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Abstract

When making clinical decisions, practitioners need to rely on the most relevant evi-
dence available. However, accessing a vast body of medical evidence and confronting
the issue of information overload, can be challenging and time consuming. Automatic
text summarization has been known as a natural language processing technique to ad-
dress this issue. While most top-performing summarizers remain largely extractive (i.e.
extract a group of sentences and concatenate them.), this paper proposes an abstractive
query-focused summarization framework for evidence-based medicine (EBM). Given
a clinical query and a set of relevant medical evidence, our aim is to generate a fluent,
well-organized, and compact summary that answers the query. The quality of biomedi-
cal summaries is also enhanced by appraising the applicability of both general-purpose
(WordNet), and domain-specific (UMLS) knowledge sources for concept discrimina-
tion.
We first perform iterative random walks, over the graph representation of both WordNet
and UMLS, to capture sentence-to-query and sentence-to-sentence semantic similari-
ties. We then construct a similarity graph with less query-relevant sentences filtered
out, and relevant sentences are clustered. Finally, a word graph is constructed for
each cluster, and the most abstractive summary sentences are obtained by re-ranking
k-shortest paths. Analysis via ROUGE metrics shows that using WordNet as a general-
purpose lexicon helps to capture the concepts not covered by the UMLS Metathesaurus,
and hence significantly increases the summarization performance. The effectiveness of
our proposed framework is demonstrated by conducting a set of experiments over a
specialized EBM corpus - which has been gathered and annotated for the purpose of
biomedical text summarization.



1 Introduction
Over the past two decades, clinical guidelines urged practitioners to move towards
evidence-based medicine, which is formally defined as conscientious and judicious
use of current best evidence in making decisions about the care of individual patients
[50]. Evidence-based medical practice heavily relies on research evidence, rather than
intuition, unsystematic clinical experience, or pathologic rationale [19]. So, the main
aim is to find and evaluate current medical evidence, and make clinical decisions based
on the best available evidence. Systematic reviews, meta-analyses of all studies asso-
ciated with a topic, or high-quality randomized controlled trials, are widely known as
the best sources of evidence [34].

However, searching through and evaluating primary medical literature is extremely
time consuming [13, 51, 24]. For more clarity, a query on PubMed1 [32], returns a large
set of relevant documents, and not summaries or answers to the queries. Even targeted
searches on PubMed tend to return a large volume of results. Hence, the explosive
growth of content of medical evidence requires development of techniques to present
information to physicians and researchers in an effective way. Automatic text summa-
rization has been introduced as a natural language processing technique to address this
problem [26, 49, 17]. Well-generated summaries can efficiently reduce diagnosis time,
and help physicians to identify treatment options [7]. Moreover, automatic summaries
have been shown to improve indexing and categorizing biomedical literature when used
as substitutes for the articles abstracts [18, 27].

Even though the problem of information overload and the advantages of summa-
rization are critical in the biomedical domain, the majority of summarizers are designed
to be general-purpose, and do not take into account the particular properties of specific
domains like biomedical. They usually work with a simple representation of the sum-
mary comprising of information that can be directly extracted from the document itself,
such as terms, phrases or sentences [14, 36]. However, recent studies (e.g. [17]) have
demonstrated the benefits of summarization based on richer representations that make
use of domain-specific knowledge sources. These approaches represent the documents
using concepts instead of words, and may also be enriched by using semantic associa-
tions among concepts (e.g. synonymy, hypernymy, homonymy or co-occurrence) [47].
While a query is asked in the field of biomedicine, one of their main challenges is to
understand the underlying semantic relatedness of the query and document sentences,
and consequently extract the most non-redundant, query-relevant parts from the docu-
ments [37].

Documents in biomedicine are very different from documents in other fields, and
include very different document types (e.g. patient records, web documents, scien-
tific papers and even e-mailed reports). So, particular characteristics of the domain
and the type of documents are apparently needed to be considered [47]. In addition,
medical language, despite being highly specialized, is also highly interpretive, and it
is constantly expanding [47]. It seems reasonable that these peculiarities should be
exploited by the summarization systems. To this end, promising domain-specific NLP
techniques have been efficiently employed to release the Unified Medical Language
System (UMLS2) [5]. UMLS covers a wide range of biomedical concepts, semantic
types, and both hierarchical and non-hierarchical relationships among the concepts.

1A biomedical database produced by the U.S. National Library of Medicine, and contains over 24 million
articles (available at http://www.ncbi.nlm.nih.gov/pubmed).

2A repository of biomedical vocabularies, were developed by the U.S. National Library of Medicine
(available at http://www.nlm.nih.gov/research/umls/).
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Figure 1.1: An overview of the proposed framework

More specifically, it was developed to overcome the main issue in this area, which is
the absence of a standard format for distributing terminologies [5]. UMLS is a very
rich source of information in medical and biological domain. Therefore, most existing
biomedical summarizers utilize UMLS as a large lexical and semantic medical ontol-
ogy. However, UMLS does not provide a full coverage of non-medical concepts, terms,
and relations included in general-purpose thesauri such as WordNet3 [23, 8, 25, 41].
Moreover, utilizing WordNet to complement UMLS coverage is challenging due to
their different structure, nature, terms and size.

This challenge has motivated us to propose an efficient summarization framework
to tackle the aforementioned issues by keeping an eye on the biomedical peculiarities.
Given a clinical inquiry and a set of relevant medical evidence, our abstractive summa-
rization framework aims to generate a fluent, well-organized, and compact summary
that answers the query. To this end, we provide a deeper analysis of the biomedi-
cal text to generate new sentences that convey the gist of the source content. The
quality of biomedical summaries is also enhanced by appraising the applicability of
both general-purpose (WordNet), and domain-specific (UMLS) knowledge sources for
concept discrimination. In details, our framework comprises different components:
performing iterative random walks on WordNet and UMLS to capture the underlying
sentence-to-query and sentence-to-sentence semantic similarities; ranking sentences
based on their similarity scores; filtering them considering their relationship to the
clinical query; clustering them by their relevance to each other; generating abstractive
summarization, and removing redundancies through a word graph representation; and
finally re-ranking the newly generated sentences based upon their importance and syn-
tactic structure. Figure 1.1 provides an overview of the proposed framework.

The rest of the paper is organized as follows. Section 2 summarizes the background.
Utilized data is discussed in Section 3. Preprocessing step is explained in Section 4.
We demonstrate the proposed approach in Section 5. Section 6 reports the evaluation
metrics and the performed experiments. Finally, Section 7 concludes the paper.

3http://wordnet.princeton.edu
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2 Background

2.1 Text Summarization
Text summarization is the process of automatically creating a compressed version of a
given text. Content reduction can be addressed by selection and/or by generalization of
what is important in the source [28]. Consequently, two common categories are defined
in the text summarization literature:

• Extractive summarization: This category usually takes a set of documents as
input and selects the salient sentences for inclusion in the final summary. There-
fore, the summaries are essentially composed of material that is explicit in the
source.

• Abstractive summarization: This category generates summaries in which the in-
formation from the source has been paraphrased. Human summaries are also
typically abstracts.

A summary can either be query-focused (biased to a user query), or generic (con-
veying the document gist). In traditional extractive query-focused summarization sys-
tems, lexical similarity measures were used to select content that are similar to the
question. Such approaches also have to ensure that redundant information is mini-
mized. Some recent researches have addressed query-focused text summarization from
the perspective of question answering [67, 65], and some others have modeled summa-
rization as sentence classification problems [12, 44, 43, 9]. A machine learning classi-
fier trained on a small dataset is employed in another study [12] to select the summary
sentences. Another summarization system [9] utilizes category of an input question to
generate paragraph level summaries. They suggest that the generated summary should
be customized with respect to the type of the question. In biomedical summarization,
polarity information of sentences is utilized by [44, 43] to summarize medical abstracts.
They believe that polarized sentences could favorably conclude statements within the
abstracts.

