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Abstract

Subgraph enumeration aims to find all the subgraphs of a large data graph that are
isomorphic to a given pattern graph. As the subgraph isomorphism operation is com-
putationally intensive, researchers have recently focused on solving this problem in
distributed environments, such as MapReduce and Pregel. Among them, the state-of-
the-art algorithm, TwinTwigJoin, is proven to be instance optimal based on a left-deep
join framework. However, it is still not scalable to large graphs because of the con-
straints in the left-deep join framework and that each decomposed component (join
unit) must be a star. In this paper, we propose SEED - a scalable subgraph enumer-
ation approach in the distributed environment. Compared to TwinTwigJoin, SEED
returns optimal solution in a generalized join framework without the constraints in
TwinTwigJoin. We use both star and clique as the join units, and design an effec-
tive distributed graph storage mechanism to support such an extension. We develop a
comprehensive cost model, that evaluates the number of matches of any given pattern
graph by considering power-law degree distribution in the data graph. We then gener-
alize the left-deep join framework and develop a dynamic-programming algorithm to
compute an optimal bushy join plan. We also consider overlaps among the join units.
Finally, we propose clique compression to further improve the algorithm by reducing
the number of the intermediate results. Extensive performance studies are conducted
on several real graphs, one containing billions of edges. The results demonstrate that
our algorithm is more than one order of magnitude faster than all other state-of-the-art
algorithms in all datasets.



1 Introduction
In this paper, we study subgraph enumeration, a fundamental problem in graph anal-
ysis. Given an undirected, unlabeled data graph G and a pattern graph P , subgraph
enumeration aims to find all subgraph instances of G that are isomorphic to P . Sub-
graph enumeration is widely used in many applications. It is used in network motif
computing [26, 2] to facilitate the design of large networks from biochemistry, neu-
robiology, ecology, and bioinformatics. It is used to compute the graphlet kernels for
large graph comparison [31, 28], property generalization for biological networks [25],
and is considered to be a key operation for the synthesis of target structures in chem-
istry [29]. It can also be adopted to illustrate the evolution of social networks [19] and
to discover information trends in recommendation networks [22].

1.1 Motivation
Enumerating subgraphs in a large data graph, despite its varied applications, is ex-
tremely challenging for two reasons: First, its core operation, known as subgraph iso-
morphism, is computationally hard. Second, the lack of label information often causes
a large number of intermediate results, that can be much larger than the size of the
data graph itself. As a result, existing centralized algorithms [3, 11] are not scalable
to large graphs, and researchers have recently explored efficient subgraph enumeration
algorithms in distributed environments, such as MapReduce [7] and Pregel [24]. Typi-
cally, there are two ways of solving subgraph enumeration - the depth-first search and
the join operation. While the former is hard to parallelize, people tend to use the join
algorithm to solve subgraph enumeration in the distributed context.

In MapReduce, Multiway join [1] enumerates subgraph instances in single MapRe-
duce round by duplicating each edge on multiple machines, while it can surrender to
serious scalability problem as each machine may have to store the whole graph for
complex queries. the authors in [20] studied the StarJoin algorithm, which first de-
composes the pattern graph into a set of disjoint stars. Here, a star is a tree of depth
one. Then StarJoin solves subgraph enumeration by joining the matches of the decom-
posed stars following a left-deep join framework. However, it is sometimes inefficient
to process a star due to the generation of numerous intermediate results. For example,
a celebrity node with 1,000,000 neighbors in the social network would render O(1018)
matches of a star of three edges, making it impossible to compute and maintain for fu-
ture join. Aware of the deficiency of StarJoin, the authors proposed the TwinTwigJoin
algorithm [20], which inherits the left-deep join framework from StarJoin, but pro-
cesses TwinTwig- a star of either one or two edges - instead of a general star. The
authors further proved the instance optimality of TwinTwigJoin, that is, given a join
that involves general stars (a StarJoin), we always have an alternative TwinTwigJoin
that draws no more cost than the StarJoin.

In Pregel, Shao et al. [30] proposed PSgL that enumerates subgraphs via graph
traversal opposed to join operations. The algorithm applies a breadth-first-search strat-
egy - that is, each time it picks up an already-matched but not fully-expanded node
v, and searches the matches of its neighbors in order to generate finer-grained results.
Essentially, PSgL is considered to be a StarJoin algorithm [20] that processes the joins
between the matches of the star rooted on v and the partial subgraph instances obtained
from the previous step. As a result, PSgL does not outperform TwinTwigJoin as shown
in [20].

As the state-of-the-art, TwinTwigJoin only guarantees optimality under two con-
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straints: (1) each decomposed component (also called join unit in this paper) is a
star, and (2) the join structure is left-deep. These constraints hamper its practicality
in several respects. First, TwinTwigJoin only mitigates but not resolves the issues of
StarJoin by using TwinTwig instead of star. For example, the celebrity node of degree
1,000,000 still produces O(1012) matches of a two-edge TwinTwig. Second, it takes
TwinTwigJoin at least m2 (m is the number of pattern edges) rounds to solve subgraph
enumeration, making it inefficient to handle complex pattern graph. Finally, the algo-
rithm follows a left-deep join framework, which may result in a sub-optimal solution
[18]. Last but not least, TwinTwigJoin bases the cost analysis on the Erdös-Rényi ran-
dom (ER) graph model [8], which can be biased considering that most real-life graphs
are power-law graphs.

1.2 Contributions
In this paper, we propose SEED, a Subgraph EnumEration approach in Distributed
environment, that handles the subgraph enumeration in a general join framework with-
out the above constraints. SEED can be implemented in a general-purpose distributed
dataflow engine, such as MapReduce [7], Spark [38], Dryad [17], and Myria [12]. For
the ease of presentation, we describe the proposed algorithm in MapReduce in this
paper. We make the following contributions in this paper.

First, we generalize the graph storage in TwinTwigJoin by introducing the star-
clique-preserved (SCP) storage mechanism to support both clique (a complete graph)
and star as the join units (Section 4). With clique as an alternative, we can make a better
choice other than star, where possible, and reduce the number of execution rounds.
Ultimately, this leads to a huge reduction of the intermediate results. Although there
exist other join units besides star and clique, we show that it can hamper the scalability
of the algorithm to support these alternatives (details are in Section 4).

Second, we propose a comprehensive cost model to measure the cost of SEED
in the distributed context (Section 5). We base the cost analysis on the power-law
random (PR) graph model [4] instead of the Erdös-Rényi random (ER) graph model
[20]. Considering that many real graphs are power-law graphs, the PR model offers
more realistic estimation than the ER model.

Third, we develop a dynamic-programming algorithm to compute an optimal
bushy join plan (Section 6). In TwinTwigJoin, the authors compute the left-deep join
plan with space and time complexities of O(2m) and O(dmax ·m · 2m) respectively,
where m is number of edges and dmax is the maximum degree in the pattern graph.
With the same space complexity and a slightly larger time complexity O(3m), we ar-
rive at optimality by solving the more challenging bushy join plan. We also show that it
is beneficial to overlap edges among the join units. Given some practical relaxation, we
compute an optimal join plan that overlaps the join units with the same complexities as
the non-overlapped case.

Fourth, we devise the clique-compression technique (Section 7), which prevents
us from computing and materializing partial join results in large cliques, and thus im-
proves the performance of SEED.

Finally, we conduct extensive performance studies in six real graphs with different
graph properties - the largest containing billions of edges. Experimental results demon-
strate that our proposed algorithm achieves high scalability and efficiency and is more
than one order of magnitude faster than the state-of-the-art algorithms in all datasets.
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1.3 Outline
Section 2 presents the preliminaries and gives the formal problem definition. Section 3
shows the algorithm framework. Section 4 introduces the SCP storage mechanism to
allow using clique as the join unit. Section 5 studies the cost of the algorithm based on
the PR model. Section 6 explores the bushy-join-based execution plan and the over-
lapping of the join units. Section 7 discusses how to use the large clique inside the data
graph to optimize the algorithm. Section 8 evaluates all introduced algorithms using
extensive experiments. Section 9 reviews the related work, and Section 10 concludes
the paper.

2 Preliminaries
Given a graph g, we use V (g) andE(g) to denote the set of nodes and edges of g. For a
node µ ∈ V (g), denoteN (µ) as the set of neighbors, and d(µ) = |N (µ)| as the degree
of µ. A subgraph g′ of g, denoted g′ ⊆ g, is a graph that satisfies V (g′) ⊆ V (g) and
E(g′) ⊆ E(g).

A data graph G is an undirected and unlabeled graph. Let |V (G)| = N , |E(G)| =
M (assume M > N ), and V (G) = {u1, u2, . . . , uN} be the set of data nodes.

A pattern graph P is an undirected, unlabeled and connected graph. We let
|V (P )| = n, |E(P )| = m, and V (P ) = {v1, v2, . . . , vn} be the set of pattern
nodes. We use P = P ′ ∪ P ′′ to denote the merge of two pattern graphs, where
V (P ) = V (P ′) ∪ V (P ′′) and E(P ) = E(P1) ∪ E(P2).

Definition 1. (Match) Given a pattern graph P and a data graph G, a match f of P
in G is a mapping from V (P ) to V (G), such that the following two conditions hold:
• (Conflict Freedom) For any pair of nodes vi ∈ V (P ) and vj ∈ V (P ) (i 6= j), f(vi)
6= f(vj).

• (Structure Preservation) For any edge (vi, vj) ∈ E(P ), (f(vi), f(vj)) ∈ E(G).
We use f = (uk1 , uk2 , . . . , ukn), to denote the match f , i.e., f(vi) = uki for any
1 ≤ i ≤ n.

We say two graph gi and gj are isomorphic if and only if there exists a match of gi
in gj , and |V (gi)| = |V (gj)|, |E(gi)| = |E(gj)|. The task of Subgraph enumeration is
to enumerate all g ∈ G such that g is isomorphic to P .
Remark 1. An automorphism of P is an isomorphism from P to itself. Suppose there
are A automorphisms of the pattern graph. If the number of enumerated subgraphs
is s, then the number of matches of P in G is A × s. Therefore, if P has only one
automorphism, the problem of subgraph enumeration is equivalent to enumerating all
matches (Definiton 1). Otherwise, there will be duplicate enumeration. In this paper,
for the ease of analysis, we will assume that the pattern graph P has only one auto-
morphism, and focus on enumerating all matches of P in G. When P has more than
one automorphism, we apply the same technique as [20] to avoid duplicates. We first
define the following total order for the data nodes as:
Definition 2. (Node Order) For any two nodes ui and uj in V (G), ui ≺ uj if and only
if one of the two conditions holds:
• d(ui) < d(uj),
• d(ui) = d(uj) and i < j,
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Then we assign a partial order (denoted as <) among some pairs of nodes in the
pattern graphP using the symmetry-breaking technique (see the appendix). Ultimately,
we enforce an Order-Preservation constraint in the match (Definiton 1), that is,

(Order Preservation) For any pair of nodes vi, vj ∈ V (P ), if vi < vj , then f(vi) ≺
f(vj).

We use RG(P ) to denote the matches of P in G, or simply R(P ) when the context
is clear. Since a match is a one-to-one mapping from the pattern nodes to the data
nodes, we regard R(P ) as a relation table with V (P ) as its attributes.

1v

2v
3v

4v 1u

2u 3u

4u
5u

6u

Figure 2.1: Pattern Graph P (Left) and Data Graph G (Right).

Example 1. Figure 2.1 shows a pattern graph P , and a data graph G. Figure 2.1
shows a pattern graph P , and a data graph G. There are three matches of P in G,
which are (u1, u2, u5, u3), (u4, u2, u3, u5), and (u6, u3, u2, u5). The partial orders on
the pattern graph for symmetry breaking are v1 < v3 and v2 < v4. We can check that,
for example, (u1, u2, u5, u3) satisfies the Order-Preservation constraint as u1 ≺ u5

and u2 ≺ u3 according to Definiton 2.

