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Abstract

Multi-threaded processor execution is a design strategy for performance im-
provement and energy reduction. With multi-threaded execution, the processor
pipeline’s idle time of one thread execution can be hidden by executing other
threads so that the overall execution time (hence the energy consumption) can
be reduced. One typical issue with the multi-threaded processor design is the
cache. Cache reduces long and power consuming memory accesses, and has
become an essential component in modern processor systems. However, multi-
threaded execution can interfere the cache access behaviour, potentially causing
more cache misses, leading to degraded cache performance. This work pro-
poses an off-line thread data-space relocation approach for our MT-Sync multi-
threaded processor design to reduce such data cache misses. The approach does
not introduce any performance or hardware overhead to the existing processor.
The experiment results on a set of applications show that our design achieves
17.5 times more performance gain compared to baseline multi-threaded execu-
tion and saves 2.5 times more energy.



1 Introduction

It is often the case that when executing applications, a processor will go through
frequent pipeline stalls due to long off-chip memory accesses. Memory accesses
consume considerable power and pipeline stalls reduce processor throughput,
which together greatly degrade the overall system performance and energy efli-
ciency. Multi-threaded execution is a widely used method to hide the pipeline
stalls. With the multi-threaded execution, the processor idle time caused by a
pipeline stall during one thread execution can be used to execute other threads
so that the processor throughput is improved. Cache is an essential component
in the processor system to reduce memory accesses. It sits between the processor
and memory to avoid repeat memory accesses for a same memory data. How-
ever, when both multi-threading and caching are implemented in the system,
the interference introduced to the cache access behaviour by thread interleaving
can negatively affect processor performance.

To observe the impact of multi-threaded execution on the data cache per-
formance, we ran some experiments. Table 1.1 shows the data cache miss fre-
quency for five applications under two execution modes: single-threaded (ST)
and multi-threaded (MT), both with a direct mapped data cache of the same
size. The experiment shows that the cache misses are increased and in some
cases, more than doubled due to the multi-threaded execution.

Table 1.1: Data cache miss frequency under single-threaded and multi-threaded
executions

Application | AES | DCT | FFT MI RS
ST 61368 | 24052 | 5744 | 22156 | 6292
MT 68128 | 63405 | 8289 | 27769 | 17918

Many researches have been carried out in the recent literature on cache miss
reduction in embedded systems design. A majority of them focuses on searching
for an optimal cache configuration for the single thread execution. Apart from
that, there is a considerable amount of work being done in the area of cache
sharing aware thread scheduling algorithms.

In this work, we aim to improve the data cache utilization for a given
cache configuration for multi-threaded execution. Our design targets
an application that provides embarrassing parallelism and its execution can be
forked into several independent threads each working on a separate data set.
For such applications, a design to improve the instruction cache performance
has been proposed in [23]. This design is named MT-Sync and it facilitates
multi-threaded execution with synchronized loop execution to increase locality
to reduce instruction cache misses. MT-Sync is a purely hardware level thread
execution control mechanism that is entirely distinguishable from operating sys-
tem (OS) level thread schedulers. It utilizes a set of application-specific syn-
chronization points to control thread execution and use instruction pre-fetching
and cache locking to effectively minimize the number of main memory accesses
during the frequent loop execution. Moreover, since it is oblivious to the data
cache utilization, there is space to further enhance the MT-Sync design with
an improved data cache. This work aims at addressing this problem and we
propose a thread data space relocation approach such that the negative impact



of the multi-threaded execution on the data cache is mitigated or even turned
to positive. The main contributions of this work are as follows.

e We address the data cache issue in the multi-threaded execution that has
been thus far rarely studied.

e We propose a novel data placement strategy, where the data for a thread
is moved in the memory in a step of the cache block size. In such a way,
the cache performance in the multi-threaded execution can be estimated
based on the memory access traces of individual threads. This enables an
off-line search for the solution.

e We present a search algorithm for a given number of threads to relocate
the data space of each thread in such a way that the thread competitions
for the cache are evenly distributed over all cache sets.

Our approach is simple yet effective. We evaluate our design with a set of
applications, which shows an average of 10% performance and energy efficiency
improvement due to the reduced data cache misses.

The rest of this report is organized as follows. Section 2 discusses the work
on data placement strategies in the current literature. Section 3 explains our
data placement strategy. Experiments and results are presented in Section 4
and Section 5 concludes the paper.

