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Abstract

People share various processes in daily lives on-line in natural language form
(e.g., cooking recipes, “how-to guides” in eHow). We refer to them as per-
sonal process descriptions. Previously, we proposed Personal Process Descrip-
tion Graph (PPDG) to concretely represent the personal process descriptions
as graphs, along with query processing techniques that conduct exact as well
as similarity search over PPDGs. However, both techniques fail if no single
personal process description satisfies all constraints of a query. In this paper,
we propose a new approach based on our previous query techniques to query
personal process descriptions by aggregation - composing fragments from differ-
ent PPDGs to produce an answer. We formally define the PPDG Aggregated
Search. A general framework is presented to perform aggregated searches over
PPDGs. Comprehensive experiments demonstrate the efficiency and scalability
of our techniques.



1 Introduction

People are engaged in all kinds of processes all the time, such as cooking a dish,
or filing a tax return. Although the area of business process management (BPM)
[5] has produced solutions for modelling, automating and managing many of the
business organizational workflows, still significant portion of the processes that
people experience daily exist outside the realm of these technologies.

These experiences are often shared on the Web, in the form of how-to guides
or step-by-step instructions. Although these are primarily describing a workflow,
without the formal modelling expertise, they are written in natural language. To
distinguish these texts from the conventional organizational workflow models,
we refer to them as personal process descriptions. Many examples of personal
process descriptions are found in cooking recipes, how-to guides or Q&A forums.

The natural language texts are not precise enough to be useful in utilizing
the process information presented in them. For example, the state-of-the-art
for search technologies over the existing personal process descriptions are still
keyword/phrase-based and users would have to manually investigate the results.

In our previous work [18], we proposed a simple query language designed
to perform exact-match search over the personal process descriptions. The lan-
guage is supported by a graph-based, light-weight process model called PPDG
(Personal Process Description Graph) which concretely represents the personal
process description texts. We further extended our query technique to return
similar process descriptions to a query input in [7]. Using these techniques, we
can perform a process-aware search over PPDGs such as showing dependencies
between data and actions.

However, when there is no single PPDG in the repository that satisfies all
constraints in a query, these techniques cannot produce an answer. To overcome
this limitation, we present a new approach to querying PPDGs, which can still
produce an answer when a single PPDG cannot satisfy all query constraints.
This technique, Query By Aggregation, involves decomposing a query into sub-
queries, matching multiple fragments over different PPDGs. The answer to
a query is then generated by composing these fragments according to ranking
criteria. This approach allows the user not only to better utilise existing process
information in the PPDG repository, but also to discover and reuse process
fragments to compose his/her own processes. We summarise our contributions
below:

• We formally define the PPDG Aggregated Search.

• We present a general framework to perform an aggregated search over
PPDGs, including: (i) a query decomposition algorithm to break down
the query into two categories of subqueries - constant query and anony-
mous query, (ii) a tri-level index scheme based on our previous search
techniques [7, 18] to reduce the search cost, and (iii) a ranking method to
aggregate the matched fragments to obtain the closest query answers.

• We perform comprehensive experiments to demonstrate the efficiency and
scalability of our techniques.

The paper is organized as follows: Section 2 defines the preliminary concepts
and the problems. Section 3 shows the query decomposition algorithm. Sec-
tion 4 discusses the algorithms to process the subqueries and aggregated search
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over the PPDG repository. Then we present the experiment results in Section 5.
The related work is discussed in Section 6 followed by a conclusion in Section 7.

2 Preliminaries

In this section, we briefly introduce the PPDG and general querying of PPDGs.
The full descriptions of these concepts are presented in [18] and [7], respectively.
We then present an improved query technique named PPDG Aggregated Search.

