
Fast accurate sequence alignment using

Maximum Exact Matches

Arash Bayat Aleksandar Ignjatovic
Bruno Gaeta Sri Parameswaran

University of New South Wales, Australia
{a.bayat, bgaeta}@unsw.edu.au, {ignjat, sridevan}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201701

Feb 2017

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Sequence alignment is a central technique in biological sequence analysis, and
dynamic programming is widely used to perform an optimal alignment of two
sequences. While efficient, dynamic programming is still costly in terms of time
and memory when aligning very large sequences. We describe MEM-Align, an
optimal alignment algorithm that focuses on Maximal Exact Matches (MEMs)
between two sequences, instead of processing every symbol individually. In its
original definition, MEM-Align is guaranteed to find the optimal alignment but
its execution time is not manageable unless optimisations are applied that de-
crease its accuracy. However it is possible to configure these optimisations to bal-
ance speed and accuracy. The resulting algorithm outperforms existing solutions
such as GeneMyer and Ukkonen. MEM-Align can replace edit distance-based
aligners or provide a faster alternative to Smith-Waterman alignment for most
of their applications including in the final stage of short read mapping.MEM-
Align is publicly available at https://sites.google.com/site/memalignv1.
Supplementary data section is attached.

1 Introduction

Biological sequence alignment is a fundamental problem in bioinformatics that
underlies many biological analyses. Dynamic programming is widely used to
compute the optimal alignment between two sequences [1]. Although several
variations of the optimal alignment algorithm have been proposed including
Needleman-Wunsch [2] and Smith-Waterman [3], they all rely on a dynamic
programming strategy in which input sequences are laid on the vertical and the
horizontal axes of a dynamic programming table.

Since the size of the dynamic programming table is not manageable for
lengthy sequences (eg an entire genome, or a database of genes), heuristic meth-
ods have been introduced that search for subsequences of the query sequence
in a large target sequence to identify similar regions to be processed using an
optimal alignment algorithm. This search operation cannot guarantee that the
optimally-aligning region is always identified. Database search tools such as
BLAST [4], DNA read mappers such as BWA [5] and genome aligners such as
MUMmer [6] are a few examples of heuristic alignment, all of which rely on a
form of dynamic programming-based optimal alignment in their late processing
stage.

Since the Smith-Waterman algorithm is widely used by many bioinformatic
applications [7–10], it has been accelerated using a range of strategies including
vectorized instructions of the target processor [11–14], graphics processors [15]
as well as hardware accelerators [16, 17]. However this is often insufficient or
impractical and many applications substitute optimal dynamic programming
alignment with a fast edit-distance based alignment method where the goal
of the alignment is to minimise the number of differences (edits) but not to
produce the optimal alignment with maximum score. These fast approximate
alignments are likely to produce an optimal alignment if the number of edits
is quite low. GEM [18] and SNAP [19] are two examples which take advan-
tage of the speed of the modified version of GeneMyer [20] and the Ukkonen
algorithm [21] respectively.

In this paper, we present a novel alignment algorithm using dynamic pro-
gramming to replace traditional optimal alignment that looks into the problem
from a different perspective. Instead of aligning the sequences with the gran-
ularity of symbols, our proposed algorithm (MEM-Align) processes Maximal
Exact Matches (MEMs) that exists between two sequences. An exact match
is a common subsequence of two sequences and is maximal when it is not a
subsequence of a larger exact match.

MEM-align, in its original definition, is guaranteed to find the optimal align-
ment. However, its execution time is not manageable unless a series of optimisa-
tions is applied. These optimisations come at the cost of slight inaccuracies, and
the resulting alignment is not guaranteed to be optimal. However, since the in-
troduced optimisations are tuneable, it is possible to configure them to balance
the speed and accuracy of the produced alignment. Our results demonstrate
significant speed ups at the cost of a minimal drop in accuracy.

Given a pair of sequences, MEM-Align extracts and sorts all possible MEMs,
and then processes them in order to align them. The contributions in this paper
include a fast bit-vector method to extract MEMs, a novel alignment algorithm
based on MEMs as well as a series of optimisations that speed up both MEM
extraction and the alignment process. MEM-Align is mainly designed to align

1

nucleotide sequences but we provide guidelines on how to extend the algorithm
to align protein sequences as well.

The rest of this paper is organised as follows. In Section 2 a formal defi-
nition of an optimal alignment is provided and in Section 3 a new alignment
representation is discussed which is the basis for an alignment algorithm intro-
duced in Section 4. Section 5 elaborates a fast method to extract MEMs and
Section 6 describes a series of critical optimisations. Additional explanations,
proofs and implementation details are provided in section 7. Section 8 presents
experimental results, and Section 9 summarised future works.

2 Background

An alignment is a mapping between two sequences which pairs each symbol of
one sequence with either a symbol of the other sequence or a gap. When the
symbols of a pair are identical, the pair is called a match; otherwise, it could
be a mismatch or a gap. Figure 2.1 is an example alignment between a target
sequence T and a query sequence Q in which matches, mismatches and gaps are
shown by “|”, “.”, “-” respectively.

The total number of gaps and mismatches in the alignment is called the
edit-distance and is the number of edits needed to be applied to T in order
to transform it into Q. Some alignment algorithms aim to minimise the edit-
distance when aligning sequences. However, the optimal alignment is defined
differently, as the alignment that maximises the alignment score. The align-
ment score is computed based on a scoring system, typically composed of four
numbers: match score Rm; mismatch penalty Px; gap open penalty Po; and gap
extend penalty Pg. While the Rm, Px and Pe are applied for each individual
match, mismatch, and gap respectively, Po is applied for each group of continu-
ous gaps once only. Given the number of matches Nm, mismatches Nx and gaps
Ng as well as number of groups of continuous gaps No, in the gap-affine model,
the alignment score AS is computed using Equation 2.1. Figure 2.2, illustrates
the computation of the alignment score for the example alignment.

3 Approach

Each alignment can be represented as an ordered list of exact matches. There
should be at least a gap or a mismatch to separate consecutive exact matches.
No match should exist between consecutive exact matches as it would forms
another exact match. Figure 2.3, is a list of six exact matches (M1 to M6) that
form the alignment. Each exact match Mi is stored as triplet integer numbers:
the beginning positions in T and Q (BTi and BQi respectively) and its length
(Li). The ending positions in T and Q, are computed using Equation 2.2a
and 2.2b respectively.

In order to compute the alignment score for a list of exact matches, we first
compute the length of the subsequences between two exact matches (Mi and
Mj) in T and Q using Equation 2.2c and 2.2d respectively. For example, con-
sider M2 and M3 in Figure 2.1 where there are three symbols between them in
T (LT 2

3 = 3) and only two symbols in Q (LQ2
3 = 2). Since three symbols of T

can not be mapped with two symbols of Q, at least one symbol of T should be

2

T: ATTT--CGCTTTCGAACGGTTTGCTCTAGC-GACATGG
 |||| ||| ..|||||..||||| |||| ..|||||

Q: ATTTTACGC-CGCGAACTCTTTGC--TAGCTCTCATGG

 M1 M2 M3 M4 M5 M6

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

T: ATTT--CGCTTTCGAACGGTTTGCTCTAGC-GACATGG
 |||| ||| ..|||||..||||| |||| ..|||||

Q: ATTTTACGC-CGCGAACTCTTTGC--TAGCTCTCATGG

 M1 M2 M3 M4 M5 M6

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

Figure 2.1: An example alignment.

AS = (Nm ×Rm)− (Nx × Px)− (Ng × Pg)− (No × Po) (2.1)

Scoring

Rm = 2

Px = 3

Pg = 1

Po = 4

Alignment

Nm = 27

Nx = 6

Ng = 5

No = 3

AS = (27× 2)− (6× 3)− (5× 1)− (3× 4) = 18

Figure 2.2: Computing the alignment score for the example alignment in Fig-
ure 2.1.

 M1 M2 M3 M4 M5 M6
BT: 1 5 11 18 25 31
BQ: 1 7 12 19 24 31
L : 4 3 5 6 4 5

Figure 2.3: List of exact matches of the example alignment in Figure 2.1.

ETi = BTi + Li
(2.2a)

EQi = BQi + Li
(2.2b)

LT ji = BTi − ETj − 1
(2.2c)

LQji = BQi − EQj − 1
(2.2d)

LDji = LT ji − LT
j
i

(2.2e)

Nj,i
g = |LDji | (2.2f)

N̂j,i
x = min(LT ji , LQ

j
i)

(2.2g)

Nm =

n−1∑
i=1

Li (2.3a)

Nx =

n−1∑
i=1

N̂ i,i+1
x

(2.3b)

Ng =

n−1∑
i=1

N i,i+1
g

(2.3c)

No =

n−1∑
i=1

{
1 N i,i+1

g 6= 0

0 otherwise

(2.3d)

3

mapped to a gap that indicates a deletion. The absolute difference between LT ji
and LQji represents the length of the gap between Mi and Mj which is computed

using Equation 2.2f. Note that a negative LDj
i (computed using Equation 2.2e)

indicates an insertion and a positive LDj
i indicates a deletion. The number of

mismatches between Mi and Mj is then computed using Equation 2.2g. Finally,
the total number of matches, mismatches and gaps as well as groups of contin-
uous gaps for a set of exact matches that forms a valid alignment are computed
using Equation 2.3a, 2.3b, 2.3c and 2.3d.

The placement of gaps and mismatches is not important for nucleotide se-
quences where the mismatch penalty is constant. As a consequence, if gaps
exist between two exact matches, all gaps are considered to be continuous and
attached to one of the exact matches to minimise the effect of the gap open
penalty.

4 Alignment algorithm

In our example in Figure 2.1, M1 to M6 are not the only exact matches between
T and Q as some others are shown in Figure 4.1. MEM-Align is designed to
find a set of exact matches that forms an optimal alignment given a list of all
MEMs. For simplicity, first an algorithm is described that takes the list of all
exact matches; we then extend the algorithm to process only maximal exact
matches which are much fewer in number. Each exact match is a subsequence
of a maximal exact match; for example, if ACG is a maximal exact match then
A, C, G, AC, and CG are other shorter exact matches to be considered.