2 Related Work

There are numerous possible approaches to reduce data cache misses, such as
cache customization [4], data prefetching [15] and cache sharing aware thread
scheduling [19]. A significant part of such efforts has been devoted to fast
exploration for an optimal cache configuration.

Many researchers looked into effectively assigning tasks into processor cores
sharing caches in multiprocessor systems to reduce the data misses. Tam et al.
[19] devised an operating system level thread scheduler for multiprocessors where
data access latency depends on the physical location of the caches. The cores
have exclusive L1 caches whereas an L2 cache is shared between the processors
on the same chip. The processors on separate chips communication by sharing a
memory. The proposed scheduling algorithm assigns tasks to the chips to reduce
the cross-chip cache accesses. Heavily communicating threads are scheduled to
the same chip. However, Zhang et al. [24] show that irrespective of how threads
are placed on the cores, performance remains almost the same for PARSEC
benchmark suite. Such scheduling strategies can be implemented on top of the
memory data placement approach we propose in a larger system we propose as
we focus on threads assigned to a particular embedded processor and we do not
rely on a thread scheduler that focuses on the data cache.

Work on the application data placement in the memory to improve cache
utilization is limited, and most of the work is performed at a fine-grained level
and focused on how to place individual variables and data items in the memory
for low cache misses. Such a problem, Petrank and Rawitz in [16] has theo-
retically demonstrated, is an NP problem and difficult to solve. Therefore, the
existing approaches are basically heuristic. Below are some of them.



In an early work, Calder et al. [7] propose a software based data placement
technique. They use profiling to determine the data usage patterns. Those
patterns are then applied in a heuristic algorithm. The algorithm employs
a Temporal Relationship Graph (TRG) to calculate data placement solutions
distinctively for global variables, local variables, heap and constants. A data
placement optimizer resides in the compiler reorders the global data segment.
For heap data optimization, customized data allocation routines are used at
run-time.

Later, the focus is turned to reorganization of heterogeneous data structures
in the memory for high data cache locality. Truong et al. [22] propose to assem-
ble the fields with high spacial locality into a single cache line within a structure.
And the identical fields in different instances of the same data structure are dy-
namically grouped by a software-level data allocation tool to prevent the fields
of low usage from being loaded into the cache when a high usage data is cached.
Chilimbi et al. [8] use the clustering and colouring techniques to reduce the
conflict misses in the data cache for the data with tree structures. Clustering
improves temporal and spatial locality by packing closely accessed elements of
data structures to a cache block. Colouring maps data elements accessed con-
currently into non-conflicting cache locations. In [13] Kistler and Franz present
a profile based optimization technique to group sequentially accessed fields of
the data structures into the same cache line and reorder them within the cache
line for further improvements. The implementation of the technique is aided by
an operating system based dynamic code generation infrastructure [12]. In a
similar study, Shin et al. [18] propose to dynamically allocate data structures
to improve cache locality. With their approach, the same fields in all structures
are bundled together and placed consecutively in the memory to reduce misses
in L1 and L2 caches. In [17], Rabbah and Palem propose a linear time data
remapping algorithm for data structures. The global data objects are remapped
off-line according to the mismatch between their current placement and access
patterns. The dynamically allocated data objects are remapped on-line by data
allocation routines.

Some works aim to specific cache organizations. Beg and Beek [5][11] target
direct-mapped cache and propose a graph-theory based [11] approach to identify
optimal placement solution for a given memory access trace. Lin and Chen [14]
similarly use a graph method to model the data placement problem for fully
associative cache. They demonstrate that the problem can be reduced to a
graph partitioning problem [9].

Tinnefeld et al. [21] and Ghoting et al. [10] discuss the cache conscious
data placement in a data traversal perspective for database and data mining
applications.

The above placement approaches either use a software level online data al-
location routine (hence consuming processor time and degrading the overall
system performance) or target on specific type of cache configurations (hence
imposing application limitations), and they mainly deal with the placement of
individual data objects of programs.

In this paper, we want to improve the data cache utilization for a multi-
threaded processor. We treat the data space of a thread as a single large data
(a coarse level approach) and we try to move the thread data spaces around
in the memory to reduce the cache competitions caused by the multi-thread
execution.