2.1 Personal Process Description Graph (PPDG)
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Figure 2.1: An example of PPDG query input and output (an exact match)

A PPDG represents a personal process description as a labeled directed
graph. It describes the whole process of performing a personal process placing
equal emphasis on both actions and input/output data associated with each
action. The process on the right of Figure 2.1 depicts a PPDG of the ceremony
day process experienced by a graduate. The circle nodes denote actions and
data elements are represented by hexagonal nodes. In order to simplify the
visualization of the graph, different types of actions/data are represented using
the same notation. The details are stored in the schema associated with each
PPDG.

The data elements and actions are connected to form ‘action flow’ and ‘data
flow’. Action flows, represented by solid lines, describe temporal sequence of
the actions. For example, in the process on the right of Figure 2.1, ‘V3: register ’
takes place before ‘V4: attend briefing’. Data flows, represented by dotted
lines, keep track of data sources and denote the relationships between the data
and actions. For example, ‘V5: attend ceremony’ takes two data inputs ‘D2:
dress ’ and ‘D5: instruction for ceremony’ and produces one data output ‘D6:
testamur ’.

A PPDG also stores constraints/conditions relating to an action, data or the
flows. For example, a condition may specify a location or the time an action can
take place. However, our current query techniques do not consider constraints
in PPDG yet. For simplicity, we remove them from PPDG from here on. We
define PPDG more formally as follows.
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Definition 1 A personal process description graph PPDG is a tuple
PPDG := (A,D,EA, ED, φ, λ) where:

• A is a finite set of nodes a0, a1, a2,... depicting the starting action (a0) and
actions (a1, a2, ...).

• D is a finite set of nodes d0, d1, d2,... depicting the data input/output of an
action.

• EA is a finite set of directed action-flow edges ea1, ea2,..., where eai = (aj , ak)
leading from aj to ak (aj 6= ak) is an action-flow dependency. It reads aj takes
place before ak. Each node can only be the source/target of at most one action-
flow edge : ea = (ai, aj) ∈ EA : ea′ = (ak, al) ∈ EA \ ea : ai 6= ak and aj 6=
al.

• ED is a finite set of directed data-flow edges ed1, ed2,..., where edi = (aj , dk)
leading from aj to dk is a data-flow dependency. It reads aj produces dk. edl =
(dm, an) leading from dm to an is a data-flow dependency. It reads an takes dm.

• φ: a function that maps Action Label to action nodes.

• λ: a function that maps Data Label to data nodes.

We proposed a template-based query technique in [18], in which three types
of query template constructs were defined: atomic, path, and complex. A PPDG
query graph is defined as follows.

Definition 2 (PPDG Query Graph) A PPDG query graph is a tuple
PPDG-Q = (QA,QD,QEA, QED, Qφ, Qλ, QP,∆) where:

• QA is a finite set of action nodes in a query.

• QD is a finite set of data nodes in a query.

• QEA ⊆ QA×QA is the action flow relation between action nodes in a query.

• QED ⊆ QA×QD is the data flow relation between action nodes and data nodes
in a query.

• Qφ: a function that maps Action Label to action nodes.

• Qλ: a function that maps Data Label to data nodes.

• QP is the path relation between action nodes which includes data nodes and data
edges corresponding to each action node in query.

• ∆: QP → {true,false}

Figure 2.1 shows an example of PPDG query input and output1. A PPDG
query graph on the left of Figure 2.1 consists of “collect dress” action, imme-
diately followed by “take photos” action with input data “dress”, followed by
a path query edge leading to “attend ceremony” action. The edge with symbol
“‖” (also called path edge) represents a path query between action nodes “take
photos” and “attend ceremony”. In the above example, the path will match
any action as well as connected data nodes from “take photos” to “attend cere-
mony”. The subgraph inside dotted box on the right of Figure 2.1 is the result
of the query.

However, in practice, performing an exact-match search over PPDGs may
have limited utility because the PPDGs describing the same or similar processes
are likely to have action/data labels and action/data flows expressed differently.

1We assume that the user can enter a query directly through our system by using an editor
(similar to BPMN-Q editor [11]).
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Therefore, we also proposed the similarity search technique in [7] to expand the
query results to include subgraphs that are similar to the query graph.