More advanced summarization techniques such as LexRank [14] incorporate graph-
based methods. LexRank assumes a fully connected and undirected graph for the set
of documents to be summarized. Each node corresponds to a sentence represented
by its TF-IDF vector, and the edges are labeled with the cosine similarity between
the sentences. Only the edges that connect sentences with a similarity above a prede-
fined threshold are drawn in the graph. The sentences represented by the most highly
connected nodes are selected for the summary. Recent extractive summarization ap-
proaches have also attempted more targeted tasks. They automatically assessed the
risk of bias for clinical trials [34], and extracted specific study characteristics from trial
abstracts [60].

So, the majority of proposed systems on general-purpose and domain-specific (e.g.
biomedical) text summarization are extractive in nature. This is mainly due to the dif-
ficulties entailed by the abstraction process. This process usually involves identifying
the most prevalent concepts in the source, the appropriate semantic representation of
them, and rewriting of the summary through natural language generation techniques.
In this paper, one of our main contributions is to provide an abstractive summary of a
set of biomedical research evidence with respect to a clinical query.
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2.2 Evidence-based Medical Summarization
Among the researches performed in the area of text summarization, many studies have
also explored the obstacles associated with evidence-based medicine practice in the ab-
sence of pre-existing systematic reviews (e.g. [13, 11]). When primary care physicians
seek answers to clinical problems, the time required to search, evaluate, and synthesize
evidence has been known as a major obstacle [52]. Literature review and analysis may
take a long time (e.g. it takes more than 30 minutes on average for a practitioner to
find and extract evidence [22]). Due to the difficulties such as time needs, practitioners
often do not pursue evidence-based answers to clinical problems. Besides, clinical re-
source developers need to focus on providing resources that answer questions likely to
occur in practice with emphasis on treatment and bottom-line advice.

Numerous IR approaches have already been proposed to address the search-related
needs of practitioners [20]. They incorporate lexical and semantic information derived
from domain-specific resources and ontologies. However, post-retrieval techniques
(e.g. [52]) to perform query-oriented summarization are still scarce. The possible
reasons are as follows: (i) the complicated nature of the biomedical text that arises
various difficulties in progress [3]; (ii) the large volume of available published medical
literature; (iii) the limited amount of suitable annotated data for the complex task of
summarization or question answering [52].

Due to the lack of incorporation of domain-specific information, domain-independent
summarizers generally underperform when employed on biomedical texts. To solve
this issue, UMLS came to play, and has proved to be a useful knowledge source for
summarization in biomedical domain [49, 17]. However, a decline is found in the per-
formance of summarizers which only utilize UMLS as their source of knowledge. The
reason is that UMLS is less likely to cover all concepts included in the source text [47].
To compensate this deficiency, a question-oriented extractive system for biomedical
multi-document summarization (i.e. [57]), utilized WordNet as a general-purpose lexi-
con to capture the concepts not covered by UMLS. For this intention, they constructed a
graph containing ontological concepts (general ones from WordNet, and specific ones
from UMLS), name entities, and noun phrases. The edges in their graph represent
semantic relationships between concepts, but nothing is said about the considered spe-
cific relationships. Our work differs in intent, and explores the utility of the graph
representation of both domain-independent (WordNet) and domain-specific (UMLS)
lexicons for incorporating underlying textual semantic similarities. Next, we discuss
these resources, their distinctions, and the employed EBM corpus.

3 Data
In our work, we have utilized two knowledge sources of UMLS and WordNet for con-
cept discrimination. We have also employed the data provided in an EBM corpus to
develop, test, and evaluate our summarization framework.

The Unified Medical Language System (UMLS) UMLS [5] is a database of biomed-
ical vocabularies developed by the U.S. National Library of Medicine. In this work,
we have utilized version 2015AB of the UMLS Metathesaurus that contains more than
3.25 million concepts, and nearly 13 million unique concept names from over 190
source vocabularies. The three major components of UMLS are the Metathesaurus, Se-
mantic Network and SPECIALIST Lexicon. This work focuses on the Metathesaurus
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which semi-automatically integrates information about biomedical and health-related
concepts from various biomedical and clinical sources. UMLS uses 12 different types
of hierarchical and non-hierarchical relations between concepts. For instance, the hier-
archical relations consist of the parent/child and broader/narrower (BR/NR) relations.
To map biomedical text to concepts in the UMLS Metathesaurus, MetaMap1 program is
usually applied [2]. MetaMap employs a knowledge-intensive approach that uses the
SPECIALIST Lexicon in combination with lexical and syntactic analysis to identify
noun phrases in text. We have employed version 2016 of MetaMap in our framework.
Matches between noun phrases and Metathesaurus concepts are computed by generat-
ing lexical variations and allowing partial matches between the phrase and the concept.
The possible UMLS concepts are assigned scores based on the closeness of the match
between the input noun phrase and the target concept. The highest scoring concepts
and their semantic types are gradually returned.

WordNet WordNet is a large general-purpose lexical database of English, which is
often used in word sense discrimination. Words are grouped into sets of synonyms
called synsets, each of which expressing a distinct concept. We have used WordNet 3.0
[15] repository for the current study, that includes a total of 155,287 words organized
in 117,659 concepts, which are linked by semantic and lexical relations.

UMLS VS. WordNet Although WordNet includes a certain number of medical terms,
in the area of biomedical, UMLS is used extensively for medical text mining and re-
trieval. A study performed by [5] showed that the concept overlap between WordNet
and UMLS varies from 48% to 97%. This is because UMLS records the variability of
the lexical forms encountered in the source vocabularies, while WordNet only records
the canonical forms. WordNet and UMLS are also different in their graph structures.
Therefore, there exists a huge discrepancy in granularity between WordNet and UMLS
[33]. For example, as shown in Figure 3.1, malignant tumor.n.01 is the parent of
cancer.n.01 in WordNet, but ”malignant tumor” and ”cancer” locate in the same con-
cept C0006826 (malignant neoplasms) in UMLS. In this example, WordNet has a finer
granularity. However, UMLS possesses a finer granularity in some other cases.

maligant_tumor.n.01

cancer.n.01

leukemia.n.01

maligant neoplasms [C0006826]
{maligant tumor, cancer,  }

leukemia
[C0023418]

maligant disease
[C0442867]

WordNet hypernym/hyponym

UMLS RN/RB

Figure 3.1: An Example of difference between WordNet and UMLS

While UMLS is a very rich source of information on medical and biological terms
and concepts, it does not provide full coverage of non-medical concepts, terms and
relations [23, 8, 25, 41]. In this paper, we have utilized WordNet to represent the
layman knowledge, and UMLS to represent the professional knowledge. Our goal is to

1Developed by the U.S. National Library of Medicine (available at https://metamap.nlm.nih.gov)
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capture sentence-to-query and sentence-to-sentence semantic similarities, and bridge
the knowledge and language gaps in biomedical summarizers.