4.1 Alignment using exact matches

Roughly speaking, dynamic programming is a method of finding a global solu-
tion from available local solutions. In an optimal alignment problem where each
alignment ends in an exact match, the optimal alignment score Ŝi (computed
using Equation 4.1d) for the alignment which ends in ith exact match Mi could
be considered as a global solution. Local solutions which contribute to the cal-
culation of Ŝi are the optimal alignments ending at exact matches which appear
before Mi in both T and Q. F̂ ji (computed using Equation 4.1a) is true when
Mj appears before Mi in both T and Q; and false otherwise. Since Mi can not

be a part of the alignment ending at Mj where F̂ ji = ture, the local solution

Ŝj can be computed independently from the global solution Ŝi. As a result,
a dynamic programming strategy is applicable to this problem. Note that the
global and local solutions in dynamic programming discussed below are not to
be understood as global and local alignments.

Given the list of all exact matches, the first algorithmic step is to sort the list
of exact matches based on ending position in Q. The sorting guarantees that
Ŝj is computed independently from Ŝi for j < i. The complexity of the sorting
operation is n log(n) on average if using quick sort where n is the number of
exact matches. However, as the ending position in Q is a small number, the
sorting can be optimized using the counting sort algorithm with complexity of
O(3n). The implementation of counting sort is elaborated in Supplementary
Data Section 10.2. Ŝji (computed using Equation 4.1c) is a function which

extends the optimal alignment ending at Mj (Ŝj as a local solution) with Mi,

4

ATTTCGCTTTCGAACGGTTTGCTCTAGCGACATGG
ATTTTACGCCGCGAACTCTTTGCTAGCTCTCATGG

ATTTCGCTTTCGAACGGTTTGCTCTAGCGACATGG
 ATTTTACGCCGCGAACTCTTTGCTAGCTCTCATGG

 ATTTCGCTTTCGAACGGTTTGCTCTAGCGACATGG
ATTTTACGCCGCGAACTCTTTGCTAGCTCTCATGG

Figure 4.1: Alternative exact matches between the sequence pair in Figure 2.1

F̂ ji =

{
true EQj < BQi ∧ ETj < BTi

flase otherwise
(4.1a)

P̂ ji = (N̂j,i
x × Px) + (Nj,i

g × Pg) +

{
Po Nj,i

g 6= 0

0 otherwise
(4.1b)

Ŝji =

{
Sj + (Li ×Rm)− P̂ ji F̂ ji = true

0 otherwise
(4.1c)

Ŝi = max

 max
1≤j≤i−1

Ŝji

(Li ×Rm)
(4.1d)

Ŝ = max
1≤i≤n

Ŝi (4.1e)

 ATCTGCCCCCCGTACGT -ATCTGCCCCCCGTACGT
 ATCTGCCCCCCCGTACG ATCTGCCCCCCCGTACG

Figure 4.2: An example of two overlapping MEMs

where extension is possible (F̂ ji = ture). The extension adds to Ŝj the score
for all matches in Mi (Li ×Rm), and then subtracts the penalty for gaps and
mismatches that separate Mj and Mi denoted by P̂ ji . P̂ ji is computed using
Equation 4.1b from numbers of mismatches and gaps existing between Mj and
Mi.

The global solution (Ŝi) is the maximum of all extended local solutions (Ŝji).
Since our algorithm is designed for local alignment, in Equation 4.1d, we also
include the case where Mi is considered to be the first exact match in the
alignment which results in the score of Li × Rm. In a local alignment, leading
and trailing symbols can be excluded from the alignment if the exclusion results
in a higher score; thus the optimal local alignment can begin and end with any
exact matches. The optimal local alignment score for the entire T and Q (Ŝ) is
computed as the maximum score for the alignment ending at any of the exact
matches using Equation 4.1e. Supplementary Data Section 10.3 explains how
to modify this algorithm to produce the global alignment.

When computing P ji , for simplicity, the algorithm assumes that the whole
area between Mi and Mj is composed of gaps and mismatches and that there
are no matches in between. Although this assumption is not true for every Mj ,

it is always true for the Mj that leads to maximum Ŝji which overrules the effect
of the assumption being incorrect for other Mj .

Now that the optimal alignment score is computed, the list of exact matches
in the optimal alignment is obtained through a backtracking process. For each

5

exact match Mi, the backtracking process requires W (i) such that MW (i) maxi-

mizes the score for Mi, or more formally Si = Sji . W (i) is computed and stored
during computation of Si. If Mi is an exact match in the optimal alignment,
then MW (i) is the immediate previous exact match of Mi in the optimal align-
ment. As a result, i←W (i) is the backtracking step that meets the index of
all exact matches in the optimal alignment.

The first step in the backtracking process is to find the last exact match in
the optimal alignment Mend which is the exact match with the highest score such
that Send = S. All other exact matches of the optimal alignment are obtained
by repeating the backtracking step. The backtracking process finishes when
i = Wi which indicates Mi can be considered as the first exact match in the
alignment.

The complexity of the above algorithm is O(3n) for sorting, O(n(n− 1))
for dynamic programming, and O(v) for backtracking where v is the number of
exact matches in the optimal alignment which is much smaller than n. As a
consequence, the total complexity is O(n2). The above algorithm is capable of
returning all optimal alignments as well as the nth best alignments by consider-
ing S as the nth largest element of Si. Details are discussed in Supplementary
Data Section 10.4.

4.2 Alignment using maximal exact matches

Note that n can be reduced by processing only MEMs. If Ma and Mb are con-
secutive exact matches in an optimal alignment, there are MEMs Mxa and Mxb

that include Ma and Mb as a subsequences, respectively. However, Mxa and
Mxb might overlap together which is not supported by the dynamic program-
ming algorithm above. Figure 4.2 is an example which represents the overlap
between two consecutive maximal exact matches.

In order to deal with overlaps, the maximum overlapping length between Mj

and Mi in T and Q (MOji) is computed using Equation 4.2a. Since there could

be no mismatches when an overlap exists N̂ j,i
x is replaced with N j,i

x computed
using Equation 4.2b. Subsequently, P̂ ji is replaced with P ji computed using
Equation 4.2e. Since the score for an overlapping region should not be added
twice, the length of a Mi excluding its overlap with Mj (Lji) is computed using

Equation 4.2c. Also, F̂ ji is replaced with F ji computed using Equation 4.2d to

allow for overlaps. Finally Ŝji , Ŝi and Ŝ are replaced with Sji , Si and S computed
using Equation 4.2f, 4.2g and 4.2h, respectively, to handle overlapping MEMs
correctly.

When backtracking, MOWi
i is computed, and added to BTi and BQi to

exclude overlapping regions if any are present.

6

MOji = max(EQj −BQi, ETj −BTi) + 1 (4.2a)

Nj,i
x =

{
N̂j,i
x MOji = 0

o otherwise
(4.2b)

Lji = Li −MOji (4.2c)

F ji =

{
true EQj < EQi ∧ ETj < ETi

flase otherwise
(4.2d)

P ji = (Nj,i
x × Px) + (Nj,i

g × Pg) +

{
Po Nj,i

g 6= 0

0 otherwise
(4.2e)

Sji =

{
Sj + (Lji ×Rm)− P ji F ji = true

0 otherwise
(4.2f)

Si = max

 max
1≤j≤i−1

Sji

(Li ×Rm)
(4.2g)

S = max
1≤i≤n

Si (4.2h)

5 Extraction of maximal exact matches

The list of all possible MEMs between two sequences is the input to the al-
gorithm described in Section 4.2. However, the complexity of the extraction
process may exceed the complexity of the alignment process if implemented by
brute force. An example brute force extraction algorithm with complexity of
O(n3) is described in Supplementary Data Section 10.5. In order to make the
MEM-Align feasible, we have introduced a fast, bit-vector extraction procedure.

In our proposed MEM extraction method, the first step is to represent se-
quences with a bit-vector. For nucleotide sequences A, C, T, and G are encoded
into 00, 01, 10, and 11. This encoding is chosen to take advantages of a fast, par-
allel and bitwise conversion process that transform DNA strings to a bit-vector.
The conversion process is described in Supplementary Data Section 10.6. Fig-
ure 5.1 illustrates an example sequence pair, along with their corresponding
bit-vector representation.

For each exact match Mi, offset OFSi is computed using Equation 5.1.
Given two sequences in bit-vector format, the bitwise procedure described in
Algorithm 1 computes a bit-vector E in which the beginning and ending posi-
tions of all MEMs with offset zero are identified by a set bit (a bit with value
of one). This procedure consists of three phases: Φ1, Φ2, and Φ3. In Φ1, an
XOR operation compares sequences where matches result in 00 and mismatches
result in 01, 10, and 11. Phase Φ2 transforms all mismatches into 11. Finally,
in Φ3 a shift-and-XOR operation marks the edges of MEMs. Figure 5.1 is an
example that shows the value of E at different phases.

In Figure 5.1, the ith symbol of Q is compared with the ith symbol of T
resulting in only MEMs with offset zero being extracted. To obtain MEMs
with offset sh the T bit-vector must be shifted sh symbols to the left, and
Algorithm 1 must be repeated. Shifting T to the right results in extraction of
MEMs with offset −sh. To extract all possible MEMs, T should be shifted to
the left and right up to len− 1, one symbol at the time, where len is the length

7

Input: T,Q input sequences as bit-vectors
Output: E a bit-vector that marks MEMs

// Φ1: Compare T and Q

E ← T ⊕Q;

// Φ2: Transform mismatches into "11"

E ← E ∨ (E � 1);
E ← E ∨ ((E ∧ 0101...0101)� 1);

// Φ3: Mark up MEM’s edge

E ⇐ E ⊕ (E � 1);

Algorithm 1: Bit-wise MEM extraction

T: T T A G C A T C G C G T C A T A T C G
 10 10 00 11 01 00 10 01 11 01 11 10 01 00 10 00 10 01 11

Q: G T A G C A A C G T C A C C T A T C A
 11 10 00 11 01 00 00 01 11 10 01 00 01 01 10 00 10 01 00
E (ɸ1): 01 00 00 00 00 00 10 00 00 11 10 10 00 01 00 00 00 00 11
E (ɸ2): 11 00 00 00 00 00 11 00 00 11 11 11 00 11 00 00 00 00 11
F (ɸ3): 00 10 00 00 00 00 10 10 00 10 00 00 10 10 10 00 00 00 10

Figure 5.1: Representation of sequences with bit-vector. Identifying Edges of
MEMs

OFSi = BTi −BQi = ETi − EQi (5.1)

of sequences (assuming both sequences are of the same length). When shifting
T , the algorithm must only consider the overlapping part of the sequences using
a mask bit-vector. In order to extract information from E and list the MEMs
in triple integer format, the index of all set bits should be obtained. Details of
the extraction process are explained in Supplementary Data Section 10.7.

