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Abstract

Computer vision and machine learning techniques have usually found their way
into medical image analysis as there are strong synergies between the two fields.
Medical imaging professionals typically draw inspiration from computer vision
techniques to register images from multiple modalities, segment the regions of
interest (ROI) and measure ROIs to streamline the analysis pipeline, and from
machine learning techniques to build models that are capable of integral tasks
such as anomaly detection, progression tracking and recognition. Historically,
we have seen fast adaptation of computer vision techniques and with the recent
significant improvements demonstrated by the use of deep learning techniques
in other fields, we believe that the medical imaging professional can benefit
from it as well. Deep learning is a collection of techniques that consists of
new as well as old algorithms from the neural networks community. Ideas such
as convolutional neural networks and autoencoders go back to the 1980s and
1990s, while concepts such as deep belief networks and long short term memory
in recurrent neural networks are relatively new. Since its advent, deep learning
has been mostly perceived as a black-box and its adaptation to medical imaging
has been relatively slow. In this report, we attempt to untangle the techniques
collectively known as deep learning and present their building blocks concisely.
We also present a comprehensive review of the state-of-the-art applications of
deep learning techniques in medical imaging. It is our belief that we can inspire
more medical professionals to adapt deep learning techniques to their analysis
pipeline and further refine the techniques that have surfaced so far.



1 Introduction

Advances in computer vision (CV) and artificial intelligence (AI) have always
played a large role in medical image analysis, where the specific techniques used
are often inspired by their counterparts in CV and AI. There are a number of
medical imaging techniques that are used effectively today to diagnose various
diseases of humans as well as animals where applicable [1]. Some of the well
known medical imaging modalities include X-ray, Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI). The inherent complexity of medical
images has garnered a lot of interest from computer scientists to adapt CV
techniques to medical image analysis [2]. Typically in a medical image analy-
sis scenario, the process starts by registering images from multiple modalities,
then they are segmented to find regions of interest (ROI). Once ROIs are found,
different types of analysis can be carried out, including anomaly detection, mea-
surement of specific ROI parameters, progression tracking and recognition. Any
of these techniques in the analysis pipeline relies heavily on the data represen-
tation, which is better known as features [3]. Conventional wisdom is that the
best features are those hand designed by engineers and domain experts to suit a
specific application, however general CV features like SIFT features have been
useful as well [4]. In general, it takes a lot of effort to find relevant and efficient
features and a lot more time to validate them for a specific problem. This has
been the inspiration behind the application of deep learning approaches in medi-
cal image analysis, as deep learning promises to eliminate the feature design step
entirely in most applications. In fact, deep learning has made major advances
in many problems that have been challenging for the AI community [5]. A good
description of such applications can be found [6]. In this technical report, we aim
to provide an in-depth review of state-of-the-art deep learning techniques used
in medical image analysis. We seek to pay particular attention to the effective
application of computer vision techniques in medical imaging, as the inherent
complexity of medical images presents a number of challenges. The advent
of deep learning techniques was enabled mainly due to the advances in com-
putational resources and the ubiquitous availability of annotated data. While
medical imaging shares the advances in computational resources, availability of
annotated data still presents a significant problem. In addition, medical images
are typically gray-scale images whereas many CV techniques are typically de-
veloped for three channel images (R-Red, G-Green, B-Blue). Medical images
are typically volumetric in nature as opposed to natural images which makes
it more challenging to apply CV techniques directly. While volumetric convo-
lution is a possibility, it is still very much an active research area. Conversely,
medical images are inherently shift and translational invariant, which is not the
case with natural images used to train CV techniques. Another perceived ad-
vantage of medical images compared to natural images is that they often come
in multiple modalities which also presents the challenge of fusing information
from disparate domains including multiple images and textual information. Due
to these inherent differences, we observe that deep learning techniques as used
in CV will have to be amended before application to biomedical images. In this
report, we attempt to review what has been achieved so far by presenting a
comprehensive review of the deep learning applications in medical imaging.

To the best of our knowledge, this is the first such review, although some re-
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Figure 1.1: Overview of Deep Learning Methods

views on deep learning in bioinformatics research can be found [7, 8]. Greenspan
et al. [9] provided a guest editorial that covered some applications of deep learn-
ing in medical imaging briefly. The current review is much more comprehensive
and our approach is different, wherein we divide medical imaging applications
into four problems that medical professionals can easily relate to.

We divide deep learning models into two groups as shown in Figure 1.1. Each
of these is further subdivided into two and discussed in the next sections. We
took this approach in order to organize the different deep learning techniques
by their characteristics and distinguish between potential applications. The
rest of this report is as follows. First we discuss the deep learning techniques
briefly and move on to major applications of deep learning in the medical image
analysis pipeline. We present applications in segmentation, registration, feature
extraction and classification using deep learning. We then proceed to discuss the
use of deep learning in fusing information from multiple models of data, which
is typical of medical imaging. Finally, we discuss architectural refinements to
adapt deep learning algorithms to specific medical imaging applications.

2 Deep Learning Models

Deep learning models can be divided into two groups according to their nature.
Generative model can be considered as a probabilistic model of all variables
whereas discriminative model provides a model relevant for the target variable
conditional on the observed variables. Hence, a generative model can generate
values of any variable in the model, while a discriminative model can only
perform sampling of the target variables conditional on the observed quantities.
In deep learning applications, these two classes of models can be considered
complementary and can be used simultaneously in certain circumstances.
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Figure 1.2: Applications of Deep Learning Techniques in Medical Imaging. The
following abbreviations; CNN, RBM, AE, RNN; are used to denote convolu-
tional neural networks, restricted Boltzman machines, autoencoders and re-
current neural networks respectively. We have included anomaly detection,
progression tracking and recognition under the heading Classification in this
illustration.
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2.1 Discriminative Models

Discriminative classifiers model the posterior p(y|x) directly or learn a direct
map from inputs x to the class labels [10]. We first discuss convolutional neural
networks (CNNs) and then recurrent neural networks (RNNs) in this section.

2.1.1 CNN

Convolutional Neural Networks (CNN) have been explored in the past and draw
inspiration from typical neural networks [11]. The connectivity pattern of neu-
rons in a CNN is inspired by the organization of the animal visual cortex. The
architecture of CNN make the explicit assumption that the inputs are images
that enables encoding certain properties into the architecture, making the for-
ward function more efficient to implement and vastly reduce the amount of
parameters in the network. While they were initially shown to be excellent at
hand written digit recognition, the inability to scale CNNs to handle larger im-
age sizes made them impossible to use in most applications. However, as this
was largely due to hardware and memory constraints, coupled with a lack of
sufficiently large datasets, recent advances in GPU computing and curation of
large datasets such as ImageNet [12] have made it possible to use CNNs again.
We aim to briefly look at the building blocks of CNNs and discuss two popular
architectures while leaving detailed descriptions to other reports [13].