EBM Corpus To the best of our knowledge, the corpus released by [39] is the only
available corpus2 for the task of evidence-based medicine text summarization. This
corpus is sourced from the Clinical Inquiries section of the Journal of Family Practice3.
Each article in this section of the journal (issued monthly) addresses a clinical question,
and provides a systematic analysis of the best available medical evidence in response
to the posed clinical query [38]. For each question, this corpus contains the following
information:

• The URL of the clinical inquiry: An address, from which the information has
been sourced.

• The question: For example, ”What is the evaluation and treatment strategy for
Raynaud’s phenomenon?”.

• The bottom-line evidence-based answer: The answer may contain several parts,
since a question may be answered according to distinct pieces of evidence. For
each part, the corpus includes a short description of the answer, the Strength of
Recommendation (SOR) grade of the evidence related to the answer, and a short
description that explains the reasoning behind allocating such a SOR grade.

• The answer justifications: For each of the parts of the evidence-based answer,
there is one or more justifications describing the actual findings reported in the
research papers supporting the answer.

• The references: Each answer justification includes one or more references to the
source research paper. Each reference includes the PubMed ID and full abstract
information as encoded in PubMed, if available.

This corpus consists of 456 clinical queries, with 1396 bottom-line, multi-document
summaries (i.e. evidence-based answers). The total number of single-document evidence-
based summaries is 3036, which are generated from 2908 unique articles. The corpus
also contains XML versions of these articles, obtained from PubMed. We have uti-
lized this corpus to develop and test our query-focused multi-document summarization
framework. The bottom-line answers are used as the reference (gold) summaries. The
question and all the abstracts associated with the bottom-line summary are also con-
sidered as the source texts. Table 3.1 lists the properties of this corpus, and Table 3.2
provides an example of query-focused multi-document summarization over this corpus.

total #clinical queries 456
#bottom-line multi-document summaries 1396
#single-document evidence summaries 3036

total #unique articles 2908

Table 3.1: Information about the EBM Corpus

2Available at: http://sourceforge.net/projects/ebmsumcorpus
3http://www.jfponline.com/articles/clinical-inquiries.html
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Question: How should we manage a patient with a positive PPD and prior BCG vaccination?

Bottom-line answer (multi-document summary): A recently developed alternative is the interferon-
gamma assay (QuantiFERON-TB Gold test), which may be used in place of, or in addition to, the
PPD skin test for patients who are known to have received a BCG vaccine. [PubMed IDs: 15059788,
16539718]

Source text 1 [PMID: 15059788]: The tuberculin skin test for immunologic diagnosis of Mycobac-
terium tuberculosis infection has many limitations, including being confounded by bacillus Calmette-
Gurin (BCG) vaccination or exposure to nontuberculous mycobacteria. M. tuberculosis-specific anti-
gens that are absent from BCG and most nontuberculous mycobacteria have been identified. We
examined the use of two of these antigens, CFP-10 and ESAT-6, in a whole blood IFN-gamma assay
as a diagnostic test for tuberculosis in BCG-vaccinated individuals. Because of the lack of an accurate
standard with which to compare new tests for M. tuberculosis infection, specificity of the whole blood
IFN-gamma assay was estimated on the basis of data from people with no identified risk for M. tuber-
culosis exposure (216 BCG-vaccinated Japanese adults) and sensitivity was estimated on the basis of
data from 118 patients with culture-confirmed M. tuberculosis infection who had received less than 1
week of treatment. Using a combination of CFP-10 and ESAT-6 responses, the specificity of the test
for the low-risk group was 98.1% and the sensitivity for patients with M. tuberculosis infection was
89.0%. The results demonstrate that the whole blood IFN-gamma assay using CFP-10 and ESAT-6
was highly specific and sensitive for M. tuberculosis infection and was unaffected by BCG vaccination
status.

Source text 2 [PMID: 16539718]: The whole-blood interferon-gamma release assay (IGRA) is rec-
ommended in some settings as an alternative to the tuberculin skin test (TST). Outcomes from field
implementation of the IGRA for routine tuberculosis (TB) testing have not been reported. We eval-
uated feasibility, acceptability, and costs after 1.5 years of IGRA use in San Francisco under routine
program conditions. Patients seen at six community clinics serving homeless, immigrant, or injection-
drug user (IDU) populations were routinely offered IGRA (Quantiferon-TB). Per guidelines, we ex-
cluded patients who were 17 years old, HIV-infected, immunocompromised, or pregnant. We reviewed
medical records for IGRA results and completion of medical evaluation for TB, and at two clinics re-
viewed TB screening logs for instances of IGRA refusal or phlebotomy failure. Between November
1, 2003 and February 28, 2005, 4143 persons were evaluated by IGRA. 225(5%) specimens were not
tested, and 89 (2%) were IGRA-indeterminate. Positive or negative IGRA results were available for
3829 (92%). Of 819 patients with positive IGRA results, 524 (64%) completed diagnostic evaluation
within 30 days of their IGRA test date. Among 503 patients eligible for IGRA testing at two clinics,
phlebotomy was refused by 33 (7%) and failed in 40 (8%). Including phlebotomy, laboratory, and
personnel costs, IGRA use cost $33.67 per patient tested. IGRA implementation in a routine TB con-
trol program setting was feasible and acceptable among homeless, IDU, and immigrant patients in San
Francisco, with results more frequently available than the historically described performance of TST.
Laboratory-based diagnosis and surveillance for M. tuberculosis infection is now possible.

Table 3.2: An example of query-focused multi-document summarization, showing the
question, the bottom-line summary and two of the source abstracts.

4 Preprocessing
Biomedical domain peculiarities Biomedical texts exhibit certain unique attributes
that must be taken into account in the development of a summarization system. First,
medical information arises in a wide range of document types [1]: electronic health
records, scientific articles, semi-structured databases, X-ray images and even videos.
Each document type presents very distinct characteristics that should be considered in
the summarization process. We focus on scientific articles, which are mainly composed
of text. Having knowledge about the article layout can be exploited to improve the sum-
maries that are generated automatically [47]. Second, the specific nature of biomedical
terminology makes it difficult to automatically process biomedical information [42].
Some of the discussed issues are as follows:

• Synonyms: The use of different terms to designate the same concept.

• Homonyms: The use of words/phrases with multiple meanings. For instance, the
syntagms coronary failure and heart attack stand for the same concept, while the
term anaesthesia may refer to either the loss of sensation or the procedure for
pain relief.
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• Neologisms: Newly coined words that are not likely to be found in a dictionary
(e.g. the term coumadinise for the administration of coumadin).

• Elisions: The omission of words or sounds in a word or phrase. For example,
white count which is understood by physicians as the count of white blood cells.

• Abbreviation: A shortened form of a word or phrase. For example, the use of
OCP to refer to oral contraceptive pills.

Preprocessing steps In this study, if the abstract includes abbreviations, the abbrevi-
ations and their expansions are extracted. This information is then used to replace these
shortened forms in the abstract body. For example, if the abbreviation defines Autolo-
gous Bone Marrow Transplantation as the expansion of ABMT for a particular abstract,
this abbreviation would be replaced by Autologous Bone Marrow Transplantation any-
where else in the document body. If the abstract contains abbreviations and acronyms,
but without any definition, the software1 for abbreviation definition recognition pre-
sented in [21] is used. This software allows for the identification of abbreviations and
their expansions in biomedical texts with an average precision of 95%. Abbreviations
are then replaced by their expansions in the document body. Furthermore, we have
used the stopword list included in nltk2 extended with the PubMed stopwords3 to re-
move the generic terms (e.g. prepositions and pronouns), which are not useful in our
summarization process. We have also employed OpenNLP4 to detect and split the sen-
tences, and Stanford POS tagger [62] for tokening and part of speech tagging of each
sentence.

