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Abstract

The integration of business processes across organizations is typically beneficial
for all involved parties. However, the lack of trust is often a roadblock. Blockchain
is an emerging technology for decentralized and transactional data sharing across
a network of untrusted participants. It can be used to find agreement about the
shared state of collaborating parties without trusting a central authority or any
particular participant. Some blockchain networks also provide a computational
infrastructure to run autonomous programs called smart contracts. In this
paper, we address the fundamental problem of trust in collaborative process
execution using blockchain. We develop a technique to integrate blockchain into
the choreography of processes in such a way that no central authority is needed,
but trust maintained. Our solution comprises the combination of an intricate
set of components, which allow monitoring or coordination of business processes.
We implemented our solution and demonstrate its feasibility by applying it to
three use case processes. Our evaluation includes the creation of more than 500
smart contracts and the execution over 8,000 blockchain transactions.



1 Introduction

The integration of business processes, e.g., along the supply chain, has been
found to contribute both to better operational and business performance [4, 10].
A lack of trust, however, may hamper the innovativeness of further developing
the collaborative process and its performance altogether [13]. Once service-level
agreements are in place, it becomes a highly delicate question which partner
should serve as a hub for controlling the collaborative process of several parties,
or where a mediator process is hosted. While control asymmetries can be avoided
by a decentralized choreography instead of central orchestration, it does not solve
the general problem of trust in controlling the collaborative business process.

The described lack-of-trust problem can be addressed with novel blockchain
technology. Instead of agreeing on one trusted party, participants share transac-
tional data across a large network of untrusted nodes (i.e., machines). This is
achieved using a timestamped list of blocks which record, share, and aggregate
data about transactions that have ever occurred within the blockchain network.
Cryptographic proofs make this data storage immutable. As long as a majority
share of the blockchain is not compromised, transactions can only be inserted;
updating or deleting existing transactions is prohibitively expensive, making
the blockchain tamper-proof. Blockchain also provides a global computational
infrastructure, which can run programs: so-called smart contracts [12] execute
across the blockchain network and automatically enforce the conditions defined
in the transactions to enable, for example, conditional payment.

In this paper, we adopt blockchain technology to address the lack-of-trust
problem in collaborative business processes. More specifically, we develop an
approach to map a business process onto a peer-to-peer execution infrastructure
that stores transactions in a blockchain, offering the following benefits. First,
we provide a monitoring facility that integrates an automatic and immutable
transaction history. Second, smart contracts can be used as a direct implement-
ation of the mediator process control logic. Third, we obtain an audit trail
for the complete collaborative business processes, for which payments, escrow,
and conflict resolution can be enforced automatically. Our contribution is the
first approach and implementation that leverages blockchain for collaborative
process execution and monitoring. We evaluate our approach for feasibility by
prototyping three use case processes on top of it. To this end, we ran of more
than 500 process instances by creating as many smart contracts, and executed
over 8,000 blockchain transactions that interact with the smart contracts.

The paper proceeds with a discussion of the research problem, related work,
and blockchain technology in Section 2. Section 3 presents the details of our
approach. Section 4 evaluates our approach using several real-world business
scenarios, and Section 5 concludes. This technical report serves as long version
of a conference paper [23]. Finally, a screencast video is available.1

2 Background

This section discusses the research problem we address, related work, and the
background of blockchain technology as a solution.

1https://youtu.be/1SNn9c5HHQs
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Figure 2.1: Supply Chain Scenario from [3] (simplified)

2.1 Challenges of Collaborative Business Process Execu-
tion

We illustrate challenges of executing collaborative business processes by the
help of a supply chain scenario reported in [3] that we simplify in Fig. 2.1. The
process starts with the Bulk Buyer placing an order with the Manufacturer. The
latter calculates the demand and places an order for materials via a Middleman.
This Middleman forwards the order to a Supplier and arranges transportation by
a Special Carrier. Once the materials are produced, the Carrier picks them up
at the Supplier site and delivers them to the Manufacturer. The Manufacturer
produces the goods and delivers to the Bulk Buyer. The process is a choreography
since there is no party that sees all messages. If all messages were sent and
received by the Manufacturer, it would be an orchestration with the Manufacturer
serving as a mediator [7].

Conflict example. This simple scenario already involves five participants who
would likely blame each other in case of delays and errors. Consider the case
that the Manufacturer receives the materials three days later than agreed, with
eight pallets being delivered instead of ten. The Supplier might argue that this
is exactly in line with what was ordered by the Middleman while the Middleman
would claim the fault to be on the side of the Supplier. The situation is delicate
for the Carrier since the Manufacturer refuses to accept the delivery. The Carrier
is now eligible for a compensation by the Supplier or the Middleman depending
on who is responsible for the fault.

2.2 Prior Research on Collaborative Business Processes

Prior research on collaborative business processes has intensively investigated
different notions of compatibility between the local processes of different partners
and between local processes and a global process. Such compatibility can be
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achieved by design, for instance using a P2P approach [20], transformations from
a global choreography [7, 22], or interaction modeling [2].

Business processes involve different trust issues (see e.g. [21] for a summary)
which can be addressed in different ways. For example, [1] relaxed the assumption
that the broker hosting the process engine has to be trusted: using selective
encryption, data access for both the broker and the service partners can be
restricted. [8] designed a trust service for cross-company collaboration based
on a hybrid architecture mixing a trusted centralized control with untrusted
peer-to-peer components. [6] put forward an agent-based architecture that can
remove the scalability bottleneck of a centralized orchestration engine, and
provides more efficiencies by executing portions of processes close to the data
they operate on. In virtual organizations, [15] proposed to select partners on
the basis of disclosure policies and credentials (i.e. identity attributes issued by
a “Credential Authority”).