In this paper, we improve the query further by solving the problem of as-
sembling fragments from different PPDGs to build an answer to a user query
when a single PPDG cannot satisfy all the query constraints. Our goal is to
support diversified forms of user queries and provide flexible ways to integrate
or reuse information in PPDGs on demand.

2.2 Querying PPDG by Aggregated Search

Aggregated search is the task of searching and assembling information from a
variety of sources, placing it into a single interface [10, 8]. Our approach to
PPDG aggregated search is based on the notion of graph aggregation problem
[9], and aggregated search problem in BPMN2 models [12]. In both of them, the
answer of a query graph can be represented as aggregation of fragments from
different processes which are stored in the process repositories. In our work, we
define aggregated search based on PPDG as follows.

Definition 3 (PPDG Aggregated Search) Given a PPDG query q and a
set of PPDGs P = {P1, P2, . . . , Pn}, the problem of PPDG aggregated search
is to find a subset S = {P ′

1
, P ′

2
, . . . , P ′

m
} of P(m ≤ n) and join their fragments

fP ′

1
, fP ′

2
, . . . , fP ′

m
to obtain a set of ranked PPDGs R = {R1, R2, . . . , Rk} , where

each R matches the query q. That is, for each R ∈ R, R = fP ′

1
⊲⊳ fP ′

2
⊲⊳ . . . ⊲⊳

fP ′

l
| l ≤ m where f is a fragment (subgraph) of P ∈ S.

We take the PPDG query shown in Figure 2.2 as an example. It describes a
user query where the user wants to know what to do before booking the academic
dress online and what needs to be done between getting the dress and attending
ceremony. The prefix symbol “@” in the node label indicates an anonymous
node (i.e. “@D” for an anonymous data node, “@V” for an anonymous action
node).
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Figure 2.3: Answer of PPDG Aggregated
Query

Assume that the PPDG repository consists of two personal processes shown
in Figure 2.4. Both of these two processes fail to match the said query if we
matched it with each PPDG separately. There is no information about getting
dress or attending ceremony in the process on the left of Figure 2.4. Similarly,
the process on the right of Figure 2.4 does not mention booking dress online.

In the aggregated search approach, we decompose the original query into
subqueries, match them individually against the PPDGs in the repository, and

2Business Process Model and Notation, www.bpmn.org

4



aggregate the results to form the answers. The answer of the said query over
the two sample PPDGs is shown in Figure 2.3.
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Figure 2.4: Two PPDGs to Query

3 PPDG Query Decomposition

We can decompose a PPDG query into a set of subqueries which are classified
into two categories as follows.

• A series of constant queries Qc: where each query has two constant (i.e.,
explicitly named) nodes connected by a direct flow edge.

• A series of anonymous queriesQa: where each query has (i) an anonymous
node (i.e., unnamed node), or (ii) two constant nodes connected by a path
edge.

Unlike traditional graph, PPDG is a directed graph with two types of nodes
and edges, so it is not straightforward to deploy the general decomposition
methods to solve our problem. We fully decompose PPDG into atomic frag-
ments below, because the size of most personal processes are not very big. To
decompose the query Q into two series of subqueries Qc and Qa, we traverse
the query Q from the first action node to the last action node. For each action
node naction, we obtain its connected data nodes ndata and next action node
n′

action
(if have) to compose subqueries. Each subquery is represented as a tuple

- {naction, ndata} or {naction, n
′

action
}. Then we classify them into either Qc

or Qa. Each subquery can be further classified into the following six types:
“C” or “P” - two nodes are both constant action nodes with a Constant edge
or Path edge; “C-A” or “A-C” - one node is a Constant action node and the
other is an Anonymous action node; “D-in” or “D-out” - one node is a Data
node and the data flow to action node is “input” or “output”, so we keep a
type attribute in the subquery. The position pos of naction in Q is stored in the
subquery to keep the series information. Therefore, a subquery is defined as a
tuple {naction, n