5 Proposed Approach

5.1 Measuring Semantic Similarity using WordNet and UMLS
Problem Statement Many existing approaches to automatic summarization rely on
comparing the similarity of two sentences in some ways. Most existing relatedness
measures are based on knowledge sources such as concept hierarchies or ontologies.
For general English text, research on measuring relatedness has relied on WordNet, a
freely available database that can also be viewed as a semantic network. For clinical
and biomedical vocabularies, they are compiled into UMLS, a large lexical and seman-
tic database of medical terms maintained by the U.S. National Library of Medicine.
Quantifying semantic relationships between linguistic items (terms) (e.g. synonymy,
hypernymy, homonymy and co-occurrence relations) lies at the core of many NLP ap-
plications [46]. However, hard matching between words has long been an obstacle in
identifying the relatedness of two sentences [66, 55]. The following examples illustrate
such problems in general ([45]) and biomedical domains ([47]), respectively:

• General Domain:

a1. Officers fired.

a2. Several policemen terminated in corruption probe.

1Available at http://biotext.berkeley.edu/software.html
2http://nltk.org/
3http://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/
4http://opennlp.sourceforge.net/
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b1. Officers fired.

b2. Many injured during the police shooting incident.

Surface-based approaches that are merely based on string similarity cannot cap-
ture the similarity between any of the above pairs of sentences. In addition,
a surface-based semantic similarity approach considers both a1 and b1 as be-
ing identical sentences, whereas different meanings of the verb fire are trig-
gered in the two contexts [46]. To tackle this issue in computing WordNet-
based sentence-to-query and sentence-to-sentence semantic similarities and any
semantic ambiguity therein, we have adjusted and employed a unified approach
proposed by [45]. To this end, WordNet 3.0 [15] repository has been used as our
sense inventory.

• Biomedical Domain:

1. Cerebrovascular diseases during pregnancy result from any of three major
mechanisms: arterial infarction, haemorrhage or venous thrombosis.

2. Brain vascular disorders during gestation result from any of three major
mechanisms: arterial infarction, haemorrhage or venous thrombosis.

Because the two sentences present different terms, surface-based approaches are
unable to make use of the fact that they have exactly the same meaning. We
have solved this problem by leveraging a UMLS-based approach dealing with
concepts instead of terms, and with semantic relations instead of lexical or syn-
tactical ones. This approach has previously been employed for query expansion
[35].

In our work, the main requirement for computing semantic similarities on WordNet
and UMLS is Semantic Signature. Pilehvar et al. [46] introduced semantic signature
as a multinomial distribution generated from repeated random walks on WordNet. We
utilize this concept to capture the semantic similarities on both WordNet and UMLS.
Next, we briefly explain our journey to capture semantic similarities between sentences
(note that in our work, a query is treated as a long single sentence).

Semantic Signature on WordNet To construct each semantic signature on WordNet,
an iterative method for calculating Personalized PageRank has been used. The key
assumption is that repeated random walks beginning at a sense (node) or a set of senses
(seed nodes) in WordNet network can provide a frequency or multinomial distribution
over all the senses in WordNet. A higher probability will then be assigned to senses
that are frequently visited from the seeds. Consider an adjacency matrix M for the
WordNet network, where edges connect senses according to the relations defined in
WordNet (e.g. hypernymy and meronymy). A sense is further connected to all the
other senses that appear in its disambiguated gloss.

The probability distribution for the starting location of the random walker in the
network is denoted by ~w (0). Given the set of senses S in a sentence, the probability
mass of ~w (0) is uniformly distributed across the senses si ∈ S, with the mass for all
si /∈ S set to zero. The PageRank vector is then computed using Equation 5.1.

~w (t) = (1− α)M ~w (t−1) + α~w (0) (5.1)
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where at each iteration, the random walker may jump to any node si ∈ S with probabil-
ity α/|S|. Following the standard convention, the value of α is set to 0.15. The number
of iterations is also set to 30, which is sufficient for the distribution to converge. The
resulting probability vector ~w (t) is the semantic signature of the sentence, as it has
aggregated its senses similarities over the entire graph. The UKB1 implementation of
Personalized PageRank has been used in this step.

WordNet-based Semantic Disambiguation In order to use a deeper modeling of
linguistic items at the sense level, each word in a text has first to be analyzed and dis-
ambiguated into its intended sense. However, due to the inherent information shortage
of sentences, traditional forms of word sense disambiguation (WSD) are hard to use.
Therefore, we use an alignment-based sense disambiguation algorithm that has been
presented in [46]. This algorithm leverages the content of the paired sentence in order
to disambiguate each element.

Given two sentences, the semantic alignment procedure has been performed as
follows: for each word type ti in sentence S1, assigns ti to the sense that has the
maximal similarity score to any sense of the word types in the compared sentence S2.
Let us consider the General Domain example:

Pa1. officer3n, fire
4
v

Pa2. policeman1n, terminate
4
v, corruption

6
n, probe

1
n

where Pi denotes the corresponding set of senses of sentence i. ti denotes the i-th sense
of a term t in WordNet with part of speech p. After alignment, among all possible
pairings of all the senses of firev to all the senses of all words in a2, the sense fire4v
(the employment termination sense) obtains the value (Sim(fire4v, terminate

4
v) =

1), which is the maximal similarity value.

Semantic Signature on UMLS To construct each semantic signature on UMLS, we
employ a graph-based algorithm to perform iterative random walks over the graph rep-
resentation of the UMLS Metathesaurus. This algorithm has previously been utilized
for query expansion [35]. The UMLS Metathesaurus contains a wide range of infor-
mation about the relations between terms in the form of database tables. The MRREL
table lists relations between concepts (i.e. parent, can be qualified by, and related
and possibly synonymous) among others. Concepts in UMLS are considered as nodes
(seeds), and the relations listed in the MRREL table as directed edges. No weights are
used for the relations that are extracted from the MRREL table.

We have used the MetaMap program to map each sentence to concepts from the
UMLS Metathesaurus and semantic types from the UMLS Semantic Network. A broad
range of concepts from very generic UMLS semantic types are discarded in this step
for two reasons: first, these generic concepts have already been considered in captur-
ing WordNet-based semantic similarities; second, to reduce the size of UMLS graph,
and consequently reduce the run time of iterative random walks. These semantic types
are defined as quantitative concept, qualitative concept, temporal concept, functional
concept, idea or concept, intellectual product, mental process, spatial concept, and
language [47]. Thus, only concepts of the rest of semantic types are considered for
constructing the semantic signature. Table 5.1 provides an example of mapping a sen-
tence by MetaMap.

1http://ixa2.si.ehu.es/ukb/
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Score Concept Semantic Type Considered

862 No evidence of Qualitative Concept 8
593 Increase Functional Concept 8
593 Risk Idea or Concept 8
578 Major Qualitative Concept 8
744 Hemorrhage Pathologic Function 4
578 Result Functional Concept 8
578 Accidental Falls Injury or Poisoning 4

1000 Hospitalized Patients Patient or Disabled Group 4
966 Take Health Care Activity 4

1000 Warfarin Pharmacologic Substance 4

Table 5.1: MetaMap mapping for the sentence ”There is no evidence of increased risk
for major bleeding as a result of falls in hospitalized patients taking warfarin.”