Problem Statement. Given a data graph G stored in the distributed file system, and a
pattern graph P , the purpose of this work is to enumerate all matches of P in G (based
on Definiton 1) in the distributed environment.
Remark 2. For simplicity, we discuss the algorithm in MapReduce. However, all tech-
niques proposed in this paper are platform-independent, so it is seamless to implement
the algorithm in any general-purpose distributed dataflow engine, such as Spark [38],
Dryad [17] and Myria [12].

Power-Law Random (PR) Graph Model. We model the data graph (N nodes and
M edges) as a power-law random (PR) graph, denoted as G, according to [4]. Cor-
responding to the set of data nodes, we consider a non-decreasing degree sequence
{w1, w2, . . . , wN} that satisfies power-law distribution, that is, the number of nodes
with a certain degree x is proportional to x−β , where β is the power-law exponent 1.
For any pair of nodes ui and uj in a PR graph, the edge between ui and uj is indepen-
dently assigned with probability

Pri,j = wiwjρ,

where ρ = 1/ΣNi=1wi. It is easy to verify that the E[d(ui)] = wi for any 1 ≤ i ≤ N
(E[·] computes the expected value). We define the average degree asw = (ΣNi=1wi)/N ,
and the expected maximum degree as wmax. In case that Pri,j < 1 holds, we require
wmax ≤

√
wN [36]. As shown in [20], in real-life graphs, although there are nodes

with degree larger than
√
wN , the intermediate results from such nodes are not the

dominant parts in subgraph enumeration. In this work, if not otherwise specified, we
simply let wmax =

√
wN . Given β, w, N and wmax, a degree sequence can be

generated using the method in [36].
In this paper, we compute the number of matches based on the PR model in or-

der to evaluate the graph storage mechanism (Section 4) and the cost of the algorithm
1If not specially mentioned, β is set to 2 < β < 3 in this paper, a typical setting of β for real-life graphs

[5, 6].
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(Section 5). In the computation, we relax the conflict-free condition of a match (Defini-
ton 1) to allow duplicate nodes and self-loops for ease of analysis, hence the number
of matches calculated is an upper bound of the actual value.

Summary of Notations. Table 2.1 summarizes the notations frequently used in this
paper.

Notations Description
V (g), E(g) The set of nodes and edges of a graph g
N (µ), d(µ) The set of neighbor nodes and the degree of µ ∈ V (g)

G The data graph
N,M The number of nodes and edges in the data graph
u, ui A data node, the i[-th] data node regarding the node id
P The pattern graph
n,m The number of nodes and edges in the pattern graph
v, vi A pattern node, the i[-th] patter node
Pi The i[-th] partial pattern, Pi ⊆ P

P li , P
r
i The left and right patterns while joining to produce Pi

f A match of P in G
RG(P ), R(P ) The relation of the matches of P in G

Φ(G) The storage mechanism of G
Gu The local graph of u ∈ V (G), where Gu ∈ Φ(G)

G A power-law random (PR) graph
β The power-law exponent of G
wi The expected degree of ui in G

Table 2.1: Notations frequently used in this paper.

3 Algorithm Overview
In this section, we generalize the algorithm framework for subgraph enumeration,
based on which we can describe the TwinTwigJoin algorithm [20] and SEED algo-
rithm.

3.1 Algorithm Framework
We solve the subgraph enumeration in a decomposition-and-join manner. Specifically,
we first decompose the pattern graph into a set of structures, called join unit, then we
join the matches of these join units to get the results.

Graph Storage. To determine what structure can be the join unit, we first introduce the
graph storage mechanism, which is defined as Φ(G) = {Gu |u ∈ V (G)}, whereGu ⊆
G is a connected subgraph of G with u ∈ V (Gu), and we have

⋃
u∈V (G)E(Gu) =

E(G). Each Gu is called the local graph of u. Specifically, the data graph G is
maintained in the distributed file system in the form of key-value pairs (u;Gu) for
each u ∈ V (G) according to Φ(G). We then define the join unit as:
Definition 3. (Join Unit) Given a data graph G and the graph storage Φ(G) =
{Gu | u ∈ V (G)}, a connected structure p is a join unit w.r.t. Φ(G), if and only
if

RG(p) =
⋃

Gu∈Φ(G)

RGu(p).

In other words, a join unit is a structure whose matches can be enumerated inde-
pendently in each local graph Gu ∈ Φ(G). We further define pattern decomposition
as:
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Definition 4. (Pattern Decomposition) Given a pattern graph P , a pattern decompo-
sition is denoted as D = {p0, p1, . . . , pt}, where pi ∈ P (0 ≤ i ≤ t) is a join unit and
P = p0 ∪ p1 ∪ · · · ∪ pt.
Join Plan. Given the decompositionD = {p0, p1, . . . , pt} of P , we solve the subgraph
enumeration using the following join:

R(P ) = R(p0) 1 R(p1) 1 · · · 1 R(pt). (3.1)

A join plan determines an order to solve the above join, and it processes t rounds of
two-way joins. We denote Pi as the i[-th] partial pattern whose results are produced in
the i[-th] round of the join plan. Obviously, we have Pt = P . The join plan is usually
presented in a tree structure, where the leaf nodes are (the matches of) the join units,
the internal nodes are the partial results - the matches of the partial patterns.

A join tree uniquely specifies a join plan, and we use join tree and join plan inter-
changeably. If all internal nodes of the join tree has at least one join unit as its child,
the tree is called a left-deep tree 1. Otherwise it is called a bushy tree [16]. Note that a
left-deep tree is also a bushy tree.

Example 2. Consider the pattern graph P and its decomposition D(P ) =
{q0, q1, q2, q3} in the left part of Figure 3.1. Here we use the triangle (3-clique) as the
join unit. We present a left-deep tree E1 and a bushy tree E2 to solve R(P ) = R(p0) 1
R(p1) 1 R(p2) 1 R(p3). They both process three rounds. We denote P ldi and P bi
as the i[-th] partial patterns in the left-deep tree and the bushy tree, respectively. For
example, in the first round of the left-deep tree, we process R(P ld1 ) = R(p0) 1 R(p1)
to produce the matches of the partial pattern P ld1 . Observe that in the left-deep tree,
each internal tree node (Rld1 , Rld2 and R(P )) has a join unit as its child, while in the
bushy tree, neither children of R(P ) are join units.

v1
v2

v3
v4
v5

v6

v1v2

v3

v1

v3
v4

v1
v2 v4

v3⋊⋉

v1

v4
v5

⋊⋉

v1
v2
v3 v4

v5
v1

v5

v6

⋊⋉

v1
v2 v3

v1

v3
v4

v1v2 v4
v3⋊⋉

v1
v4

v5
v1
v5

v6

v1

v4 v5
v6

⋊⋉

⋊⋉

R(p0) R(p0)R(p1) R(p1)

R(P ld
1 )

R(P ld
2 )

R(p2) R(p2)

R(p3)

R(p3)

R(P b
1 )

R(P b
2 )

R(P )

v1v2

v3

v1

v3
R(ptt0 ) R(ptt1 )

v1
v2

v3⋊⋉

v1

v3
v4

R(ptt2 )

v1
v2 v4

v3⋊⋉

v1

v4 v5
R(ptt3 )

v1
v2
v3 v4

v5

⋊⋉

v1

v5

v6

R(ptt4 )

⋊⋉
D(P ) = {p0, p1, p2, p3}

 Clique + Left-deep Join Clique + Bushy Join 

(SEED) 

Dtt(P ) = {ptt0 , ptt1 , ptt2 , ptt3 , ptt4 }

R(P tt
1 )

R(P tt
2 )

R(P tt
3 )

TwinTwig + Left-deep Join 

(TwinTwigJoin)
E1 E2 E3

Figure 3.1: Different Join Trees.

Execution Plan. An execution plan of subgraph enumeration task, denoted as E =
(D,J), contains two parts - a pattern decomposition D and a join plan J . Consider an
execution space Σ and a cost function C defined over Σ. We formulate the problem of
optimal execution plan for solving subgraph enumeration as follows:

1More accurately, it is the deep tree, which is further classified into the left-deep and right-deep tree. As
it is insignificant to distinguish them in this paper, we simply refer to the deep tree as left-deep tree.
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Definition 5. (Optimal Execution Plan) An optimal execution plan for solving sub-
graph enumeration is an execution plan Eo = (Do, Jo) ∈ Σ to enumerate P in G
using Equation 3.1, such that,

C(Eo) is minimized.

3.2 TwinTwigJoin
We briefly introduce the TwinTwigJoin algorithm by showing its storage mechanism
and the left-deep join framework.

Graph Storage. We denote the storage mechanism used in TwinTwigJoin as Φ0(G) =
{G0

u | u ∈ V (G)}, where V (G0
u) = {u} ∪ N (u) and E(G0

u) = {(u, u′)|u′ ∈ N (u)}
[20]. A star is a qualified join unit w.r.t. Φ0(G), as the matched stars rooted at u can be
independently generated by enumerating the node combinations in N (u). Aware that
a general star may introduce enormous cost, TwinTwigJoin utilizes TwinTwig, a star
with either one or two edges, as the join unit.

Left-deep Join. After decomposing the pattern graph into a set of TwinTwigs,
TwinTwigJoin solves Equation 3.1 using a left-deep join structure, which processes
t rounds of joins, and the following join is executed in the i[-th] round:

R(Pi) = R(Pi−1) 1 R(pi),

where P0 = p0. In order to approach optimality, TwinTwigJoin exhaustively traverses
all possible left-deep join plans, evaluates the cost of each plan based on the ER model,
and selects the one with the minimal cost as the optimal plan.

In Figure 3.1, we show the optimal execution plan E3 of TwinTwigJoin for the
given P , which includes the TwinTwig decomposition Dtt(P ) and the optimal left-
deep join plan.

Drawbacks. There are three major drawbacks of the TwinTwigJoin algorithm. First,
the simple graph storage mechanism only supports using star as the join unit, which
can result in severe scalability issues. Although TwinTwigJoin uses TwinTwig as
a substitution, the issues are only mitigated but not evaded, especially when handling
nodes with very large degree. Second, TwinTwigJoin should process at least m2 rounds,
which limits its utilization for complex pattern graph. Ultimately, the left-deep join
framework may render sub-optimal solution as it only searches for “optimality” in the
left-deep space [18].

3.3 SEED
SEED tackles the issues of TwinTwigJoin by introducing the SCP graph storage mech-
anism and the optimal bushy join structure, which greatly improve the performance.

SCP Graph Storage. According to Definiton 3, the storage mechanism Φ(G) deter-
mines the join unit. We say Φ(G) is p-preserved if p can be a join unit w.r.t. Φ(G). In
particular, we define the Star-Clique-Preserved (SCP) storage mechanism as:

Definition 6. (SCP storage mechanism) Φ(G) = {Gu | u ∈ V (G)} is an SCP
storage mechanism, if both star and clique can be the join units w.r.t. Φ(G).

The storage mechanism Φ0(G) used in TwinTwigJoin is not an SCP storage mech-
anism, as clique can not be used as the join unit. With clique as an alternative, we can
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Algorithm 1: SEED( data graph G, pattern graph P )

Input : G : The data graph, stored as Φ(G) = {Gu | u ∈ V (G)},
P : The pattern graph.