′

action
or ndata, type, pos}, and the action node naction is the key

of the tuple.
Algorithm 1 illustrates the details of decomposition process. We first put all

action nodes of Q into a sorted list L in Line 1. From Line 2 to Line 28, we
traverse the action nodes naction in L one by one. We use a variable pos to store
the position of naction. If naction is a constant node, we obtain all its connected
data nodes from Q. If the data node ndata is also a constant node, we put the
subquery {naction, ndata, type, pos} into Qc in Line 8, otherwise Qa in Line 10.
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Similarly, if the next connected action node n′

action
for naction exists, we check

n′

action
and put the subquery into corresponding subquery series (Qc or Qa) in

Lines 11-20. Note that if the edge between two action nodes is a path edge,
we set the type as “P” in Line 14. If naction is an anonymous node, we obtain
its all connected data nodes and the next action node (if have) to compose the
subqueries and put them into Qa in Lines 22-27. After traversing all action
nodes, we gain two series of queries Qc and Qa.

Algorithm 1: Decomposition Query (Q)

Input : a PPDG Query Q

Output: a series of Constant Queries Qc, a series of Anonymous Queries Qa

1 L←a list of action nodes in Q; pos = 0;
2 while L 6= φ do
3 naction ←the first node of L; pos = pos+ 1;
4 if naction is a constant node then
5 for each data nodes ndata of naction do
6 type←data type(“D-in”/“D-out”);
7 if ndata is a constant node then
8 Qc ← {naction, ndata, type, pos};

9 else
10 Qa ← {naction, ndata, type, pos};

11 if naction has next action node n′

action in L then
12 if n′

action is a constant node then
13 if the connection is a path edge then
14 type←action type(“P”);

15 else
16 type←action type(“C”);

17 Qc ← {naction, n
′

action, type, pos};

18 else
19 type←action type(“C-A”);
20 Qa ← {naction, n

′

action, type, pos};

21 else
22 for each data nodes ndata of naction do
23 type←data type(“D-in”/“D-out”);
24 Qa ← {naction, ndata, type, pos};

25 if naction has next action node n′

action in L then
26 type←action type(“A-C”);
27 Qa ← {naction, n

′

action, type, pos};

28 Remove the first node of L;

29 return (Qc, Qa);

4 PPDG Query Processing

After query decomposition, we use the two series of queries to find matched
PPDG fragments and aggregate them to obtain the results. The framework of
the aggregated search processing is presented as follows:
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• Constant Query : We use each constant query in Qc to perform simi-
larity search on PPDGs to get the constant fragments with corresponding
PPDGs,

• Anonymous Query : We use anonymous queries in Qa based on the
results in Constant Query phase to find the matched fragments,

• Aggregating : We rank and aggregate fragments to obtain the answers
ordered by ranking score.

The experiments of our own proposed search techniques to process graph
query over PPDGs showed that the main cost of the query processing is on
matching the nodes between the query and PPDGs. Therefore, we designed
an indexing technique to speed up the node matching process as part of the
framework.

In what follows, we first present the details of the indexing, then we dis-
cuss using the index to obtain the matched fragments of constant queries and
anonymous queries in Section 4.2 and Section 4.3, respectively. Finally, we pro-
pose a novel rank method to assemble the fragments to obtain the answer in
Section 4.4.