2.1.1.1 Convolution

The issue with traditional fully connected neural networks when dealing with
images has always been the explosion of parameters when modeling each pixel
as a single input node. For example, when we consider an image of size 100 x
100, we would have 10,000 input nodes which, in turn means 10,000 x 10,000
= 100 million parameters, if we have 10,000 nodes in the first hidden layer.
As the networks become deeper, the number of parameters grows exponentially
and nearly impossible to be handled even by the most advanced hardware.
Instead of considering the whole image as input, an option is to learn a set of
convolutional filters of varying sizes that considers a small image neighborhood
at a time, which is much more tractable. The added advantage of this approach
is that we can take spatial characteristics of the image into consideration as
opposed to conventional neural networks. CNNs can be thought of as regular
neural networks with two constraints [14]:

• Local Connectivity: In essence, each neuron is only connected to a small
part of image as opposed to the whole image, as in regular neural networks.

• Parameter Sharing: Since the same convolution filter is applied across the
image, weights between these filters maybe shared.

The input to the first convolutional layer may be an array of size l x w x
n where l and w are the length and width of the image respectively while n
denotes the number of channels. Natural images have three channels known
as RGB which denote red, blue and green. Medical images on the other hand
typically have a single channel known as gray-scale images. The output of this
layer may be n1 number of feature maps of size l1 x w1. The size of the output
feature maps can be implicitly defined by the size of the convolutional filter
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Figure 2.1: An illustration of the architecture of a CNN. This was first im-
plemented using two GPUs and therefore, two parallel architectures are shown
delineating the responsibilities between two GPUs. Illustration and description
adapted from [16]

while the number of feature maps n1 is explicitly defined as a hyper-parameter.
These individual filters create a trainable mapping from the input feature map
to the output feature map.

2.1.1.2 Pooling

A pooling operation essentially reduces the size of the activations for the next
layer enabling us to use a smaller number of parameters progressively. CNNs
use different types of pooling depending on the architecture but max-pooling
is the most used pooling technique. If we consider an nxn region, max-pooling
will replace that region with its max value reducing the size by a factor of n2.
Providing a small degree of spatial invariance can be considered as an added
advantage of pooling.

2.1.1.3 Non-linearity

Since a cascade of linear systems (such as convolutions) generate another linear
system, non-linearities between convolutions are added to expand the expressive
power. Modern CNNs typically use ReLu non-linearity which can be expressed
as ReLu(x) = max(0, x). CNNs with ReLu non-linearity are shown to converge
faster [15].

2.1.1.4 AlexNet

Adding the building blocks of CNNs together, we discuss AlexNet as the first
example [16]. AlexNet was trained on ILSVRC 2012 training data which con-
tained 1.2 million training images categorized into 1000 classes. AlexNet has
7 layers consisting of combinations of convolution, pooling and non-linearity as
shown in Figure 2.1. Visualization of the output of layers as demonstrated by
Figure 2.2 shows that earlier layers tend to learn low level features similar to
Gabor-like oriented edges and blob-like features, while later layers tend to learn
higher level features such as shapes and textures. Final layers appear to learn
semantic attributes like eyes or wheels [17].
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Figure 2.2: Visualization of features in a fully trained model. For layers 2-5,
the top 9 activations in a random subset of feature maps across the validation
data are shown, projected down to pixel space using deconvolutional network
approach. The reconstructions are not samples from the model: they are re-
constructed patterns from the validation set that cause high activations in a
given feature map. For each feature map the corresponding image patches are
also shown. Note: (i) the strong grouping within each feature map, (ii) greater
invariance at higher layers and (iii) exaggeration of discriminative parts of the
image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Illustration and
description adapted from [17].
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2.1.1.5 GoogleNet

GoogleNet is another CNN that was trained on ILSVRC14 dataset and has 22
layers [18]. For details of the 22 layer architecture, readers are encouraged to
refer elsewhere [18] which also contains a visualization of the network. They
present a new architecture called inception that tries to use readily available
dense components to approximate optimal local sparse structure of a convolu-
tional vision network. A better description of the layers and rationale of their
individual use can be found in the original paper. Applications of GoogleNet
are discussed in the ensuing sections.

2.1.2 RNN

Despite the power of standard neural networks, one limitation they have is the
assumption of independently generated samples. If the samples used to train a
classifier are related in time or space, neural networks can fall short. A typical
example is time-series data such as frames from a video or snippets of audio.
Another issue with these types of data is that the samples may be vectors of
different lengths at different time points, whereas typical neural networks rely
upon the samples being vectors of fixed length. Recurrent neural network (RNN)
was proposed to alleviate these issues, and it is a connectionist model with
the ability to selectively pass information across a sequence, while processing
sequential data one element at a time [19].

A standard RNN computes the hidden vector sequence h = (h1, h2...hT )
and output vector sequence y = (y1, y2, ...yT ) given an input sequence x =
(x1, x2, ...xt) by iterating over the equations below from t = 1 to T [20]:

ht = H(Wxhxt +Whhht−1 + bh) (2.1)

yt = softmax(Whyht + by) (2.2)

Here Wxh is similar to a conventional weight matrix between the input and
the hidden layer, while Whh can be thought of as the weight matrix between
the hidden layer and itself at adjacent time steps [19]. This can be represented
in Figure 2.3 and the dynamics of the network across time steps can also be
visualized by unfolding it as shown in Figure 2.4.

RNNs are better described elsewhere [19, 20, 21]. A popular extension of
RNN is long-short term memory networks (LSTM) that are widely used to-
day [21]. Currently, RNNs are rarely used in medical imaging although there
may be interesting applications, as medical imaging applications do deal with
sequential data.

2.2 Generative Models

Generative classifiers try to learn a model of the joint probability, p(x, y), of the
inputs x and the label y in order to make their predictions by calculating p(y|x),
and then picking the most likely label y [10]. Simply put, a generative model
is used to specify a joint probability distribution over observations and labels.
In the context of deep learning, two generative models are relevant, namely
AutoEncoders(AE) and Restricted Boltzman Machines(RBM).
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Figure 2.3: A simple recurrent network. At each time step t, activation is passed
along solid edges as in a feed-forward network. Dashed edges connect a source
node at each time t to a target node at each following time t + 1. Illustration
adapted from [19]

Figure 2.4: The recurrent network of Figure 2.3 unfolded across time steps.
Illustration adapted from [19]

2.2.1 AE

Auto-encoder is a type of artificial neural network that can be defined with three
layers: (i) input layer (ii) hidden layer and (iii) output layer. They transform
inputs into outputs with the least possible amount of distortion. Auto-encoders
were first introduced in the 1980s and their history and evolution are elaborated
elsewhere [22]. The typical architecture of an AE is shown in Figure 2.5. It is
predominantly an unsupervised learning algorithm but recent advances have
made it possible to use a set of auto-encoders stacked on top of each other as a
supervised learning algorithm [23].