Output : R(P ): All Matches of P in G.
1 Eo ← computeExecutionPlan(G,P ); (Algorithm 2)
2 for i = 1 to t do
3 R(Pi)← R(P li ) 1 R(P ri ) according to Eo (using mapi and reducei);

4 return R(Pt);

5 function mapi( key: ∅; value: Either a match f ∈ R(P li ), h ∈ R(P ri ) or Gu ∈ Φ(G) )

6 Vk = {vk1 , vk2 , . . . , vks} ← V (P li ) ∩ V (P ri );
7 if P li is a join unit then genJoinUnit(P li , Gu, Vk);
8 else output ((f(vk1), f(vk2), . . . , f(vks)); f);
9 if P ri is a join unit then genJoinUnit(P ri , Gu, Vk);

10 else output ((h(vk1), h(vk2), . . . , h(vks));h);

11 function genJoinUnit(p,Gu, Vk = {vk1 , vk2 , . . . , vks})
12 RGu(p)← all matches of p in Gu;
13 forall the match f ∈ RGu(p) do
14 output ((f(vk1), f(vk2), . . . , f(vks)); f);

15 function reducei( key:r = (uk1 , uk2 , . . . , uks); value: F = {f1, f2, . . . }, H = {h1,
h2, . . . } )

16 forall the (f, h) ∈ (F ×H) s.t. (f − r) ∩ (h− r) = ∅ do
17 output (∅; f ∪ h);

avoid processing star where possible, which not only saves cost in a single run, but
reduces the rounds of execution as a whole. For example, the plans E1 and E3 shown
in Figure 3.1 are both left-deep joins, but E1 uses triangles, while E3 uses TwinTwigs
as the join units. Intuitively, we expect that E1 draws smaller cost as the triangle has
much fewer matches than a two-edge TwinTwig does, and E1 is one round less than
E3. We will detail the SCP storage mechanism in Section 4.

Bushy Join. SEED solves Equation 3.1 by exploiting the bushy join structure. Specif-
ically, the following join is processed in the i[-th] round:

R(Pi) = R(P li ) 1 R(P ri ), (3.2)

where P li and P ri are called the left and right join patterns, respectively. The left and
right join patterns can be either a join unit, or a partial pattern processed in an earlier
round.

The execution plan E2 in Figure 3.1 is a bushy tree, in which we have two join units
R(p0) and R(p1) as the left and right join patterns in the first round, and two partial
patterns R(P b1 ) and R(P b2 ) in the third round.

Compared to TwinTwigJoin, SEED searches the optimal solution among the bushy
trees, which covers the whole searching space, and thus guarantees the optimality of
the solution.
Algorithm. We show the algorithm of SEED in Algorithm 1. Given the pattern graph
P , we first compute the optimal execution plan Eo in line 1 using Algorithm 2 (details in
Section 6). According to the optimal execution plan Eo, the i[-th] join in Equation 3.2 is
processed using MapReduce via mapi and reducei (line 2). We apply the same reducei

as in TwinTwigJoin, thus we focus on mapi here.
The function mapi is shown in lines 5-10. The inputs of mapi are either a match
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f ∈ R(P li ), a match h ∈ R(P ri ) or (u;Gu) for all Gu ∈ Φ(G) if we are dealing
with a join unit (line 5). We first calculate the join key {vk1 , vk2 , . . . , vks} using
V (P li ) ∩ V (P ri ) (line 6). Then we compute the matches of P li and P ri . Take P li for
example. We know whether P li is a join unit in current round according to the execution
plan. If P li is a join unit, we invoke genJoinUnit (P li , Gu, Vk) (line 7) to compute the
matches of P li in Gu for each Gu ∈ Φ(G) (lines 12-14). Note that R(P li ) are complete
by merging RGu(P li ) for all Gu ∈ Φ(G) according to Definiton 3. If P li is not a join
unit, the matches of P li must have been computed in previous round. Then we directly
fetch the partial results and output them with the join key (line 8).

Challenges. To pursuit the optimality for SEED, we have to address multiple key
challenges. Specifically,
• It is non-trivial to develop an effective SCP graph storage mechanism. In order to

use clique as join unit, we have to introduce extra edges to the simple local graph
used in TwinTwigJoin. However, the size of each local graph should not be too large
for scalability consideration.

• A well-defined cost function is required to estimate the cost of each execution plan.
In the subgraph enumeration problem, the tuples that participate in the joins are the
matches of certain pattern graph, whose size is difficult to estimate, especially in a
power-law graph.

• It is in general computationally intractable to compute an optimal join plan [18]. In
TwinTwigJoin, an easier-solving left-deep join is applied, which may render sub-
optimal solution. In this work, we target on computing the optimal bushy join plan -
a much harder task given the larger searching space [16].

4 Beyond Stars: SCP Storage
In this section, we will propose an effective SCP storage mechanism, in which each
local graph introduces a small number of extra edges to the local graph used in
TwinTwigJoin. We leverage the PR model for analysis. Recall that wi is the expected
degree for the node ui and w is the expected average degree, and β is the power-law
exponent. Denote w̃ as the second-order average degree, which can be computeed as
[4]:

w̃ = (

N∑
i=1

w2
i )/(

N∑
i=1

wi) = Ψwβ−2w3−β
max,

where Ψ = (β−2)β−1

(3−β)(β−1)β−2 .
As we mentioned earlier, the storage mechanism - Φ0(G) - used in TwinTwigJoin

is not an SCP storage mechanism. In the following, we will explore two SCP storage
mechanisms - Φ1(G) and Φ2(G), in which the local graphs are respectively denoted as
G1
u andG2

u for each u ∈ V (G). In order to use clique as the join unit, both mechanisms
introduce extra edges to each local graph in Φ0(G). We denote ∆

(i)
u = E[|E(Giu)|] −

E[|E(G0
u)|] as the expected number of extra edges introduced by Φi(G) for u ∈ V (G),

and let ∆
(i)
max = maxu∈V (G){∆(i)

u } for i ∈ {1, 2}.
SCP Graph Storage. Let Φ1(G) = {G1

u | u ∈ V (G)}, where V (G1
u) = V (G0

u) and
E(G1

u) = E(G0
u) ∪ {(u′, u′′) |u′, u′′ ∈ N (u) ∧ (u′, u′′) ∈ E(G)}. We divide the

edges of each G1
u into two parts, the neighbor edges E(G0

u), and the triangle edges
that close triangles with the neighbor edges. Clearly the triangle edges are extra edges
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introduced by Φ1(G). The following lemma shows that Φ1(G) is an SCP storage
mechanism.

Lemma 1. Given the storage mechanism Φ1(G) = {G1
u | u ∈ V (G)}, p is a join unit

w.r.t. Φ1(G) if p is a star or a clique.

Proof. Clearly, Φ1(G) is star-preserved since each G1
u contains G0

u. Consider p is a
k-clique. We assume that its matches exist in the data graph, as otherwise it’s pointless.
Let V (p) = {v0, v1, v2 . . . , vk−1}. We prove that ∀f ∈ RG(p), ∃u ∈ V (G) such that
f ∈ RG1

u
(p). According to Definiton 3, this sufficiently concludes that p is a join unit.

Consider G1
u0

where u0 = f(v0) for a given f . Obviously, (v0, vi) ∈ E(p) for any
1 ≤ i ≤ k − 1 , which gives (u0, f(vi)) ∈ E(G), and more specifically, (u0, f(vi)) ∈
E(G1

u0
) as they are the neighbor edges of u0. Furthermore, as (vi, vj) ∈ E(p) for

any i 6= j, we have (f(vi), f(vj)) ∈ E(G). We know both f(vi) and f(vj) are the
neighbors of u0, thus we have (f(vi), f(vj)) ∈ E(G1

u0
) as the triangle edge. It is

immediate that f ∈ RG1
u0

(p).

Despite Φ1(G) is an SCP storage mechanism, it can introduce numerous extra
edges to a certain local graph in Φ0(G), as shown in the following lemma.

Lemma 2. Given a PR graph G, and the node ui ∈ V (G), we have

∆(1)
ui = Ψ2wβ−2N2−βw2

i , and

∆(1)
max = Ψ2wβ−1N3−β .

Proof. We denote ti as the expected number of triangles associated with ui. It is easy
to see G1

ui contains wi neighbor edges and ti triangle edges by expectation. Thus:

∆(1)
ui = E[|G1

ui |]− E[d(ui)] = ti.

Recall w̃ =
∑N
i=1 w

2
i∑N

i=1 wi
is the second-order average degree. When 2 < β < 3, we can

compute w̃ as [4]:
w̃ = Ψwβ−2w3−β

max, (4.1)

where Ψ = (β−2)β−1

(3−β)(β−1)β−2 .
For a given node ui, we will locate uj and uk in the data graph to close a triangle.

Following the PR model, we have:

∆(1)
ui = ti =

N∑
j=1

N∑
k=1

ρwiwj × ρwiwk × ρwjwk

= w2
i ρw̃

2 = w2
i

w̃2

N × w (by ρ =
1∑N
i=1 wi

=
1

N × w )

= Ψ2wβ−2N2−βw2
i ( by wmax =

√
wN)

We immediately have ∆
(1)
max = Ψ2wβ−1N3−β by letting wi = wmax.

Lemma 2 shows that the number of extra edges introduced byG1
ui is nearly propor-

tional to w2
i , which can cause severe workload skew and thus hamper the scalability of

the algorithm.

Compact SCP Graph Storage. Targeting the deficiencies of Φ1(G), we consider a
more compact storage mechanism by leveraging the node order (Definiton 2). Specif-
ically, we define Φ2(G) = {G2

u | u ∈ V (G)}, where V (G2
u) = V (G0

u) and

10



E(G2
u) = E(G0

u) ∪ {(u′, u′′) | (u′, u′′) ∈ E(G) ∧ u ≺ u′ ∧ u ≺ u′′}. Compared
to G1

u, G2
u only includes the triangle edge when u is the minimum node in the triangle.

It is clear that G0
u ⊆ G2

u ⊆ G1
u. Next, we show that Φ2(G) is also an SCP storage

mechanism.

Corollary 1. Consider a pattern graph P and its two nodes v1, v2, where v1 are adja-
cent to all nodes in P . If an order is assigned between v1 and v2 using the symmetry-
breaking algorithm (see the appendix), then v2 must be adjacent to all nodes of P .

Proof. As v1 and v2 are assigned an order using symmetry breaking, there must exist
an automorphism (a match from P to itself) σ, such that σ(v1) = v2. By Structure-
Preservation (Definiton 1), v2 must be adjacent all nodes as v1 in P .

Lemma 3. Given the storage mechanism Φ2(G) = {G2
u | u ∈ V (G)}, p is a join unit

w.r.t. Φ2(G) if and only if p is a star or a clique.

Proof. (If.) Clearly, Φ2(G) is star-preserved since each G2
u contains G0

u. We next
show a k-clique is a join unit w.r.t. Φ2(G). Given a k-clique p where V (p) =
{v1, v2, . . . , vk}, we apply a full order v1 < v2 < · · · < vk for symmetry break-
ing [11]. Assume that the match of p exists. We prove that, ∀f ∈ RG(p), ∃u ∈ V (G),
such that f ∈ RG2

u
(p). Given a match f , we let f(v1) = u1. For any 2 ≤ i < j ≤ k,

it is clear that v1 < vi < vj and v1, vi, vj close a triangle in p. This suggests
u1 ≺ f(vi) ≺ f(vj) and u1, f(vi), f(vj) close a triangle in G. By the definition
of G2

u, we have:

(u1, f(vi)), (u1, f(vj)) and (f(vi), f(vj)) ∈ E(G2
u1

)

In other words, G2
u1

involves every edge of the matched instance of p. Hence, f ∈
RG2

u1
(p).

(Only If.) We prove this by contradiction. Let V (p) = {v1, v2, . . . , vn}, and one
of its match be f = (u1, u2, . . . , un). Assume that p is neither a star nor a clique
and the match f is preserved in some G2

u. Given the structure of G2
u, there must exist

a node v1 (w.l.g.) in p adjacent to all the other nodes of P , and the match must be
preserved in G2

u1
. There are at least two nodes that have no edge. Let them be v2, v3

(w.l.g.), and we assume that (u2, u3) 6∈ E(G), where u2 = f(v2) and u3 = f(v3). As
p is not a star, we must have at least two nodes vi, vj such that (vi, vj) ∈ E(p) and
vi, vj 6= v1. There are two cases: (1) v2 or v3 is one of vi, vj ; (2) neither v2 nor v3

is vi or vj . We show both cases are impossible. In case 1, let vi = v2 and vj = v4

(w.l.g.). Clearly, (v2, v4) ∈ E(p) implies (u2, u4) ∈ E(G2
u1

). By the definition of G2
u,

we have u1 ≺ u2 and u1 ≺ u4, and by the order-preservation match, we must have
v1 < v2 and v1 < v4. According to Corollary 1, v2 must be adjacent to all nodes in p,
this makes a contradiction as v2 does not connect v3. In case 2, let vi = v4 and vj = v5

(w.l.g.). Similar to case 1, this implies that v4 connects v2, which reduces to case 1 that
has made a contradiction already.