Same as WordNet-based semantic signature, the UKB implementation of Person-
alized PageRank is utilized, but on UMLS. Consider an adjacency matrix N with all
relations in MRREL, for the UMLS graph. The random walker starts in any of the con-
cepts included in the sentence, and follows at random one of the relations to another
concept. With certain probability, the random walker would restart in any of the con-
cepts, and continue its walk. Finally, the number of visits to each concept in the graph
would give an indication of how related that concept is to the sentence terms. The re-
sult is a probability distribution over UMLS concepts. The higher the probability for a
concept, the more related it is to the given sentence.

The probability distribution for the starting location of the random walker in the
network is denoted by ~u (0). Released the set of MetaMap concepts C in a sentence,
the probability mass of ~u (0) is uniformly distributed across the concepts ci ∈ C, with
the mass for all ci /∈ C set to zero. The PageRank vector is then computed using
Equation 5.2.

~u (t) = (1− β)N~u (t−1) + β~u (0) (5.2)

where at each iteration, the random walker may jump to any node ci ∈ C with prob-
ability β/|C|. Following the standard convention, the value of β is set to 0.15. The
number of iterations is also set to 30, which is sufficient for the distribution to con-
verge. The resulting probability vector ~u (t) is the semantic signature of the sentence
on UMLS, as it has aggregated its concepts similarities over the entire graph.

UMLS-based semantic Disambiguation Using the built-in WSD module, MetaMap
allows to disambiguate terms and return directly the relevant concept. For more clarity,
we run MetaMap to find the UMLS concepts for the term cold (Figure 5.1). Normally,
four concepts in MetaMap are assigned to this term. When WSD module is turned
on, only one concept will be returned by considering the terms included in the given
sentence. Then, a uniform probability distribution is assigned to the concepts found in
each sentence. The rest of the nodes are initialized to zero.

Semantic Similarities at the Sentence Level For comparing pairs of semantic signa-
tures at the sentence level, we have used Weighted Overlap (WO) approach proposed by
[46]. WO first sorts the two signatures according to their values and then harmonically
weights the overlaps between them. The weighting process is such that differences in
the highest ranks are penalized more than differences in lower ranks (note that the first-
ranked element has the highest rank). Using the knowledge source N (i.e. WordNet
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Figure 5.1: Screenshot of Mapping the term cold using MetaMap

or UMLS), WO calculates the semantic similarity (SimN ) of two sentence signatures
SN1 and SN2 as:

SimN (SN1, SN2) =

∑
h∈H (rh(SN1) + rh(SN2))

−1∑|H|
i=1 (2i)

−1
(5.3)

where H denotes the intersection of all senses/concepts with non-zero probability (di-
mension) in both signatures, and rh(SNj) denotes the rank of the dimension h in the
sorted signature SNj , where rank 1 denotes the highest rank. The denominator is also
used as a normalization factor that guarantees a maximum value of one. The mini-
mum value is zero and occurs when there is no overlap between the two signatures, i.e.
|H| = 0.

To estimate the final semantic similarity score between two sentences, we have con-
ducted a set of experiments using the WordNet-based semantic similarities (SimW ),
and/or UMLS-based semantic similarities (SimU ), and obtained the best result while
using both scores with different weights according to Equation 5.4.

Simfinal(S1, S2) = µ× SimU (SU1, SU2) + (1− µ)×

SimW (SW1, SW2) (5.4)

where SimU (SU1, SU2) denotes the semantic similarity score between two sentence
signatures on UMLS. The semantic similarity score between two sentence signatures
on WordNet is also shown by SimW (SW1, SW2). Finally, the scaling factor µ was
optimized on development data in our experiments and set to 0.6 to reach the best
result (Section 6.2).

Next, using the achieved semantic similarity score for each pair of sentences, sen-
tences which are less or not relevant to the clinical query will be pruned, and remained
sentences will be clustered according to their relevance to each other.
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5.2 Constructing Similarity Graph
In the field of generic query-sensitive summarization, qualified summary sentences
should mainly meet the following typical demands: query-biased relevance [56], and
biased information novelty and richness [64]. In this paper, we consider these criteria
to develop an efficient framework for Query-focused EBM summarization. For being
Query-biased relevant, summary sentences must overlap with the query in terms of
topical content. Query-biased information novelty denotes that summary sentences
need to be unique, as well as responding to the demands of the query. Finally, to
acquire query-biased information richness, summary sentences should include as much
important information as possible with respect to both the set of sentences and the
query.

Query-biased Relevance To satisfy the query-biased relevance criterion, sentences
are modeled as Similarity Graph - a weighted undirected graph on which each node
represents a sentence and the edge weight carries the similarity of two sentences [55].
For more clarity, let S = {s1, s2, ..., sn}, be a set of sentences, and (Sij)i,j=1,...,N be
the similarity matrix in which each element indicates the similarity Sij ≥ 0 between
two sentences Si and Sj (pairwise similarity scores are already achieved in Section
5.1). Hence, the input query and the abstract sentences are considered as nodes on the
graph, where we consider two kinds of edge for each node: (1) sentence-to-query sim-
ilarity edge; (2) sentence-to-sentence similarity edge. The achieved similarity weight
for each sentence-to-query and sentence-to-sentence relation is assigned to its corre-
sponding edge in our similarity graph. This graph is partially depicted in Figure 5.2.
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Figure 5.2: A partial view of the Similarity Graph

A sentence with a high sentence-to-query similarity score (direct query-biased sen-
tence) is likely to include an answer to the query. Moreover, a sentence which may not
be similar to the query, but still has a tight relation to a direct query-biased sentence, is
also likely to include an answer. So, considering the combination of sentence-to-query
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and sentence-to-sentence similarities, our model decides which sentences are relevant
to the query, and should be kept for the further clustering step. To this end, we have
employed a combination model [10]:

C(Si|Q) = γ × Simfinal(Si, Q)∑
Sj∈A Simfinal(Sj , Q)

+ (1− γ)×

∑
Sk∈A

Simfinal(Si, Sk)∑
Sj∈A Simfinal(Sj , Sk)

× C(Sk|Q) (5.5)

where C(Si|Q) denotes the score of a sentence Si given a query Q. A contains all
sentences in the abstract set. The weighting parameter 0 ≤ γ ≤ 1 is used to specify
the relative contribution of two similarities: the similarity of a sentence to the query
and similarity to the other sentences in the abstract set. Previous experiments [10]
lead us to choose 0.4 as the best value of γ. The denominators in both terms are for
normalization. Simfinal(Si, Sk) is the weight of the edge between two sentence nodes
Si, Sk. Likewise, Simfinal(Si, Q) is the weight of the edge connecting the sentence
node Si to the query node Q. Finally, sentences with C ≥ δ (with the best empirical
value of 0.5 for δ) are picked among the set of sentences. This step resulted in a
subgraph comprising a set of the most query-relevant sentences to be clustered in the
next step.