4.1 Indexing PPDGs

In [7], we match two nodes in PPDGs by comparing their label similarity. For
one node in the query, we obtain the word set from its label and calculate
the similarity score between this word set and that of each node in a PPDG.
The PPDG index has three levels “word(L1)-word set(L2)-PPDG(L3)”, which

Inverted Index

Word Set Word Set Word Set

PPDG PPDG PPDG PPDG

L1

L2

L3

Figure 4.1: Structure of PPDG Index

is shown in Figure 4.1. All the PPDGs entries are stored in L3. The word sets
from each PPDG are extracted and stored in L2. Each word set entry points
to the PPDG that it originates from. We cluster those word sets which have
common words by choosing one of them as the center. The similarity between
each word set and the center is more than a given correlation radius η. All the
word sets in one cluster can be merged to construct a new word set entry in
L2, which points to multiple PPDGs. L1 is an inverted index. When a word is
given, we can use the inverted index to find the corresponding word set entry
in L2.
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Algorithm 2: Constant Queries Search (Qc, P)

Input : a series of Constant Queries Qc, a set P of PPDGs
Output: Qc filled with matched fragments

1 for each q ∈ Qc do
2 n = q.naction;
3 Get word set of n and obtain all matched PPDG graphs Pm by index;
4 if q.type is “C” then
5 n′ = q.n′

action;
6 Get word set of n′, and obtain all matched PPDG graphs P ′

m by index;
7 P ′′

m = Pm ∩ P
′

m;
8 for each P ∈ P ′′

m do
9 f ← matched fragment;

10 score = similarity score between q and f ;
11 q.results← {f, score, P};

12 else
13 n′ = q.ndata;
14 for each connected data node nd in each P ∈ Pm do
15 if nd matches n′ then
16 f ← matched fragment;
17 score = similarity score between q and f ;
18 q.results← {f, score, P};

19 return Qc;

4.2 Processing Constant Queries

To process constant queries, we launch our similarity query search proposed in
[7] for each constant query to obtain the similar fragments. There is a small cost
to do one similarity search. Since there are many constant queries generated
for aggregated search, the total cost could be quite high. Therefore, we use the
index built in Section 4.1 to reduce the query processing time.

Algorithm 2 illustrates the details of how to use the PPDG index to process
the similarity search of the constant queries. We match each query q in the
constant query set Qc to process the similarity search over PPDG. For each
query result, we record the fragment f , the similarity score between f and q,
and the corresponding PPDG P , which comprise a result tuple {f, score, P}.
Recall that the query q is represented as a tuple in Section 3. Here we add an
attribute results to q to store all the result tuples of q. For each constant query
q, we put its key node naction into n, and get the word set of n to obtain the
matched PPDGs Pm by index in Lines 2- 3. Then we check the type of q in
Line 4. If the second node n′ is an action node, we use the similar method to
get its matched PPDGs P ′

m
by index in Lines 5- 6. The two matched PPDGs

Pm and P ′

m
are joined to obtain a new PPDG set P ′′

m
containing both action

nodes n and n′. We get matched fragment from each P ∈ P ′′

m and put the
result tuple into q.results from Line 8 to 11. If the second node n′ is data
node, we check each connected data node in P ∈ Pm to obtain the matched
fragment from Line 13 to 18. Note that the edge direction must be matched
when matching data node in Line 15. The fragment results are also put into
q.results in Line 18. After traversing all constant queries, the result is returned
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in Line 19.

4.3 Processing Anonymous Queries

Each anonymous query has at least one known action node, so we can use
the same similarity matching technique in Section 4.2 to obtain the PPDGs
set containing the node, and then find the matched anonymous node or path.
According to the decomposition technique in Section 3, an anonymous query
contains at least one constant node, which exists in a constant query, and we
have already processed the constant node in Algorithm 2. These results can
be stored in a map M . Then we search M first when the constant node in
an anonymous query is given. If we cannot find the matched node in M , the
normal index lookup is invoked to find the related PPDGs.