The next lemma shows that Φ2(G) brings in much less extra edges than Φ1(G)
does to each local graph in Φ0(G).

Lemma 4. Given a PR graph G and a node ui ∈ V (G), we have

∆(2)
ui ≤ ∆(2)

max ≤ [(3− β)(4− β)
− 4−β

3−β ]2Ψ2wβ−1N3−β .
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Proof. Let T ′i denote the set of triangles in Ti that have ui as the minimum node, and
t′i = |T ′i |. We have:

∆(2)
ui = E[|E(G2

ui)|]− E[d(ui)] = t′i.

Consider a triangle (ui, uj , uk) rooted on ui such that ui ≺ uj and ui ≺ uk. Recall
that we arrange the nodes in G by non-decreasing order of their degree. We hence have
j ≥ i+ 1, k ≥ i+ 1. Therefore:

∆(2)
ui = t′i =

N∑
j,k=i+1

ρwiwj × ρwiwk × ρwjwk

= ρw2
i (ρ

N∑
j=i+1

w2
j )

2
= ρw2

i (ρ
N∑
j=1

w2
j − ρ

i∑
j=1

w2
j )

2
.

Note that w1, w2, . . . , wi is a degree sequence that has wi as the maximum degree.
We then construct another sequence w′1, w

′
2, . . . , w

′
i with w′i = wi that has the same

power-law distribution as the original sequence. In other words, they have the same β
value. Since i < N , it is immediate that the frequency of w′j must be smaller than that
of wj for any 1 ≤ j ≤ i. It is easy to find:

ρ

i∑
j=1

w2
j ≥ ρ

i∑
j=1

w′2j = Ψwβ−2w3−β
i .

Therefore, we have:

∆(2)
ui ≤ ϕ(wi) = Ψ2w2(β−2) × ρw2

i (w
3−β
max − w3−β

i )
2
.

Let ∂ϕ(wi)
∂wi

= 0, we have wi = wmax
(4−β)1/(3−β)

, and:

∆(2)
max ≤ Ψ2w2(β−2)ρ[

wmax
(4− β)1/(3−β)

]
2
(
3− β
4− β )2(w2

max)3−β

= [(3− β)(4− β)
− 4−β

3−β ]2Ψ2wβ−1N3−β

In Lemma 4, we give an upper bound of ∆
(2)
ui , while its value is often much smaller.

Specifically, ∆
(2)
ui = 0 when d(ui) = 1 and d(ui) = maxu∈V (G) d(u). In general,

we show that ∆
(2)
max is much smaller than ∆

(1)
max. In the PR graph, we set w = 50,

N = 1,000,000 and vary β = 2.1, 2.3, 2.5, 2.7, 2.9, and then compare ∆
(1)
max and

∆
(2)
max in Table 4.1. It is clear that ∆

(2)
max � ∆

(1)
max in all cases. When β increases,

observe that ∆
(2)
max decreases significantly while ∆

(1)
max remains in the same order. In

the experiments (Exp-1 in Section 8), we further compared ∆
(1)
u with ∆

(2)
u for each

data node u using synthetic and real datasets, and the experimental results demonstrate
that ∆

(2)
u � ∆

(1)
u for all data nodes except those with very small degree in all datasets.

∆max β = 2.1 β = 2.3 β = 2.5 β = 2.7 β = 2.9

∆
(1)
max 141,939 195,260 117,851 76,685 141,797

∆
(2)
max 7,652 7,652 2,586 710 174

Table 4.1: The number of extra edges introduced by G1
u and G2

u.

Discussion. Clearly, the more join units to support, the more edges we should involve
in each local graph of the storage mechanism, which can hamper the scalability of the
algorithm. We carefully consider such a tradeoff in this paper.
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Given a node v in P , we say v′ is its k-hop neighbor if there is a shortest path
of length k between v and v′. A graph is called a one-hop graph if there is a node
connecting all other nodes, and a multi-hop graph otherwise. Clearly, star and clique
are both one-hop graphs. There are three cases regarding the usable join units.
• All one-hop graphs. We can actually adopt Φ1(G) to support all one-hop graphs as

the join units, which is yet unaffordable according to Lemma 2.
• Multi-hop graphs. In order to support multi-hop graphs, we need to involve all two-

or-more-hop neighbors of u and relevant edges into Gu, which will render an even
larger local graph than G1

u.
• Part of one-hop graphs. According to Lemma 3, Φ2(G) only supports star and clique

as the join units. In order to support the other one-hop graphs, we have to involve
more edges to each G2

u ∈ Φ2(G), which makes it hard to bound the size of each
local graph. We considers this as a future work to find other storage mechanisms
that support more one-hop graphs as the join units, yet still have size-bounded local
graphs.

Consequently, we adopt Φ2(G) as the storage mechanism in this paper, which only
supports star and clique as the join units. In the following, we will refer to G2

u simply
as Gu if not specifically mentioned.

Implementation Details. Given a data graphG, we implement Φ2(G) by constructing
G2
u for each u ∈ V (G). Specifically, we first aggregate the neighbor edges of each u to

G2
u. Then we apply existing triangle enumeration approaches such as [20, 15, 1]. For

each triangle (u1, u2, u3) generated with u1 ≺ v2 ≺ v3, we add (u2, u3) to G2
u1

as the
triangle edge. With G2

u for each u ∈ V (G), we can compute the matches of any star
or clique using an in-memory algorithm. The overheads of constructing the new graph
storage is dominated by triangle enumeration, which are relatively small, as shown in
the experiment, comparing to the performance gains of using clique as the join unit.

5 Cost Analysis
We follow the cost model in TwinTwigJoin by summarizing the map dataM (the in-
put and output data of the mapper), shuffle data S (the data transferred from mapper
to reducer) and reduce data R (the input and output data of reducer) in each round of
Algorithm 1. These data include the communication I/O among machines and the disk
I/O of reading and writing the partial results, which dominate the cost in MapReduce
[20]. Considering that most real-life graphs are power-law graphs, we further con-
tribute to estimate the number of matches of a pattern graph based on the PR model
instead of the ER model [20], and we show that the PR model delivers more realistic
estimations.

To show how we compute the cost, we first consider an arbitrary join R(Pβ) =
R(p) 1 R(Pα), where p is a join unit and Pα, Pβ are two partial patterns. LetM(P ),
S(P ) and R(P ) denote the map data, shuffle data and reduce data regarding a certain
graph P . According to Algorithm 1, we have:
• The mapper handles the partial pattern Pα and the join unit p in different ways. For
Pα, the mapper takes the matches R(Pα) as inputs and directly outputs them with
the join key. Therefore,M(Pα) = 2R(Pα). As for the join unit p, the mapper first
reads Gu for each data node u to compute R(p), then outputs the results. Denote
∆(G) as the set of triangles in G, and it is clear that

∑
u∈V (G)E(Gu) = ∆(G).

Therefore,M(p) = ∆(G) +R(p).
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• The shuffle transfers the mapper’s outputs to the corresponding reducer. Therefore,
the shuffle data is also the mapper’s output data, and we have S(Pα) = R(Pα) and
S(p) = R(p).

• The reducer takes R(Pα) and R(p) as inputs to compute R(Pβ). Apparently, the
input data areR(Pα) = R(Pα) andR(p) = R(p), and the output data areR(Pβ) =
R(Pβ).

Summarizing the above, the cost for processing the join unit p in a certain join is:

T (p) = |M(p)|+ |S(p)|+ |R(p)| = |∆(G)|+ 3|R(p)| (5.1)

and the cost for processing the partial pattern Pα is:

T (Pα) = |M(Pα)|+ |S(Pα)|+ |R(Pα)| = 5|R(Pα)| (5.2)

Note that R(Pα) must have been generated in earlier round, while the cost to output
R(Pα) is involved in T (Pα) for consistency, and R(Pβ) will be accordingly computed
in T (Pβ).

Given an execution plan E = (D,J), where D = {p0, p1, . . . , pt}, it is processed
using t rounds of joins, and in the i[-th] round the partial results R(Pi) are generated.
We compute the cost by putting all costs of processing pi and Pi together as:

C(E) =

t∑
i=0

T (pi) +

t−1∑
i=1

T (Pi), (5.3)

where T (pi) and T (Pi) are computed via Equation 5.1 and Equation 5.2, respectively.
Remark 3. We present the cost model using MapReduce for easy understanding. Nev-
ertheless, the cost model can be applied to other platforms with minor modifications.
Take Spark as an example. Spark can maintain the intermediate results in the main
memory between two successive iterations. Therefore, we do not need to consider the
cost of accessing these data on the disk, which corresponds to the map data and reduce
data in MapReduce.

5.1 Result-Size Estimation
In order to compute the cost, we need to estimate |R(P )| for a certain P in Equation 5.1
and Equation 5.2. It is obvious that all partial patterns in Algorithm 1 are connected.
Given a connected pattern graph P , we next show how to estimate |RG(P )| in the PR
graph G.

Suppose P is constructed from an edge by extending one edge step by step, and
P (1) and P (2) are two consecutive patterns obtained along the process. More specifi-
cally, given v ∈ V (P (1)) and v′ ∈ V (P (2)) where (v, v′) 6∈ E(P (1)), P (2) is obtained
by adding the edge (v, v′) to P (1). We let δ and δ′ be the degrees of v and v′ in P (1),
respectively. Here, if v′ 6∈ V (P (1)), δ′ = 0. Given a match f of P (1), we let f(v) = u.
We then extend f to generate the match f ′ of P (2) by locating another node u′ ∈ V (G)
where (u, u′) ∈ E(G) and f ′(v′) = u′. Suppose there are by expectation γ matches
of P (2) that can be extended from one certain match of P (1), we have:

|RG(P (2))| = γ|RG(P (1))|

The value of γ depends on how the edge is extended from P (1) to form P (2). There are
two cases, namely, v′ 6∈ V (P (1)) and v′ ∈ V (P (1)), which are respectively discussed
in the following.
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(Case 1) v′ 6∈ V (P (1)). In this case, a new node v′ is introduced to extend the edge
(v, v′). The potential match of v′, namely u′, can be any data node in G. Therefore,
we have:

γ = E[
∑

u′∈V (G)

d(u)d(u′)ρ] = E[d(u)]× ρ
∑

u′∈V (G)

E[d(u′)]

= E[d(u)]× ρ
N∑
i=1

wi = E[d(u)] =

N∑
i=1

φiwi.

where φi is the probability that u appears as ui in the matches of P (1).
For ease of analysis, we focus on the relationships between u and its neighbors.

Denote k-star(u) as the star with k leaves rooted on u. Clearly, u and its neighbors
in the match form a δ-star(u) (Note that the degree of u in the match is equal to the
degree of v in P (1), that is δ). Thus, we have:

φi = Pr(u = ui | u and its neighbors form a δ-star(u))

=
Pr(u and its neighbors form a δ-star(u) | u = ui)Pr(u = ui)

Pr(u and its neighbors form a δ-star(u))

=
Pr(u and its neighbors form a δ-star(u) | u = ui)∑N
j=1 Pr(u and its neighbors form a δ-star(u) | u = uj)

=
Pr(Ei)∑N
j=1 Pr(Ej)

.

where Ei denotes the event that u and its neighbors form a δ-star(u) given u = ui.
Given any node set {ut1 , ut2 , . . . , utδ} ⊂ V (G), Ei can be witnessed as there is an
edge connecting ui and uts for any 1 ≤ s ≤ δ. According to the PR model, the
probability that any ui and uj are connected is Pri,j = wiwjρ, hence we have:

Pr(Ei) =
∑

{ut1 ,ut2 ,...,utδ }⊂V (G)

Pri,t1 × · · · × Pri,tδ

=
∑

{ut1 ,ut2 ,...,utδ }⊂V (G)

wiwt1ρ× · · · × wiwtδρ

= (wi)
δ × C,

where C = ρδ
∑
{ut1 ,ut2 ,...,utδ}∈V (G)

∏δ
s=1 wts .