Let us denote the input vector by x ∈ RDI , where DH and DI denote
the number of hidden and input units respectively. An auto-encoder creates a
deterministic mapping from input to a latent representation y such that y =
f(W1x + b1). This is parameterized by the weight matrix W1 ∈ RDHxDI and
the bias vector b1 ∈ RDH . This latent representation y ∈ RDH is mapped back
to a vector z ∈ RDI which can be considered as an approximate reconstruction
of the input vector x with the deterministic mapping z = W2y + b2 ≈ x where
W2 ∈ RDHxDI and b2 ∈ RDI .
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Figure 2.5: A typical AE transforms the input x to output x̃ with minimum
amount of distortion by encoding the input into z and decoding it back. Illus-
tration adapted from [24].

2.2.2 RBM

While restricted Bolztman machines have been used in numerous applications,
their most important use is as building blocks of deep belief networks [25].
They are used to learn important aspects of an unknown probability distribu-
tion based on samples from that distribution [26]. RBM consists of m visible
units V = (V1, V2..., Vm) that represent the observable data and n hidden units
H = (H1, H2, ...Hn) capturing the dependencies between observed variables [26].
The random variables (V,H) takes values (v, h) ∈ 0, 1m+n in a binary RBM.
The joint probability distribution of such a RBM is given by the Gibbs distri-

bution p(v, h) = e−E(v,h)

Z where

E(v, h) = −
∑n
i=1

∑m
j=1 wijhivj −

∑m
j=1 bjvj −

∑n
i=1 cihi

wij is a real valued weight associated between Vj and Hi for all i ∈ 1, ..., n
and j ∈ 1, ...,m. An illustration of a simple RBM is shown in Figure 2.6. It
should be noted that an RBM only has connections between hidden and visible
units but not between two variables of the same layer.

Figure 2.6: The undirected graph of an RBM with n hidden and m visible
variables. Illustration adapted from [26]
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3 Segmentation and Registration

3.1 Segmentation

Image segmentation is a process that divides image pixels or voxels into several
subsets. Thus, the inputs are different types of images, whereas the outputs are
groups of pixels with different labels. The goal of segmentation is to decompose
an image into several parts or focus only on regions of interest(ROI), which
helps with better understanding of the original image. Image segmentation is
typically used to locate objects and boundaries (lines, curves, etc.) in images.
In medical image segmentation, the major goal is to study anatomical structure,
identify ROI, measure tissue volume to measure growth of tumour and help in
treatment planning. The following subsections are organized in the following
order. First, we talk about the state of art in biomedical image segmentation.
Then we list recent studies based on deep learning algorithms. Finally, we
discuss future work that could be done in this field.

3.1.1 Current status

As it is a fundamental problem, abundant research has been performed on image
segmentation. These approaches could be mainly divided into five categories as
mentioned elsewhere [27, 28]: Threshold based methods, Region based methods,
Learning (classification) based methods, Model based methods and Atlas based
methods.

i Threshold based methods use a threshold to determine the label of a pixel
and divide the image using different labels. Here, the characteristics of pixels
could be valued both in the spatial and wavelet domains. Threshold based
methods are the simplest and fastest methods, but are sensitive to noise and
threshold values [27, 28].

ii Learning(classification) based methods assume that the segmentation sys-
tem can be trained by annotated data. Each pixel/voxel in the original im-
age is identified as a certain label in the training data. We train the system
with these annotations. New inputs are then predicted by the well-trained
system [27, 28].

iii Region based methods are based on the principle of homogeneity - pixels
with similar properties are clustered together to form a homogeneous re-
gion. There are 3 types of region based methods: region merging, region
splitting and ‘split and merge’. Region based approaches are powerful but
they still suffer from under and over segmentation. Currently, some algo-
rithms that combine region based and edge detection based methods have
been developed to handle over/under segmentation problems [27, 28].

iv Model based methods assume that the structure of organs has a repeti-
tive form of geometry and can be modeled probabilistically for variations
of shape and geometry. Model based methods of segmentation involve ac-
tive shape and appearance models, deformable models and level-set based
models. These methods are relatively accurate. However, the computa-
tional complexity is high and manual interaction is required to imitate the
model [29].
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v Atlas based methods compile information on anatomy, shape, size, and fea-
tures of different organs and soft tissues in the form of an atlas or look up
table (LUT). Atlas guided approaches are similar to correlation approaches
and the advantage of atlas-based approaches is that they perform segmenta-
tion and classification in one go. These methods are efficient and accurate.
However, they face limitations in segmenting complex structures with vari-
able shape, size and other properties and expert knowledge is required in
building the database [30].

3.1.2 Segmentation by Deep Learning

In the biomedical field, deep learning algorithms often suffer from limited avail-
ability of data. In the early stages, only applications with big data sets can
be found. Carneiro al. et [31] use Deep Belief Network (DBN) to segment the
Left ventricle of the heart from ultrasound images, where the data contains 400
annotated images.

Later, several attempts were made to deal with small data size. One ap-
proach is to fix the low level features to reduce the burden of parameters train-
ing. Malon et al. [32] used man-made low-level features in their work. They
then modified the weights and thresholds of low level features with convolutional
neural networks (CNN). Bar al. etc [33] use the low level features of ImageNet,
a well-trained network. This idea is inspired by the fact that different objects
can be represented by the same low level features [34]. Another attempt is to de-
compose the original data into small patches. If the number of target segments
in one image is large, we can divide the original image into small patches that
contain only one segment each. A typical example is cell segmentation, such as
electron microscopic images in the 2012 ISBI challenge. Ciresan et al. [35] used
the classical CNN as a pixel classifier to segment electron microscopy images.

A third type of solution is the so-called U-net [36] architecture which is in-
spired by the fully convolutional network [37]. The main change here is the
use of the up-sampling (up convolutional) layer, which helps to localize a seg-
ment and improve the resolution. There is no fully connected layer in the U-net
architecture, since the network is trained by zooming in and out with convolu-
tional layers. Milletari et al. [38] applied a modified version of U-net, namely
V-net, to prostate segmentation. Instead of making use of 2D slices, they input
volumetric data directly to their network. Brosch et al. were inspired by the
idea of up-sampling(deconvolution) in their work [39, 40]. They developed an
encoder network to segment Multiple Sclerosis lesions. This indicates that more
biomedical segmentation applications could be tackled with the development of
a common segmentation tool based on deep learning.

Another branch of biomedical segmentation utilizes different types of CNN.
Many medical image segmentation tasks [41, 42] and [43] have been attempted
on classical deep learning framework. Also Zhang et al. [44] utilize CNN to
segment infant brain tissue into white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF). With the development of the deep learning algorithm,
other extensions of CNN, for instance GooleNet, Alexnet, Segnet and ConvNet,
have been introduced into biomedical territory. Maxout layer has been added
between convolutional layer and max pooling layer to handle non-linear prob-
lems [45]. Roth et al. [46] make use of ConvNet to segment pancreas CT images.
Compared to classical CNN, ConvNet has two more fully connected layers and

11



two drop out layers. Gaonkar et al. [47] suggest an object-to-object segmenta-
tion structure, which represents objects instead of features in each layer. This
modification enables the inclusion of anatomical relationships into the segmen-
tation.