Algorithm 3: Anonymous Queries Search (Qa, M , P)

Input : a series of Anonymous Queries Qa, Map M , a set P of PPDGs
Output: Qa filled with matched fragments

1 for each q ∈ Qa do
2 n = q.naction;
3 if ∃n ∈M then
4 Pm = M(n);

5 else
6 Pm ← related PPDGs by query n on index;

7 if q.type is “C-A” or “A-C” then
8 for each next connected action node n′ of n in each P ∈ Pm do
9 f ← matched fragment;

10 score = similarity score between n and corresponding node in f ;
11 q.results← {f, score, P};

12 else if q.type is “P” then
13 n′ = q.n′

action;
14 Obtain P ′

m by searching M or index;
15 P ′′

m = Pm ∩ P
′

m;
16 f ← matched fragment;
17 score = similarity score between q and f ;
18 q.results← {f, score, P};

19 else
20 for each connected data node nd in each P ∈ Pm do
21 if the direction of nd matches q.type then
22 f ← matched fragment;
23 score = similarity score between q and f ;
24 q.results← {f, score, P};

25 return (Qa);

Algorithm 3 illustrates the details of anonymous query processing. Like
Algorithm 2, we also use the result tuple {f, score, P} to store the query answer.
For each anonymous query q, we put its key node naction in n, and get the related
PPDGs Pm from map M or index in Lines 2-6. Note that n must be a constant
node according to Section 3. Then we treat the anonymous part of q by the
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query type q.type separately from Line 7 to Line 24. If the anonymous node is
an action node, we find the next/previous connected action node n′ in Pm, and
put the query result tuple into q, which is shown in Lines 7-11. From Line 12 to
Line 18, we process the case that the anonymous exists on edge (path query).
The matched PPDGs P ′

m of the second action node n′ is gotten and joined with
Pm to obtain the total matched PPDGs P ′′

m
in Lines 14-15. Then we get the

path from n to n′ as the fragment result. Note that we must keep the order
of the action series, which means n must in the front of n′. If the anonymous
node is a data node, we find the connected data node n′ in Pm, and put the
query result tuple into q, which is shown in Lines 20-24. After traversing all
anonymous queries, the results are returned in Line 25.

4.4 Aggregating Fragments

After obtaining all matched fragments, we need to assemble them to obtain the
required PPDGs. There are many ways to combine the fragments, therefore, we
need to rank the possible aggregated results efficiently and recommend the user
a list of aggregated PPDGs in an descending order by “score”. In this section,
we explain how to calculate such a score.

When we decompose the aggregated query into subqueries, the position of
each query is kept, so we can assemble the aggregated result from each query
tuple according to the position of the query. When we process the constant query
or the anonymous query, we store the similarity score between the query and
the fragment result. Intuitively, we could choose fragments with the highest
score from each query tuple, and aggregate them to obtain the query result.
Then the similarity score (SS) of a result R is calculated as follows.

SS(R) =
∏

q.score(f) (4.1)

where q.score(f) represents the similarity score of a selected fragment f in R.
There may be some fragments coming from the same PPDG. The fragments

from the same PPDG are preferred because intuitively they would form more
coherent PPDG when put together, so we give the case a higher rank. For each
possible aggregated result, we count the number n of fragments originated from
each related PPDG. Then the similarity score of a result R can be adjusted as
follows, which is called adjusted similarity score (ASS).

ASS(R) =
∏

(

n∏

i=1

q.score(fi)× Cn−1) (4.2)

where C (C ≥ 1) represents a weighting factor for a scoring fragment and n is
the number of fragments which come from the same PPDG containing f . Note
that if the factor C is set to 1, ASS degenerates into SS.

5 Experiments

Now we present the results of a performance study to evaluate the efficiency
and scalability of our proposed techniques. Following algorithms are evaluated.

• Baseline: Aggregated search by techniques proposed in [7].
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• INDEX: Algorithms proposed in Section 4 by using the index.

Datasets We have evaluated our aggregated search techniques on both syn-
thetic and real datasets.