Note that C is a constant for any i. Therefore:

φi =
Pr(Ei)∑N
j=1 Pr(Ej)

=
wδi∑N
j=1 w

δ
j

, (5.4)

and
γ =

N∑
i=1

wδi
ΣNj=1w

δ
j

wi =
ΣNi=1w

δ+1
i

ΣNi=1w
δ
i

. (5.5)

(Case 2) v′ ∈ V (P (1)). In this case, a new edge is added between two existing nodes
in P (1). In this case, a new edge is added between two existing nodes in P (1). Consider
the two nodes v and v′ in P (1), and u and u′ are their matches in an arbitrary match of
P (1). We compute γ as:

γ = E[d(u)d(u′)ρ] = ρE[d(u)d(u′)].
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We still consider the neighbors of u and u′ in the match. Suppose u and u′ has δ
and δ′ neighbors respectively. Denote φi,j as the probability that u and u′ appear as ui
and uj in the match. Then:

E[d(u)d(u′)] =

N∑
i,j=1

φi,j wi wj .

There are two cases. If u and u′ have no common neighbor in the match, it is
obvious that:

φi,j = φiφj =
wδi∑N
s=1 w

δ
s

wδ
′
j∑N

s=1 w
δ′
s

,

where φi and φj are computed according to Equation 5.4.
If their neighbors coincide, u and u′ are not independent. Let Vc =

{uc1 , uc2 , . . . , uct} denote the common neighbors of u and u′, Vd = {ud1 , . . . , udδ−t}
denote only u’s neighbors and V ′d = {ud′1 , . . . , ud′δ′−t} denote only u′’s neighbors.
The structure formed by u, u′ and their neighbors is called a twin star, and u and u′ are
the roots of the twin star. We have:

φi,j = Pr(u = ui, u
′ = uj | u, u′ root a twin star)

=
Pr(u, u′ root a twin star | u = ui, u

′ = uj)Pr(u = ui, u
′ = uj)

Pr(u, u′ root a twin star)

=
Pr(Ei,j)∑N

s,t=1 Pr(Es,t)
,

where Ei,j denotes the event that u and u′ root a twin star given u = ui and u′ = uj .
Following the same idea in deriving Equation 5.5, we have:

Pr(Ei,j) =
∑

Vc⊂V (G)

∑
Vd⊂V (G)

∑
V ′
d
⊂V (G)

Pri,c1 × Pri,c2 × · · ·Pri,ct

× Pri,d1 × Pri,d2 × · · ·Pri,dδ−t × Prj,c1 × Prj,c2 × · · ·Prj,ct
× Prj,d′1 × Prj,d′2 × · · ·Prj,d′δ′−t

= wδiw
δ′
j ×

∑
Vc⊂V (G)

t∏
s=1

ρ2w2
cs ×

∑
Vd⊂V (G)

δ−t∏
s=1

ρwds

×
∑

V ′
d
⊂V (G)

δ′−t∏
s=1

ρwd′s = wδiw
δ′
j × C,

(5.6)

where

C =
∑

Vc⊂V (G)

t∏
s=1

ρ2w2
cs ×

∑
Vd⊂V (G)

δ−t∏
s=1

ρwds

×
∑

V ′
d
⊂V (G)

δ′−t∏
s=1

ρwd′s .

Note that C is a constant for any i, j. Therefore:

φi,j =
Pr(Ei,j)∑N

s,t=1 Pr(Es,t)
=

wδiw
δ′
j∑N

s,t=1 w
δ
sw

δ′
t

=
wδi∑N
s=1 w

δ
s

wδ
′
j∑N

s=1 w
δ′
s

.
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As a result of both cases, we have:

γ = ρ

N∑
i,j=1

φi,jwiwj

= ρ× ΣNi=1w
δ+1
i

ΣNi=1w
δ
i

×
ΣNj=1w

δ′+1
j

ΣNj=1w
δ′
j

.

(5.7)

Given Equation 5.5 and Equation 5.7, we compute |RG(P )| for any connected pat-
tern graph P as follows. First, we run Depth-First-Search (DFS) over P to obtain the
DFS-tree. Then, starting from an edge e with |RG(e)| = 2M , we apply Equation 5.5
iteratively to compute the size of the tree. Finally, we apply Equation 5.7 iteratively as
we extend the non-tree edges. Note that, given a graph G, the γ calculated by Equa-
tion 5.5 or Equation 5.7 only depends on δ and δ′, thus can be precomputed.

|RG(P )| β = 2.1 β = 2.3 β = 2.5 β = 2.7 β = 2.9

|RG(P ld2 )| 67618.5 14632.5 1993.0 610.2 83.4
|RG(P b2 )| 230.2 69.5 16.3 6.2 1.5

Table 5.1: The number of the matches of P ld2 and P b2 in the PR graph (in billions).

Remark 4. The plans E1 and E2 shown in Figure 3.1 are actually the optimal execution
plans computed using the ER model and the PR model, respectively. Observe that E1
differs from the E2 in the second round where P ld2 is processed instead of P b2 . Generally,
we have |R(P ld2 )| < |R(P b2 )| in the ER model [20], but |R(P ld2 )| � |R(P b2 )| in the
PR model. As a result, E1 and E2 are returned as the optimal plan ragarding the
ER model and PR model, respectively. Next we consider an ER graph < and a PR
graph G with N = 1,000,000 and M = 25,000,000, and compute |R(P ld2 )| and
|R(P b2 )| in both graphs for a comparison. According to [20], we have |R<(P ld2 )| =
0.78, and |R<(P b2 )| = 312. Then we compute |RG(P ld2 )| and |RG(P b2 )| using the
proposed method, and show the results with various power-law exponents in Table 5.1.
It is clear to see that |RG(P ld2 )| � |RG(P b2 )| in all cases. In Section 8, we further
experimented using real-life graphs, which confirms that the PR model offers more
realistic estimation and consequently renders better execution plan.

6 Execution Plan
In this section, we introduce the algorithm that computes the optimal execution plan.
Rather than following the left-deep join framework [20], we propose a dynamic-
programming algorithm to compute the optimal bushy join plan. We further consider
overlaps among the join units. To show the basic idea, we first introduce the non-
overlapped case.

6.1 Non-overlapped Case
Definition 7. (Partial Execution) A partial execution, denoted EPα , is an execution
plan that computes the partial pattern Pα ⊆ P .

Given a partial pattern Pα ⊆ P , the optimal partial execution plan of Pα satisfies:

C(EPα) =

 0, Pα is a join unit,
min

P lα⊂Pα
{C(EP lα) + T (P lα) + C(EPrα) + T (P rα)}, otherwise. (6.1)
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where P rα = Pα \ P lα, T (P lα) and T (P rα) are computed via Equation 5.1 or Equa-
tion 5.2 depending on whether they are join units or partial patterns. The optimal
partial execution EPα is obtained while minimizing the sum of the cost of the optimal
EP ′l and EP ′r , and the cost of processing the join R(Pα) = R(P lα) 1 R(P rα), that is
T (P lα) + T (P rα). Note that C(EPα) = 0 if Pα is a join unit, as no join is needed to
compute R(Pα).

We use a hash mapH to maintain the so far best partial execution for each Pα ⊆ P .
The entry of the hash map for Pα has the form (Pα, T , C, P lα, P rα), where T is an
auxiliary cost computed via either Equation 5.1 or Equation 5.2, C is the so far best
cost C(EPα) while evaluating Pα, P lα is the left-join pattern when the current best cost
is obtained, and P rα is the corresponding right-join pattern, where P rα = Pα \P lα, as no
overlap is considered. The hash map is indexed by Pα and we can access one specific
item I for a certain Pα viaHPα(I), where I ∈ {T , C, P lα, P rα}.

Algorithm 2: computeExecutionPlan(data graph G, pattern graph P )

Input : The data graph G and the pattern graph P
Output : The optimal execution plan w.r.t. P .

1 forall the Pα ⊆ P , s.t. Pα is connected do
2 H ← H∪ (Pα, T (Pα),∞, ∅, ∅);

3 for s = 1 . . .m, where m = |E(P )| do
4 forall the Pα ⊂ P s.t. Pα is connected and |E(Pα)| = s do
5 if Pα is a join unit then
6 HPα(C) = 0;

7 else
8 forall the P lα ⊂ Pα s.t. P lα and P rα = Pα \ P lα are connected do
9 C ← HP lα(C) +HP lα(T ) +HPrα(C) +HPrα(T ); if C < HPα(C)

then
10 HPα(C)← C;
11 HPα(P lα)← P lα; HPα(P rα)← P rα;

12 Eo ← ComputeOptPlan(H, P );
13 return Eo;

The algorithm to compute the optimal execution plan is shown in Algorithm 2.
In line 2, We initialize an entry in the hash map for each connected Pα ⊆ P that is
potentially a partial pattern (line 2). Note that we precompute T (Pα) for each Pα.
To find the optimal execution plan for P , we need to accordingly find the optimal
partial execution plans for all P ’s subgraphs, in non-decreasing order of their sizes.
The algorithm performs three nested loops. The first loop in line 3 confines the size
of the partial patterns to s, and the second loop enumerates all possible partial patterns
with size s (line 4). If the current partial pattern Pα is a join unit, we simply set the
corresponding cost to 0 (line 6). Otherwise, the third loop is triggered to update the
optimal execution plan for Pα (line 8). We enumerate all P lα (and P rα = Pα \ P lα), and
for each P lα where P lα and P rα are both connected, we compute C(EPα) via Equation 6.1
(line 9). In this way, we finally find the P lα to minimize C(EPα), and update the entry
of Pα by settingHPα(C),HPα(P lα) andHPα(P rα) correspondingly (line 10-11). After
all the entries in the hash map are computed, we first look up the entry for P to locate
the P lα and P rα and repeat the procedure recursively on P lα and P rα until P lα = ∅. In
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this way, we compute the optimal execution plan (line 12).

Lemma 5. The space complexity and time complexity of Algorithm 2 are O(2m) and
O(3m), respectively.

Proof. We first show the space complexity. Each entry in H is uniquely identified
by the partial pattern Pα, and there are at most 2m partial patterns, which consumes
O(2m) space.

Next we prove the time complexity. There are at most
(
m
s

)
partial patterns of P

sized s, which trigger
(
m
s

)
calls over the second loop. For each partial pattern Pα of size

s, we enumerate all possible connected subgraphs of it as P lα, which incurs at most 2s

calls. By pre-computing any connected partial patterns of P (which use O(2m) space
and time), we can verify the connectedness of P lα and P rα in O(1) time. Moreover,
updating the entry has the cost O(1). Note that

∑m
s=1

(
m
s

)
· 2s = (1 + 2)m = 3m.

Therefore, the time complexity of Algorithm 2 is O(3m).

Discussion. In practice, the processing time for Algorithm 2 is much smaller than
O(3m) since we require that all partial patterns are connected.

6.2 Overlapped Case
The following lemma inspires us to consider overlaps among the join units.

Lemma 6. Given a pattern graph P , and another pattern graph P+, where P+ =
P ∪ {(v, v′)}, v, v′ ∈ V (P ) and (v, v′) 6∈ E(P ), we have:

|R(P+)| ≤ |R(P )|.

Proof. Apparently, ∀f ∈ R(P+), f ∈ R(P ). Therefore, |R(P+)| ≤ |R(P )|.

Example 3. We have actually shown overlaps among the join units in Figure 3.1.
For example, we have E(p0) ∩ E(p1) = {(v1, v3)} in the bushy tree E2. Let p−1 =
p1 \ (v1, v3). In the non-overlapped case, we will execute R(P ′1) = R(p0) 1 R(p−1 )
instead. Clearly, |R(p1)| ≤ |R(p−1 )| according to Lemma 6, and hence the plan with
overlaps is better. 2

A naive solution to allow the join units to overlap and still guarantee the optimality
in Algorithm 2 is: when we evaluate P rα = Pα \ P lα in line 8, we further enumerate all
possible P r∗α , where P r∗α are all connected structures formed by adding any subset of
E(P lα) to P rα. As a result, the time complexity is of the order:

m∑
s=1

(
m

s

)
·
s∑
t=1

(
s

t

)
2t = 4m.