3 Data Space Relocation

We target a multi-threaded processor for a given application that is of embar-
rassing parallelism and offers the possibility for multiple independent-threads
to be performed on different data sets. We assume the processor has separate
instruction cache and data cache, and the data cache is shared by all threads. In
[23], the authors proposed a design (called MT-Sync) that synchronizes thread
executions on frequent loops (referred to as sync-loop). With this design, the
execution of a sync loop will not be interrupted by other threads, and once the
instructions of the loop are cached by one thread, they are available in the cache
to other threads, hence improving the instruction cache performance. Here we
base our work on the MT-Sync design to reduce the cache misses
caused by the multi-threaded execution.

00110000 00111000 00110100
Data . : :
SPace 50411110 01000110 01000010

access access access
Cache | count count count
Mapping

01 2 3 set 01 2 3 set 01 2 3 set
(a) (b) (c)

Figure 3.1: Example of Data Space Shift

We treat the data space for each thread as a whole. Our idea to reduce the
cache misses caused by the interference of multi-threaded execution is relocating
the data space for each thread. An example is given in Figure 3.1, where a data
space is initially located in a 256-byte memory with the addresses from 00110000
to 00111110 (Figure 3.1(a)). For the direct mapped cache with block size of 4
words, each word of 2 bytes, its cache mapping is shown below the address space,
namely, the data from the space can be cached in set 2 and set 3 in the cache. If
the space is shifted by 1 block, to the location 00111000 — 01000110, the cache
mapping is changed to Figure 3.1(b). If the space is moved by 2 words, the
cache mapping now becomes Figure 3.1(c).

As can be been, when data are moved in the memory, their cache locations
can be different (as shown in both (b) and (c) in the example), and the distri-
bution of the cache set access frequency may also be changed, as demonstrated
in Figure 3.1(c) where the cache accesses are distributed over three sets (sets 0,
2, 3) instead of two sets with the initial space location.

Since we focus on the impact of the thread execution on cache, we want
an individual thread data-space movement not to affect the distribution of the
cache set access frequency of that thread. To this end, we propose to move the
data space in the memory in a step that has the same size of a cache block.

For a given memory data placement and a cache configuration, if the frequently-
accessed memory blocks map to only a small number of locations in the cache,
the competitions for the cache among the threads, hence the cache miss rate,
will be potentially high. We use the cache set access count (AC) to represent



such competitions. If a cache set has a high access count, chances that a cache
block in the set will be evicted by other threads are very high.

For the MT-Sync loop execution, the cache accesses will not be interrupted
by other threads. Therefore the related set accesses can be excluded in the
consideration of cache competition. The rest of the accesses, we consider, are
Subject to the Interference of Multi-thread execution (SIM) and we focus on the
SIM access count (SIM AC) in our design. We use Figure 3.2(a) as an example.
The shaded area represents the accesses from the sync-loop execution, they are
removed in the SIM AC histogram, as shown in Figure 3.2(b).

AC SIM AC SIM AC
1 2 3 4 1 2 3 4 1 2 3 4
cache set cache set cache set

(a) (b) (¢)
Figure 3.2: Set Access Count

We store the SIM access counts of all threads in a table, called SIM AC
table. For m threads, there are m rows in the table. Fach row lists the SIM
AC for each cache set, as shown in Figure 3.3(a).

SIM_AC Table SIM_AC
set 1 Cynlinder
thread n
1
1
2
m
m
(a) (b)
D D+kS
initial location new location
(c)

Figure 3.3: Thread SIM AC Representations (a) SIM AC Table (b) SIM AC
Cylinder (¢) Memory Data Relation

As has been mentioned above, we move the data space in the memory in
(cache) blocks. Assume a cache block can hold S bytes. A thread data space,
initially located at D, can be moved to a location, D+k*S, where k is a whole
number, as illustrated in Figure 3.3(c). In other words, we move the data in
their block addresses.

Assume the cache size is n sets, and the data block address in the memory
is A, its set location in the cache can be determined by the mode operation:
A%n. And for the data space movement, we have the following lemmas.

Lemma 1: If two locations A and B in a data space are mapped into the
same cache set, after the space movement, they are still located in a same set.



Proof: According to the problem, A%n=B%n. Assume the data space is
shifted by k blocks. Since k%n=k%n, based on the addition of the mode op-
eration, we have (A+k)%n=(B+k)%n. Therefore, the two locations are still
mapped to a same set in the cache after the data space shift.

Lemma 2: If memory locations A and B in a data space are not mapped
into the same cache set, after the space movement, they still belong to different
cache sets.