There are also several works based on other methods [48, 49]. For in-
stance, Liao et al. [48] applied Independent Subspace Analysis (ISA) Network
on prostate segmentation. Vaidhya al. etc [49] tried to reconstruct the input by
applying a stacked auto-encoder before segmenting brain tumours.

3.1.3 Future Work

Most biomedical image segmentation methods based on deep learning are mainly
based on pixel classification. These methods are highly sensitive to the training
data, and the results could be uncertain when we apply the well-trained system
to a new dataset or data from a new machine.

It is a natural progression from pixel based classification to other meth-
ods, such as model-based methods and atlas-based methods. Deep learning
algorithms can be utilized to fix or refine the parameters in model based meth-
ods. Also, we may define the similarity between input and atlas images with
Deep Belief Networks or Auto-encoders. What is more, other recent work on
deep learning can be brought into the medical image segmentation field, such
as region-based convolutional networks [50] and long short term memory based
image segmentation [51].

3.2 Registration

Image registration is about determining a spatial transformation (or mapping)
that relates points in one image, to corresponding points in one or more other
images [52]. The aim of biomedical image registration is to improve the results
by combining images from different modalities or those captured at different
times. A registration algorithm can be decomposed into two components: the
similarity and the transformation model.

Similarity works as an evaluation of how well two images match each other.
There are mainly two approaches to measure the similarity: geometric and inten-
sity based approaches. Geometric approaches make use of anatomical features,
such as landmarks, curves and surfaces, which help to identify the differences.
Intensity based approaches match intensity patterns in each image using math-
ematical or statistical criteria. Intensity based approaches model the problem
as a scoring problem. First, they define some similarity measurement, such as
squared differences in intensities, correlation coefficient or measures based on
optical flow and mutual information. Then they try to find the highest score
on that measurement between two images, which indicates the best registration
deformation.

The transformation model defines the way in which an input image should
be deformed to match a source image. Mainly there are six types of transfor-
mation models: rigid model, spline model, elastic model, viscous fluid model,
‘demons’ model and finite element model. Rigid models handle the problem of
translations, rotations and scaling between a moving image and target image.
The most widely used spline models are B-spline [53] models and thin-plate
spline models [54]. These models fix some landmark points and deform near the
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fixed points. Elastic models[55] treat the source image as a linear, elastic solid
and deform it using forces derived from an image similarity measure. In a fluid
model [56], the deforming template image is considered as a viscous fluid whose
motion is governed by its Navier-Stokes equation of conservation of momentum.
‘Demons’ [57] methods try to merge the moving image into the static image
by the action of effectors, called demons, situated in these interfaces. Finite
element models [58] divide an image into cells and assign to these cells a local
physical description of the anatomical structure.

Until now, there is very limited work performed on medical image registra-
tion using deep learning techniques. The first attempt was by Wu [59] in 2013.
In order to avoid the limitations of hand-crafted features, they attempt to take
advantage of the unsupervised learning ability of deep learning networks. In
their work, Independent Subspace Analysis (ISA) networks are used as a fea-
ture extraction method, which enables them to extract intrinsic features from
the data automatically. Later, they introduced convolutional stacked autoen-
coder (SAE) [60] to extract 3D features for registration directly from image
data. Here, the encoder is used to represent 3D features as a combination of
2D features. Then they use a decoder to reconstruct 3D patches from 2D fea-
tures. Both encoder and decoder are SAEs in their work. Zhao [61] used CNN
to find the rotation of rigid image registration. They attempt to divide image
registration into global (rigid) and local(non-rigid) deformations. For rotation
information in global deformation, they apply CNN to find 360 different angles
of rotation. A brand new similarity measure based on deep learning algorithm
has been described [62]. Cheng et al. [62] propose to judge the correspondence
between two image patches with a binary classifier trained by a 3 layer deep
neural network. This application inspires us to think about the possibility of
other methods based on deep learning to measure similarity. There is still no
deep learning technique based work on transformation models. This could be
an interesting future direction.

4 Feature Extraction and Classification

Deep learning at its core is mainly a machine learning algorithm that has been
sufficiently modified and optimized for performance. Any classification problem
in machine learning can be modeled in two stages; feature extraction/selection
and classification. The performance of the system is as good as the features
that are used to train the system. It has long been established that handcrafting
features and then performing feature selection tends to improve the performance
of a learning system [63]. The allure of deep learning is the promise of letting the
algorithm learn the feature representation from raw data instead of handcrafting
features. Hence we shall review the deep learning techniques used for feature
extraction and classification in medical imaging applications. It should be noted
that these two sections have inherent overlaps.

4.1 Feature Extraction

As this report focuses on medical imaging applications, we restrict our review of
feature extraction to that of images. Feature extraction may be regarded as one
of the central problems in computer vision. Essentially it deals with extracting
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‘meaningful’ descriptions from the images or image sequences. These descrip-
tions can then be used for further processing such as registration, segmentation
and classification. It used to be the case that ‘meaningful’ was dependent on the
domain in question and hence various handcrafted features needed to be engi-
neered for different applications. Deep learning however attempts to overcome
this problem with the promise of letting the algorithm derive ‘meaningful’ de-
scriptions from the raw data; images in this case. A good review of handcrafted
features and their use cases can be found [64]. Medical imaging goes a step
ahead of classical computer vision by further processing the feature descriptors
to fit different modalities that can be found in medical images. For exam-
ple, conventional computer vision descriptors like edge detectors can be used
to identify and isolate edges in an image. These edge detectors can be used
to identify the boundary between grey matter, white matter and cerebrospinal
fluid in brain images, which is subsequently used to come up with a feature
called ‘grey matter volume’. In contrast, deep learning can be used to come up
with feature descriptors by itself without the operator needing to handcraft the
features. This has been demonstrated in [17] where initial convolution layers
tend to learn low level features such as edge detectors, while later convolution
layers tend to learn higher level features such as shape based features or texture
based features that are directly relevant to the application in question. When
looking at deep learning based feature selection, we can see two classes of tech-
niques. The first technique uses generative models for feature representation
while the second technique uses discriminative models. A concise description
of these techniques is included and their applications in medical imaging are
explored.

4.1.1 Generative Model based Feature Extraction

Autoencoders (AEs) are mostly used in an unsupervised manner in order to
learn a representation for a set of raw data and has been used for the purpose
of dimensionality reduction in the past [65]. It was first introduced in the mid
1980s by Rumelhart et al. [65] to address unsupervised backpropagation using
input data. In the mid 2000s, AEs were proposed as dimensionality reduction
techniques and subsequently have been heavily used as deep AE networks under
the deep learning banner. The typical architecture stacks individually trained
layers of AEs on top of each other and then fine-tunes the integrated network in a
supervised manner. This is known as unsupervised pre-training and supervised
fine-tuning in deep learning nomenclature.