The synthetic datasets are generated by randomization techniques. We cre-
ate a word set containing 100 different words. Then we randomly choose n

action nodes and [0, 2n] data nodes to assemble p process graph. For each node,
w words are randomly selected to make the label. After a process graph is
built, we make several small changes, such as changing the labels of nodes and
adding/deleting nodes, to obtain 99 similar process graph. The number p varies
from 2K to 50K (default value = 10K). The number n of action nodes in each
process is randomly chosen in a range varying from [5, 10] to [35, 40] (default
value = [15, 20]). The number of data nodes is randomly chosen in [0, 2n]. For
each node, there are up to w words selected randomly. The w varies from 10
to 25 (default value = 15). By the default setting, the total number of nodes
is up to 600K in our experiment. The cluster correlation radius of the index η

varies from 0.2 to 0.8 (default value = 0.6). We select 100 process graphs and
get their subgraphs to make 100 queries in our experiment. Some nodes in each
query are randomly set as anonymous nodes. The size s of query, i.e. number
of action nodes in query, varies from 3 to 9 (default value = 5). The average
processing time of the 100 queries on each dataset represents the performance
of our query processing mechanism. The factor C is set to 2 in all experiments.

The real dataset consists of 42 PPDGs about PhD programs collected from
the Web and manually created by the authors. The dataset includes personal
process descriptions on processes such as research degree admission, scholarship
applications, and attending graduation ceremony. In this dataset, the queries
are chosen manually.

All algorithms are implemented in C++ and compiled by Cygwin GCC 4.3.4.
The experiments are conducted on a PC with Intel i7 2.80GHz CPU and 8G
memory on Windows 7 Professional SP1.

Performance Evaluation

We evaluate the performance of our technique INDEX comparing with Baseline
algorithm in the experiment.

Performance Tuning. The performance of our techniques is effected by the
index. Especially, The correlation radius η between the data and the center of
clusters in the index impacts the processing time of our algorithm. As expected,
Figure 5.1 shows the processing time drops when η increases, because the word-
sets with similarity η are clustered in one index entry. On the other hand, if the
η drops, the index degenerates. When η is equal to 0.2, there is no significant
improvement between the algorithm INDEX and the algorithm Baseline. We
notice that the performance of INDEX does not change much when η increases
from 0.6 to 0.8, therefore, we use 0.6 as the default setting of η in the following
part.

Real vs Synthetic. we evaluate the performance of our techniques over the
real and synthetic data. Due to the limited quantity of real process graphs, we
magnify the result on the real data by 200 times in Figure 5.2. It is shown that
our techniques give the similar performance on both datasets, and the index is
very effective and reduces the processing time.
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Figure 5.1: Index Tuning
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Figure 5.2: Real vs Synthetic
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Figure 5.3: Varying p
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Figure 5.4: Varying w
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Figure 5.5: Varying n
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Figure 5.6: Varying s

Evaluating Impacts by Different Setting. We study the scalability of our
algorithms with regards to the different number of process graphs (p), number
of words (w) in one graph node, number of action nodes (n), and the query size
(s) in Figure 5.3-5.6. The processing time increases with the increase of the four
parameters. The results also demonstrate that the indexing technique is effective
and reduces the processing time in all settings. Clearly, the dataset size increases
with the number of process graphs and action nodes thus the aggregated search
processing becomes a little expensive. Longer word size makes it difficult to
process the node matching, which increases the processing time. When the
query size grows, the processing cost increases because more subqueries are
involved in the aggregated search.

Aggregate Output. Finding a way to systematically measure the quality of
possible aggregates for a given query is still an open research issue [8] and is
one of our immediate future work plans. In this paper, we evaluate the average
output size of our techniques compared with similarity search techniques in [7].
It is clear that the output size of the two approaches increases when the number
of process graphs (p) rises as demonstrated in Figure 5.7. On the other hand,
Figure 5.8 shows the output size of the two approaches drops when the number of
words (w) increases, because it is harder to match the nodes when more words
are involved in the labels. The two figures show regardless of the parameter
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changes, the aggregate approach outputs about three times more results than
similarity approach. We also compare the similarity score between the results
of aggregate search and similarity search, and it shows the score of top ranked
answer in aggregate search is much higher than the one in similarity search.
Therefore, our approach can give more recommendations to users.