Various important concepts such as conformance [19], reliability [16] and
quality of services [24] have been investigated for centrally controlled business
process execution. However, these works do not solve the trust issue: a col-
laborating party might have corrupted their historic files to their advantage.
Technologies such as shared data stores provide solutions via consensus protocols
to synchronize replicas [5] in a fully trusted environment. In this paper, we build
our approach on blockchain technology for reasons explained next.

2.3 Blockchain Technology

Blockchain is the technology that supports Bitcoin [9]. The Bitcoin blockchain is
a public ledger, which stores all transactions of the Bitcoin network. This concept
has been generalized to distributed ledger systems that verify and store any
transactions without coins or tokens [17]. A key feature of a blockchain-based
system is that it does not rely on any central trusted authority, like traditional
banking or payment systems. Instead, trust is achieved as an emergent property
from the interactions between nodes within the network.

The blockchain data structure is an ordered list of blocks. Blocks are con-
tainers aggregating transactions. Every block is identifiable and linked to the
previous block in the chain. Transactions are identifiable data packages that store
parameters (such as monetary value in case of Bitcoin) and results of function
calls in smart contracts. The integrity is ensured by cryptographic techniques.
Once created, a transaction is signed with the signature of the transaction’s
initiator, which indicates e.g. the authorization to spend the money, create a
smart contract, or pass the data parameters associated with the transactions.

If the signed transaction is properly formed, valid and complete, it is sent
to a few other nodes on the blockchain network, which will further validate
it and send it to their peers until it reaches every node in the network. This
flooding approach guarantees that a valid transaction will reach all the connected
nodes in the network within a few seconds. The senders do not need to trust
the nodes they use to broadcast the transactions, as long as they use more than
one to ensure that it propagates. The recipient nodes do not need to trust the
sender either because the transaction is signed. When a transaction reaches a
mining node, it is verified and included in a block. Blockchain networks rely on
miners to aggregate transactions into blocks and append them to the blockchain.
Once the transaction is confirmed by a sufficient number of blocks, it becomes a
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permanent part of the ledger and is accepted as valid by all nodes.
A smart contract is a user-defined program executed on the blockchain

network [12]. It can be used to reach agreement and solve common problems.
Smart contracts can be enforced as part of transactions, and are executed
across the blockchain network by all connected nodes. The blockchain platform
Ethereum views smart contract as a first-class element, and offers a built-in
Turing-complete scripting language for writing smart contracts, called Solidity.
Its execution environment, the Ethereum Virtual Machine (EVM), comprises all
full nodes on the network and executes bytecode compiled from Solidity scripts.
Trust in the correct execution of smart contracts extends directly from regular
transactions, since (i) they are deployed as data in a transaction, and hence
immutable; (ii) all their inputs are through transactions; and (iii) their execution
is deterministic. Deployed contracts should be tested. Whether the bytecode can
be trusted is a separate matter, which we discuss for our approach in Section 4.5.

3 Blockchain-based Collaborative Process Exe-
cution

In the following, we propose a blockchain-based system to address the lack-
of-trust problem in collaborative business processes. A number of technical
challenges arise during the adoption of blockchain for this purpose. For example,
since transactions, computation, and data storage in blockchain platforms are
not cost-free, not all aspects of collaborative processes should be dealt with
inside smart contracts. However, smart contracts cannot call external APIs
outside the blockchain environment or directly create blockchain transactions.

In the following we use the concrete languages BPMN (for process models)
and Solidity (for smart contracts). Most concepts can be ported to other
languages, but details will vary. Albeit Solidity is Turing-complete, there are a
number of practical challenges when using it to implement processes. Among
others, a contract cannot create normal transactions. Transfers of balances,
updates to shared state, or messages or notifications can be produced by a smart
contract – but as a consequence of the computation, not as first-class citizens of
a blockchain, like transactions. Finally, since all smart contracts are distributed
to all full nodes of the network, they cannot contain any confidential information,
like private keys. This section presents our approach and how it addresses the
challenges encountered.

3.1 Overview of the Approach

An overview of our approach is shown in Fig. 3.1. We use blockchain to facilitate
the collaborative processes in either of two ways:

(i) As a choreography monitor, it stores the process execution status across
all involved participants by observing the message exchanges. In this setting,
blockchain serves as an immutable data storage to share the process execution
status and create an audit trail. Smart contracts check if interactions are
conforming to the choreography model. In addition, a choreography monitor can
be used to manage automated payment points and escrow.

(ii) As an active mediator among the participants, it coordinates the collab-
orative process execution. This includes all the above as well as using smart
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Figure 3.1: Overview of our approach

contracts to drive the process and implement data transformation or calculations.
These options are supported by the following main components:

• At design time, a translator derives from a process specification described
in, e.g., Business Process Model and Notation (BPMN), a smart contract
in a script language (such as Solidity). The generated smart contract is a
factory for mediators or choreography monitors.

• For Option (i), a Choreography monitor or C-Monitor uses smart
contracts to monitor the collaborative business processes. The C-Monitor
is split into a factory and case-specific instance C-Monitors. The factory
instantiates the case-specific monitors as needed, and contains the blueprint
for instance C-Monitors. The C-Monitor instance tracks the interactions
of a choreography instance and combines them into a consolidated view
of the current state of the execution. Optionally, it can trigger automatic
conditional payment from escrow, when certain points in the choreography
are reached.

• For Option (ii), an active mediator uses a smart contract to implement
the collaborative business processes. As with the C-Monitor, it is split
between a factory and a set of instances and offers a consolidated view of
the process state. In contrast to the C-Monitor, the mediator always plays
an active role, receiving and sending messages according to the business
logic defined in the process model. It also may transform data or execute
other computations.