All or Nothing. The time complexity of computing the optimal execution in the over-
lapped case can be reduced to O(3m) with some practical relaxation. Given a partial
pattern Pα, and its left-join (resp. right-join) pattern P lα (resp. P rα) (P ′l and P rα may
overlap), we define the redundant node as:

Definition 8. (Redundant Node) A node vr ∈ V (P lα) ∩ V (P rα) is a redundant node
w.r.t. Pα = P lα ∪ P rα, if Pα = (P lα \ vr) ∪ P rα or Pα = P lα ∪ (P rα \ vr).
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In other words, the removal of a redundant node from either P lα or P rα does not
affect the join results. Denote Vr as a set of redundant nodes w.r.t. Pα = P lα ∪ P rα. We
further define the cut nodes Vc and the cut edges Ec as follows:

Vc(P
l
α, P

r
α) = (V (P lα) ∩ V (P rα)) \ Vr

Ec(P
l
α, P

r
α) = {(v, v′) | (v, v′) ∈ E(Pα) ∧ v, v′ ∈ Vc(P lα, P rα)}.

Example 4. In Figure 6.1, we show a partial pattern Pα and its left-join (resp. right-
join) pattern P lα (resp. P rα). Clearly, v4 is a redundant node since Pα = P lα∪(P rα\v4),
and we have Vc(P lα, P

r
α) = {v2, v3} and Ec(P lα, P

r
α) = {(v2, v3)}. 2

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v2

v3

v4

v5

v6

Pα P l
α P r

α

Figure 6.1: The redundant node, cut nodes and cut edges.

Based on the cut edges, we introduce an all-or-nothing strategy, which reduces
the time complexity to O(3m). Specifically, when we evaluate P rα = Pα \ P lα in
Algorithm 2 (line 8), instead of enumerating P r∗α by considering all subsets of E(P lα)
in the naive solution, we only consider adding all the cut edges w.r.t. Pα = P lα∪P rα, or
none of them. We show that the all-or-nothing strategy returns an execution plan that
is almost as good as the naive solution.

Denote Eo = {Do, Jo} as the optimal execution plan obtained by the naive solution
and E ′o as the best execution plan obtained by the all-or-nothing strategy. Suppose in
the i[-th] round of the execution plan Eo, the following join is processed:

R(Pi) = R(P li ) 1 R(P ri ),∀1 ≤ i ≤ |Do| − 1.

We then construct an intermediate execution plan Ẽ by replacing each of the above
join as R(Pi) = R(P li ) 1 R(P̃ ri ), where P̃ ri = P ri ∪ {e1, e2, . . . , es}, and each
ei ∈ Ec(P li , P ri ) ∧ ei 6∈ E(P ri ). In other words, the alternative right-join pattern P̃ ri
is obtained by adding all the cut edges to P ri . It is trivial when P̃ ri = P ri . Otherwise,
we first generate R(P̃ ri ) by performing the joins R(P ri ) 1 R(e1) 1 · · · 1 R(er)
sequentially, and each join handles a cut edge. Then we execute the join R(Pi) =

R(P li ) 1 R(P̃ ri ).
Leveraging the intermediate execution plan Ẽ , we prove that E ′o (the best execution

plan computed by “all-or-nothing” strategy) has the cost of the same order as Eo (the
optimal solution). We first prove C(Ẽ) = Θ(C(Eo)).

Lemma 7. If C(Eo) ≥ Θ(M), then C(Ẽ) = Θ(C(Eo)).

Proof. We divide Ẽ into two parts. For 1 ≤ i ≤ t, the first part, denoted as Ẽ1,
performs the join R(Pi) = R(P li ) 1 R(P̃ ri ); the second part, denoted as Ẽ2, handles
the generation of each R(P̃ ri ) by sequentially joining the matches of each cut edge to
R(P ri ). According to Lemma 6, we have:

|R(P̃ ri )| ≤ |R(P ri )|. (6.2)

Clearly, C(Ẽ) = C(Ẽ1) + C(Ẽ2). We accordingly divide the proof into two parts.
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(Part 1) We prove C(Ẽ1) ≤ Θ(C(Eo)). Denote EPi and ẼPi as the partial execution
of generating R(Pi) in Eo and Ẽ1. According to Equation 6.1, we have:

C(EPi) = C(EP li ) + T (P li ) + C(EPri ) + T (P ri ),

C(ẼPi) = C(ẼP li ) + T (P li ) + C(ẼPri ) + T (P̃ ri ),

where T (Pα) are computed via Equation 5.1 or Equation 5.2 depending on whether
Pα is a join unit or a partial pattern.

Let t = |Do| − 1 denote the number of rounds of Eo. We prove Part 1 by inducing
on i = 1, 2, . . . , t.

When i = 1, P l1 and P r1 must be the join units, thus C(EP li ) = C(ẼP li ) = C(EP ri ) =

C(ẼP ri ) = 0. Further, we have T (P̃ r1 ) ≤ T (P r1 ) given that |R(P̃ r1 )| ≤ |R(P r1 )| by
Equation 6.2. Hence, C(ẼP1

) ≤ Θ(C(EP1
)).

Assume that C(ẼPi) ≤ Θ(C(EPi)) holds for all 1 < i ≤ s− 1, s < t. Consider i =

s. Note that P ls and P rs are some Pj with j < i, we hence have C(ẼP ls) ≤ Θ(EP ls) and
C(ẼP rs ) ≤ Θ(EP rs ) by the assumption. Additionally, T (P̃ rs ) ≤ T (P rs ) by Equation 6.2.
It is immediate that C(ẼPs) ≤ Θ(C(EPs)). By induction, we have:

C(Ẽ1)(= C(ẼPt)) ≤ Θ(CEo)(= Θ(C(EPt))).

(Part 2) We prove C(Ẽ2) ≤ Θ(C(E0)). In this part, we will generate each
R(P̃ ri ) by joining the matches of the cut edges {e1, e2, . . . , es} with R(P ri ). We sup-
pose at least one cut edge is processed as otherwise it is trivial. Denote P̃ ri [x] as
P ri ∪ {e1, e2, . . . , ex}. As each ei is a cut edge for P ri , we have R(P̃ ri [x]) ≤ R(P ri )
according to Equation 6.2.

Denote C(Ẽ
∆P̃ ri

) as the cost to generate R(P̃ ri ) in the i[-th] round. We have:

C(Ẽ2) =

t∑
i=1

C(Ẽ
∆P̃ri

).

If P̃ ri = P ri , the case is trivial as C(Ẽ
∆P̃ ri

) = 0. Otherwise, denote P̃ ri [x] as P ri ∪
{e1, e2, . . . , ex}. Specifically, let P̃ ri [0] = P ri . According to Equation 5.3, we have:

C(Ẽ
∆P̃ri

) =

s∑
j=1

T (ej) +

s∑
x=0

T (P̃ ri [x]).

Note that the number of cut edges is often small, and we treat s as a constant. In
this sense,

∑s
j=1 T (ej) = Θ(M) and

∑s
x=0 T (P̃ ri [x]) = Θ(T (P ri )), as T (P̃ ri [x]) ≤

Θ(T (P ri )) for each x given that |R(P̃ ri [x])| ≤ |R(P ri )| by Equation 6.2. Therefore:

C(Ẽ2) = Θ(M) +

t∑
i=0

Θ(T (Pir )) ≤ Θ(C(Eo)).

According to Part 1 and Part 2, C(Ẽ) ≤ Θ(C(Eo)), and apparently, C(Ẽ) ≥ C(Eo).
Therefore, C(Ẽ) = Θ(C(Eo)).

We then show C(E ′o) ≤ C(Ẽ) under some practical relaxations.

Corollary 2. Given a pattern graph P , and any P l and P r, such that P = P l ∪ P r,
we have (P \ P l) ⊆ P r.
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Proof. This is apparently true as (P \ P l) is the smallest P r that satisfies P = P l ∪
P r.

Corollary 3. Given a pattern graph P , and any left-join (resp. right-join) pattern P l

(resp. P r), such that P = P l ∪ P r, if there is no redundant node w.r.t. P = P l ∪ P r,
then we have V (P r) = V (P \ P l).

Proof. It is obvious that V (P \ P l) ⊆ V (P r) by Corollary 2.
We then show V (P r) ⊆ V (P \P l). For ∀v ∈ V (P r), we claim that v ∈ V (P \P l).

There are two cases. If v 6∈ V (P l), it is immediate that the claim is true. Otherwise,
assume that v 6∈ V (P \ P l). Then (P \ P l) ⊆ P r \ {v}. Therefore, we must have
P = P l ∪ (P r \ {v}). In other words, v is a redundant node w.r.t. P = P l ∪ P r. This
draws a contradiction.

Based on the above cases, the corollary holds.

Lemma 8. If there is no redundant node w.r.t. Pi = P li ∪ P ri for all 1 ≤ i ≤ |Do| − 1

in Eo = (Do, Jo), then C(E ′o) ≤ C(Ẽ).

Proof. Given Pi = P li ∪ P ri in Eo, and P̃ ri = P ri ∪ Ec(P li , P ri ), we further denote
P̃ r∗i = (Pi \ P li ) ∪ Ec(P li , (Pi \ P li )).

We claim that Ẽ must be within the searching space of the all-or-nothing strategy.
It suffices to show that the join R(Pi) = R(P li ) 1 R(P̃ ri ) will be evaluated in the all-
or-nothing strategy. Recall the process of the all-or-nothing strategy. When we have
P li , we will consider P̃ r∗i as the right-join pattern via the “all” strategy. In this sense,
we simply prove the claim by showing that:

P̃ ri = P̃ r∗i .

Since there is no redundant node w.r.t. Pi = P li ∪ P ri , according to Corollary 3. we
have:

V (P ri ) = V (Pi \ P li ).
Therefore, V (P̃ r∗i ) = V (P̃ ri ).

We first show P̃ ri ⊆ P̃ r∗i . ∀e ∈ E(P̃ ri ), we have two cases: (1) if e ∈ P ri and
e 6∈ Ec(P li , P ri ), then e 6∈ P li . It is immediate that e ∈ Pi \ P li . Hence, e ∈ P̃ r∗i ; (2) If
e ∈ Ec(P li , P ri ), let e = (v1, v2), v1, v2 ∈ V (P ′). This means v1, v2 ∈ Vc(P li , P ri ) =
V (P li ) ∩ V (P ri ). On the other way, V (P li ) ∩ V (P ri ) = V (P li ) ∩ V (P ′ \ P li ) =
Vc(P

l
i , P

′ \ P li ), which suggests e = (v1, v2) ∈ Ec(P
l
i , P

′ \ P li ). Therefore, e ∈
E(P̃ r∗i ). With both cases, we have P̃ ri ⊆ P̃ r∗i .

Then we show P̃ r∗i ⊆ P̃ ri . ∀e ∈ E(P̃ r∗i ), it is obvious that e ∈ Pi \ P li . By
Corollary 2, we have Pi \ P li ⊆ P ri , which suggests e ∈ E(P̃ ri ). Thus, it holds that
P̃ r∗i ⊆ P̃ ri .

In conclusion, we have P̃ ri = P̃ r∗i . This implies that Ẽ must be within the searching
space of the “all-or-nothing” strategy. While E ′o is the optimal solution in the space, it
is immediate that C(E ′o) ≤ C(Ẽ).

Theorem 1. If C(Eo) ≥ Θ(M) and there is no redundant node w.r.t. Pi = P li ∪P ri for
all 1 ≤ i ≤ |Do| − 1 in Eo = (Do, Jo), then C(E ′o) = Θ(C(Eo))

Proof. With Lemma 7 and Lemma 8, Theorem 1 holds.
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Discussion. We show that the two conditions in Theorem 1 are practically reasonable.
First, C(Eo) ≥ Θ(M). Actually, the cost of the execution is often far larger than
the size of the data graph. Second, no redundant node is involved. In practice, the
involvements of redundant nodes usually result in more iterations, while the gain of
such redundancies is rather limited.