An AE is essentially a feed forward neural network with an input layer, an
output layer and one or more hidden layers in between them. An AE is trained
to reconstruct its own inputs at the output layer and therefore, considered as
an unsupervised learning model. Two typical parts in an AE are the encoder
and decoder. They may be defined as transitions φ and ψ such that:

φ : X → F (4.1)

ψ : F → X (4.2)

arg min
φ,ψ
‖X − (ψ ◦ φ)X‖2 (4.3)
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Let us take the simplest case where there is one hidden layer. An AE takes
the input x ∈ Rd = X and maps it onto z ∈ Rp = F :

z = σ1(Wx + b) (4.4)

This representation is known as code or latent representation. σ1 is an
element-wise activation function such as sigmoid function or ReLu. The next
step is the mapping of z onto the reconstruction x′ that has the same shape as
x:

x′ = σ2(W′z + b′) (4.5)

AEs are also trained to minimize reconstruction errors:

L(x,x′) = ‖x− x′‖2 = ‖x− σ2(W′(σ1(Wx + b)) + b′)‖2 (4.6)

Depending on the characteristics of the feature space F , there are two types
of AEs. If the feature space has lower dimensionality than the input space, then
the AE has learnt a compressed representation of the input. Conversely, if the
feature space has a higher dimensionality than the input space, then the AE has
learnt a sparse representation (also known as overcomplete representation) of
the input. This creates the potential for the hidden layers to learn the identity
function which is not useful. However, several techniques have been proposed to
overcome this restriction and their ability to learn a useful feature representation
has been demonstrated.

A good example of the use of sparse autoencoders for feature learning can
be found [66]. Kellenberg et al. use sparse autoencoders to learn features in an
unsupervised way at multiple scales for mammography risk scoring. The use of
sparse AEs has made it easier for them to interpret the learned features and
also made the process cost-efficient and robust to noise. Their proposed spar-
sity regularizer is an amalgamation between the popular population sparsity
and lifetime sparsity [66]. Liu et al. [67] also use sparse AEs to derive a better
feature representation. Their approach can be used to demonstrate an alterna-
tive technique that actually performs an initial feature extraction step. They
derive grey matter volumes from brain MR images and feed this as an input to
the sparse autoencoders. They train the network one layer at a time as Bengio
et al. suggested (this is also known as greedy layer-wise learning) [68] and use a
softmax layer as the output layer in order to perform classification. The advan-
tage of adding a softmax layer is the ability to do supervised fine-tuning [69].
A comprehensive review of the unsupervised pre-training and supervised fine-
tuning approach can be found [70, 71]. A similar approach can be seen [72]
clearly demonstrating the advantages of pre-training. Suk et al. also represent
another application of autoencoders where AEs are used for fusing features from
different modalities. We will discuss feature fusion in detail in section 5. Ithapu
et al. [73] propose an imaging based enrichment criterion for clinical trials for
mild cognitive impairment where AEs are used to come up with discriminative
biomarkers.

The second type of generative model is RBMs. A deep network consisting
of layers of RBMs is also known as a Deep Belief Network (DBN). An RBM
can learn a probability distribution over its set of inputs. It is a type of Markov
random field that can model data distribution, parameterizing it with the Gibbs
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distribution over a bipartite graph between visible v and hidden variables h [74]:
p(v) =

∑
h p(v, h) =

∑
h

1
Z e
−E(v,h), where Z =

∑
v

∑
h e
−E(v,h) is the normal-

ization term (the partition function) and E(v, h) is the energy of the system.
Assuming the RBM has m visible variables V = (V1, ...Vm) and n hidden vari-
ables H = (H1, ...,Hn), the energy function E can be written as:

Z =

n∑
i=1

m∑
j=1

wijhivj −
m∑
j=1

bjvj −
n∑
i=1

cihi (4.7)

where wij is a real valued weight associated with the edge between units Vj
and Hi and bj and ci are real valued bias terms associated with the jth visible
and ith hidden variable respectively. A comprehensive overview can be found
[74].

Plis et al. demonstrate the use of RBMs in neuroimaging in a validation
study. They use DBNs created from RBMs to come up with a better feature
representation from brain fMRI and structural MRI data. This work is par-
ticularly enlightening for their modeling and use of raw MR data instead of
processed data in order to come up with a feature representation. More appli-
cations of DBNs can be seen in Section 5 as they are also used as feature fusion
techniques.

4.1.2 Discriminative Model Based Feature Extraction

In this report, we only consider convolutional neural networks (CNN) as a dis-
criminative feature extractor. This approach is getting popular as it is relatively
straightforward and lifts the burden of training a CNN from scratch for the most
part. That also means expert knowledge on optimizing CNNs does not become
a restriction and therefore the applicability of this approach is wide. The typical
analysis pipeline starts with a pretrained CNN that is used to extract ‘meaning-
ful’ features from raw data. This CNN may have been trained on a completely
different dataset such as ImageNet [12] although if the CNN was trained on a
similar dataset, the transferability of knowledge improves [75]. These extracted
features are then used for classification using conventional classification tech-
niques and may or may not be used alongside handcrafted features.

A good example of this approach can be drawn from the works of Bar et
al. [76] where they use a CNN pretrained on ImageNet dataset for chest pathol-
ogy detection using chest X-rays. Their approach is straight forward and uses
the CNNs as a feature extractor where activations from convolution layers are
considered as features and a SVM [77] is used to train on these features and
some handcrafted features. Another approach proposed by Ginneken et al. [78]
use OverFeat CNN trained on object detection on natural images to detect pul-
monary nodules using CT images. Their classification was also performed using
SVMs and CNN was used as a feature extractor. Arevalo et al. [79] also use
AlexNet trained on ImageNet as a feature extractor, and train an SVM along
with a range of handcrafted features for mammography mass lesion classifica-
tion.

4.2 Classification

Classification is the problem of distinguishing the category (or class) of a new
observation with a model that was trained on a set of data containing obser-
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vations whose categories are known. The simplest classification problem is a
binary classification problem where only two categories are available. A typical
example would be diagnosing a patient with prostate cancer using a prostate
MR image. In this case, the model would have been trained on a training dataset
with patients who have prostate cancer (positive examples) and patients who
do not have prostate cancer (negative examples). When a patient undergoes
a MRI scan, it is considered as a new observation, and the model is consulted
to identify whether the patient has cancer or not. Classification is an instance
of supervised learning where a training set with known categories is available
to train the model. A good overview of conventional supervised classification
techniques can be found [80]. The practical utilization of CNNs in classification
is two fold. The first is to design and train the CNN from scratch using data.
The second is using a network that was already trained and further optimiz-
ing it to the application. This is also known as transfer learning. We discuss
both approaches and their relative advantages and disadvantages in an effort
to demonstrate their use in medical imaging. Tajbakhsh et al. [81] recently
discussed these approaches and their practical relevance.