6 Optimisation

The main body of the MEM-Align is a dynamic programming algorithm that is
quadratic on the total number of extracted MEMs. Note that number of MEMs
is much larger than the length of the sequences (see Table 10.1). Since the
Smith-Waterman is a dynamic programming algorithm quadratic in the length
of sequence, there is no reason to prefer MEM-Align over the Smith-Waterman
algorithm. However, the algorithm allows a series of optimisations listed below,
which significantly minimise the execution time of MEM-Align.

6.1 Reduced Sji computation

In order to compute Si, S
j
i is computed for all 1 ≤ j ≤ (i− 1) in the main body

of MEM-Align, which results in an algorithm of complexity O(n2). However,
there is a subset Ωi of the set {M1 . . .Mi−1} which satisfies Equation 6.1. As a

8

result, computing Sji for all j such that Mj ∈ Ωi would be enough to find the

maximum Sji . To better understand how Ωi is defined, a diagram in Figure 6.1
represents a set of MEMs as lines where MEMs in a row have the same offset.
The placement of lines in each row represents the placement of the related MEMs
in Q. In Figure 6.1, bold lines represent Ωi. These MEMs that are not involved
in the computation of Si are drawn in grey. Ωi has at most one member in each
row. Mω(i,ofs) is a member of Ωi if it is the closest to Mi amongst other MEMs
in the same row. Also, Mω(i,ofs) should not be fully overlapped by Mi. Formal
definition, proof and implementation details are provided in Section 7.1.

6.2 Skipping distant MEM

When N j,i
x has a large value, P ji tends to be large which leads to a small value for

Sji . Such small Sji is less likely to maximise Si. As a consequence, the algorithm

skips the computation of Sji where N j,i
x is greater than a threshold TD. With

a suitable value selected for TD, there will be rare cases where distant MEM
optimisation results in a sub-optimal alignment. N j,i

g is not restricted in distant
MEM optimisation as this might prevent identifying alignments with large gaps.

6.3 Gap limited alignment

Gap limited alignment (also known as banded alignment) has been implemented
in most alignment functions of the SeqAN [22] package as well as in BWA-
MEM [23]. In fact, for a realistic dataset, most alignments are not likely to
contain lengthy gaps except where Copy Number Variations (CNVs) occur.
Note that CNVs are treated and identified differently from indels (insertion
and deletions) which are expected to be identified during the alignment. Gap
limited optimisation is applied to traditional dynamic programming alignment
by avoiding computing entries in the dynamic programming table where the
distance to the diagonal of the table is higher than a specific threshold gl. A
similar optimisation is applied to MEM-Align by restricting the MEM extraction
process so that T is only shifted up to gl to the right and the left. Limiting
shifts not only reduces the number of MEMs to be processed but also speeds up

OFS
-2
-1
 0
 1
 2

Mi

Figure 6.1: Representation of MEMs with lines. Each row contains MEMs with
the same offset in the same order they appear in Q. Black lines represent Mj

where j < i. Set Ωi is shown with bold black line.

max
Mj∈Ωi

Sji = max
1≤j≤i−1

Sji (6.1)

9

the extraction process itself. How gap limited optimisation affects the output
alignment is described in Section 7.2.

6.4 Short MEM removal

While the number of MEMs which exist between a pair of sequences might be
quite high, the number of exact matches that form the optimal alignment is, in
contrast, much smaller. This difference indicates that the majority of extracted
MEMs are not a part of the optimal alignment. The main reason for such an
excess of MEMs is the high number of short MEMs that randomly exist between
a pair of sequences. Another bitwise operation is proposed in Algorithm 2 to be
incorporated into Algorithm 1 to mask MEMs shorter than threshold sl prior
to extraction. This modification to the MEM extraction process is discussed in
Section 7.3.

Since there are cases in which short MEMs are part of an optimal alignment,
this optimisation introduces a considerable inaccuracy in the alignment process.
However, this adverse effect is mostly compensated with a modification to the
original algorithm which is explained in Section 7.4.

Another challenge is to find a proper value for sl. The most logical way to
do this is to find the probability that a random sequence of length shorter than
sl is found in a random sequence of length sl + (2× gl). However computing
this probability is another difficult problem to solve. On the other hand, the
value of sl is expected to be small, i.e. less than ten. As a consequence, the
value of sl is better identified empirically using a try and test method.

6.5 Hybrid alignment

Even considering the optimisations introduced in Section 6.3 and 6.4, the num-
ber of MEMs is still too high when highly repetitive sequences are given as
input. Since such sequences are less probable, the Smith-Waterman algorithm
is used to align the input if the number of extracted MEMs exceeds a thresh-
old TM . Note that Smith-Waterman processes all sequences in a static time
independent of their content.

7 Methods

This section provides the formal definition of the algorithm, proof and imple-
mentation details.

7.1 Reduced Sji computation

In order to prove Equation 6.1 which is the basis of the optimisation introduced
in Section 6.1, the following sets are defined first:

• Hi
ofs: a set of Mj such that OFSj = ofs and EQj < BQω(i,ofs). In other

words, a set of MEMs in the same row as Mω(iofs) and appears before
Mω(i,ofs).

10

• Hi
∗: a set of Mj such that j < i and BQj > BQi. In other words, a set of

MEMs which are fully overlapped by Mi.

Note that regardless of ofs, there is no common element between Ωi, H
i
ofs

and Hi
∗ whereas their union is equal to {Mj : j < i}. For example, in Figure 6.1

all the black lines after the bold lines (Ωi) are members of Hi
∗ and all the lines

which appear before the bold lines in the row ofs are members of Hi
ofs.

The next step is to prove Inequality 7.1a and Inequality 7.1b. Inequality 7.1a
states that for all Mj in Hi

ofs there is a member Mω(i,ofs) of Ωi such that

S
ω(i,ofs)
i is larger or equal to Sji ; thus, it is possible to avoid computation of Sji

if Mj is a member of Hi
ofs. Inequality 7.1b states that for all Mj in Hi

∗ there

exists Mk such that Ski is larger or equal to Sji ; thus, it is possible to avoid

computation of Sji if Mj is a member of Hi
∗. As a result, to prove Equation 6.1

it is sufficient to prove Inequality 7.1a and Inequality 7.1b. In the proof, F ji is

assumed to be true for all j and i; otherwise computation of Sji is avoided as a
consequence of its definition.

∀Mj ∈ Hi
ofs(S

ω(i,ofs)
i ≥ Sji) (7.1a)

∀Mj ∈ Hi
∗ ∃Mk(Ski ≥ S

j
i ∧ Sj = Skj) (7.1b)

For clarity let ω be equal to ω(i, ofs). By Equation 4.2f, Equation 7.2a
and 7.2b hold; thus proving Inequality 7.1a reduces to proving Inequality 7.2c.
Since by Equation 4.2g, Sω is larger or equal to Sjω, it suffices to prove Inequal-
ity 7.2d. Using Equation 7.2e, Inequality 7.2d reduces to Inequality 7.2f.

Sωi = Sω + (Lωi ×Rm)− Pωi (7.2a)

Sji = Sj + (Lji ×Rm)− P ji (7.2b)

Sω + (Lωi ×Rm)− Pωi ≥ Sj + (Lji ×Rm)− P ji (7.2c)

Sjω + (Lωi ×Rm)− Pωi ≥ Sj + (Lji ×Rm)− P ji (7.2d)

Sjω = Sj + (Ljω ×Rm)− P jω (7.2e)

(Ljω + Lωi − L
j
i)×Rm ≥ P

j
ω + Pωi − P

j
i (7.2f)

In a similar fashion Inequality 7.1b is reduced to Inequality 7.3f using Equa-
tion 7.3a and 7.3b and Inequality 7.3c and 7.3d as well as Equation 7.3e, with
the difference that in Inequality 7.3c Sj is replaced with Skj to form Inequal-

ity 7.3d. Note that Sj is equal to Skj due to the assumption in Inequality 7.1b
and Equation 4.2g.

Ski = Sk + (Lki ×Rm)− Pki (7.3a)

Sji = Sj + (Lji ×Rm)− P ji (7.3b)

Sk + (Lki ×Rm)− Pki ≥ Sj + (Lji ×Rm)− P ji (7.3c)

Sk + (Lki ×Rm)− Pki ≥ Skj + (Lji ×Rm)− P ji (7.3d)

Skj = Sk + (Lkj ×Rm)− Pkj (7.3e)

Pkj + P ji − P
k
i ≥ (Lkj + Lji − L

k
i)×Rm (7.3f)

11

Mj

MiY1

X1 X2 X3

Figure 7.1: Categorization of MEMs based on their offset. The set Ωi is shown
in bold.