7 Clique Compression
To start this section, let us consider a motivating example.

Example 5. We find a large clique with 943 nodes in the uk dataset used in our experi-
ment in Table 8.2, which alone contributes to

(
943
5

)
≈ 6× 1012 matches for a 5-clique,

and causes huge burden on storage and communication. Alternatively, we can encode
all these matches using the nodes of the large clique itself, and this costs linear space
to the number of nodes in the clique. 2

This example motivates us to consider clique compression, aiming at reducing the
cost of transferring and maintaining the intermediate results. In order to do so, we
compute a set of non-overlapping cliques in the data graph G as a preprocessing step.
In query processing, when pk is considered as a join unit, instead of computing all the
matches of pk directly, we represent the matches in a compressed way, and we also try
to maintain the compressed matches in further joins. In the following, we first show
how to precompute the non-overlapping cliques, followed by discussing the way of
compressing the matches of pk. Finally, we introduce how to process joins with the
compressed results.

Algorithm 3: Clique-Search( data graph G )

Input : G, the data graph.
Output : A set of non-overlapping cliques.

1 G′ ← G; S ← ∅;
2 while G′ is not empty do
3 u← The node with largest degree in G′;
4 K ← A maximal clique containing u in G′;
5 if |V (K)| > thresh then
6 S = S ∪ {K};
7 G′ ← G′ \K;

8 return S;

Clique Precomputation. As a preprocessing step, we compute a set of non-
overlapping (by nodes) cliques S = {K1,K2, . . . ,Ks} in the data graph G. We show
the greedy algorithm to compute S in Algorithm 3. Each time we select a node u with
the largest degree from G, compute a maximal clique containing u in G, add the clique
into S if its size is larger than a threshold (e.g., 50) and remove it from G. We repeat
the process until all nodes are removed from G. After computing S, we index all the
cliques on each machine in the cluster (e.g. using “Distributed Cache” in MapReduce
[37]). Specifically, we maintain a mapM in each machine, so that we can useM(u)
to determine the clique that a node u (u ∈ V (G)) belongs to in constant time. Let
M(u) = ∅ if u does not belong to any clique in S. The space used to index the cliques
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is small since we only need to index the nodes in each clique. We show in the experi-
ment that the overhead of clique precomputation is relatively small, and it contributes
to improving the performance of SEED, especially when the data graph contains some
large cliques.

Online Clique Compression. During query processing, suppose a k-clique pk is in-
volved in the join, where V (pk) = {vκ1 , vκ2 , . . . , vκk} and vκ1 < vκ2 < · · · < vκk (for
symmetry breaking (Remark 1)). We compress the matches of pk as follows. In each
local graph G2

u, we divide the nodes in V (G2
u) into two parts, namely, the clique nodes

V cu and the non-clique nodes V nu . Here V cu = {u′|u′ ∈ V (G2
u)\{u},M(u′) =M(u)}

is the set of nodes inG2
u that belong to the same clique as u in S, and V nu = V (G2

u)\V cu .
Note that we have u ∈ V nu for the ease of presentation. Specifically, whenM(u) = ∅,
we have V cu = ∅ and V nu = V (Gu). The nodes in both set are rearranged via the
data node orders (Definiton 2). With the two different types of nodes, a compressed
match, which represents multiple matches of the k-clique, is denoted as (f c, fn), where
f c = (f c.V, f c.U) = ({vc1, vc2, . . . , vcs}, {uc1, uc2, . . . , uct}) is the compressed part of
the match and fn = (fn.V, fn.U) = ({vn1 , vn2 , . . . , vnk−s}, {un1 , un2 , . . . , unk−s}) is the
non-compressed part. We also regard fn as a partial match, where fn(v) = u for each
v ∈ fn.V and u ∈ fn.U . Here, the following five constraints must be satisfied:
• C1: u ∈ fn.U .
• C2: fn.U ⊆ V nu and the nodes in fn.U must form a clique in G2

u.
• C3: f c.U ⊆ V cu and every node in f c.U is adjacent to all nodes in fn.U in G2

u.
• C4: |f c.V | ≤ |f c.U |.
• C5: f c.V ∪ fn.V = V (pk).

In this way, a compressed match (f c, fn) represents
(
t
s

)
matches of a k-clique, that

is, the k − s nodes fn.U = {un1 , un2 , . . . , unk−s} and every combination of s nodes
in f c.U = {uc1, uc2, . . . , uct} recover a match. Note that C1 restricts that u must be
in the match, which is applied to avoid duplicates. For example, consider a 5-clique
{u1, u2, u3, u4, u5} as the data graph, and a 4-clique p4 as the pattern graph. Without
C1, the match (u2, u3, u4, u5) will be computed twice in both Gu1 and Gu2 . However,
this match will be removed from Gu1

by C1 as u1 does not appear in the match. Con-
sidering the Order-Preservation constraint (Remark 1), we actually match the smallest
node in pk to u (note that u is the smallest node in Gu). Thus, we accordingly rewrite
C1 as fn(vκ1 ) = u.

u1

u2

u3

u4u5

u6u7

u8
u9

M(u1) = Kα

Figure 7.1: The local graph of u1, and clique compression.

Example 6. In Figure 7.1, we show the local graph Gu1
. Note that all nodes except

u1 have neighbors not presented in Gu1
and these nodes are already arranged by their

orders (Definiton 2) in the data graph. The shadowed circle highlights a 5-clique Kα

that u1 belongs to. Observe that u2 forms a larger clique with Kα but it does not
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belong to it. This can happen when we assign u2 to the other larger clique. Thus,
we have the clique nodes V cu1

= {u3, u4, u5, u6}, and the non-clique nodes V nu1
=

{u1, u2, u7, u8, u9}. Hereunder, we show the compressed matches of the 4-clique p4 in
Gu1 :

# fc.V fc.U fn.V fn.U # matches

cm1 {vκ2 , vκ3 , vκ4 } {u3, u4, u5, u6} {vκ1 } {u1} 4
cm2 {vκ3 , vκ4 } {u3, u4, u5, u6} {vκ1 , vκ2 } {u1, u2} 6
cm3 ∅ ∅ {vκ1 , vκ2 , vκ3 , vκ4 } {u1, u7, u8, u9} 1

Considering the Order-Preservation constraint (Remark 1), the data node sequence
that matches p4 must be arranged in the increasing order. In cm1, u1 together with
each 3-combination of f c.U (increasing order) recover a match of the 4-clique, and
thus cm1 compresses

(
4
3

)
= 4 results. Similarly, cm2 compresses

(
4
2

)
= 6 results.

Additionally, cm3 corresponds to a non-compressed match. As a whole, we use 3
compressed matches to represent 11 results. 2

Algorithm 4: compressedClique( pk, G
2
u )

Input : pk, the k-clique, where V (pk) = {vκ1 , vκ2 , . . . , vκk},
G2
u, the local graph of a certain u ∈ V (G).

Output : A set of compressed matches of pk.
1 F ← ∅;
2 V cu ← {u′|u′ ∈ V (Gu) \ {u} ∧M(u′) =M(u)};
3 V nu ← V (Gu) \ V cu ;
4 if |Vu| ≥ k − 1 then F ← F ∪ (fc = (V (pk) \ {vκ1 }, V cu ), fn = ({vκ1 }, {u}));
5 compressedCliqueRec(pk, V

c
u , V

n
u \ {u}, F , 1, {u})

6 return F ;

7 function compressedCliqueRec(pk, V
c
u , V

n
u , F , i, U ′)

8 foreach j ∈ [i, |V nu |] do
9 u′ ← V nu [j];

10 if u′ forms a clique with U ′ in Gu then
11 U ′ ← U ′ ∪ {u′};
12 Initialize the compressed match (fc = {∅, ∅}, fn = {∅, ∅});
13 if (|U ′| < k) then
14 fc.U ← CCN(U ′);

15 if |U ′|+ |fc.U | ≥ k then
16 foreach {vn1 = vκ1 , v

n
2 , . . . , v

n
k−s} ⊆ V (pk) s.t. vn1 < vn2 < · · · vnk−s,

where |U ′| = k − s do
17 fn.V ← {vn1 , vn2 , . . . , vnk−s};
18 fc.V ← V (pk) \ fn.V ;
19 fn.U ← U ′;
20 F ← F ∪ (fc = (fc.V, fc.U), fn = (fn.V, fn.U));

21 if |U ′| < k ∧ j 6= |V nu | then
22 compressedCliqueRec(fc.U, V nu \ U ′, F , j + 1, U ′);

The algorithm to compute all compressed k-cliques in a certain G2
u is shown in

Algorithm 4. It is worth noting that Algorithm 4 can handle the non-compressed (un-
optimized) case by lettingM(u) = ∅ for each u ∈ V (G). Before moving forward to
the algorithm, we define the clique neighbors and common clique neighbors as follows:
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Given u′ ∈ V nu , the clique neighbors of u′, denoted asCN(u′), are the nodes in V cu
that are adjacent to u′ in Gu, that is, CN(u′) = {u′′|u′′ ∈ V cu ∧ (u′, u′′) ∈ E(Gu)},
and the common clique neighbors of a set of data nodes U ′, denoted as CCN(U ′), are
the common clique neighbors of all nodes in U ′, that is CCN(U ′) =

⋂
u′∈U ′ CN(u′).

In Algorithm 4, we first assign the clique nodes V cu and the non-clique nodes
V nu in line 2-3, and we use V nu [i] to denote the i[-th] (start from 1) node in V nu . In
line 4, we report (f c = (V (pk) \ {vκ1 }, V cu ), fn = ({vκ1 }, {u})) as a fully com-
pressed results. Clearly, u and each k − 1 combination of V cu recover a match of
k-clique. We then call the recursive function compressedCliqueRec to further gener-
ate the compressed matches (line 5). In the recursive function, we use U ′ to record
a set of non-clique nodes that form a clique in Gu, which are exactly the nodes that
will be in fn.U . The algorithm then proceeds by checking the four constraints for a
compressed match. For each non-clique nodes that have not been visited (line 8), we
verify that if it forms a larger clique with U ′ (line 10) to satisfy C2. The qualified
node is then involved in U ′ (line 11). If |U ′| < k, we let f c.U = CCN(U ′) (line 14)
so that the C3 is satisfied. Otherwise, U ′ must have included all nodes for a full-
matched subgraph, and we simply leave f c.U = ∅. The condition |U ′| + |f c.U | ≥ k
in line 15 guarantees C4 and C5 are satisfied, and once satisfied, we follow the pro-
cedure from line 16-20 to generate the compressed matches. For each k − s nodes
from V (pk) that involves v1 (line 16), we assign them to fn.V (line 17), and then
we obtain a partial match fn = (fn.V, fn.U = U ′). Thus, we construct a com-
pressed match (f c = (f c.V, f c.U), fn = (fn.V, fn.U)) (line 20). We recursively call
compressedCliqueRec (line 22) as |U ′| < k.