4.2.1 Designing and Training from Scratch

In one of the earliest publications using CNNs to detect lung nodules, Lo et
al. [82] propose the use of a basic CNN that is not as deep as the ones that are
used today but given that it was in 1995, this was to be expected, as CNNs only
became deeper as the computational power increased. They also introduced
data augmentation approaches by making use of rotation and shift invariance
characteristics of medical images in order to enlarge their training dataset. The
CNN proposed by Sahiner et al. [83] in 1996 enabled the use of full images as
input instead of the region of interest (ROI) used by Lo et al. Their network was
more generalized compared to Lo et al., but still shallow by current standards
for the same computational reasons.

With the advent of GPU computing, medical imaging has seen a new wave
of CNN applications recently. Ciresan et al. [84] use CNNs to detect mitosis
using the publicly available MITOS database [85]. A typical problem faced
by researchers who train their own network from scratch is the lack of accu-
rately annotated data that is available in other domains such as ImageNet [12].
Ciresan et al. were able to overcome that problem as they were using pix-
els as singular units, therein generating millions of effective training instances
although there were only 50 images available. They also exploit rotational in-
variance to enlarge their training set. Tajbakhsh et al. [86] use an ensemble
of CNNs to detect polyps from colonoscopy videos. They use a network that
they had trained from scratch previously as a feature extractor, and create an
ensemble of CNNs for polyp detection. The use of ensembles can mitigate over-
fitting which is typical of medical imaging as the available datasets are small.
Sarraf et al. [87] propose a dual CNN based classifier system that can be used
to identify patients with Alzheimer’s Disease using structural and fMRI data.
Their preprocessing techniques are of particular interest, as they directly lead
to the network’s ability to fuse data from two modalities. Roth et al. [88] pro-
pose a new data augmentation technique in order to enhance the training data
when training a CNN from scratch. They identify it as 2.5D decomposition in
representing 3D images.
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So far we have looked at 2D convolution where the convolution operator
iterates along the width and height of an image. However, medical imaging
modalities typically generate volumetric images which are actually 3D (ie: also
have a depth apart from the width and height). 3D convolution was used by
Anirudh et al. [89] where they train a 3D CNN for lung nodule detection. Their
approach is particularly interesting with the region growing labeling system they
propose where the radiologist only has to define the centre pixel of a nodule,
and the rest of the nodule is labeled using a region growing technique in 3D
space. Other work [90, 91, 92] exploit the inherent volumetric nature of medical
imaging data in order to come up with 3D CNNs which are looked at in detail
in Section 6.

4.2.2 Using Pretrained CNN

While training a CNN from scratch has its advantages, it is also not without
complications. As mentioned earlier, medical imaging datasets typically do not
have a large number of annotated training data, since expert annotation is
expensive and the rate of data acquisition and dissemination is slow. Training a
deep learning pipeline from scratch is also expensive on computational resources
and extremely time consuming. In addition, deep learning becomes complicated
with over-fitting and convergence issues, whereby hyperparameters constantly
need to be optimized, which is a repetitive process.

The use of pretrained networks has been proposed as an alternative to train-
ing the CNN from scratch as it can alleviate the complications to a certain ex-
tent. This is also known as transfer learning. This approach can be divided into
two major branches; the use of pretrained networks without further optimiza-
tion for feature extraction or classification, and the use of pretrained networks as
an initialization method and subsequently tailoring the network (fine-tuning) to
the specific application in question [81]. The recent work by Azizpour et al. [75]
asserts that the success of knowledge transfer in CNNs depends on dissimilarity
between the database on which a CNN is trained and the database to which the
knowledge is transferred. Although the dissimilarity between networks trained
on natural image datasets like ImageNet [12] and medical imaging datasets is
abundantly apparent, recent research demonstrates the success of this approach
in certain circumstances. As already discussed, using a CNN as a feature extrac-
tor, we concentrate on fine-tuning pretrained networks to specific applications
and draw upon several examples of such optimizations.

A prime example can be drawn upon from the work of Chen et al. [93] where
the authors use a pretrained CNN on ImageNet and fine-tune the fully con-
nected layers using their own data in an effort to optimize the CNN and report
state-of-the-art performance for localizing standard planes in ultrasound images.
Carneiro et al. [94] append a multinomial logistic regression layer to a pretrained
CNN on ImageNet and use that to fine-tune the CNN for mammogram anal-
ysis. They also combine unregistered craniocaudal and mediolateral oblique
mammogram views using a final CNN to create their classification system. Shin
et al. [95] demonstrate an application where they use fine-tuned pretrained CNN
to map semantic information to medical images using a set of radiology images
and clinical reports. The flexibility of using a pretrained CNN is that one can
decide which layers need fine-tuning and which layers can be used as is. In other
work [96], the authors decided to fine-tune all layers of the pretrained CNN and
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use it for automatic classification of interstitial lung diseases. Their approach of
the attenuation rescaling scheme to produce 3-channel images out of 1-channel
CT scans is of particular importance as CNNs pretrained on natural images
typically require 3-channel images, as they were trained on 3-channel (RGB)
images whereas medical images are typically 1-channel (grayscale).

5 Multimodal Fusion

As noted earlier and by Shin et al. [97], a fundamental challenge in deep learning
in medical imaging is the paucity of data. While deep learning based models
have often been shown to improve on the state-of-the-art where applied, there
is no equivalent to ImageNet for medical imaging. Greenspan et al. [9] express
the belief that this has prevented deep learning models in medical imaging from
achieving the substantial 10% increase in performance that similar models have
achieved elsewhere in computer vision.

At the level of developing a single model, Shin et al. [97] outline three strate-
gies which researchers use to create deep learning models:

1. Use an off-the-shelf model and rely on transfer learning,

2. Train a model from scratch in spite of the limitations, or

3. Use features deep neural networks for feature extraction only.

These methods have been discussed in previous sections. We also do not cover
image fusion as has been surveyed by James and Dasarathy [98].

In some cases, however there are additional sources of data available, and
recent work has attempted to integrate multiple data sources to improve model
performance. Often a patient has not one, but a series of medical imaging of
different types. A patient may also have electronic medical records (EMR) or
other test results available. Broadly, this approach can be termed multimodal
fusion. In this section, we investigate the fusion of medical imagery with either
other types of medical imagery or non-image data.

The use of different MRI modalities is particularly common, as it has demon-
strated improvements in the diagnosis of disease such as prostate cancer [99].
During a single imaging session with MRI, it is possible to capture several differ-
ent modalities such as T1, T2, diffused-weighted dynamic contrast enhancement,
and spectroscopy. For more serious illnesses, MRI imaging may be done in con-
junction with PET scanning as the former delivers better imagery on soft tissue
while the later is clearer for hard tissue.

There is an existing body of conventional techniques that already make use
of different image modalities, including a wide variety of models which compete
in the MICCAI associated BRATS competition [100]. We only consider deep
learning based models here.