• Interfaces or triggers connect the process executing on blockchain and
the external world. Because smart contracts cannot directly interact with
the world outside the blockchain, a trigger plays the role of an organization’s
agent. It holds confidential information and runs on a full blockchain node,
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Figure 3.2: Overview of translator and generator

keeping track of the execution context and status of running business
processes. The trigger calls external APIs if needed, receives API calls
from external components, and updates the process state in the blockchain
based on external observations. It further keeps track of data payload in
API calls and keeps the data in an external database when appropriate.

By the help of these components, we achieve that (i) participants can execute
collaborative processes over a network of untrusted nodes, (ii) only conforming
messages advance the state of the process, (iii) payments and escrow can be coded
into the process, and (iv) an immutable ledger keeps a log of all transactions,
successful or not. Next, we explain the above components in more detail.

3.2 Design Time: Translator

The translator is used at design time: it takes an existing business process
specification as input and generates smart contracts. These implement the
C-Monitor or mediator and can be deployed and executed on the blockchain.

In a collaborative process, this functionality must be split and distributed
between the smart contract and the triggers. The translator creates the artifacts
in such a way that the triggers and the smart contract can collaborate directly
with each other over the blockchain network.

When the translator is called, it may not be known which participants will
play which roles. Therefore, the translator outputs only a factory contract,
which in turn contains all information needed for instantiating the process. The
factory contract includes the methods for instantiation and two types of artifacts:
(i) an interface specification per role (e.g., buyer, manufacturer, and shipper) in
a collaborative process, to be distributed to the respective triggers, and (ii) a
process instance contract, which is deployed to the blockchain when the process
is instantiated. The process instance contract contains the implementation of
the business logic and takes the form of a C-Monitor or mediator, depending on
the content of the original process specification.

The overall translation algorithm has two phases (see Figure 3.2). First, the
translator parses the input process model and iterates through all its elements,
where it generates two lists per element in the process model: one list of
previous elements and one of next elements. Then, the translator translates
each element with its respective links, generating Solidity code based on the
translation rules for different types of elements as detailed below. Note that, in
the current implementation, only some combinations of consecutive gateways
can be connected to each other without tasks in between. The previous element
list is used by the translator to determine which other elements need to be
deactivated when the current element is executed; the next element list specifies
which elements need to be activated after the current element is executed.
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The selection methods for the two lists used by the translator are shown
in Algorithm 1. NextElements of an element includes all the tasks that dir-
ectly follow the element, or the outgoing edge if the target of that edge is
an AND-Join. If a next element is a Split or XOR-Join gateway, the tasks /
edges that connect to it are added into NextElements through a recursive call.
PreviousElements of an element includes the element itself. If an XOR-Split
gateway Spliti precedes the current element, the tasks that follow it are added
to PreviousElements. In the case of an AND-Join gateway, all incoming edges
are added to PreviousElements.

Algorithm 1 Calculating PreviousElements and NextElements.

1: function SelectNextElements(Element, NextElements[])
2: for all Edgej ∈ outgoingEdges[Element] do
3: if Edgej .targetElement is Task then
4: NextElements← Edgej .targetElement
5: else if Edgej .targetElement is AND-Join gateway then
6: NextElements← Edgej
7: else if Edgej .targetElement is Split or XOR-Join gateway then
8: SelectNextElements(Edgej .targetElement,NextElements[])
9: end if

10: end for
11: end function
12:

13: function SelectPreviousElements(Element, PrevElements[])
14: PrevElements← Element
15: if Element is Task then
16: for all Edgei ∈ incomingEdges[Element] do
17: if Edgei.sourceElement is XOR-Split gateway then
18: SelectNextElements(Edgei.sourceElement, PrevElements[])
19: end if
20: end for
21: else if Element is AND-Join gateway then
22: for all Edgei ∈ incomingEdges[Element] do
23: PrevElements← Edgei
24: end for
25: end if
26: end function

We extended the specification of jbpm-bpmn to support annotating payment
tasks on the existing tasks. We use the JSON format to specify which account
is supposed to transfer how much to the contract’s account, or which account
is supposed to receive how much from the contract. If the translator sees the
annotation during parsing the BPMN model, it extends the corresponding task
function with the logic of conditional payment.

The generator is based on the workflow patterns [18]. Some patterns can
be directly translated, some have to be supported off-chain, and other are
unnecessary in our case. Our focus is not on supporting all elements of BPMN,
but we start from the 5 basic control flow patterns [18], which are among the
most frequently used elements in process models [25]. We first give an overview
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BPMN
element

Scope Solidity code summary

All patterns All On execution, deactivates itself and activates the
subsequent element.

Parallel-Split All Executes on activation, activates all subsequent
elements.

Parallel-Join All Executes on activation of all incoming edges.
XOR-Split All Executes on activation, conditionally activates all

subsequent elements. If one of them is executed, it
deactivates all others.

XOR-Join All Executes on activation of one incoming edge.
Choreography
Task

All Executes when the respective message is received
(as blockchain transaction), and if the task is activ-
ated (message conforms with process). If conform-
ing, the message is forwarded (as smart contract
log entry); else, an alert is broadcasted.

Task: Pay-
ment

M,CME Execution and conformance check as above. If con-
forming, payment into or from escrow is processed.
Incoming payment is through a transaction, which
has the desired effect already. Outgoing payment
is sent to the account of the specified role.

Task: Data
Transforma-
tion

M Execution and conformance check as above.
Mediator-internal logic on data transformation, to
be handled on-chain by the mediator or off-chain
by a designated trigger.

