform distribution is obtained.

5



Input: KEY 42-bit key
Output: EI 32-bit entry index
Data: D 64-bit variable
Data: A,B,C,D,X Array of five 8-bit variables

KEY ← KEY + (KEY >> 10);

D ← KEY [07 : 00];
C ← KEY [15 : 08];
B ← KEY [23 : 16];
A← KEY [31 : 24];
X ← KEY [31 : 24];

A← D + C + B + A;
B ← D + C + B;
C ← D + C;
D ← D + X;

EI[07 : 00]← D;
EI[15 : 08]← C;
EI[23 : 16]← B;
EI[31 : 24]← A;

Algorithm 3: Core operation of differing hash functions

4.2 Hardware Implementation

The Baseline hash function can be implemented by wires in hardware with no
cost. Figure 4.1 and 4.2 illustrates the block diagram of implemented hardware
for MurmurHash and DominoHash respectively.

6



>> 33

XOR

MUL

>> 33

XOR

MUL

>> 33

XOR

FF51AFD7ED558CCD

C4CEB9FE1A85EC53

KEY

Entry Index

>> 33

XOR

MUL

>> 33

XOR

MUL

>> 33

XOR

FF51AFD7ED558CCD

C4CEB9FE1A85EC53

KEY

Entry Index

Figure 4.1: Mummer Hardware Implementation

>> 10

ADD

Split to four 8-bit numbers

A[3]A[4]

ADD

Merge

KEY

Entry Index

A[2] A[1]

ADDADD ADD

Figure 4.2: Mummer Hardware Implementation

7