5.3 Clustering Relevant Sentences
The clustering problem from a graph perspective, is formulated as partitioning the
graph into clusters such that the edges in the same cluster have high weights and the
edges between different clusters have low weights. In this paper, we target hard clus-
tering, where we partition nodes of the graph into non-overlapping clusters, i.e. let us
partition S to a set of clusters C = {c1, c2, ..., cn} such that:

(1) ci 6= φ for i ∈ {1, ..., n}
(2) ci ∩ cj = φ for i, j ∈ {1, ..., n} and i 6= j
(3) c1 ∪ ... ∪ cn = S

The graph-based clustering algorithm we have used in this step, is the Chinese
Whispers (CW) algorithm proposed by [4]. CW is a very basic - yet effective - parameter-
free algorithm to partition the nodes of graphs in a bottom-up fashion. This algorithm
is also a special case of Markov-Chain-Clustering [63], but time-linear in the number
of edges. So, the power of CW lies in its capability of handling very large graphs in
reasonable time. Algorithm 1 shows the adopted CW used in our work:

First, a distinct class is assigned to each node , and a clustering C containing the
singleton clusters ci is created (lines 1-4 of the algorithm). Then, a series of iterations
is performed to merge the clusters (lines 5-11). Specifically, at each iteration the algo-
rithm analyses each node s in random order and assigns it to the majority class among
those associated with its neighbors. In other words, it assigns each node s to the class
c that maximizes the sum of the weights of the edges si, sj incident on sj such that c
is the class of si, according to Equation 5.6.

class(sj) = argmax
c

∑
{si,sj}∈E(G)
s.t.class(si)=c

Sim(si, sj) (5.6)
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Algorithm 1 The Chinese Whispers (CW) Algorithm
Input: a graphG = (S,E) to be clustered
Output: a clustering C of nodes in S
1: For each si ∈ S
2: class(si) = i
3: Ci = {si}
4: C = {ci : i = 1, ..., |S|}
5: repeat
6: C′ = C
7: For each si ∈ S, randomized order
8: class(sj) = argmax

c

∑
{si,sj}∈E(G)

s.t.class(si)=c

Sim(si, sj)

9: For each i do Ci = {si ∈ S : class(si) = i}
10: C = {Ci : Ci 6= φ}
11: until C 6= C′

12: return C

As soon as an iteration produces no change in the clustering (line 11), the algorithm
stops and outputs the final clustering (line 12). The result of CW is a hard partitioning
of the given graph into a number of clusters. Although it is possible to obtain a soft
partitioning in CW, we prefer hard partitioning to keep the redundancy low.

Clustering Potential of the EBM Corpus As mentioned in [39], each query in the
corpus is accompanied with multiple candidate replies. Since each candidate reply is
referred to a set of abstracts, their released corpus could be utilized for the task of
clustering. This ability is appreciated by an example shown in Table 5.2. However,
we desire to consider a set of abstracts as a bag of sentences, pick the query-related
sentences, and finally collect the relevant ones into a set of clusters. So, each cluster
in our work is likely to include a set of sentences from different clusters defined in the
corpus. Hence, we haven’t used the clustering potential of corpus in this paper. Next,
we build a word graph for each cluster, and generate one sentence as an abstractive
summary of each cluster.

Question: What is the evaluation and treatment strategy for Raynaud’s phe-
nomenon?

Abstract IDs: 12814733, 12814733, 12324557, 11392916, 15865744,
10796398, 11508437

Resulting Clusters:
Cluster1 Ý 12814733, 12814733, 12324557
Cluster2 Ý 11392916
Cluster3 Ý 15865744, 10796398, 11508437

Table 5.2: An example of Clustering Potential of the Utilized Corpus

5.4 Abstractive Summarization of EBM
Biased Information Novelty In this section, we have built a word graph by itera-
tively adding sentences to it for each obtained cluster. This graph is an ordered pair
G = (V,E) comprising of a set of vervices or words, together with a set of directed
edges, which shows the adjacency between corresponding nodes. The graph is first
constructed by the first sentence and displays words in a sentence as a sequence of
connected nodes. The first node is the start node and the last one is the end node.
Words are added to the graph in three steps of the following order: (1) non-stopwords
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for which no candidate exists in the graph; or for which an unambiguous mapping is
possible; (2) non-stopwords for which there are either several possible candidates in
the graph; or for which they occur more than once in the sentence; (3) stopwords. As
mentioned in Section 4, for the last group, we used the stopword list included in nltk
extended with the PubMed stopwords.

Where mapping in the graph is ambiguous (i.e. there are two or more nodes in
the graph that refer to the same word/POS pair), we follow the instructions stated by
[16]: the immediate context (the preceding and following words in the sentence, and
the neighbouring nodes in the graph) or the frequency (i.e. the node which has words
mapped to it) is used to select the candidate node. A new node is created only if there
are no suitable candidates to be mapped to, in the graph. Conducting this step not only
removes the redundancy, but also makes use of redundant parts to indicate the salient
path (Figure 5.3). Edge weights are calculated using the weighting function defined in
[16] (Equation 5.7).

treatment
{1:2, 2:6}

node label

SID:PID pairs

Input:
SID:1. A treatment strategy for patients who suffer from chronic daily 
headaches is medication withdrawal.
SID:2. Medication withdrawal therapy is a treatment strategy for chronic daily 
headaches.
SID:3. Medication withdrawal is suggested to patients who overuse 
symptomatic headache medications. 
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Figure 5.3: An example of the Constructed Word Graph. Thick edges indicate salient
paths.

W (ei,j) =
(freq(i) + freq(j))/

∑
s∈S diff(s, i, j)

−1

freq(i)× freq(j) (5.7)

where freq(i) is the number of words mapped to the node i. The function diff (s, i, j)
refers to the distance between the offset positions of words i and j in sentence s.

Utilizing Synonymy To reduce the redundancy caused by existing synonym words
in the sentences, we use the synsets in WordNet to identify synonym representative
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candidate. For example, consider n different sentences containing words biliary, bil-
ious, tumor, tumour, and neoplasm. The first two words, and the latter three ones are
synonyms of each other. Assume each sentence contains one of these possible com-
binations (i.e. biliary tumor, biliary neoplasm, biliary tumour, bilious tumor, bilious
neoplasm, bilious tumour). Without an appropriate synonym mapping based on a no-
tion of synonymy, these several synonym nodes will be added to the word graph as
separate nodes. We consider their frequency to pick one of them as the representative
of its synonyms from the other sentences. The weight of the obtained node is computed
by summing the frequency scores from the other nodes as shown in Figure 5.4. The
main purpose of this modification is three fold: (i) the ambiguity of mapping nodes is
reduced; (ii) the number of total possible paths (compression candidates) is decreased;
and (iii) the weight of frequent similar words with different appearances in the content
is better reflected by the notion of synonymy.

Biliary, freq=i

Bilious, freq=j

Tumor, freq=k

Tumour, freq=m

Neoplasm, freq=n

Biliary, freq=i+j

Tumor, freq=k+m+n

Word Graph

Content

Figure 5.4: An example of Biomedical Synonym Mapping

The heuristic algorithm discussed in [6] is then used to find the k-shortest paths
(k = 50 throughout our experiments) from start to end node in the graph. So, most
of the potentially good candidates are kept and a decline in performance is prevented.
Paths shorter than eight words or do not contain a verb are filtered before re-ranking.
The remaining paths are re-ranked and the path that has the lightest average edge weight
is eventually considered as the best compression.

Biased Information Richness To re-rank the compression candidates based on the
information richness, important key-phrases have been exploited using the TextRank
algorithm [36]. Hence, a word recommends other co-occurring words, and the strength
of the recommendation is recursively computed based on the importance of the words
making the recommendation. The score of a key-phrase k is computed by summing
the salience of the words it contains, normalized with its length (+1) to favor longer
n-grams. The paths are then re-ranked based on their key-phrases and the score of a
compression candidate c is given by Equation 5.8.