Proof: by contradiction. Assume they were mapped into a same cache set
after the memory space shift (k blocks), namely, (A+k)%n =(B-+k)%n. Since
-k%n=-k%n, we have (A+k-k)%n=(B+k-k)%n, namely A%n=B%n, contradict-
ing to the condition given in the problem (A%n!=B%n).

Based on Lemmas 1 and 2, we can conclude that for a thread, shifting its data
space around will lead to its SIM AC distribution in the cache shifted and rotate-
shifted due to the mode operation of memory address mapping. For example,
if the data space is moved in the memory by one block, the set access count
histogram of the thread is simply rotate-shifted by one set, as demonstrated in
Figure 3.2(c) as compared to the initial SIM AC distribution in Figure 3.2(b).

When the data space is moved by k blocks in the memory, the related SIM
AC histogram is rotate-shifted by k%n sets.

Therefore, for a single thread, the data space movement does not change
the SIM AC distribution pattern; The total SIM access counts and cache misses
of the thread remain the same. But for multi-threads, the access counts are
accumulated, and moving their data spaces differently in the memory will change
the total access count to each set. Hence the competition for a cache set by the
multiple threads may be altered. Given this fact, we abstract our design problem
as follows.

Since the SIM AC histogram is rotated over the cache sets when the data
space is moved in the memory, we can bend the SIM AC table into a cylinder
(we call it SIM AC cylinder). The cylinder contains m rings, each represent
the access count for a thread over the cache sets. Moving the data space in the
memory is equivalent to turning the ring. The total access count to a set by the
m threads is sum of the related column values on the cylinder. We want to find
a combination of the ring positions such that the column sums of the cylinder
are as close as possible, namely, the total SIM accesses are evenly distributed
over all sets in the cache — to reduce the cache competition, hence cache conflict
misses.

We number the threads according to their relative data-space locations in
the memory. The data space DS;, of thread i has larger addresses than that
of thread 7 — 1. The shift distance of a data space is the offset of the new
location to its initial location, as demonstrated in Figure 3.4. As can be seen,
after the relocation, the total consecutive memory space size is increased. The
gaps between the data spaces may cause the memory overhead if they cannot
be used. Therefore, as a second search criteria, we want the total gap size as
small as possible.

For the SIM AC cylinder of m threads and n-set cache, we position the rings
in the order of their thread numbers. The top ring is associated with thread 1.
We move rings for different thread data space placements based on the following
rules:



‘ DS; DS, ‘ ‘---‘ DSn ‘ before relocation
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Figure 3.4: Thread Data Space Relocation

e For a thread, turn the ring rightwards to move its data space.

e For each position of a ring, ¢, all possible n positions of its lower ring,
i+ 1, will be searched. When the last position of the low ring has been
examined, the ring’s position will be restored by turning it back to its
initial position (the position with no gap between the data spaces of the
two threads).

e For each upper ring movement, all rings below will be simultaneously
turned the same distance to ensure the data spaces not overlapped.



Algorithm 1 Search for the best thread data space placement

/*for threads 2 to m, cache size: n sets*/

/*initialization* /

for i=2 to m do
os(i)=-1; /*data space offset for thread i*/
count(i)=0; /*number of offset positions searched for thread i*/
gonext(i)=1; /*control turning ring i*/

end for

gonext(1)=0; /*control the completion of the space search*/

bst = Null; /*hold the best design after the search*/

/*design space search*/
while gonext(1)=0 do
/*task 1: get a design*/
/*get offset position for each thread — as the current design, D*/
for i=2 to m do
if gonext(i)=1 then
/*moving rings j-m by one position*/
for j=i to m do
os(i)++;
end for
count(i)++;
gonext(i)=0; /*current ring is halted to let the search of all positions
of low rings*/
end if
end for
/*task 2: save the current design, D, if it is the best so far*/
if (dev(D)<dev(bst))OR
((dev(D)=dev(bst))AND(os(m)(D)<os(m)(bst))) then
bst =D;
end if
/*task 3: prepare for the next round of search*/
J=m;
while count(j)=n do
/*restore the position of ring j */
count(j)=0;
0s(j) = os(j)-n;
j—
end while
/*ring j will be moved in the next round; If it is ring 1, the search is
complete */
gonext(j)=1;
end while




4 Experiments

We implement our data space relocation approach for the multi-thread processor
with sync loop execution (MT-Sync) design discussed in [23]. The processor con-
sists of a one-level instruction cache and a one-level data cache. The block size
of both caches is 32 bytes.We adopt a similar experimental setting as proposed
in [23]. Simplescalar [6] tool set is used for compiling and profiling and applica-
tions. Application Executions on the multi-thread processor are simulated with
the Modelsim simulator [1] to obtain performance readings. Synopsys Design
Compiler [2] is used to estimate the area and power costs of on-chip hardware
components based on the TSMC Standard 65 nm Cell Library [3]. The critical
path delay is used to determine the clock cycle time.