Sji ≥ Li ×Rm (7.5a)

Sj + (Lji ×Rm)− P ji ≥ Li ×Rm (7.5b)

(Lj ×Rm) + (Lji ×Rm)− P ji ≥ Li ×Rm (7.5c)

((Lj + Lji)×Rm)− P ji ≥ Li ×Rm (7.5d)

((X1 +X2)×Rm)− (Y 1× Pe)− Po ≥ (X1 +X2 +X3)×Rm (7.5e)

Now that we reduce Inequality 7.1a and 7.1b to Inequality 7.2f and 7.3f,
respectively, it is time to verify Inequality 7.2f and 7.3f for all possible ar-
rangements of MEMs. These verifications are moved to Supplementary Data
Section 10.8 due to lack of space. These verifications are based on the line rep-
resentation of MEMs (i.e. Figure 6.1) in which the horizontal and vertical spaces
between two MEMs are the numbers of mismatches and gaps between them, re-
spectively. Note that the horizontal space is equal to BQβ − EQα − 1 which
is the definition of Nα,β

x . The vertical space is the difference between MEMs
offsets, |OFSβ −OFSα| which is proven to be equal to Nα,β

g in Equation 7.4
using Equation 5.1.

|OFSβ −OFSα| = |(BTβ −BQβ)− (ETα − EQα)|
= |(BTβ − ETα)− (BQβ − EQα)|
= |LTβα − LQβα|
= Nα,β

g

(7.4)

There is one exception which is not considered in Inequality 7.1b, namely the
case that there is noMk such that Sj = Skj . This case occurs when Sj is obtained
by taking Mj as the first MEM in the alignment which means Sj is equal to (or
is maximised by) Lj ×Rm. On the other hand, considering Mi as the first MEM
in the alignment results in Si = Li ×Rm. Based on Equation 4.2g, computation
of Sji is unavoidable if Sji is the largest value for Si; subsequently, larger than
Li ×Rm as well. This condition is shown in Inequality 7.5a which is reduced
to Inequality 7.5b using Equation 4.2f and then to Inequality 7.5c using the
exception condition where Sj = Lj ×Rm. Inequality 7.5c is then reduced in
Inequality 7.5d.

The computation of Sji is avoidable in this exceptional case, if Inequality 7.5d
does not hold. By substituting values from Figure 7.1 which is the only possible
arrangement of MEMs in this exceptional case, Inequality 7.5d yields 7.5e which
can not hold if Rm > 0, Px > 0, Po > 0 and Pg > 0

7.2 Gap limited alignment

Gap limited optimisation does not necessarily limit the length of the gap to
gl. To understand how this optimisation limits the output alignment, INSi
and DELi are defined as the total length of insertions and deletions from the

12

beginning of the alignment up to the ith symbol in the alignment. Then Gi is
defined as INSi −DELi. When gap limited alignment is applied, in the output
alignment the value of Gi is always bounded by −gl and gl.

If the optimal alignment does not satisfy the condition above, it cannot
be found using gap limited optimisation. However, in real datasets, lengthy
gaps are rare and choosing a proper value for gl should result in a negligible
probability of an optimal alignment being missed.

7.3 Masking short MEMs from the edge bit-vector

In order to mask short MEMs during the MEM extraction process described in
Section 5, our proposed solution is to mask short MEMs in the E bit-vector of
Algorithm 1 before phase Φ3 where the edges of MEMs are marked. The proce-
dure shown in Algorithm 2 takes place between phases Φ2 and Φ3 of Algorithm 1
and replaces MEMs shorter than sl with mismatches. As a consequence, MEMs
shorter than sl are not identified in phase Φ3 of Algorithm 1. The short MEM
removal procedure in Algorithm 2 consist of two sub-processes: φ1 and φ2. In
φ1 a bit-vector F is formed in which each match (00) indicates that the next
sl− 1 symbols on the right were matched. In φ2 each match in the F bit-vector
is extended to the right by sl− 1 symbols to form the modified E bit-vector in
which MEMs shorter than sl are masked.

Although masking short MEM comes with additional processing, its overall
effect on execution time is positive because there would be less MEMs in each
bit-vector to list and also less MEMs in total to be subsequently processed.

7.4 Short MEM Removal

There are situations where short MEMs can appear in the optimal alignment. If
these short MEMs are removed by optimisation in Section 6.4, the algorithm in
Section 4.2 can no longer identify optimal alignments. We present modifications
to the original algorithm to deal with some of these situations.

The simplest case where a short MEM occurs in an optimal alignment is
when two edits are close enough to form a MEM shorter than sl. In a more

Input: E edge bit-vector
Input: sl short MEM length
Output: E edge bit-vector, masked short MEM

// φ1: Forming F

F ← E;
for i ∈ {1, . . . , sl − 1} do

F ← F ∨ (E � (2× i));
end

// φ2: Forming modified E

E ← F ;
for i ∈ {1, . . . , sl − 1} do

E ← E ∧ (F � (2× i));
end

Algorithm 2: Short MEM Removal

13

complex case, concentration of more than two edits in a narrow region (REG)
results in consecutive short MEMs in the optimal alignment resulting in all of
them being eliminated. Figure 7.2 represents four general cases where short
MEMs appear in the optimal alignment. In all cases, Mj and Mi as well as
grey (eliminated) short MEMs are part of optimal alignment. In case 1, only
mismatches exist, while in case 2, one gap (here gap refers to a continuous gap
of any length) on one side of the REG also exists. In case 3, there is one gap
but in the middle of REG. Case 4 represents the situation in which two or more
gaps exist in the REG.

Since N j,i
x and N j,i

g can no longer be computed correctly using Equation 4.2b

and 2.2f respectively, computing P ji using Equation 4.2e is not possible. Consid-
ering Mj and Mi consecutive long MEMs in an optimal alignment, the distance
between them could not be assumed as all mismatches and gaps as there could
have been short MEMs between them that were removed. In fact, depending
on the value of sl the overall score for region REG could be positive but end
up being represented with a negative P ji .

In order to deal with all of the above cases, P ji should be computed using
a global optimal alignment that forces all symbols in REG to be aligned to
the corresponding region in T . However, this solution is time-consuming as it
should be executed each time P ji is computed. As a result, we propose a faster

method to retrieve the correct P ji which only supports the first two cases of
Figure 7.2.

Note that the rate of gaps in the alignment is much smaller than the rate
of substitutions; thus the probability of having two gaps near each other is
extremely small. Also, as the gap open penalty is usually high, the optimal

X: Mismatch G: Gap : Short MEM : Long MEM

Mi

Mj X
G

X
G

REGCase 4
Mi

Mj X
G

X
G

REGCase 4

Mi

Mj X X
X

G

REGCase 3

Mi

Mj X XXG

REGCase 2
Mi

Mj X XXG

REGCase 2

MiMj
X XXX

REGCase 1

Figure 7.2: Generalized cases where two or more edits result in short MEMs in
an optimal alignment. There could be multiple consecutive short MEMs that
result in elimination of region REG

XXXX

X

XXXX

XX
Mi

Mω(i,ofs) Mk ϵ Hofs
iMj ϵ Hofs

i

X: Mismatch G: Gap : Short MEM : Long MEM

G

Figure 7.3: The need for extension of Ωi when short MEMs are removed.

14

alignment tends to put gaps together, rather than leaving multiple separate
gaps in a narrow region. Case 3 in Figure 7.2 has a similar probability as case 2
but we neglect it for the sake of performance of our aligner. Experimental results
in Section 8 shows that our proposed method delivers acceptable accuracy on a
realistic dataset.

Since in the first two cases at most one gap is assumed, N j,i
g can be computed

correctly as in Equation 2.2f. To retrieve the number of mismatches N̄ j,i
x and

matches N j,i
m between Mj and Mi, our proposed method is to look back into

subsequences of T and Q (TSji and QSji respectively) which are bounded by Mj

and Mi. If there is no gap TSji and QSji are of the same size (LT ji = LQji) and
there is only one way to align them; thus N̄ j,i

x and N j,i
m are counted by comparing

symbols in TSji and TQji one by one sequentially. If there is a gap, assuming
that the gap is attached to either Mj or Mi, there are only two alignments, that

is, aligning TSji and TQji to the left and right of each other. N̄ j,i
x and N j,i

m are

counted in the overlapping region of TSji and TQji . The alignment that results
in the lower N̄ j,i

x is chosen.
P̄ ji is computed using Equation 7.6 based on the value of N j,i

g , N̄ j,i
x and

N j,i
m , P̄ ji . P̄ ji should then replace P ji in Equation 4.2f. To save space and for

simplicity we do not redefine subsequent equations with annotated names.

P̄ ji = (N̄j,i
x × Px) + (Nj,i

g × Pg) +

{
1 Nj,i

g 6= 0

0 otherwise
− (Nj,i

m ×Rm) (7.6)

Comparing TSji and TQji in a sequential manner for all computed P ji is yet
another time-consuming process; thus we propose an optimisation to avoid com-
puting P ji in some cases. In the proposed optimisation we compute minimum

possible P ji and check if the resulting Sji is higher than the current maximum

computed Si. If this condition is met, the actual P ji is computed and Sji is
compared to the current maximum Si.

In order to estimate the minimum possible P ji , we assume REG is composed
mainly of groups of contiguous sl − 1 matches which are separated by individual
mismatches. On both sides of REG there should be a gap or a mismatch to
separate it from the rest of the alignment. In each sl group of symbol there
should be at lest one mismatch. Based on the number of remaining symbols
(computed using equation 7.7a and the existence of the gap on one side of REG
one or two additional mismatches might be added to the end. the maximum
possible N j,i

m (maxN j,i
m) and subsequently minimum possible N̄ j,i

x (minN̄ j,i
x) in

REG are then computed using Equation 7.7b and 7.7c respectively, based on the
length of the REG which is given by Lreg = min(LT ji , LQ

j
i) and the parameter

sl.