Table 3.1: Translation rule summary. During traversal of the process model,
when the translator encounters a pattern (left column), it inserts code according
to the right column into the smart contract code. Scope concerns which variants

the pattern applies to (M: mediator; CME: C-Monitor with escrow).

of the translation rules in Table 3.1, with respect to BPMN 2.0 choreography
diagram elements and their translation to Solidity. These make use of the two
lists derived above, for activation / deactivation.

The process instance contract (see Algorithm 2) is generated from the trans-
lator. The process instance contract consists of a list of storage variables that
represent the execution state of the process instance. To optimize the cost, we
minimized the size of the data stored on chain. Two types of elements in a
business process are implemented as functions in Solidity, namely, tasks and
AND-Join gateways.

To start the process execution, the first task is activated in Function Init().
Function Taski() is invoked by the trigger to execute the corresponding task and
drive the process. Function JoinGatewayi() is invoked internally to enforce the
control flow patterns. The storage variables representing the process execution
state are manipulated and updated by every function. After the last task
is executed, the variable of TerminationActivated is set to be true, which
terminates the process.

Algorithm 3 shows how each task Taski of a business process is implemented
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Algorithm 2 solidity contract.

1: Bool Task1Activated ← false
2: ...
3: Bool TasknActivated ← false
4:

5: Bool JoinGateway1Incoming1Activated ← false
6: ...
7: Bool JoinGateway1IncomingnActivated ← false
8: Bool JoinGatewaynIncoming1Activated ← false
9: ...

10: Bool JoinGatewaynIncomingnActivated ← false
11:

12: Bool TerminationActivated ← false
13:

14: function Init()
15: Task1Activated ← true
16: end function
17:

18: function Task1()
19: ...
20: end function
21: ...
22: function Taskn()
23: ...
24: TerminationActivated ← true
25: end function
26:

27: function JoinGateway1()
28: ...
29: end function
30: ...
31: function JoinGatewayn()
32: ...
33: end function

as a function Taski() in Solidity. The function returns a Boolean value that
indicates whether the task is completed successfully. The respective “completed”
variable defines the execution state of a task; it is stored in the process instance
contract and manipulated by the corresponding Taski(). The set of these
variables defined the execution state of the process instance. Payment tasks are
always performed on-chain. Computational tasks, e.g. for data transformation,
could be performed on-chain or off-chain depending on the cost analysis.

Taski() performs conformance checking when receiving a message to execute
Taski. If conforming (Taski is activated), the message is forwarded (as smart
contract log entry); else, it returns false to indicate that the execution of Taski is
not succeeded and an alert is broadcasted. Once Taski is successfully executed,
all the elements of PreviousElements are deactivated and all the elements of
NextElements are activated.
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Algorithm 3 Every task is encoded in a function returning a Boolean value.

1: function Taski()
2: PreviousElements[]
3: NextElements[]
4: NextJoins[]

. Conformance checking
5: if TaskiActivated == false then
6: return false
7: end if

. Deactivate previous elements
8: for all Elementm ∈ PreviousElements do
9: ElementmActivated ← false

10: end for
. Activate next elements, and invoke followup checks if the element is a

AND-Join gateway
11: for all Elementn ∈ NextElements do
12: ElementnActivated ← true
13: if Elementn is an incoming edge of a AND-Join gateway then
14: NextJoins← Elementj .targetElement
15: end if
16: end for
17: for all Joink ∈ NextJoins do
18: Joink()
19: end for
20: return true
21: end function

Algorithm 4 shows that a Join gateway Joini of a business process is also
implemented as a function Joini(). Similarly as above, the function Joini() starts
from conformance checking to make sure that the Join gateway is activated to be
executed. The conformance checking is specific to the workflow patterns. For each
AND-Join, it checks the condition that all the elements of PreviousElements
are activated. After the conformance checking, the gateway is executed, and
similarly as above, all the elements of PreviousElements are deactivated and
all the elements of NextElements are activated.

After generating the smart contracts, the translator also calculates the cost
range for executing the resulting smart contract. This serves as an indication of
how much crypto-coins have to be spent in order to execute process instances
over the blockchain.

3.3 Runtime Environment: Executing Processes as Smart
Contracts

The translator generates all artifacts needed for runtime execution. We start by
describing C-Monitors, which allow passive monitoring of choreographies and
optionally escrow. Active mediators can be seen as an extension of C-Monitors,
and the additions are explained subsequently. The third important concept for
runtime, the triggers, and the interaction between triggers and smart contracts
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Algorithm 4 Every AND-Join gateway is encoded in a function.

1: function Joini()
2: PreviousElements[]
3: NextElements[]
4: NextJoins[]
5: Bool Activated← false

. Conformance checking for AND-Join
6: if AND-Join then
7: for all Elementm ∈ PreviousElements do
8: if ElementmActivated == false then
9: return

10: end if
11: end for
12: end if

. Deactivate previous elements
13: for all Elementi ∈ PreviousElements do
14: ElementiActivated ← false
15: end for

. Activate next elements, and invoke followup checks if the element is
an incoming edge of a AND-Join gateway

16: for all Elementj ∈ NextElements do
17: ElementjActivated ← true
18: if Elementj is an incoming edge of a AND-Join gateway then
19: NextJoins← Elementj .targetElement
20: end if
21: end for
22: for all Joink ∈ NextJoins do
23: Joink()
24: end for
25: end function

are covered afterwards. Finally, we describe how technical challenges like key
distribution are handled.