Designs with memories of different sizes are investigated. Table 4.1 shows
the latency and dynamic energy consumption per memory access estimated by
CACTT [20] for these memories. For the access latency (in ns), the equivalent
number of CPU clock cycles (cc) are given in Columns 3 and 6 of the table. The
instruction memory size ranges from 50 MB to 500 MB whereas the data memory
size (available with CACTI) ranges from 50MB to 300MB. The memory access
delays are incorporated into the processor hardware models for cycle accurate
simulation.

Table 4.1: Latency and Dynamic Energy Consumption per Memory Access

Instruction Memory Data Memory
Size(MB) | Access Latency | Energy | Access Latency | Energy

) [ e | () [ @) [ (0 | ()
50 9.19 ) 0.89 10.21 ) 0.52
100 11.98 6 1.10 15.74 8 0.74
150 14.30 7 1.50 20.74 10 1.06
200 17.59 8 1.54 25.17 12 0.81
250 19.75 9 1.81 29.59 14 0.97
300 21.94 10 2.13 33.95 16 1.15
350 24.82 12 1.61 - - -
400 27.01 13 1.76 - - -
450 29.23 14 1.92 - - -
500 31.42 15 2.08 - - -

In our experiment, we use ten kernel benchmarks as shown in Column 1
of Table 4.2. The abbreviations (Abr.) of the benchmark names, which will
be used in the following result tables, are given in Column 2. The optimal
instruction cache sizes are decided according to the frequent loop size of the
benchmarks [23]. The data cache size is fixed to one sixteenth of the data space
of each benchmark. Column 3 of Table 4.2 shows the code size (CS) of the
benchmarks whereas Column 4 shows the selected instruction cache size (ICS).
The selected data cache size (DCS) is given in Column 5.

The processor power and area costs significantly vary with its cache con-
figurations. Since our focus is on the data cache, we limit our experiments
to direct-mapped instruction caches. For data cache, we test direct-mapped
(1-way), 2-way, and 4-way set associative caches.

Tables 4.3 and 4.4 respectively show the power consumption and area costs



Table 4.2: Benchmarks =5 ST HES

Benchmark Abr. (KB) | (B) | (B)

Discrete cosine transform DCT | 1.09 | 128 | 512
Matrix multiplication MM | 0.39 | 128 | 512
Matrix inversion MI 2.77 | 128 | 2048
LU matrix decomposition LU 1.16 | 128 | 1024
Cholesky matrix decomposition | CHL | 1.48 | 128 | 512
Gaussian elimination GE 1.29 | 128 | 1024
Radix sorting RS 2.77 | 128 | 256
Fast Fourier transform FFT | 1.80 | 256 | 512
Linear equation solving LE 1.86 | 256 | 512
AES encryption AES | 7.48 | 512 | 2048

obtained by synthesis for the single-thread (ST) processor and baseline MT-Sync
processor.

Table 4.3: Power Consumption and Area of the ST Processor with Different
Cache Configurations
ICache DCache Power | Area
(B) Size (B) [ Assoc. | (mW) | (mm?)
l-way | 9.40 | 0.2171
512 512 2-way | 9.43 | 0.2188
4-way | 9.44 | 0.2194
l-way | 4.83 | 0.1508
256 128 2-way | 4.83 | 0.1513
4-way | 4.83 | 0.1513
l-way | 6.87 | 0.1787
512 2-way | 6.90 | 0.1803
4-way | 6.91 0.1809
l-way | 4.92 0.1515
256 2-way | 4.93 | 0.1523
128 4-way | 4.94 | 0.1528
l-way | 4.00 | 0.1378
128 2-way | 4.01 | 0.1383
4-way | 4.01 0.1383
l-way | 3.48 | 0.1310
2-way | 3.48 | 0.1310

64

The execution data obtained from the simulation and the power/energy read-
ings from the synthesis and memory models are used to calculate the overall
energy consumption (F) of an execution based on the following formula:

E=PxT+E;*a; +Eg*ag, (4.1)

where P is the total power consumed by the on-chip components and T the
application execution time. And F; and Ey are the energy consumption per
memory access respectively for instruction memory and data memory; a; and
aq are the number of accesses made into the instruction and data memories.
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Table 4.4: Power Consumption and Area of the MT-Sync Processor with Dif-
ferent Cache Configurations
ICache DCache Power | Area
(B) | Size (B) | Assoc. | (mW) | (mm?)
l-way | 23.28 | 0.4689
512 2048 2-way | 23.36 | 0.4739
4-way | 23.36 | 0.4750
l-way | 10.27 | 0.2802
256 512 2-way | 10.30 | 0.2808
4-way | 10.31 | 0.2827
l-way | 20.33 | 0.4293
2048 2-way | 20.52 | 0.4343
4-way | 20.57 | 0.4373
l1-way | 12.85 | 0.3212
1024 2-way | 11.96 | 0.3237
4-way | 12.92 | 0.3256
l-way | 9.18 | 0.2669
512 2-way | 9.21 | 0.2675
4-way | 9.22 | 0.2692
1-way 7.23 0.2398
256 2-way | 7.24 | 0.2395
4-way | 7.25 | 0.2411

128

In this experiment, we first observe the impact of baseline multi-threaded
execution on cache misses, performance and energy consumption. Then we show
how MT-Sync with data space relocation mitigates negative effects or further
improves the positive effects of multi-threading.

Given the 3 different data cache configurations, 10 different instruction mem-
ory sizes, and 6 data memory sizes, we run a total of 3¥*10*6*10=1800 experi-
ments for 10 benchmarks for one execution type. Since we test ST, baseline MT
and MT-Sync with data space relocation, the total number of experiments run
is 1800*3=5400.

From these experiments we obtain data for cache misses and CPI of the
executions and calculate the total energy consumption. For fairness, we com-
pare these values of both baseline MT and MT-Sync with data space relocation
with those values of ST execution. Obtained results are presented in two ta-
bles. Table 4.5 shows the average (avg) and standard deviation (dev) of the
percentage reductions of data cache misses (Dmisses), instruction cache misses
(Imisses), performance (CPI) and energy consumption (Energy) from baseline
MT execution compared to ST execution. In a similar manner, Table 4.6 shows
the same set of results for MT-Sync with data space relocation compared to
ST execution. It should be noted that these values are obtained by considering
all off-chip memory sizes and data cache configurations (60*3=180 values per
application).

From Table 4.5 we can observe that baseline MT execution results in addi-
tional data misses for most applications except for AES, CHL and DCT and
reduced instruction cache misses for all benchmarks except LU and MI. More-
over, it reduces performance and increases energy consumption on average for

11



a range of applications. These negative effects can be explained by the poor
synergy between multi-threaded execution and caching.

The idea of MT-Sync with data space relocation is to mitigate these negative
effects with respect to both data and instruction caches. From the results shown
in Table 4.6, we can clearly observe that its every average reduction value is
higher than its counterpart in Table 4.5. In most cases, the negative values
have been turned to positive and the already positive values increased. On
average, the negative impact on data cache misses is mitigated by a factor of
about 9 whereas the instruction cache misses have been further reduced by a
factor of 2. Similarly, average performance of ST have been increased 17.5 times
more than MT by our design resulting in a 2.5 times more energy saving.

Table 4.5: Cache miss reduction, performance improvement and energy saving
by baseline MT execution compared to ST

Benchmark Dmisses (%) Imisses (%) CPI (%) Energy (%)
avg dev avg dev avg dev avg dev

AES 7.48 3.96 | 51.18 | 13.27 | -10.97 | 15.38 | 16.07 | 12.65
CHL 4.64 2.65 | 95.89 | 2.45 | -15.87 | 92.72 | 78.18 | 6.65
DCT 15.55 | 4.66 | 26.67 | 7.51 6.56 5.23 | -79.34 | 32.41
FFT -87.87 | 1.84 | 50.92 | 4.88 | 11.45 | 6.24 | 22.49 | 11.37
GE -9.22 7.05 10.63 | 9.14 | -29.11 | 12.40 | 4043 | 7.13
LE -25.70 | 7.71 | 44.71 | 15.22 | 28.30 | 9.04 | 46.10 | 9.11
LU -4.60 2.66 | -20.70 | 6.95 | 11.75 | 5.06 13.25 | 3.51
MI -3.32 2.22 | -26.56 | 6.49 | -4.67 | 4.77 | -41.79 | 5.06
MM -6.86 2.18 | 25.25 | 6.46 | -5.96 7.28 | 47.39 | 3.87
RS -55.25 | 25.70 | 68.56 | 4.88 | 19.92 | 7.23 | 24.37 | 10.11
Average -16.51 | 6.06 | 32.65 | 7.72 1.14 | 16.53 | 16.72 | 10.19