ScoreKey(c) =

∑
i,j∈path(c)W (ei,j)

length(c)×
∑

k∈c (
∑

w∈k TextRank(W )

length(k)+1
)

(5.8)

Ensuring the Syntactic Structure Since our abstractive word graph generates new
summary sentences, we need to ensure the grammatical structure of these newly con-
structed sentences. So, we build a part-of-speech based language model (POS-LM) to
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re-rank the paths in our word graph [54]. The POS-LM assigns a score to each gen-
erated summary in terms of grammatical structure, and helps in identifying the most
grammatical sentence among the k-best sentences. It estimates the probability of string
of m POS tags by Equation 5.9 [40].

p(tm1 ) ∝
m∏
i−1

p(ti|ti−1
i−n+1) (5.9)

where, n is the order of the language model, and tji refers to the sub-sequence of tags
from position i to j.

To build a POS-LM, we have employed the SRILM toolkit [59], which collects
n-gram statistics from all n-grams occurring in the corpus, to build a single global
language model. To train the POS-LM, we use Stanford POS tagger to annotate a large
part (∼100 M-words) of the BioMed Central full-text corpus for text mining research2

that contains a large number (∼ 290914) of biomedical articles. Then, we remove
all words from the pairs of words/POS in the POS annotated corpus. The candidate
sentences also need to be annotated with POS tags. So, the score of each summary
is estimated by the language model, based on its sequence of POS tags. Since factors
like POS tags, are less sparse than surface forms, it is possible to create higher order
language models for these factors. This may encourage more syntactically correct
output [30]. Thus, for our framework, we use 7-gram language modeling based on
part of speech tagging to re-rank the k-best sentences generated by the word graph. To
re-rank the obtained paths, POS-LM gives the perplexity score (ScoreLM ), which is
the geometric average of 1/probability of each sentence, normalized by the number
of words. So, ScoreLM for each sequence of POS in the k-best sentences is computed
by Equation 5.10.

ScoreLM (c) = 10
log prob(c)

|word| (5.10)

where prob(c) is the probability of summary C including |word| number of words,
computed by the 7-gram POS-LM.

A unity-based normalization is then used to bring the values of ScoreKey(c) in
Equation 5.8, and the score of POS-LM into the range [0, 1]. The score of each sum-
mary is finally given by Equation 5.11.

Scorefinal(c) = η × ScoreKey(c) + (1− η)× ScoreLM (c) (5.11)

The scaling factor η was optimized on development data in our experiments and set
to 0.4 (Section 6.2). Syntactic analysis of the generated sentences is also explored in
Section 6.2. Hence, the most grammatical candidate among the candidates contain the
most important phrases, has been selected as the summary for each cluster.

All automatic summaries were generated by selecting sentences until the summary
is 30% of the original document size [47]. This choice of the summary size is based
on the well-accepted heuristic that a summary should be between 15% and 35% of
the size of the source text. Considering this convention, we pick a number of three
summary sentences (based on their sentence-to-query similarity scores) to answer the
corresponding clinical query.

2http://old.biomedcentral.com/about/datamining
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6 Evaluation

6.1 Evaluation Metrics
The evaluation of automatically generated summaries is a critical issue due to the sub-
jectivity in deciding of what the evaluation criteria should be [48]. The evaluation pro-
cess may be performed manually, and require human judges to decide whether or not a
summary is of good quality. So, manual evaluation is very costly and time-consuming.
Besides, to objectively judge a summary has been proven difficult, as humans often dis-
agree on what exactly makes a summary of good quality [29]. Given that, for our sum-
marization framework, the generated summaries are assessed automatically through
version 2.0 1 of ROUGE [31] over the released EBM corpus by [39].

ROUGE is a commonly used evaluation method to measure the summary quality
by counting the overlapping units between system-generated summaries and human-
written reference/gold summaries. ROUGE measures the concordance of candidate and
reference summaries by determining n-gram, word sequence, and word pair matches.
The ROUGE metrics produce a value in [0,1], where higher values are preferred, as
they indicate a greater content overlap between the generated summary and reference
summaries. We have used ROUGE F-measure for unigram, bigrams, and SU4 (skip-
bigram with maximum gap length 4) to evaluate the generated summaries. The bottom-
line answers in the EBM corpus have also been used as the reference summaries.

An important drawback of ROUGE metrics is that they use lexical matching instead
of semantic matching. Therefore, generated summaries that are worded differently but
carry the same semantic information may be assigned different ROUGE scores [47]. In
contrast, the main advantages of ROUGE are its simplicity and its high correlation with
the human judges, based on the results reported in the previous DUC conferences [31].

6.2 Experiments
To investigate the effectiveness of our abstractive summarization framework for EBM,
we compare our framework with FastSum [53], and a research prototype LexRank [14].
FastSum is a fast query-focused multi-document summarization system based only on
word frequency features of topics, documents, and clusters. Each sentence is ranked
based on a linear function of scores using a variety of frequency measures. A regression
SVM is also used to learn weights of the features. LexRank is a topic-oriented generic
summarizer that focuses on multi-document extractive text summarization, and extracts
the information in the text that is related to the user specified topic. This prototype has
outperformed both centroid-based methods and other systems participating in DUC in
most of the cases [14]. Comparison with LexRank will allow us to evaluate whether
semantic information provides benefits over merely lexical information in graph-based
summarization approaches.

In addition, we pick the first and last third sentences of each set of abstracts related
to a clinical query, so called (first part, and last part). We also consider all sentences
included in the abstracts related to a clinical query as whole part. Afterwards, included
sentences in each of these three parts are considered as the input bag of sentences for
the following baselines:

• Head Baseline: This baseline is used in a variety of summarization applications,
specifically in the news summarization area. In our work, this baseline generates

1http://kavita-ganesan.com/content/rouge-2.0
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summaries by unintentionally selecting three sentences from the first part.

• Random Baseline: Randomly selects three sentences from the whole part.

• Tail Baseline: The last sentences in the medical abstracts usually provide conclu-
sions. Hence, this has been used as a baseline for summarization of biomedical
texts [12]. In our work, this baseline generates summaries by selecting three
sentences at random from the last part.

Furthermore, the effectiveness of the abstractive summarizer of our framework,
along with the re-ranking algorithms, is also studied using the following experiments.
We keep consistency for our framework algorithm except to omit the graph-based clus-
tering and the word graph, and converting our abstractive framework to the ranking-
based extractive approach (Proposed-Ext). For more clarity, we have conducted only
two first components of our framework, which are capturing semantic WordNet and
UMLS-based sentence-to-query and sentence-to-sentence similarities, and also sen-
tence filtering step to achieve the most query-relevant sentences. The average perfor-
mance of the baseline systems and the proposed framework in terms of ROUGE scores
are shown in Figure 6.1, and the data is provided in Table 6.1.
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ROUGE-1 ROUGE-2 ROUGE-SU4

Figure 6.1: Average scores by ROUGE metrics over the EBM corpus

System ROUGE-1 ROUGE-2 ROUGE-SU4

Head Baseline 0.2710 0.1723 0.1593
Random Baseline 0.2623 0.1801 0.1509
Tail Baseline 0.2866 0.1834 0.1607
FastSum 0.3382 0.2081 0.188
LexRank 0.3407 0.2069 0.1938
Proposed-Ext 0.3142 0.1911 0.1806
Proposed-Abs 0.3985 0.2450 0.2259

Table 6.1: Average scores by ROUGE metrics over the EBM corpus

The statistics point out the effectiveness of our abstractive framework over the
compared systems on all evaluation metrics. Hence, the overall results support our
hypothesis that query-based abstractive summarization using the underlying textual se-
mantic similarities based on both WordNet and UMLS knowledge sources results in
significantly better performance. Besides, the results achieved by Proposed-Ext on the
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EBM corpus still show some improvements over some of the baseline systems. The
main reason may be capturing both WordNet and UMLS-based semantic similarities,
which help to select the most query-relevant sentences among the set of biomedical
abstracts. Finally, considering the results obtained by Tail Baseline, it has been real-
ized that the last part of each abstract is more likely to be included in the summary.
Table 6.2 shows an example of a summary generated by human (gold), our abstractive
framework (Proposed-Abs), and the extractive LexRank.