Choreography Monitor. The first way of facilitating collaborative processes
is to use a smart contract as C-Monitor, with optional escrow and conditional
payment at certain points of the processes. How the private processes of par-
ticipants are executed is not in scope here; however, we assume that they can
make API calls (to their respective triggers) for coordination. For a new process
instance, an instance contract is generated from the factory contract. Initial-
ization includes registering participants and their public keys to roles. The
C-Monitor instance contract contains variables for storing the role assignment
and for the process execution status. During execution, the involved participants
do not interact with each other directly. Instead, they use the monitor to ex-
change their input/output data payload and, by doing so, advance the state
of the collaborative process. Consider the choreography in Fig. 3.3, which is
another representation of the collaborative process from Fig. 2.1. All tasks are
communication tasks between roles. By exchanging the messages through the
C-Monitor, it can check conformance with the choreography and track the status.

11



Order goods

Bulk Buyer

Manufacturer

Place order for 
supplies

Manufacturer

Middleman

+

Forward order for 
supplies

Middleman

Supplier

Place order for 
transport

Middleman

Special carrier

+

Deliver supplies

Special carrier

Manufacturer

Report start of
production

Manufacturer

Bulk Buyer

Deliver goods

Manufacturer

Bulk Buyer

Send waybill

Supplier

Special carrier

Request details

Special carrier

Supplier

Provide details

Supplier

Special carrier
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While triggers and smart contracts together forward messages and update the
state of the process, the state can also be inferred from the raw blockchain data.
In this way, conformance checking is done implicitly by the C-Monitor, and all
transactions (successful or not) are logged in the blockchain. The handling of
escrow is described below.

A main design decision when using blockchain is what computation and data
should be on-chain, and what should be off-chain. While the blockchain provides
a trusted network in a trustless environment that can verify computational results
and provide agreement on transactions’ outcomes, the amount of computational
power and data storage space available on the network remains limited. Besides,
using the computational power and data storage space on public blockchains
incurs costs. Thus, if the input/output data payload is sizable, it should be
stored off-chain. In this case, the monitor stores the address of the input/output
data payload. Other than the raw data or the address, we also store the hash of
the data payload on the blockchain to allow verification of the integrity of the
data.

Mediator. The second way of facilitating collaborative processes is to use
the blockchain as an active mediator, which orchestrates the calls between the
different organizations. Similar to the C-Monitor, the mediator is implemented
as a smart contract, which is generated from the factory contract. It uses the
same components as the C-Monitor, including registration of involved parti-
cipants to roles, information specific to a process instance, and escrow. It also
implements active components, among others to transform data and receive and
send messages and payments.

While message and payment handling are straight-forward to achieve in
smart contracts, data transformation can easily reach the point where it is not
economical to implement that in a smart contract. In this case, a designated
trigger can be called from the mediator, transform the data, and send a message
with the output back to the mediator. Our default solution is to use the trigger
of the role sending the source data for such tasks, since it has access to the data
already. If data from multiple sources needs to be aggregated, the trigger of the
receiving role can be used instead.

Triggers. The Blockchain is a closed environment, where the deployed smart
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contracts cannot call external APIs. In our approach, a trigger (or blockchain
interface) connects the participants’ internal processes with the blockchain. It
monitors the process execution status, logically receives messages from smart
contracts and calls external APIs, or receives API calls and logically sends
messages to smart contracts accordingly.

Triggers are programs running on full nodes of the blockchain network.
Triggers can be distributed on multiple full nodes. In the typical setup, every
participant operates its own trigger deployed on a node it controls, and the
participant’s systems only communicate with its own trigger. We assume that
this situation is given.Alternatively, multiple participants can share one trigger
if they trust each other. (In the extreme case, a single trigger could be used;
but it introduces a central trusted entity and single point failure, reverting most
benefits of the approach we propose.) Since the trigger is required to hold private
keys for all participants on whose behalf it operates, a high degree of trust into
the individual trigger is required.

When a new process instance is created, the participants register their
roles and public keys. The public key corresponds to the account address of a
participant. All keys and role assignments are passed to all triggers associated
with the process instance, so everyone knows which role is played by whom and
can verify messages accordingly. With the private key it holds, the trigger can
encrypt or sign a message, allowing the contract and the other participants to
verify its messages. In this fashion, it can also create payment transactions.

During the process execution, the trigger is receptive to API calls from its
owner, as well as to logical messages from the process instance contract. The
interaction between internal process implementations, triggers, and the process
instance smart contract is shown in simplified form in Fig. 3.4. When a trigger’s
API is called from its owner, the trigger translates the received message into
a blockchain transaction, test-calls the smart contract locally, and if that is
successful sends the transaction to the instance contract. The local test call
allows the trigger to check if the choreography task that expects this message
is activated. If not, the local test call will return false and the trigger knows
the smart contract is not in a state where the message can be sent. In turn,
the trigger can alert its caller or delay the message and retry periodically. Note
that, even if the local test call is successful, the real transaction can still fail,
e.g., if the status has been updated between the test call and the transaction
being processed. When the trigger receives a logical message from the instance
contract, it updates its local state and calls an external API from the private
process implementation.

Finally, the trigger takes care of sizable data payloads. For incoming API
calls, it moves the data to secure storage, hashes it, and attaches a URI and the
hash to the outgoing transaction. For incoming messages from the blockchain, it
retrieves the data via its URI, checks if the hash matches, and sends it on to the
internal process implementation.

Alternative implementation of the orchestration mediator. There are
different ways to implement the orchestration mediator in terms of the distinction
between on-chain and off-chain functionality. Fig. 3.5 shows how the messages
flow among process participants, blockchain and trigger in different designs.