5.1 Multimodal fusion in other areas of computer vision

The idea of training deep learning models with multimodal data is not new in
machine learning. This work builds on a longer tradition of research in speech
recognition which seeks to exploit both types of data such as [101]. Original
work by Ngiam et al. [102] addressed the use of building multimodal models
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from audio and video data in the context of deep learning in speech recognition.
In their paper, the authors compare five architectures, three using RBMs and
two using AEs. The three RBM models are:

1. Separately trained audio and video models

2. Shared representation RBM from concatenated audio and video input

3. Greedy layerwise trained models from (1) which are then combined with
deep hidden layer and then trained again.

They then use the RBMs to train two different types of AE architectures for
denoising, using either crossmodal training with video or bimodal training with
video and audio. Their results show an accuracy improvement of 8% accuracy
over contemporary state-of-the-art methods, when they use both modalities.
These architectures are commonly adapted in multimodal medical imaging deep
learning models.

Another landmark study in computer vision are by Srivastava and Salakhut-
dinov [103] who investigate the use of DBMs for the purpose of image retrieval
using textual and image data and find that they outperform classical SVM and
LDA approaches. An early use of temporal information is by Le et al. [104] who
use multimodal image and time series data to study action recognition using
independent subspace analysis (ISA) network to good success.

5.2 Multimodal fusion and deep learning in medical imag-
ing

In the medical imaging domain, the first multimodal study using deep learning
was done by Shin et al. [105] for the purpose of detecting the liver, heart, kidneys
and spleen. Shin et al. [105] used DCE-MRI with t = 40 time points taken over
6 second intervals from 76 patients with liver and kidney metastases. Their
model is a shallow stacked AE model defined with reference to [102], ie: their
architecture does not include a shared layer. The features from the stacked
autoencoders is combined with one-vs-all logistic regression on image patch
samples to detect the appropriate organs. Their results compare favorably with
features derived from HOG and DFT which are common image and time series
features.

Work by Suk et al. [106] classify Alzheimer’s disease (AD) and mild cog-
nitive impairment (MCI) from non-affected patients. Their dataset comprises
297 patients with AD and MCI as well as 101 non-affected patients with two
different imaging modalities: diffusion MRIs and PET scans. Their model is
based around stacked Boltzmann machines in a so-called deep Boltzmann model
(DBM) for learning hierarchical features which is then fed to a SVM for mul-
ticlass classification into diagnostic categories. Unlike Shin et al. [105], the
architecture of Suk et al. [106] have a shared deep layer between the modalities.
Although they note difficulty in training their model, the authors show im-
provement over previous work based around hand-crafted features on the same
AD/MCI vs NA classification task.

Liu et al. [107]also use stacked AE for the prediction of AD and MCI. Their
data comprises of 331 patients with imaging performed on T1 MRI and FDG-
PETs, and their model follows the concatenated fusion model of Ngiam et
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al. [102] which they train using a denoising technique where a proportion of
data from one modality is corrupted. The features learned by the stacked AEs
are then used in a soft-max layer to perform the classification. They find that
their results offer a minor improvement over SVM-based methods. Li et al. [108]
also examine the problem of classifying AD and MCI, but they use data fusion
techniques prior to feature extraction with DBMs and do not compare their
model to other methods in the literature.

In the area of lesion detection, Brosch, et al. [109] develop another stacked
autoencoder model. Their dataset consists of 474 patients with secondary pro-
gressive multiple schlerosis from whom T1, T2, and Proton density weighted
(PD) MRI was collected. Brosch, et al. primarily use their model for dimen-
sionality reduction and do not compare their model directly with others, but
simply measure the strength of the correlation with clinical diagnostic tests for
each of the measures. They find that the results are highly significant, and hence
their results are clinically significant. Their model was subsequently developed
and is discussed elsewhere in this report.

As mentioned previously, the BRATS medical imaging dataset [100], has
proven to be fertile ground for experimentation with CNNs by a variety of
researchers. The BRATS-2013 dataset consists of 30 patients with high and
low grade brain tumours and four MRI imaging modalities which are collected
for each patient including: T1, T1ce, T2, and FLAIR. The image data has
ground truth labels and voxels are segmented into 5 categories. The BRATS-
2013 is not volumetric, and this allows Havei et al. [45] to use an architecture
of stacked convolutional networks directly on the 4 registered modalities. Since
then, a variety of research on tumour segmentation has integrated different MRI
modalities using convolutions directly [110, 111, 112].

Recent work by Nie et al. [113] aims to predict patient survival time which
is treated as a classification problem of either short or long. Their dataset
consists of 61 patients with malignant and recurring or very aggressive (WHO
III and IV) tumours who have the following modalities collected: T1 MRI,
resting-state fMRI and DTI. Each modality is handled separately through 4
layers of convolutions and the resulting features are fused and passed to three
fully connected layers. The architecture is inspired by [103].

An interesting example of image fusion is work by Xu et al. [114] which
attempts to classify the severity of cervical dysplasia, a precancerous condition
useful for the early detection of cervical cancer. Their dataset consists of a
random sample of 690 visits from the Guanacaste project database, and includes
Cervigram RGB imagery, Pap and HCV test results as well further non-image
diagnostic data. Authors use a pretrained AlexNet CNN model whose output is
concatenated with the preprocessed non-image data and passed through several
fully connected ReLu layers before finally going to a soft-max layer. Moreover
they also investigate the utility of the hidden joint layers, and find they improve
the overall quality of the model. The resulting model significantly improves on
the existing state of the art.

6 Architectural Refinements

This report discussed the adaptation of deep learning techniques stemming from
computer vision and artificial intelligence communities in medical imaging so far.
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Deep learning techniques in medical image analysis have achieved promising re-
sults on various applications, including the diagnosis of Alzheimer’s disease and
mild cognitive impairment [115], organ segmentations [105]and detection [116].
Although we briefly looked at the architectural refinements that have been pro-
posed in different applications, we believe the different architectural refinements
deserve a lengthier discussion. Medical imaging problems typically differ from
conventional computer vision techniques and hence CV techniques need to be
modified to suit specific medical imaging applications. In this section, we discuss
the amendments to deep learning techniques proposed by various researchers to
improve their applicability in medical imaging.

Suk et al. [115] use stacked auto-encoder (SAE)for classification of Alzheimer’s,
Mild Cognitive Impairment and Healthy Controls from target samples. The pro-
posed system exploits the latent information existing among the features and
concatenates it with the original features. The approach has yielded higher accu-
racy when compared to the prior methods [117] and [118]. Shin et al. [105]apply
deep learning techniques for organ segmentation from MR images. The approach
employs hierarchical feature clustering. The method also made use of proba-
bilistic patch-based method for multiple organ detection. The proposed system
uses SAE for organ detection. Results show that deep learning methods have
significantly improved the accuracy in organ detection from MR medical im-
ages. The architecture of restricted Boltzmann machines (RBM) are exploited
for lung texture classification and airway detection in CT images [116]. The un-
supervised learning approach of RBM helps to learn from unlabelled data. The
proposed approach uses a combination of generative and discriminative learning
that outperforms traditional methods [119]. Automatic feature representation
for medical image segmentation is studied using deep learning [120]. Multiple
instance learning (MIL) is used for classification of abnormalities. The paper
also compares the performances of weakly supervised and fully supervised learn-
ing approaches. Results show that weakly supervised learning is better than a
fully supervised learning approach.