MOD = Lreg mod sl (7.7a)

minN̄j,i
x =

⌊
Lreg

sl

⌋
+

1 MOD = 0 ∧Nj,i
g = 0

1 MOD = 1 ∧Nj,i
g = 0

2 MOD ≥ 1 ∧Nj,i
g = 0

0 MOD = 0 ∧Nj,i
g ≥ 0

1 MOD = 1 ∧Nj,i
g ≥ 0

1 MOD ≥ 1 ∧Nj,i
g ≥ 0

(7.7b)

maxNj,i
m = Lreg −minN̄j,i

x ; (7.7c)

15

23
.4

3.
9

62
.9

11
.5

25
.6

12
.4

58
.4

13
.3

0

10

20

30

40

50

60

70

GM UKK KSW MA GM UKK KSW MA

DSL DSH

Ex
ec
ut
io
n	
Ti
m
e	
(S
ec
on
d)

17
1.
33

12
.3

71
2.
6

10
0.
6 16
6.
29

39
.7

64
2

12
6.
7

0

100

200

300

400

500

600

700

800

GM UKKKSW MA GM UKKKSW MA

DLL DLH

Ex
ec
ut
io
n	
Ti
m
e	
(S
ec
on
d)

11
4.
7 27

5.
3

0.
0

0.
2

49
7.
6

10
97
.7

0.
0 13
.5

0

200

400

600

800

1000

1200

GM UK
K

KS
W M
A

GM UK
K

KS
W M
A

DSL DSH

#	
of
	S
ub
op
tim

al
	A

lig
m
en
t

44
8.
8

56
7.
6

0.
0

0.
6

14
35
.4

19
42
.6

0.
0 53
.2

0

500

1000

1500

2000

2500

GM UK
K

KS
W

M
A

GM UK
K

KS
W

M
A

DLL DLH

#	
of
	S
ub
op
tim

al
	A

lig
m
en
t

Figure 7.4: Execution time and number of non-optimal alignments obtained
using GM, UKK, KSW and MA (MEM-Align) for datasets listed in Table 8.1

Short MEMs might appear before or after the first and the last MEM of the
optimal alignment. This issue is treated similarly to short MEMs between two
long MEMs as discussed above. After the optimal alignment has been found,
the subsequences of T and Q that appears on the left of the first MEM of
the optimal alignment Mfirst are aligned to the right of each other. Then, the
numbers of matches and mismatches are counted from right to left for the whole
overlapping region. The match score and mismatch penalty are progressively
added to and subtracted from Sfirst to see at which point it has been maximised.
Finally the beginning of Mfirst in T and Q is extended left-ward to the point
that maximum Sfirst is achieved. A similar procedure is applied to the last
MEM of the optimal alignment in the reverse direction.

The list Ωi should be reconsidered when short MEMs are removed. The
example in Figure 7.3 represents a case where S

ω(i,ofs)
i does not maximise Si.

In this example, the area before Mi in the same row is full of matches with a
minimal number of mismatches which results in elimination of the whole region.
In this example, the true score for this region is obtained by computing P ji .

However, asMj is not a member of Ωi, S
j
i and subsequently P ji are not computed

when the optimisation proposed in Section 6.1 is applied. Since such situation
is rare, and the optimisation introduced in Section 6.1 has a good effect on final
execution time, we only slightly extend ωi. In fact for all Mω(i, ofs) ∈ Ωi, if
Mω(i, ofs) overlaps Mi, the immediately previous MEM with offset ofs (Mk

in the example) is added to Ωi. Note that in our example in Figure 7.3, this
extension does not fix the problem. However, this extension of Ωi is enough to
correctly deal with most real case alignments.

16

8 Experimental results

In order to evaluate MEM-Align, four synthetic datasets, shown in Table 8.1,
were prepared by random selection from the reference human genome followed
by simulated variation. Each dataset contained two million sequence pairs, with
sequence length and variation rate varying between datasets. These multiple
datasets allowed estimating the impact of sequence length and sequence diver-
gence levels on the speed and accuracy of the various algorithms. More details
about input preparation can be found in Supplementary Data Section 10.1. All
the tests were run on a Linux (version 3.13.0-58-generic) machine with Intel
X7560 processors, in single thread mode. The Linux perf tool was used for
measuring the execution time of each program.

Table 8.1: Datasets

Dataset
Sequence
Length

Variation Rate
SNP Indel Indel Expansion

DSL 125 0.01 0.001 0.05
DLL 500 0.01 0.001 0.05
DSH 125 0.05 0.005 0.1
DLH 500 0.05 0.005 0.1

MEM-Align is a combination of several processes including string to bit-
vector conversion, MEM extraction and sorting, as well as MEM alignment.
Each of these processes is affected by parameters such as the gap limit thresh-
old gl, the short MEM removal length sl, the distant MEM threshold TD and
the maximum allowed MEM threshold TM . Considering all possible configura-
tions for these MEM-Align parameters and listing all the results is not practical.
However, Supplementary Data Section 10.10, we present a collection of configu-
ration that demonstrate the performance of most individual algorithmic features
of MEM-Align.

We compared MEM-Align with three other alignment algorithms: vectorized
Smith-Waterman (KSW), GeneMyer (GM) and Ukkonen (UKK). To evaluate
the accuracy of each non-optimal method, their resulting alignment scores were
compared with the optimal alignment scores produced by KSW. The number of
non-optimally aligned sequence pairs was used as a metric to judge the accuracy
of the corresponding algorithm. Figure 7.4 summarises the execution time of
each method as well as the number of non-optimal alignments produced by each
method. Figure 7.4. For MEM-Align, parameter values (gl, sl, TM, TD) are set
to (5,4,100,20) for DSL and DSH, and are set to (10,4,300,20) for DLL and DLH.
These values were selected in order to balance speed and accuracy. This con-
figuration of MEM-Align resulted in an approximately 5-7 times speedup over
vectorized Smith-Waterman, with only a small decrease in alignment quality.
More details regarding implementation of these algorithms and our usage are
given in Supplementary Data Section 10.9.

9 Discussion

The MEM extraction process in MEM-Align has a lot in common with the
Shifted Hamming Distance (SHD) introduced in [24]. In [25], it was shown that
SHD is suitable for acceleration using custom hardware, and the MEM-Align

17

extraction process is similarly well-suited for hardware acceleration due to its
similarity to SHD. Furthermore, the method we propose for masking short MEM
seems to be more flexible and more efficient than the method used in SHD. In the
case of protein sequences the normal shift-and-insert process should be employed
to transform protein sequences into bit-vectors. Since, in protein sequences, the
mismatch penalty varies based on the symbols, those methods which we used
for DNA sequences to compute the score for the region between two MEMs (P ji)
are not applicable. As a consequence, a form of global alignment is required to
align the regions between MEMs.

References

[1] Sean R Eddy. “What is dynamic programming?” In: Nature Biotechnology
22.7 (July 2004), pp. 909–910.

[2] Saul B Needleman and Christian D Wunsch. “A general method applicable
to the search for similarities in the amino acid sequence of two proteins”.
In: Journal of molecular biology 48.3 (1970), pp. 443–453.

[3] T.F. Smith and M.S. Waterman. “Identification of common molecular sub-
sequences”. In: Journal of Molecular Biology 147.1 (Mar. 1981), pp. 195–
197.

[4] Stephen F Altschul et al. “Basic local alignment search tool”. In: Journal
of molecular biology 215.3 (1990), pp. 403–410.

[5] Heng Li and Richard Durbin. “Fast and accurate long-read alignment with
Burrows-Wheeler transform.” In: Bioinformatics (Oxford, England) 26.5
(Mar. 2010), pp. 589–95.

[6] Stefan Kurtz et al. “Versatile and open software for comparing large
genomes.” In: Genome biology 5.2 (Jan. 2004), R12.

[7] Ben Langmead et al. “Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome.” In: Genome biology 10.3 (Jan.
2009), R25.

[8] Ben Langmead and Steven L Salzberg. “Fast gapped-read alignment with
Bowtie 2.” In: Nature methods 9.4 (Apr. 2012), pp. 357–9.

[9] Mark A DePristo et al. “A framework for variation discovery and geno-
typing using next-generation DNA sequencing data.” In: Nature genetics
43.5 (May 2011), pp. 491–8.

[10] Yongchao Liu and Bertil Schmidt. “Long read alignment based on maxi-
mal exact match seeds.” In: Bioinformatics (Oxford, England) 28.18 (Sept.
2012), pp. i318–i324.

[11] Michael Farrar. “Striped Smith-Waterman speeds database searches six
times over other SIMD implementations”. In: Bioinformatics 23.2 (Jan.
2007), pp. 156–161.

[12] Mengyao Zhao and et al. Lee. “SSW Library: An SIMD Smith-Waterman
C/C++ Library for Use in Genomic Applications”. In: PLoS ONE 8.12
(Dec. 2013). Ed. by Leonardo Mariño-Ramı́rez, e82138.

18

[13] Jeff Daily and et al. Henikoff. “Parasail: SIMD C library for global, semi-
global, and local pairwise sequence alignments”. In: BMC Bioinformatics
17.1 (Dec. 2016), p. 81.

[14] Adam Szalkowski et al. “SWPS3 - fast multi-threaded vectorized Smith-
Waterman for IBM Cell/B.E. and x86/SSE2.” In: BMC research notes 1
(2008), p. 107.

[15] Y Liu, A Wirawan, and B Schmidt. “CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD in-
structions”. In: BMC Bioinformatics 14 (2013), p. 117.

[16] Brandon Harris et al. “A Banded Smith-Waterman FPGA Accelerator
for Mercury BLASTP”. In: 2007 International Conference on Field Pro-
grammable Logic and Applications. IEEE, Aug. 2007, pp. 765–769. isbn:
978-1-4244-1059-0.

[17] Jeff Allred et al. “Smith-Waterman implementation on a FSB-FPGA mod-
ule using the Intel Accelerator Abstraction Layer”. In: 2009 IEEE Interna-
tional Symposium on Parallel & Distributed Processing. IEEE, May 2009,
pp. 1–4. isbn: 978-1-4244-3751-1.

[18] Santiago Marco-Sola et al. “The GEM mapper: fast, accurate and versatile
alignment by filtration.” In: Nature methods 9.12 (Dec. 2012), pp. 1185–8.

[19] Matei Zaharia et al. “Faster and More Accurate Sequence Alignment with
SNAP”. In: arXiv (Nov. 2011).

[20] Gene Myers. “A fast bit-vector algorithm for approximate string matching
based on dynamic programming”. In: Journal of the ACM 46.3 (May
1999), pp. 395–415.

[21] Esko Ukkonen. “Algorithms for approximate string matching”. In: Infor-
mation and Control 64.1 (1985), pp. 100–118.

[22] Andreas Döring and et al. Weese. “SeqAn An efficient, generic C++ li-
brary for sequence analysis”. In: BMC Bioinformatics 9.1 (2008), p. 11.

[23] Heng Li. “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM”. In: (Mar. 2013), p. 3.

[24] Hongyi Xin et al. “Shifted Hamming distance: a fast and accurate SIMD-
friendly filter to accelerate alignment verification in read mapping.” In:
Bioinformatics (Oxford, England) 31.10 (May 2015), pp. 1553–60.