The notations in black color show the message sequence of the first design,
which uses smart contract to execute the whole process, including parsing and
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Figure 3.4: Sequence diagram for the first two tasks in Fig. 3.3

manipulating data payload, e.g., in XML or JSON format, directly in the smart
contract. At the time of writing, this would likely be prohibitively expensive
on public blockchains, where you have to pay for all computation done by a
smart contract — but prices are constantly changing, and not all blockchains
are public.

The notations in green color show the message sequence of the second
design, which implements process logic in smart contract, but exchange, storage,
and manipulation of data payload is handled off-chain. Due to its lower cost
(only status updates are reported on the chain, only the bare process logic is
executed), this option is likely more affordable on public blockchains. In this
case, the triggers need to execute part of the process. Thus, at design time, the
functionality of manipulating data payloads for the different activities needs to
be added to the respective triggers.

The notations in blue color show the message sequence of the third design,
which puts partial process execution off-chain so that part of the processes could
be executed on an external execution engine. This may be applicable if two
organizations trust each other, and prefer to not pay the cost of executing a part
of the process that concerns only them on the blockchain.

Org1 Org2 Trigger 1 Smart 
Contract

Off-chain partial process execution
On-chain whole process execution and data manipulation by smart contract

On-chain whole process execution and off-chain data manipulation

BCTX

Figure 3.5: Sequence under different designs
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Encryption and key distribution. All the information on the blockchain
is publicly accessible to all nodes within the network. We store two types of
information on blockchain, namely the process execution status and the data
payload (or its URI/hash). To preserve the privacy of the involved participants,
we have the option to encrypt the data payload before inserting it into the
blockchain. However, the process execution status is not encrypted because the
C-Monitors and mediators need to process this information. Encrypting the
data payload means that mediators cannot perform data transformation at all,
but can resort to the source participant’s trigger for this task.

We assume the involved participants exchange their public keys with each
other before a process instance is initiated by one of the involved participants.
Thus, the key distribution is handled off-chain. Since participants need to find
each other through off-chain mechanisms before starting a collaborative process,
this typically introduces not much overhead. Encrypting data payload for all
process participants can be achieved as follows. One participant creates a secret
key for the process instance, and distributes it during initial key exchange. When
a participant adds data payload to the blockchain, it first symmetrically encrypts
this information using the secret key. Thus, the publicly accessible information
on blockchain is encrypted, i.e., useless to anyone who has no access to the
secret key. The participants involved in the process instance have the secret key
and can decrypt the information. Encrypting data payload between two process
participants, in contrast, may be desired if two participants want to exchange
information privately through the process instance. For this case, the sender can
asymmetrically encrypt the information using the receiver’s public key; only the
receiver can decrypt it with its private key.

Escrow. The C-Monitor or mediator can also work as an escrow for conditional
payment at designated points. Similar to an escrow agent, e.g., in real estate
transactions, the smart contract receives money from one or more parties, and
only releases the money to other parties once certain criteria are met. For the
receivers this has the benefit that they can observe that the money is actually
there before doing work; and the sender does not have to pay upfront, trusting
it will eventually receive the goods or service in return.

In the running example process, the Manufacturer (Mf ) needs to pay the
Middleman (Mm), Supplier (S ) and Carrier (C ) when it receives the goods. But
S is unwilling to send the goods without some guarantees that it will get paid.
Therefore, Mf puts the money in escrow, namely an account held by the process
instance contract, when ordering the goods. Later, both C and Mf confirm
the delivery of the goods, which triggers automatic payment from the escrow
account to Mm, S, and C. The smart contract defines under what conditions the
money can be transferred and how the money should be transferred. Thus, when
a payment function is triggered, the smart contract automatically checks the
defined conditions, and transfers the money according to the defined rules. It is,
however, of high importance to specify rules that cover all possible scenarios and
the respective outcomes: e.g., what shall happen with money in escrow if Mf
and C disagree about the delivery of the goods or their condition? Implementing
the rules in a smart contract does not prevent possible conflicts, but it allows
automatic enforcement.

Gas money. The computation, data storage, and creation of smart contracts
on the blockchain costs crypto-coins. That represents the cost for using the
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blockchain network, since it is used to pay the miners that execute the smart
contracts. Each function call is thus accompanied by cost, but contract creation
is relatively much more expensive than a regular function call. For fairness, the
participants in a collaborative process may want to decide on a different split
of who pays how much, rather than the implicit split from the process. In our
approach, the split of gas money is user-definable and can be implemented in
the factory contract: it collects the money from all the involved participants and
spends it on the creation of the instance contract or settles additional differences.
During the execution, each participant needs to pay gas when calling a method
of a smart contract.

4 Evaluation

4.1 Evaluation Method, Implementation, and Setup

The goal of our evaluation is to assess the feasibility of the approach. To this end,
we implemented proof-of-concept prototypes for the translator and the trigger.
The translator, written in Java, accepts BPMN 2.0 XML files, which we parse
using the source code of the JBoss BPMN2 Modeller (jbpm-bpmn2 6.3.0). The
translator’s output are files that comply with the Solidity scripting language,
version 0.2.0. Our smart contracts are running on go-ethereum 1.3.5, which is
the official Golang implementation of the Ethereum protocol. The trigger is
written as a Node.js web application, in JavaScript.

We picked three use case processes of different size, two from the literature
and one from an industrial prototype. All three could be used directly as C-
Monitor, and we extended one to cover the other options, i.e., C-Monitor with
escrow and mediator. The key functionality of the blockchain is to accurately
record the shared history of the choreography processes. Therefore, we derived
the set of permissible execution traces for each process model, which we called
the set of conforming traces. Furthermore, we randomly modified these traces
to obtain a larger set of not conforming traces with the following manipulation
operators: (i) add an event, (ii) remove an event, or (iii) switch the order of two
events, such that the modified trace was different from all correct traces. Then
we tested the ability of the smart contracts to discriminate between correct and
incorrect traces. For escrow and the mediator data transformation, we ran a
smaller number of experiments where we manually verified the effects.