Question: Are major bleeding events from falls more likely in patients on warfarin?

Gold Summary: There is no evidence of increased risk for major bleeding as a result of falls in
hospitalized patients taking warfarin. [PubMed IDs: 7668955, 15638939]

Proposed-Abs Summary One study found no difference in major bleeding complications between
patients taking anticoagulation therapy with not taking. Criteria for taking warfarin were not reported.
Prescribing warfarin for patients judged less likely to fall.

LexRank Summary No major hemorrhagic complications were seen following 131 falls in the anti-
coagulation group (93 patients) and 269 falls in the group not on anticoagulation (175 patients). The
study was limited because most falls were from a seated position or partially controlled by an attendant.
Major hemorrhage was defined as bruising or cuts requiring immediate attention from a physician.

Table 6.2: An example of different summaries: Gold summary; Proposed-Abs sum-
mary; and LexRank summary.

Standard Deviation of ROUGE Scores Since Table 6.1 shows the average results,
an important research question that immediately arises is how much the ROUGE scores
differ across the abstracts. Hence, the standard deviation of different ROUGE scores for
the summaries generated by Proposed-Abs are shown in Table 6.3.

Metric ROUGE-1 ROUGE-2 ROUGE-SU4

Standard Deviation 0.02104 0.03250 0.03079

Table 6.3: Standard deviation of ROUGE scores for the summaries generated by
Proposed-Abs

Exploring Scaling Factors In our work, two free parameters are defined: Scaling
Factor 1 (µ in Equation 5.4 - measuring semantic similarities using WordNet and
UMLS), and Scaling Factor 2 (η in Equation 5.11 - The final re-ranking score of each
generated summary sentence). We randomly selected 30% of the EBM corpus as a
development set to tune these parameters. Figure 6.2 shows the results obtained by
ROUGE-1 F-Measure, using different values for µ and η. The best results are obtained
using µ = 0.6, and η = 0.4. Performance deteriorates when the UMLS portion in
measuring semantic similarities is less or more than 0.6. On the other hand, when con-
tribution of TextRank score for each generated summary sentence is whatever except
0.4, the performance gradually decreases. The lowest performance is obtained when
TextRank score is ignored in re-ranking the generated summary sentences, and also
when UMLS semantic signature occupies 0.9 of whole 1.0 value of final semantic sim-
ilarity measure. This demonstrates the importance of using both WordNet and UMLS
to capture the semantic similarities.
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Figure 6.2: Accuracy results when exploring different values for Scaling Factor 1 (µ
in Equation 5.4), and Scaling Factor 2 (η in Equation 5.11) on the development set.

Syntactic Analysis of the Generated Sentences Finally, we have analyzed a ran-
dom selected part of the generated summaries in terms of syntactic structure, using
version 5.3.7 of Link Grammar Parser2 (Figure 6.3). This parser is a syntactic analyzer
of English language developed at the Carnegie Mellon University [61, 58]. Having
received a sentence, the system attributes it with a syntactic structure which consists of
a set of marked links connecting the pairs of words. It includes approximately 60000
dictionary forms, and can skip a part of a sentence it cannot understand and define
some structure for the rest of the sentence. It is capable of processing an unknown
lexicon and doing reasonable assumptions about the syntactic category of unknown
words based on the context and writing. The parser contains data about various names,
numerical expressions, and punctuation marks.

We have performed a random selection of generated summary sentences among
the set of high ranked ones by the POS-LM, to syntactically analyze them using the
Link Grammar, and consequently show the effectiveness of our grammar-enhanced re-
ranking step. The parser gives a constituent representation of the sentence, labeling
noun phrases, verb phrases, clauses, etc.. The constituent representation is derived
from the linkage. The parser does not consider a sentence to be ”grammatical”, just
because it finds a valid linkage for that sentence. The linkage must satisfy a post-
processing phase. The parser indicates the post-processing status with messages like
”Found 2 linkages (1 with no P.P. violations)”. If all of the linkages at one stage have
post processing violations, the parser continues looking for a satisfactory linkage in the
next phase.

If there is more than one satisfactory linkage, the parser orders them according to
certain simple heuristics. The cost vector determines the ordering used. This vector has
three components. The first component (most significant in the ordering) is the total
cost of all the usages of words in the linkage. The dictionary assigns different costs to
the usages of a word; while most usages have cost nothing, some have non-zero cost.
The second component has to do with the relative size of components combined by
conjunctions. The third component is the total length of all links in the linkage. Figure
6.3 demonstrates this process for a sample generated sentence ”A treatment strategy
for chronic daily headaches is medication withdrawal.”. The Link Grammar finds two
complete linkages with no p.p violations, which indicates that this newly generated
summary sentence is grammatically correct. This analysis shows about 85% precision
over the syntactic structure of summary sentences. In details, as shown in Figure 6.4,
among 600 random-selected summary sentences, 512 sentences have been shown to

2http://www.abisource.com/projects/link-grammar/
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Figure 6.3: An example of using Link Grammar Parser for the syntactic analysis of a
sample generated sentence ”A treatment strategy for chronic daily headaches is medi-
cation withdrawal.”

Linkage without P.P violations

Linkage with P.P violations

No Linkage

0% 20% 40% 60% 80% 100%

Figure 6.4: Syntactic analysis of a number of 600 generated summary sentences using
Link Grammar Parser

have at least one complete linkage with no P.P violations, 64 sentences (11%) have
a number of linkages but with some P.P violations, and finally, Link Grammar parser
cannot find any linkage for 24 sentences (4%).

7 Conclusions
We have presented an effective approach for summarizing biomedical texts. Given a
clinical query, our approach generates a well-organized, informative summary from a
set of related biomedical abstracts through: (1) repetitive random walks on WordNet
and UMLS to capture semantic similarities between sentences and the input query;
(2) filtering out less query-relevant sentences; (3) clustering the remaining relevant
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sentences using a graph-based clustering algorithm; (4) abstractive summarization of
the clusters through a word graph-based approach, which considers the important key-
phrases, along with the syntactic structure of the generated summaries. Based on an
automatic evaluation (via ROUGE metrics) using an evidence-based medicine corpus,
our framework outperforms the two competitive systems. Three different baselines
for sentence selection have also been used, each aiming to construct a different type of
summary according to the type of information in various parts of the source. It has been
found that, the last part of each abstract is more likely to be included in the summary.

Our approach has significantly satisfied query-biased relevance, biased information
novelty, and biased information richness. We have tackled the main issue faced by
state-of-the-art biomedical summarizers (i.e. decline in summarization efficiency due
to the poor UMLS coverage of general concepts in the documents to be summarized)
[47]. This issue is addressed by using WordNet to represent the layman knowledge,
and UMLS to represent the professional knowledge. We believe that this approach can
bridge the knowledge and language gaps in biomedical summarizers.

A medium sized corpus (which is the only available corpus for evidence-based
biomedical summarization) was used in our experiments. Hence, for some features,
there was not enough data available for the generation of statistics. For example, the
corpus only contains a few samples for some of the question types, e.g., History and
Device. Having a larger corpus would make the statistics associated with sparse data
more reliable. Therefore, our ongoing work includes constructing a larger corpus for
evidence-based biomedical summarization.
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