[25] Mohammed Alser et al. “GateKeeper : Enabling Fast Pre-Alignment in
DNA Short Read Mapping with a New Streaming Accelerator Architec-
ture”. In: (2016).

[26] Nils Homer. Whole Genome Simulator for Next-Generation Sequencing.
2011. url: https://github.com/nh13/DWGSIM.

19

10 Supplementary Data

10.1 Input Preparation

In order to prepare input sequence pairs, we simulate 600 bp reads from human
genome using DWGsim [26] with zero error rates. The generated FastQ file is
then transformed into a Fasta file. This Fasta file contains target sequences.
Using EditSim, edits are injected (at two different rates) to the target Fasta to
create two query Fasta file containing query sequences. EditSim source code is
bundled with MEM-Align. The target and query Fasta files are then trimmed to
125 bp and 500 bp to be processed in our evaluation program. The Linux script
named as ”PrepareData.sh” is included in MEM-Align package and elaborates
details of input preparation process.

10.2 Sorting

There is a wide range of sorting algorithm for various applications. In the case
of MEM-Align that needs the extracted MEMs to be sorted in order of EQ, the
counting sort is chosen. Counting sort is a linear time sorting algorithm with
complexity of O(3n) = O(n) that is applicable only when the sorted parameter
varies in a small range. Since the EQ varies between 1 and sequence length and
the sequence length is a relatively small value, the counting sort strategy is well
suited to this problem.

Counting sort consist of three steps: the number of MEMs ending at each
position is computed in array Acnt (∆1); the cumulative number of MEMs
ending before each position is computed in array Acum (∆2); for each MEM its
index in the sorted list (SLI) is identified and the MEM is copied to its place
in the sorted list SL (∆3). Algorithm 3 clarifies the sorting process.

10.3 Global Alignment

The dynamic programming algorithm that processes MEMs is described in Sec-
tion 8. Here we explain how this algorithm could be modified to produce a
global alignment where all symbols in Q must be included in the alignment.
This does not necessarily mean that the first and the last exact matches of the
alignment must begin and end from the start of Q and to the end of Q. In fact
there are optimal global alignments that consider leading and trailing symbols
as mismatches or insertions (whatever leads to lower penalty). As a result, our
global alignment should allow the alignment to begin and end with any MEMs
similar to the proposed local alignment. However, when computing Si, consid-
ering Mi as the first MEM in the alignment requires considering the penalty for
all symbols which comes before Mi in Q. To apply this change Si and S are
redefined in Equation 10.1.

20

Input: {M1 . . .Mn} List of MEMs
Output: SL Sorted List of MEMs

// ∆1: Compute Acnt

Acnt ← [0, 0, 0, . . . , 0];
for i ∈ {1, . . . , n} do

Acnt[EQi]← Acnt[EQi] + 1;
end

// ∆2: Compute Acum

Acum[1]← 0;
for i ∈ {2, . . . , n} do

Acum[i]← Acum[i− 1] +Acnt[i− 1];
end

// ∆3: Sort MEMs

Atmp ← [0, 0, 0, . . . , 0];
for i ∈ {1, . . . , n} do

SLIi ← Acum[EQi] +Atmp[EQi];
SL[SLIi]←Mi;
Atmp[EQi]← Atmp[EQi] + 1;

end
Algorithm 3: Sort MEM by EQ

GLPi = min

{
((BQi)− 1)× Pg + Po

((BQi)− 1)× Px
(10.1a)

Si = max

 max
1≤j≤i−1

Sji

(Li ×Rm)−GLPi
(10.1b)

GTPi = min

{
(Len− EQi)× Pg + Po

(Len− EQi)× Px
(10.1c)

S = max
1≤i≤n

(Si −GTPi) (10.1d)

10.4 Backtracking

Another issue is how to obtain all nth best alignments. In the Smith-Waterman
algorithm this can be done by recursively backtracking in the table from all
entries whose value is equal to the nth maximum. While backtracking, the
maximum values for each entry might be derived from multiple other entries
with each of them resulting in a different alignment with the same score. In
MEM-Align, for each MEM Mi, the algorithm stores all js for which Sji = Si.
Then for each MEM Mi where Si is equivalent to the nth maximum score
the algorithm start backtracking from Mi. Multiple backtracking paths are
processed when multiple js are stored for a MEM.

21

10.5 Brute force MEM extraction

Algorithm 4 represents a brute force method to extract all possible MEMs from
a pair of sequences. In Algorithm 4, we consider each position in Q against each
position in T to see if an exact match begins from that point. If Q[i] 6= T [j]
then no match is started; otherwise if Q[i− 1] = T [j − 1] then the exact match
is started from the previous position and is already extracted. If Q[i] = T [j]
and the previous symbols are not matched then it is the beginning of a maximal
exact match. Thus we extend the exact match up to the end of T or Q, whatever
comes first. The γ symbol at the end and beginning of T is to guarantee that a
mismatch always appears before and after each MEM.

Input: T,Q sequences of length n
Output: List a list of MEMs

// Seal T with γ which is not a sequence alphabet

T [0]← γ;
T [n+ 1]← γ;
for i ∈ {1, . . . , n} do

for j ∈ {1, . . . , n+ 1} do
if Q[i] 6= T [j] ∨Q[i− 1] = T [j − 1] then

continue
end
k ← i+ 1;
l← j + 1;
while k ≤ n ∧ l ≤ n+ 1 do

if Q[k] 6= T [l] then
M.BQ← i;
M.BT ← j;
M.L← k − i;
Insert(List,M);
break;

end
else

k ← k + 1;
l← l + 1;

end

end

end

end

Algorithm 4: Brute force MEM extraction with complexity O(n3)

10.6 DNA string to bit-vector conversion

Given a pair of sequences, the first processing step is to transform sequences
into bit-vectors. A Bit-vector is stored as array of longest machine word, i.e. an
array of 64-bit words each of which stores up to 32 symbols (assuming 2-bit per
symbol for nucleotide sequences). For this transformation, a regular method is
to shift-and-insert symbols into the data-word one by one. However, we propose

22

a fast bit-vector method to convert nucleotide sequences into bit-vectors.
The third and second rightmost bits of the ASCII code for A, C, T, and G

form four different combinations: 00, 01, 10, and 11 respectively. These values
remain the same even if lower case letters are used. As a result, considering a
64-bit machine word W as an array of eight ASCII nucleotide symbols (each
8-bit long), the procedure represented in Algorithm 5 illustrates a method to
transform all eight symbols into a 16-bit bit-vector located in the leftmost part
of W . Finally, every four consecutive words are merged together to compress
all 32 symbols into one 64-bit machine word.

Note that when copying an ASCII string into an array of 64-bit words, a
little-endian machine such as Intel copies the left most symbol into the least
significant byte of the first word in the array. As a consequence, Algorithm 5
reverses the sequence to store the leftmost symbol into the leftmost 2 bits of the
output bit vector.

In order to demonstrate the performance of our proposed DNA-string to bit-
vector conversion, all sequences from dataset DLL were converted to bit-vectors
using our proposed method as well as a regular shift-and-insert Method. Both
conversion methods are implemented in MEM-Align. The measured execution
times were 28.4 and 8 seconds, respectively, which indicate an speed up of over
3.5 times in the conversion process.

Input: IA eight ASCII code
Output: W 2-bit encoded of IA

W ← IA ∧ 0606060606060606(hex);
W ←W � 1;
W ←W ∨ (W � 10) ∨ (W � 20) ∨ (W � 30);
W ←W ∧ FF000000FF000000(hex);
W ← (W � 8) ∨ (W � 32);

Algorithm 5: ASCII to Bit-Vector

10.7 Edge bit-vector to triple number representation of
MEMs

The last step in the extraction process is to identify the beginning and the
length of the MEMs in the bit-vector. Since phase Φ3 of Algorithm 1 marks
the beginning and ending of each MEM with a set bit, there is an even number
of set bits in the bit-vector. Let SBi be the position of the ith set bit in bit-
vector. The ith MEM in the bit-vector Mi is marked by SB2i−1 and SB2i.
Parameters that describe Mi are then computed using Equation 10.2 where sh
is the number of times T is shifted to the left by one prior to extraction (negative
sh is considered for right shifts)

OFSi = sh (10.2a)

Li =
SB2i − SB2i−1

2
(10.2b)

BQi =
SB2i−1

2
+ 1 (10.2c)

BTi = BQi +OFSi (10.2d)

23

In order to compute SB for all set bits, one strategy is to shift out the bit-
vector by two bits at a time and check if the left most bit is set. On average
there should be few MEMs in a bit vector which means there are few set bits.
As a consequence, shift-check loop is an inefficient solution. Since most modern
processors have instructions to count the number of leading or trailing zeroes in
a machine word, this operation is speeded up using these instructions. the Bit
Scan Forward (BFS) and Bit Scan Reverse (BSR) instructions of Intel processors
as well as the Leading Zero Count (LZCNT) instruction of ARM processors are
just two examples.

10.8 Verification of Inequality 7.2f and 7.3f

The number of gaps and mismatches as well as the length of overlapping regions
must be provided as they are used to compute Pαβ and Lαβ in Inequality 7.2f and
Inequality 7.3f. We list all possible arrangements for Mi, Mj and Mk using a
line representation. Finally, Nα,β

x , Nα,β
g and Nα,β

o as well as Lαβ are extracted
for each arrangement of MEMs and the corresponding inequality is evaluated.

Figure 10.1 illustrates all three possible arrangements of Mi, Mj and Mk

(cases 1 to 3) that meet the condition of Equation 7.1a where Mj and Mk must
be in the same row. When Mk overlaps Mi they cannot be in same row as
Mi (case 1); otherwise Mk and Mj can be in same row as Mi (case 2) or in
another row (case 3). Figure 10.1 represents the parameter used to evaluate
Inequality 7.2f. Equation 7.2f is evaluated in all three cases and in all cases it
results in Rm ≥ −Px which is true for all Rm > 0 and Px > 0. Note that during
evaluation the value of Xu and Yu is considered to be zero if not presented in
the case.