Finally, during the above experiments we collected data that allows us to
analyze important qualities. We focused particularly on cost and latency of using
the blockchain in our setting, since these are the two non-functional properties
that differ most from traditional approaches, such as trusted third parties. We
ran experiments on a private blockchain and the public Ethereum blockchain,
which allowed us to compare the effects of different options on these qualities.

4.2 Use Case Processes

For our evaluation, we used the following three processes.

1. Supply chain choreography: This process is discussed throughout this
paper as a running example, see Fig. 3.3, and adapted from [3]. This
process has ten tasks, two gateways and two conforming traces. From the 2
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possible conforming traces, we generated 60 randomly manipulated traces.
Out of these, 3 were conforming (switched order of parallel tasks) and 57
not.

2. Incident management choreography: This process stems from [11, p.18].
This process has nine tasks, six gateways and four conforming traces. We
generated 120 not conforming traces. We implemented it with and without
(i) a payment option and (ii) data manipulation in a mediator.

3. Insurance claim handling: This process is taken from the industrial proto-
type Regorous1. Choreographies tend to result in a simplified view of a
collaborative process, as can be seen when comparing Figures 2.1 and 3.3.
To test the conformance checking feature with a more complex process,
we added a third use case which was originally not a choreography. This
process has 13 tasks, eight gateways and nine conforming traces. We
generated 17 correct and 262 not conforming traces.

4.3 Identification of Not Conforming Traces

For this part of the evaluation, we investigate if our implementation accurately
identifies the not conforming traces that have been generated for each of the
models. The results are shown in Table 4.1. All log traces were correctly classified.
This was our expectation: any other outcome would have pointed at severe issues
with our approach or implementation.

Process Tasks Gate
ways

Trace type Traces Correct
ness

Supply chain
process of Fig. 3.3

10 2
Conforming 5 100%
Not conforming 57 100%

Incident
management

9 6
Conforming 4 100%
Not conforming 120 100%

Incident management
with payment

9 6
Conforming 4 100%
Not conforming 19 100%

Incident mgmt. with
data transformation

9 6
Calculation 10 100%
String manipu-
lation

10 100%

Insurance claim 13 8
Conforming 17 100%
Not conforming 262 100%

Table 4.1: Process use case characteristics and conformance checking results

4.4 Analysis of Cost and Latency

In this part of the evaluation, we investigate the cost and latency of involving the
blockchain in the process execution, since these are the non-functional properties
that are most different from solutions currently used in practice.

Cost. In our experiments on the private blockchain, we executed a total of
7923 transactions, at zero cost. On the public Ethereum blockchain, we ran

1http://www.regorous.com/ . A subset of the authors is involved in this project.
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Figure 4.1: Process model: insurance claim

32 process instances with a total of 256 transactions. The deployment of the
factory contract cost 0.032 Ether, and each run of the Incident Management
process, with automatic payments and data transformations, cost on average
0.0347 Ether, or approx. US$ 0.40 at the time of writing. The data (transactions
and contract effects) of the experiment on the public blockchain is publicly
viewable from the factory contract’s address, e.g. via Etherscan.2

Latency. We measure latency as the time taken from when the trigger receives
an API call until it sends the response with conformance outcome, transaction
hash, block number, etc. A test script iterates over the events in a trace and
synchronously calls the trigger for each event. Therefore, the test script sends
the next request very soon after receiving a response. This distorts the latency
measurement to a degree, since the trigger adds the next transaction to the
transaction pool just after the previous block has been mined, and it needs
to wait there until mining for the block after the current one is started. Our
measurements should thus be regarded as an upper bound, rather than the
typical case.

In more detail, latency occurred at four points:

(i) Network latency for API calls – which is negligible over LAN and not
measured in the above-described setup.

(ii) Processing by the trigger implementation.

(iii) Waiting until the transaction is added to a block: say, after block 100 has
been mined the trigger submits transaction TX1, which is added to the
transaction pool. The miner is mining block 101, and will not consider
new transactions until that completes. TX1 is thus included in block 102
at the earliest.

(iv) The test script implementation: While this is not a concern in real-life
situations, our test script waits until it knows TX1 has been added to
block 102 before sending the next message, and the trigger adds the next
transaction. Therefore, TX2 is added to the transaction pool shortly after

2https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384
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block 102 was announced as completed – which means it will typically be
added to block 104.

In summary, the most significant latency in our experiments comes from
the way transactions are being inserted into the blocks. Assuming a uniform
distribution of when API calls are sent to triggers, which is a fair assumption
in many real-world deployments, this would on average take roughly 1.5 times
the duration for a block to be mined. In our tests, due to the test script
implementation, i.e. factor (iv) above, latency is measured as 1.8− 1.99 times
that duration: the next transaction TX1 is added to the pool at the start of the
mining time for block 101 in the example, but only added to block 102. That is
the reason why the latency measurements in our experiments should be seen as
an upper bound.

The duration for a block to be mined comes from the complexity of the
mining task, which is deliberately designed to be computationally hard. On
the public Ethereum blockchain, the target median time between blocks at the
time of writing was set to around 13s, with the actual time measured as 14.4s.
This target time is controlled by the code running Ethereum3. The difficulty of
the mining task is controlled so that it achieves a stable median time between
blocks regardless of the computational power available in the network: if more
power becomes available and the median time goes down, the difficulty of the
mining task is automatically increased to slow the miners down. In our setup
with the public Ethereum blockchain, we measured a median latency of 23.0s. A
summary of the measurements is shown as Public Ethereum in Fig. 4.2.