Table 4.6: Cache miss reduction, performance improvement and energy saving
by MT-Sync with data-space relocation compared to ST

Benchmark | 2misses (%) Imisses (%) CPI (%) Energy (%)

avg dev avg dev avg | dev avg dev
AES 21.61 | 4.00 | 78.24 | 2.93 | 31.18 | 8.02 | 43.71 | 6.66
CHL 2.38 0.64 | 96.22 | 0.25 8.55 | 2.46 | 87.92 | 245
DCT 43.76 | 8.01 | 79.56 | 3.44 | 35.22 | 5.33 | 16.83 | 9.41
FFT -86.11 | 1.59 | 51.06 | 4.43 | 15.40 | 5.33 | 25.94 | 11.46
GE 7.47 0.79 | 77.69 | 2.88 | 15.28 | 1.91 | 69.73 | 3.34
LE 11.52 | 4.38 | 48.02 | 11.59 | 28.65 | 7.69 | 59.37 | 6.60
LU -4.48 1.25 -5.40 4.29 | 12.24 | 2.37 | 15.58 | 4.20
MI -0.88 1.11 | -21.69 | 6.30 3.56 | 7.08 | -36.00 | 4.49
MM 6.28 1.68 | 84.70 | 0.70 | 24.56 | 4.87 | 80.74 | 2.63
RS -22.41 | 13.13 | 76.93 | 4.02 | 25.67 | 8.57 | 42.45 | 6.27

[ Average | -2.09 | 3.66 | 56.53 | 4.08 | 20.03 [ 5.36 | 40.63 | 5.75 |

As is discussed in Section 3, the data space relocation creates gaps between
thread data spaces. Table 4.7 presents the average overhead in bytes for each
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application and the relative value as compared to the application data space is
given in the last column of the table.

Table 4.7: Memory space overhead from informed data placement

Data Cache Ways
Benchmark 1-way 2-way 4-way
bytes % bytes | % | bytes | %

AES 768 6.49 672 | 5.68 | 416 | 3.51
CHL 320 9.09 160 | 4.55 96 2.73
DCT 320 | 15.56 96 4.67 | 96 4.67
FFT 352 | 13.37 | 160 | 6.08 96 3.65
GE 576 | 13.00 | 384 | 8.66 | 192 | 4.33
LE 384 | 13.95 | 192 | 6.98 96 3.49
LU 384 4.84 160 | 2.02 96 1.21
MI 1536 | 16.28 | 544 | 5.77 | 96 1.02
MM 384 | 15.84 | 192 | 7.92 96 3.96
RS 160 | 11.90 96 7.14 32 2.38
Average 518.4 | 12.03 | 265.6 | 5.95 | 131.2 | 3.09

It can be seen from Table 4.7 that the percentage space overhead reduces as
the number of ways of the cache increases. For a fixed cache size, the number
of sets decreases with the increasing associativity. The less the number of sets,
the less search space explored by Algorithm 1, which leads to a reduced data
space shift range, hence the possible memory overhead.

5 Conclusions

Multi-threaded execution often adversely affects the cache performance.In this
work we address this issue for the data cache of the MT-Sync multi-thread
processor design we proposed in [23]. MT-Sync design is able to improve the
instruction cache performance by synchronizing thread execution on frequent
loops.

We presented a design time data-space relocation approach for each thread to
reduce the data cache misses caused by the multi-threaded execution. Here we
shift the thread data-space in the step of cache block size so that the interference
of the multi-thread executions can be easily captured and the space relocation
problem can be simplified.

The experiments on a set of applications and different data cache configu-
rations demonstrated the effectiveness of our design approach. It mitigates the
negative effects of multi-threaded execution even turning them into positive in
some cases. On average, our design improves performance of single-threaded
execution 17.5 times more than the improvement achieved by baseline multi-
threaded execution resulting in a 2.5 times more energy saving.
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