 0

 100

 200

 300

 400

 500

 600

 700

 800

5K 10K 20K 50K

# 
re

su
lts

Similarity
Aggregate 

Figure 5.7: Varying p
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Figure 5.8: Varying w

6 Related Work

We discuss related work broadly in two categories: business process querying
and general graph querying approaches.

In the domain of Business Process Management (BPM), there are existing
works that deal with querying business processes. In these work, queries are
processed over BPMN (Business Process Modelling Notation) or equivalent no-
tations. The main purpose of query processing is to extract actions (i.e., control
flows). For example, the Business Process Query Language (BPQL) in [3] works
on an abstract representation of BPEL1 files, which focuses on querying actions
only. The BPMN-Q is a visual language to query repositories of process mod-
els [1]. It processes the queries by matching a process model graph, converted
from BPMN, to a query graph [11]. In [4], the authors describe the problem of
retrieving process models in the repository that most closely resemble a given
process model. At present, the authors have focused on developing the simi-
larity metrics rather than efficient implementation of algorithms. In [15], the
authors presented a survey on current approaches to querying business process
repositories. However, the paper did not discuss how resources associated with
tasks in business process can be queried.

In the graph querying domain, graph similarity search have received consid-
erable attention. This includes Closure-Tree [6], K-AT [14], and SEGOS [17].
In general, subgraph similarity search is to retrieve the data graphs that approx-
imately contain the query. Grafil [19] defines graph similarity as the number of
missing edges in a maximum common subgraph. GrafD-index [13] defines sim-
ilarity using maximum connected common subgraph. [20] studies the problem
of graph similarity search with edit distance constraints. One of the closely re-
lated work to ours is Cooking Graphs [16]. A cooking graph describes a cooking
process with cooking actions and relevant ingredients information. However,
cooking graphs are tailored to recipes. The focus of Cooking Graph is to ap-
ply a graph mining technique on recipes to recognize cooking process patterns
(frequent subgraphs) and recommend a suitable cooking recipe for a user. Our

1http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
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PPDG querying technique aims to provide a platform to support various anal-
ysis tasks on graph structure, not limited to just recommendation.

None of the above business process querying or graph querying approaches
addresses aggregated search on graphs. The first definition of aggregated search
was given in [10]. Many studies [8] from different IR domains developed their
own aggregated search approaches based on this definition. However, to the
best of our knowledge, there are few studies that address querying a process
repository by aggregation. That is, decomposing a query graph into several
fragments, querying the repository with each of the fragments, and construct-
ing a new process by assembling all matched fragment results from different
processes. A similar work presented in [2] is based on the notion of partial
process model which describes a desired model through a combination of pro-
cess model fragments and process model queries. However, they do not address
querying of both control and data flow. In [9], authors propose the exact sub-
graph matching approach of assembling graphs to provide answers to a given
query graph if no single candidate graph is isomorphic with the query. Another
aggregated graph search paper [12] introduces a novel approach for querying
and reusing knowledge contained in business process models repositories, which
presents the solution for the similar subgraph matching. Due to the structure
of PPDG and flexible attribute of personal processes, the above two approaches
are not suitable for applying directly to query PPDG repositories.

7 Conclusion

In this paper, we have investigated aggregated search over Personal Process
Description Graph (PPDG). We formally define the PPDG aggregated search
and propose a novel approach based on our previous query techniques to query
personal process descriptions by aggregation. We first decompose the PPDG
query into two categories of subqueries - constant query and anonymous query,
and then obtain the matched fragments from different PPDGs according to the
decomposed subqueries. Afterward, the matched fragments are assembled to
form the closest query answers by a ranking method. Furthermore, a tri-level
index is built in our approach in order to accelerate the processing of decomposed
subqueries and reduce the search cost. Finally, a comprehensive experimental
study over both real and synthetic datasets demonstrates the efficiency and
scalability of our techniques.
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