Liao et al. [121] apply stacked independent subspace analysis network (ISA)
to learn features from prostrate MR images. The extracted features contain
anatomical information which is used for automatic prostrate MR segmenta-
tion. Results show that the proposed technique outperforms prior segmentation
methods [122]. Automated detection of bone lesions in CT image using con-
volutional neural network classifier is proposed [123]. During testing, per indi-
vidual classification probability is computed. Experimental results show that
the proposed system outperforms previous methods. Roth et al. [124] propose
automated Lymph Node (LN) detection in CT images using deep convolutional
neural networks. Prior methods on lymph node detection directly use 3D infor-
mation. In the proposed method the LN CAD system has high sensitivities at
the first stage and gradually reduces false positives. Experimental results show
that the proposed system outperforms previous methods. Prasoon et al. [125]
propose the novel approach of combining three 2D convolutional neural net-
works for knee cartilage segmentation in MR images. The proposed technique
employs voxel classification and extracts only 2D features. Experimental results
show that the method is better than the prior methods.

Jonathan Masci et al. [126] present an algorithm to speed up training of
MaxPooling Neural Convolutional Networks (MPCNN) for image segmentation.
The main idea of the algorithm is that the network is trained on whole images
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rather than manifold image patches. This is implemented by adding the Max-
PoolingFragment (MPF) layer with the back-propagation procedure computing
the partial derivative of MPF layer output in accordance with its input. The
proposed algorithm achieved outstanding results in decreasing training time. A
customized CNN was designed for classification of lung images with interstitial
disease by Li et al. [127]. The proposed CNN consists of a single convolutional
layer, a max pooling layer, and three fully connected layers. In addition, a
drop-out algorithm (random disabling neurons during training) enhances per-
formance of the proposed system. The presented approach outperforms systems
with prior feature extraction for the same task. Payan et al. [128] use sparse AEs
and 3D CNN to classify brain MRI images. At first, features are extracted from
3D image patches using an autoencoder, which is a 3-layer NN. Subsequently,
3D CNN computes the conditional probabilities for each possible class (healthy
brain, mild cognitive impairment, Alzheimers disease). The experiments show
that 3D CNN slightly outperforms 2D CNN for the same data.

Roth et al. [129] apply CNN to computed tomography (CT) images. The
aim is to classify images into 5 anatomical classes. The ConvNet architecture in-
cludes five convolutional layers and three fully connected layers. There are max
pooling and drop-out operations between these eight layers. Data augmentation
is performed to increase the validation dataset. Van Grinsven et al. [130] use
CNN for hemorrhage detection in colour fundus images. The architecture of the
network includes five convolutional layers, two max pooling layers and fully con-
nected layer. A selective sampling strategy is proposed to speed up the training
phase. Difficult training samples are presented to the network at first and larger
weights are assigned to incorrectly classified samples with bigger errors(SeS algo-
rithm). The training using the proposed strategy is approximately three times
faster than the usual one. In addition, the overall performance of the CNN
with SeS is higher than without the SeS selective sampling strategy. Bekker et
al. [131] present multi-view NN (MV-NN) architecture for classification of breast
micro calcifications using cranial-caudal (CC) and mediolateral-oblique (MLO)
mammography views. The MV-NN classification model consists of two neural
networks which are learned in parallel. Outputs of these networks are given to
a single-neuron layer as input. The suggested method is evaluated on a large
multi-view dataset. A deep learning framework for sub-cortical brain structure
segmentation in MR images is proposed by Mahsa Shakeri et al. [132] A fully
convolutional network takes 2D slices of 3D brain MR images as input, while
previous methods were applied to image patches. Two different MRI datasets
were used to validate the framework.

7 Open Problems

While we have discussed a number of problems that are effectively handled by
deep learning techniques, we have not seen the same improvements in med-
ical imaging that were apparent in computer vision with the advent of deep
learning. We assert that this is because of two reasons: (i) lack of sufficiently
large annotated datasets and (ii) issues with direct adaptability of deep learning
techniques stemming from CV applications. The former may be handled by a
number of ways such as increasing the number of data acquisitions and devot-
ing more funding to acquire expert annotations, which are largely independent
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from CV techniques. However, there are a few techniques that we can adapt
to enlarge the datasets we already have and improve the annotations. Char-
acteristics such as shift and translational invariance in medical images can be
exploited to enlarge the datasets we already have. Autoencoders may also be
used to generate similar pseudo data using the actual datasets we have. An-
other approach we can explore stems from the recent approach by Ledig et al.
on generative adversarial networks (GAN) which can be used to improve the
spatial resolution of the datasets we have which in turn enable us to use old low
resolution datasets that are usually discarded. Ultimately, creating a unified
repository that can be used to collect data from all over the world may help us
in achieving the size of the datasets we are after. Annotating data has mostly
been manual so far with the domain experts but recent work by Albarqouni et
al. [133] have demonstrated the use of crowd sourcing to perform annotations
which can go a long way in annotating the data we already have.

A number of researchers are exploring the issues with direct adaptability
of deep learning techniques and are making significant progress as can be seen
from this review. We believe transfer learning has made deep learning tech-
niques more approachable to medical professionals as the learning curve and
the effort needed to train a system is low. However, we also believe that trans-
fer learning from a network that was actually trained on medical images may
be more beneficial and to that end, we see room for improvement. We also
believe typical deep learning libraries could be tailored to facilitate the inherent
complexity of medical images which would make it more approachable to med-
ical professionals. Another prospective improvement is a visualization library
tailored for medical professionals as the method of volumetric visualization is
different from typical two dimensional visualizations. While there are heuristics
to determine the architecture of the deep learning technique of choice, it is still
an active research area that we believe could benefit from a systematic method
of architecture design including methods to tune relevant hyper-parameters.

8 Concluding Remarks

In this report we have briefly discussed state-of-the-art deep learning techniques
and presented their applications in medical imaging. Historically, techniques
from computer vision and machine learning have been adapted readily to medi-
cal imaging problems and we expect nothing short of deep learning techniques as
well. However, deep learning techniques are continually evolving and have been
considered as a black-box in most applications until recently, which has made
it difficult to adapt to medical imaging tasks. Our effort here was to demystify
the black-box and demonstrate potential applications in medical imaging. Our
approach was to briefly describe the building blocks of deep learning techniques
and direct the reader to better descriptions. We then reviewed the applica-
tions of deep learning in medical imaging depending on the analysis pipeline
including registration, segmentation, feature extraction and classification. We
have also have discussed multi-modal data fusion and the specific architectural
refinements needed to adapt deep learning techniques to medical imaging ap-
plications. Finally, we present potential future work that can be carried out
to make deep learning more attractive to medical professionals as well as the
medical imaging community. By providing a critical review of the applications

24



of deep learning techniques in medical imaging, we believe we can aid to expand
the boundaries and reach the level of success that deep learning has enjoyed in
other fields.
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