In contrast, on a private or permissioned blockchain the mining speed can be
controlled by changing the source code: we can make the mining task simpler.
With such control, the average time between adjacent blocks was 1.38s, and
the median latency measured with the test script was 2.8s. The measurements
are summarized as Private fast in Fig. 4.2. Without this control, the mining
task gets harder until it reaches a median of at least 13s. In our experiments,
the median latency with the script measured at 27.4s. The measurements are
summarized as Private uncontrolled in Fig. 4.2. For any application, this tradeoff
needs to be considered: public blockchains offer much higher trustworthiness in
return for higher cost and latency.

4.5 Discussion

Conflict resolution. Following up on the conflict example from Section 2.1, we
discuss how conflict resolution can be implemented in our approach. Recall that
there was disagreement about the amount of supplies ordered. The blockchain
inherently provides an immutable audit trail, thus it is trivial to review the
original order and waybill messages – the culprit can be identified through
such inspection. Say, the Supplier was at fault, but the Manufacturer paid
crypto-coins into escrow – how does it get its money back? The conditions
for reimbursement from escrow need to be specified in the smart contract, but
then they can be invoked at a later time. For instance, the participants may
agree upfront that the Manufacturer gets reimbursed only if the Middleman
agrees to that; then the Middleman sends a transaction to that effect, and the
Manufacturer’s money is transferred back to its account.

3https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki
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Figure 4.2: Latency in seconds, using private blockchain with / without speed
modification, and public Ethereum blockchain (box plot)

Trust. Blockchain provides a trustworthy environment, without requiring trust
in any single entity. In contrast, in the traditional model participants who do
not trust each other need to agree on a third party which is trusted by all.
Blockchain can replace this trusted third party. This is of particular interest
in cases of coopetition. If multiple parties come together to achieve a joint
business goal, but some of the organizations are in coopetition, it is important
that the entity which executes the joint business process is neutral. Say, Org1,
Org2, and Org3 are in coopetition, but want to have a joint process to achieve
some business goal. However, Org1 would not accept Org2 or Org3 to control
the process, and neither of those would accept Org1. Using our approach, the
blockchain can be used, enabling trustless collaboration as it is not controlled by
a single entity. Our translator allows the deployment of business processes on
blockchain network without the need to manually implement the corresponding
smart contract. Trust in the deployed bytecode for a process is established as
follows: each participant has access to the process model, translates it to Solidity
with our translator, and uses an agreed-upon Solidity compiler. This results in
the same bytecode, and each participant can verify that the deployed bytecode
has not been manipulated. Finally, the trigger allows for seamless integration
into service-based message exchanges. However, each trigger is a fully trusted
party, and by default we assume each organization hosts their own trigger.

Privacy. Public blockchains do not guarantee any data privacy: anyone can
join a public blockchain network without permission, and information on the
blockchain is public. Thus, for scenarios like collaborative process execution, a
permissioned blockchain may be more appropriate: joining it requires explicit
permission. Even with permission management, the information on blockchain
is still available to all the participants of the blockchain network. While we
propose a method to encrypt the data payload of messages, the process status
information is publicly available. As such, if Org1 ’s competitor, Org4, knows
which account address belongs to which participant, it can infer with whom Org1
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is doing business and how frequently. This can be mitigated by creating a new
account address for each process instance: the space of addresses is huge, and
account creation trivial. However, this method prevents building a reputation,
at least on the blockchain.

Off-chain data Store. For large data payloads, we propose to store only meta-
data with a URI on-chain, and to keep the actual payload off-chain – accessible
with the URI. Due to size limits for data storage on current blockchains [14] and
associated costs, this solution can be highly advantageous. There are existing
solutions that provide a data layer on top of blockchains, such as Factom [14].
Distributed data storage, like IPFS, DHT (Distributed Hash Table), or AWS
S3, can also be used in combination with the blockchain to build decentralized
applications.

Threats to Validity. There are several limitations to our study. To start, we
made some assumptions when implementing our evaluation scenario, which bear
threats to validity. First, we considered a supply chain scenario in which seconds
of latency are typically not an issue. We expect that scenarios in other industries,
such as automatic financial trading, would have stronger requirements in terms of
latency, which could limit the applicability of our technique. Second, we worked
with a network of limited size. A global network might have stronger requirements
in terms of minimal block-to-block latency to ensure correct replication. These
threats emphasize the need to conduct further application studies in different
settings. Furthermore, there are open questions regarding technology acceptance,
including management perception and legal issues of using blockchain technology.

5 Conclusion

Collaborative process execution is problematic if the participants involved have a
lack of trust in each other. In this paper, we propose the use of blockchain and its
smart contracts to circumvent the traditional need for a centralized trusted party
in a collaborative process execution. First, we devise a translator to translate
process specifications into smart contracts that can be executed on a blockchain.
Second, we utilize the computational infrastructure of blockchain to coordinate
business processes. Third, to connect the smart contracts on blockchain with
external world, we propose and implement the concept of triggers. A trigger
converts API calls to blockchain transactions directed at a smart contract,
and receives status updates from the contract that it converts to API calls.
Triggers can thus act as a bridge between the blockchain and an organization’s
private process implementations. We ran a large number of experiments to
demonstrate the feasibility of this approach, using a private as well as a public
blockchain. While latency is low on a private, customized blockchain, the latency
on the public blockchain may be considered too high for fast-paced scenarios.
Additional benefits of our approach include the option to build escrow and
automated payments into the process, and that the blockchain transactions from
process executions form an immutable audit trail.
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