Y1

X1 X2 X3 X5 X6

Y1

X1 X2 X3 X5 X6

Mj Mk MiMj Mk Mi

Y1

X1 X2 X3 X4 X6

Y1

X1 X2 X3 X4 X6

X1 X2 X3 X5 X6X1 X2 X3 X5 X6

Case 2

Case 3Case 1

α β Nα,β
x Nα,β

g Nα,β
o Lαβ

j k X2 0 0 X3 +X4

k i X5 Y1 1 X6

j i X2 +X3 +X5 Y2 1 X4 +X6

Figure 10.1: Possible arrangements of MEMs for Equation 7.1a.

Figure 10.2 illustrates all twelve possible arrangements of Mi, Mj and Mk

(cases 1 to 12) that meet the condition set in Equation 7.1b. Mj must be fully
overlapped by Mi indicating that they should not be on the same row. For Mk,
the three horizontal arrangements are: no overlaps of Mk with Mi and Mj ; Mk

overlaps only with Mi; and Mk overlaps both Mi and Mj .
When Mk does not overlap Mi and Mj there are five vertical arrangements

for Mk: above Mj (case 1); same as Mj (case 2); between Mj and Mi (case
3); same as Mi (case 4); and below Mi (case 5). When Mk only overlaps
Mi it cannot be in the same row as Mi which means that only four vertical
arrangements are left (cases 6 to 9). When Mk overlaps both Mi and Mj it

24

cannot be in the same row as Mi or Mj which means that only three vertical
arrangements are left (cases 10 to 12).

Figure 10.2 represents the parameters used to evaluate Inequality 7.3f where
Nα,β
o is 1 when Nα,β

g > 0 and 0 otherwise. Equation 7.3f is evaluated in all
twelve cases and the result for each case is presented in Figure 10.2. For all
cases, Inequality 7.3f is evaluated as true if Rm > 0, Px > 0, Pg > 0 and Po > 0.

Case 1

Y1

X1 X2 X7X4 X6

Y2

Case 1

Y1

X1 X2 X7X4 X6

Y2

Case 4

Y5

X1 X2 X7X4 X6

Case 4

Y5

X1 X2 X7X4 X6

Case 3

Y3

X1 X2 X7X4 X6

Y4

Case 3

Y3

X1 X2 X7X4 X6

Y4

Case 2

Y1

X1 X2 X7X4 X6

Case 2

Y1

X1 X2 X7X4 X6

Case 5

Y5

X1 X2 X7X4 X6

Y2

Case 5

Y5

X1 X2 X7X4 X6

Y2

Case 6

Y1

X1 X3 X7X4 X6

Y2

Case 6

Y1

X1 X3 X7X4 X6

Y2

Case 8

Y3

X1 X3 X7X4 X6

Y4

Case 8

Y3

X1 X3 X7X4 X6

Y4

Case 9

Y5

X1 X3 X7X4 X6

Y2

Case 9

Y5

X1 X3 X7X4 X6

Y2

Case 10

Y1

X1 X3 X7X5 X6

Y2

Case 10

Y1

X1 X3 X7X5 X6

Y2

Case 11

Y3

X1 X3 X7X5 X6

Y4

Case 11

Y3

X1 X3 X7X5 X6

Y4

Case 12

Y5

X1 X3 X7X5 X6

Y2

Case 12

Y5

X1 X3 X7X5 X6

Y2

Case 7

Y1

X1 X3 X7X4 X6

Case 7

Y1

X1 X3 X7X4 X6

Mj Mk MiMj Mk Mi

α β Nα,β
x Nα,β

g Lαβ
k j X2 +X4 Y2 + Y4 + Y5 X6

j i 0 Y1 + Y3 + Y4 + Y5 X7

k i X2 Y1 + Y2 + Y3 X4 +X6 +X7

case 1: (X4 × Px) + Po≥ −(X4 ×Rm)
case 2: Px≥ −Rm
case 3: (X4 × Px) + (2× Y4 × P2) + Po≥ −(X4 ×Rm)
case 4: (X4 × Px) + (2× Y5 × Pe) + (2× Po)≥ −(X4 ×Rm)
case 5: (X4 × Px) + (2× Y5 × Pe) + Po≥ −(X4 ×Rm)
case 6: (X4 × Px) + Po≥ −(X4 ×Rm)
case 7: Px≥ −Rm
case 8: (X4 × Px) + (2× Y4 × Pe) + Po≥ −(X4 ×Rm)
case 9: (X4 × Px) + (2× Y5 × Pe) + Po≥ −(X4 ×Rm)
case 10: Po≥ 0
case 11: (2× Y4 × Pe) + Po≥ 0
case 12: (2× Y5 × Pe) + Po≥ 0

Figure 10.2: Possible arrangements of MEMs in Equation 7.1a.

25

10.9 Ukkonen and GeneMyer implementation details

In order to compute the performance and accuracy of the Ukkonen and Gen-
eMyer algorithms the methods below are used. Note that both Ukkonen and
GeneMyer in their original format only return the number of edits but not the
alignment path. Since the alignment scores for the alignments produced by
these algorithms are needed for comparison with the optimal alignment scores
produced by Smith-Waterman, modified versions of these algorithms were used
in our evaluation. All Linux scripts, C source codes are available in the MEM-
Align packages.

UKKonen: the SNAP short read mapper implements a modified version
of Ukkonen that returns the alignment path in a CIGAR string format (refer
to the SAM file format specification for details). We take this implementation
of Ukkonen for evaluation. The CIGAR string is then processed by a program
to compute the alignment score. Note that in the CIGAR string produced
by this implementation of Ukkonen matches and mismatches are represented
with different symbols (“=”, “X” respectively); thus the alignment score can be
computed from the CIGAR string. The execution time for computing alignment
scores from CIGAR strings is not included in execution time of Ukkonen.

GeneMyer We used an implementation of GeneMyer algorithm from the
SeqAN package. This implementation is also used in [24] for evaluation pur-
poses.

Note that GeneMyer is implemented as a global alignment in the SeqAN
package and the reported alignment score is a global alignment score which can-
not be compared against the optimal local alignment score produced by Smith-
Waterman. In order to compute the local alignment score for the alignment
produced by GeneMyer we print the alignment and then a program compute
local alignment score for the produced alignment. Since printing alignment is a
time-consuming file operation, for a fair comparison, we first processed the input
sequence pairs without printing out the alignment and recorded the execution
time. Then we processed the input once again to print out the alignment.

10.10 Detailed Experimental Results

26

Table 10.1: MEM extraction statistics for all datasets and differing parame-
ters. ET: Execution Time (sec). AM: Average number of extracted MEMs per
sequence pair. NBP: Number of sequence pairs with more than TM MEMs
(see 6.5)

gl sl TM
DSL DSH

ET AM BPM ET AM BPM
124 0 ∞ 159.4 3031.2 0 174.9 3034.0 0
124 0 100 12.3 0.0 2000000 12.7 0.0 2000000
124 4 ∞ 113.9 76.7 0 112.5 78.2 0
5 0 ∞ 10.9 244.8 0 11.5 249.6 0
5 4 ∞ 7.7 9.5 0 7.7 13.2 0
5 4 100 7.6 9.5 0 7.1 13.2 0
5 2 100 8.7 73.3 87465 8.5 76.7 118690
10 4 100 12.3 16.5 440 12.1 19.8 366

gl sl TM
DLL DLH

ET AM BPM ET AM BPM
499 0 ∞ 2091.6 48101.8 0 2200.0 48103.6 0
499 0 300 78.6 0.0 2000000 79.4 0.0 2000000
499 4 ∞ 1720.5 1105.0 0 1668.7 1090.6 0
10 0 ∞ 70.0 1959.6 0 69.3 1977.9 0
10 4 ∞ 44.0 65.9 0 41.9 79.9 0
10 4 300 50.8 65.7 892 51.3 79.8 771
10 2 300 29.6 278.3 1999875 29.1 288.7 1999989
20 4 300 89.6 115.4 8900 89.4 128.0 9022

Table 10.2: Extraction and sorting execution time

Dataset gl sl Extraction time Sort time Total time % of Sort

DSL
10.0 2.0 12.6 5.6 18.2 30.8
5.0 4.0 8.3 0.4 8.7 4.6

DLL
20.0 2.0 83.3 38.2 121.5 31.4
10.0 4.0 42.1 7.1 49.2 14.4

27

T
ab

le
10

.3
:

A
li

gn
m

en
t

p
er

fo
rm

an
ce

,
ac

cu
ra

cy
an

d
st

a
ti

st
ic

s.
S
W

in
d
ic

a
te

s
th

e
ti

m
e

sp
en

t
o
n

S
m

it
h

-W
a
te

rm
a
n

to
a
li

g
n

th
o
se

se
q
u

en
ce

s
w

h
ic

h
ar

e
b
y
p

as
se

d
b
y

M
E

M
-A

li
gn

.
B

y
p

as
se

d
is

th
e

n
u

m
b

er
o
f

a
li

g
n

m
en

t
b
y
p

a
ss

ed
.

N
S

O
A

re
p

re
se

n
ts

n
u

m
b

er
o
f

su
b

o
p

ti
m

a
l

a
li

g
n

m
en

t
p

ro
d

u
ce

b
y

M
E

M
-A

li
gn

.
C

1
is

th
e

n
u

m
b

er
of

ex
p

ec
te

d
S
j i

co
m

p
u

ta
ti

o
n

.
C

2
is

th
e

n
u

m
b

er
o
f
S
j i

co
m

p
u

ta
ti

o
n

a
ft

er
o
p

ti
m

is
a
ti

o
n

in

S
ec

ti
on

6.
1,

C
3

is
n
u

m
b

er
of
S
j i

af
te

r
co

n
si

d
er

in
g
T
D

.
C

4
is

n
u

m
b

er
o
f

ti
m

e
th

a
t

se
q
u

en
ti

a
l

co
m

p
a
re

b
et

w
ee

n
se

q
u

en
ce

s
is

n
ee

d
ed

(s
ee

S
ec

ti
on

6.
4)

.
C

5
is

ac
tu

al
n
u

m
b

er
of

ti
m

e
se

q
u

en
ti

a
l

co
m

p
a
re

is
d

o
n

e.
N

o
te

th
a
t

b
y

co
m

p
u

ti
n

g
m

in
im

u
m
P
j i

w
e

co
u

ld
av

o
id

co
m

p
a
ri

n
g

se
q
u

en
ce

s(
se

e
S

ec
ti

on
6.

4)
.

D
a
t
a
s
e
t

C
o
d
e

P
a
r
a
m

e
t
e
r
s

E
x
e
c
u
t
io

n
T
im

e
(
s
e
c
)

N
u
m

b
e
r

o
f
p
a
ir
s

R
u
n
t
im

e
S
t
a
t
is
t
ic

s
fo

r
1
0
0
0

s
e
q
u
e
n
c
e

p
a
ir
s

g
l

s
l

T
M

T
D

P
o

M
E
M

A
li
g
n

S
W

T
o
t
a
l

% S
W

B
y
p
a
s
s
e
d

N
S
O
A

C
1

C
2

C
3

C
4

C
5

D
S
L

5
4

1
0
0

2
0

6
1
1
.5

0
.0

1
1
.5

0
.0

0
2
4
0

5
5
3
1
4
.6

2
9
8
7
6
.9

1
5
0
0
6
.7

1
0
0
8
3
.3

2
0
2
6
.4

5
2

1
0
0

2
0

6
6
6
.9

2
.7

6
9
.6

3
.9

8
7
4
6
5

1
4
1

2
7
1
8
3
9
8
.3

6
8
5
2
2
9
.7

5
4
0
7
5
5
.4

4
1
4
4
7
1
.4

2
4
3
1
2
.5

1
0

4
1
0
0

2
0

6
2
0
.7

0
.0

2
0
.8

0
.2

4
4
0

1
7
0

1
6
8
8
1
5
.1

9
6
2
2
2
.5

4
7
6
3
7
.9

3
2
7
4
1
.9

4
6
5
7
.2

5
4

1
0
0

1
0

6
1
1
.1

0
.0

1
1
.1

0
.0

0
2
4
7

5
5
3
1
4
.6

2
9
8
7
6
.9

1
0
2
6
8
.8

5
3
4
5
.3

9
8
4
.8

5
4

1
0
0

3
0

6
1
1
.3

0
.0

1
1
.3

0
.0

0
2
4
0

5
5
3
1
4
.6

2
9
8
7
6
.9

1
8
6
1
5
.6

1
3
6
9
2
.1

2
8
2
6
.2

5
4

5
0
0

2
0

6
1
1
.9

0
.0

1
1
.9

0
.0

0
2
4
0

5
5
3
1
4
.6

2
9
8
7
6
.9

1
5
0
0
6
.7

1
0
0
8
3
.3

2
0
2
6
.4

5
4

1
0
0

2
0

9
1
0
.5

0
.0

1
0
.5

0
.0

0
1
8
9

5
5
3
1
4
.6

2
9
8
7
6
.9

1
5
0
0
6
.7

1
0
0
8
3
.3

1
8
8
6
.5

D
S
H

5
4

1
0
0

2
0

6
1
3
.3

0
.0

1
3
.3

0
.0

0
1
3
4
5
8

9
4
6
1
6
.1

4
7
8
3
6
.6

2
6
8
0
7
.6

1
6
5
9
8
.3

4
9
7
3
.1

5
2

1
0
0

2
0

6
7
1
.1

4
.0

7
5
.1

5
.3

1
1
8
6
9
0

6
2
2
8

2
9
6
3
1
0
8
.2

7
5
0
2
1
7
.9

5
9
8
8
0
8
.4

4
5
6
4
3
3
.9

4
3
5
1
9
.2

1
0

4
1
0
0

2
0

6
2
3
.8

0
.0

2
3
.8

0
.1

3
6
6

8
1
9
9

2
2
6
1
1
2
.2

1
2
4
1
9
5
.0

6
5
4
1
4
.3

4
3
4
9
2
.3

9
4
1
0
.0

5
4

1
0
0

1
0

6
1
2
.2

0
.0

1
2
.2

0
.0

0
1
9
2
3
3

9
4
6
1
6
.1

4
7
8
3
6
.6

1
9
4
4
1
.7

9
2
3
2
.4

3
2
8
6
.2

5
4

1
0
0

3
0

6
1
3
.5

0
.0

1
3
.5

0
.0

0
1
3
4
4
6

9
4
6
1
6
.1

4
7
8
3
6
.6

3
2
1
9
9
.0

2
1
9
8
9
.8

5
7
2
2
.6

5
4

5
0
0

2
0

6
1
2
.5

0
.0

1
2
.5

0
.0

0
1
3
4
5
8

9
4
6
1
6
.1

4
7
8
3
6
.6

2
6
8
0
7
.6

1
6
5
9
8
.3

4
9
7
3
.1

5
4

1
0
0

2
0

9
1
2
.5

0
.0

1
2
.5

0
.0

0
9
7
2
7

9
4
6
1
6
.1

4
7
8
3
6
.6

2
6
8
0
7
.6

1
6
5
9
8
.3

4
7
0
8
.1

D
L
L

1
0

4
3
0
0

2
0

6
1
0
8
.6

0
.7

1
0
9
.3

0
.6

8
9
2

5
9
8

2
3
6
1
4
6
5
.1

9
4
6
7
6
9
.7

2
2
0
8
7
1
.1

1
5
5
6
2
3
.3

3
9
0
4
6
.7

1
0

2
3
0
0

2
0

6
2
9
.4

7
1
2
.5

7
4
1
.9

9
6
.0

1
9
9
9
8
7
5

6
3

3
8
8
2
0
8
6
4
.0

5
0
5
1
3
9
2
.0

2
3
8
0
8
0
0
.0

1
5
8
5
1
5
2
.0

1
7
1
0
0
8
.0

2
0

4
3
0
0

2
0

6
2
6
3
.4

3
.7

2
6
7
.1

1
.4

8
9
0
0

5
9
6

7
1
3
9
5
4
1
.6

3
0
9
8
3
9
7
.3

6
6
8
2
4
4
.4

4
8
3
2
1
8
.0

1
2
8
9
5
6
.6

1
0

4
3
0
0

1
0

6
1
0
2
.9

0
.7

1
0
3
.6

0
.7

8
9
2

6
9
8

2
3
6
1
4
6
5
.1

9
4
6
7
6
9
.7

1
4
3
4
3
4
.9

7
8
1
8
7
.2

1
4
1
9
8
.3

1
0

4
3
0
0

3
0

6
1
1
5
.7

0
.7

1
1
6
.4

0
.6

8
9
2

5
9
8

2
3
6
1
4
6
5
.1

9
4
6
7
6
9
.7

2
8
5
5
7
8
.8

2
2
0
3
3
1
.0

6
4
9
2
1
.0

1
0

4
1
0
0
0

2
0

6
1
0
0
.6

0
.0

1
0
0
.6

0
.0

0
5
9
8

2
3
8
9
7
9
1
.8

9
4
9
2
3
5
.9

2
2
2
7
1
7
.2

1
5
6
9
4
2
.0

3
9
2
5
0
.6

1
0

4
3
0
0

2
0

9
1
0
7
.7

0
.8

1
0
8
.4

0
.7

8
9
2

4
1
9

2
3
6
1
4
6
5
.1

9
4
6
7
6
9
.7

2
2
0
8
7
1
.1

1
5
5
6
2
3
.3

3
8
2
8
2
.5

D
L
H

1
0

4
3
0
0

2
0

6
1
2
6
.5

0
.2

1
2
6
.7

0
.2

7
7
1

5
3
2
0
2

3
3
5
9
5
5
9
.8

1
1
5
9
3
4
8
.3

2
9
8
6
4
8
.2

2
0
3
9
9
8
.7

5
9
7
2
2
.7

1
0

2
3
0
0

2
0

6
3
1
.5

6
3
6
.3

6
6
7
.8

9
5
.3

1
9
9
9
9
8
9

6
3

4
1
5
7
6
7
2
7
.3

5
1
8
9
8
1
8
.2

2
4
5
5
2
7
2
.7

1
5
2
4
3
6
3
.6

1
0
4
7
2
7
.3

2
0

4
3
0
0

2
0

6
2
9
0
.4

2
.8

2
9
3
.2

1
.0

9
0
2
2

4
7
0
6
3

8
6
1
2
8
5
3
.2

3
4
2
9
9
1
3
.4

7
7
9
2
7
9
.9

5
5
6
3
0
4
.0

1
3
5
9
5
1
.1

1
0

4
3
0
0

1
0

6
1
2
0
.8

0
.5

1
2
1
.3

0
.4

7
7
1

1
1
7
9
0
9

3
3
5
9
5
5
9
.8

1
1
5
9
3
4
8
.3

2
0
0
0
8
5
.0

1
0
5
4
3
5
.5

3
4
6
4
0
.3

1
0

4
3
0
0

3
0

6
1
3
0
.3

0
.6

1
3
0
.9

0
.4

7
7
1

5
3
0
3
1

3
3
5
9
5
5
9
.8

1
1
5
9
3
4
8
.3

3
7
8
9
3
0
.1

2
8
4
2
8
0
.5

7
1
6
9
9
.3

1
0

4
1
0
0
0

2
0

6
1
1
8
.9

0
.0

1
1
8
.9

0
.0

0
5
3
2
1
8

3
3
8
2
7
7
5
.5

1
1
6
1
4
2
2
.5

3
0
0
1
8
5
.7

2
0
5
1
1
2
.4

5
9
8
4
1
.7

1
0

4
3
0
0

2
0

9
1
2
7
.0

0
.6

1
2
7
.5

0
.4

7
7
1

3
8
7
8
3

3
3
5
9
5
5
9
.8

1
1
5
9
3
4
8
.3

2
9
8
6
4
8
.2

2
0
3
9
9
8
.7

5
9
1
2
3
.8

28

Figure 10.3: Graphical representation of alignment using MEM-Align. Blue
and Yellow are MEMs. Red shows mismatches. Green represent recovered
short MEMs. From top to down the second, fourth and sixth alignment are not
optimal and the third, fifth and seventh alignment show the optimal alignment
of same sequences respectively

29