Example 7. In Example 6, we show the compressed matches cm1, cm2 and cm3 of p4

in G2
u1

. According to Algorithm 4, cm1 is computed in line 4. Now that we have V nu =
{u2, u7, u8, u9} (u1 is excluded). In the first recursive call, we have U ′ = {u1, u2}
after adding u2 (line 11), and compute CCN(U ′) = {u3, u4, u5, u6}. We then select
a node from {vκ2 , vκ3 , vκ4 } to match u2, and we obtain cm2 consequently (line 16). After
processing u2, we move to the next node in V nu , that is u7, and the recursive function
will return cm3 as a non-compressed match. (line 13). 2

Online Join Processing. With the clique compression technique, we follow the frame-
work in Algorithm 1 to process joins, but replace each match f in Algorithm 1 as a
compressed match (f c, fn). We correspondingly revise the mymap and myreduce
functions to handle the compressed match. Note that here we generalize the concept of
“compressed match”, which not only represents a compressed match of a k-clique, but
also the compressed join results produced in each round (Details are in Algorithm 6).
For a non-compressed match, we simply let f c.V = f c.U = ∅. The main challenge is
that, when a compressed match (f c, fn) is involved in a join, we do not need to imme-
diately recover all matches from (f c, fn). Instead we try to maintain its compressed
part f c as much as possible. We call this process partial expansion. Given a compressed
match (f c, fn), suppose it is involved in a join with join attributes Vjoin, the process
of partial expansion is shown in lines 12-20 in Algorithm 5. We first compute the non-
clique join attributes V njoin and its corresponding match Unjoin (lines 13-14). Then we
compute V cjoin - the set of join attributes that need to be expanded in the clique part f c

(line 15). Line 16 enumerates all matches U cjoin of V cjoin in f c. For each U cjoin, we
output a key-value pair (line 20) where the key is computed as U cjoin ∪ Unjoin (line 17)
and the value is a compressed match (f cout, f

n
out) by moving the original match of V cjoin

from f c to fn (line 18-19). The revised mapi procedure is shown in Algorithm 5 to
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Algorithm 5: mapi( key: ∅; value: either compressed matches (f c, fn) ∈
R(P ′j) and (hc, hn) ∈ R(P ′s) for some j < i, s < i or Gu ∈ Φ(G) )

1 Vjoin ← V (P ′j) ∩ V (P ′s);
2 if P ′j is a star then genJoinUnit(P ′j , Gu, Vjoin);
3 else if P ′j is a clique then genCompressedClique(P ′j , Gu, Vjoin);
4 else partialExpansion(fc, fn, Vjoin);

5 if P ′s is a star then genJoinUnit(P ′s, Gu, Vjoin);
6 else if P ′s is a clique then genCompressedClique(P ′s, Gu, Vjoin);
7 else partialExpansion(hc, hn, Vjoin);

8 function genCompressedClique(pk, Gu, Vjoin)
9 F ← compressedClique(pk, Gu);

10 foreach (fc, fn) ∈ F do
11 partialExpansion(fc, fn, Vjoin);

12 function partialExpansion(fc, fn, Vjoin)
13 V njoin = {vn1 , vn2 , . . . , vnp } ← fn.V ∩ Vjoin;
14 Unjoin ← {fn(vn1 ), fn(vn2 ), . . . , fn(vnp )};
15 V cjoin ← fc.V ∩ Vjoin;
16 foreach Ucjoin ⊆ fc.U s.t. |Ucjoin| = |V cjoin| do
17 key ← Ucjoin ∪ Unjoin;
18 fcout ← (fc.V \ V cjoin, fc.U \ Ucjoin);
19 fnout ← (fn.V ∪ V cjoin, fn.U ∪ Ucjoin);
20 output (key; (fcout, f

n
out));

replace mapi in Algorithm 1.

Example 8. Suppose cm1 = (fn1 , f
c
1) in Example 6 is involved in the join with Vjoin =

{vκ1 , vκ3 }. We have fn1 .V = {vκ1 }, fn1 .U = {u1}, f c1 .V = {vκ2 , vκ3 , vκ4 } and f c1 .U =
{u3, u4, u5, u6}. We first compute V njoin = fn1 .V ∪ Vjoin = {vκ1 } and Unjoin = {u1}.
Then we have V cjoin = f c.V ∩Vjoin = {vκ3 }. Consequently, we should partially expand
f c1 by taking a node out of f c.U as U cjoin. We first take u3, and the join key is {u1, u3},
then we compute f cout = ({vκ2 , vκ4 }, {u4, u5, u6}) and fnout = ({vκ1 , vκ3 }, {u1, u3}).
Ultimately, the key-value pair ({u1, u3}; (f cout, f

n
out)) is generated. We continue this

process by iteratively taking u4 , u5 and u6 from f c.U . 2

Note that the clique to process can be a part of the pattern graph P , and the orders
among V (pk) in P do not necessarily be the full order as in pk. For example, the query
q6 in Figure 8.1 contains a 4-clique with nodes {v2, v3, v4, v5}, and the partial orders
among these nodes in q6 are v2 < v5 and v3 < v4. In this case, we should consider
permutating the nodes of V (pk). Denote OP as the set of partial orders in P . Given
a pk ⊆ P , we say a permutation σ of V (pk) satisfies OP , if ∀vi < vj ∈ OP , there
exists vκs , v

κ
t ∈ V (pk), such that σ(vκs ) = vi and σ(vκt ) = vj . Consequently, when

we output each compressed match in the function partialExpansion in Algorithm 5, we
should apply all permutations that satisfies OP in both f c.V and fn.V .

Example 9. Given the 4-clique p4 ⊂ q6 in Figure 8.1, we have Oq6 = {v2 < v5, v3 <
v4}. We can verify that the permutation σ = (v3, v2, v5, v4) satisfies Oq6 . Therefore,
when we output, for example, cm1 in Example 6 as f cout = ({v3, v5}, {u4, u5, u6}) and
fnout = ({v2, v4}, {u1, u3}) (Example 8), we should also output the result regarding σ
as: f cout = ({v2, v4}, {u4, u5, u6}), and fnout = ({v3, v5}, {u1, u3}). 2

Algorithm 6 presents the detailed algorithm of the revised reducei, which takes the
compressed matches as inputs, and output the join results in the same compressed way,
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Algorithm 6: reducei( key: Ujoin; value: Two sets of compressed matches H1

and H2 )

// We assume |hc1.V | ≥ |hc2.V | (w.l.g.).
1 foreach h1 = (hc1, h

n
1 ) ∈ H1, h2 = (hc2, h

n
2 ) ∈ H2 s.t.

(hn1 .U \ Ujoin) ∪ (hn2 .U \ Ujoin) = ∅ do
2 if hc2.V = ∅ then
3 fn.V = hn1 .V ∪ hn2 .V ; fn.U = hn1 .U ∪ hn2 .U ;
4 fc.V = hc1.V ; fc.U = hc1.U ;
5 output (∅; (fc, fn));

6 else
// We need to expand h2 that has smaller compression.

7 fc.V = hc1.V ; fc.U = hc1.U ;
8 fn.V = hn1 .V ∪ hn2 .V ∪ hc2.V ;
9 foreach U ′ ⊆ hc2.U s.t. |U ′| = |hc2.V | do

10 fn.U = hn1 .U ∪ hn2 .U ∪ U ′ ;
11 output (∅; (fc, fn));

which can hence be treated as compressed matches in a future join. Given two com-
pressed results h1 = (hc1, h

n
1 ) and h2 = (hc2, h

n
2 ), we say h1 has larger compression

power than h2 if |hc1.V | > |hc2.V |. For the two compressed results from the current
join patterns, the idea is to expand the one with smaller compression while keeping the
other. In reducei, we process the join of h1 and h2 for each h1 ∈ H1 and h2 ∈ H2

(line 1). Without loss of generality, we assume that h1 has larger compression power. If
h2 is not compressed (line 2), we simply union hn1 and hn2 to form the non-compressed
part fn (line 3), keep hc1 in the compressed part f c (line 4), and output the results.
Otherwise, we have to expand h2. We still keep hc1 in f c (line 8), while fn now in-
cludes not only hn1 and hn2 , but a part from the expansion of hc2 (line 8). We hence go
through every |hc2.V | nodes U ′ ⊆ hc2.U (permutation may be needed, as Algorithm 4),
construct each fn.U via the union of hn1 .U , hn2 .U and U ′ (line 10), and output the
compressed results (line 11). In this way, we compress the results in each join, and
they can be treated just like the compressed matches of the k-cliques in the future join
(Algorithm 5).

8 Performance Studies
In this section, we show our experimental results. We rented a cluster from Amazon of
up to 15 computing nodes including one master node and 14 slave nodes and we used
10 slave nodes by default. The instance configurations of master and slave nodes are
listed in Table 8.1. We allocated a JVM heap space of 1524MB for each mapper and
2848MB for each reducer, and we allowed at most 6 mappers and 6 reducers running
concurrently in each machine. The block size in HDFS was set to be 128MB, the data
replication factor of HDFS was set to be 3, the I/O sort size was set to be 512MB, and
the I/O sort factor was set to be 10.
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Node Type Instance vCPU Memory Storage
master m3.xlarge 4 15GB 2× 40GB SSD
slave c3.4xlarge 16 30GB 2× 160GB SSD

Table 8.1: Amazon virtual instance configurations

Datasets. We tested five real-world data graphs (see Table 8.2). Among them, lj, orkut
and fs were downloaded from SNAP (http://snap.stanford.edu), yt was downloaded
from KONECT (http://konect.uni-koblenz.de), and eu and uk was downloaded from
WEB (http://law.di.unimi.it). pg21 and pg29 are two PR graphs generated via [36]
with β = 2.1 and β = 2.9, respectively. For each dataset, we list the number of nodes
and edges (in millions), and T (G) - the time of constructing the SCP graph storage
Φ2(G) (Section 4) and T (C) - the time of enumerating large cliques in the data graph
for clique compression (Section 7). Note that the T (G) and T (C) for pg21 and pg29
are of no interest. The computations of SCP graph storage and the large cliques are
query independent, and thus are considered as preprocessing steps.

dataset name N (mil) M (mil) T(G)(s) T(C)(s)

youtube yt 3.22 12.22 27 58
eu-2015 eu 0.86 16.14 41 129

live-journal lj 4.85 42.85 54 170
com-orkut orkut 3.07 117.19 185 345
uk-2002 uk 18.52 261.79 841 1270
friendster fs 65.61 1806.07 2331 368

power-law(β = 2.1) pg21 10,000 50,000 - -
power-law(β = 2.9) pg29 10,000 50,000 - -

Table 8.2: Datasets used in Experiments

Algorithms. We compared six algorithms:
• SEED: The baseline SEED algorithm implemented in MapReduce with optimal

bushy join plan (Section 6) and overlapping join units (Section 6.2).
• SEED-LD: SEED but with the (best) left-deep join plan.
• SEED-NO: SEED without overlapping join units.
• SEED+O : SEED with clique-compression (Section 7).
• SEEDS[(M), (DM), (D)]: The SEED+O algorithm implemented in Spark with

MEMORY ONLY cache, MEMORY AND DISK cache and DISK ONLY cache,
respectively.

• TT: The TwinTwigJoin algorithm implemented in MapReduce with all optimiza-
tions [20].

• TTS[(M), (DM), (D)]: The TwinTwigJoin algorithm implemented in Spark with
the three caching mechanisms.

• PSgL: The Pregel-based subgraph enumeration algorithm with all optimizations pro-
posed by Shao et al. [30].

All algorithms were compiled with Java 1.7. We implemented SEED and TT with
Hadoop 2.6.0, and SEEDS[(M), (DM), (D)] and TTS[(M), (DM), (D)] with Spark
1.4. All algorithms except PSgL are running on the Yarn framework. The authors
of [30] kindly provided the codes for PSgL, implemented with Hadoop 1.2.0 on an old
MapReduce framework. The performance gap between Yarn and old MapReduce is
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very small, hence the comparison between PSgL and the other algorithms is fair. We
set the maximum running time to 3 hours. If a test did not stop within the time limit, or
failed due to out-of-memory exceptions or other errors, we denote the running time as
INF. The time to compute the join plan using Algorithm 2 is less than one second for
all test cases, and thus has been omitted from the total processing time.

Queries. The seven queries denoted by q1 to q7 are illustrated in Figure 8.1 with the
number of edges varying from 4 to 10 and the number of nodes varying from 4 to 6.
We show the order of the nodes for automorphism resolution (Remark 1) under each
query graph. Here, we have considered all queries except for triangle from the-state-
of-the-art algorithms in the literature [30, 20]. Note that triangle enumeration is used
in this paper as a preprocessing step to construct the SCP storage. We added the query
q5 and q6 to further demonstrate the advantages of our proposed techniques.
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Figure 8.1: Queries
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Figure 8.2: Local Graph Statistics

Exp-1: Local-Graph Statistics. This experiment studied the relationships between
∆

(1)
u (Lemma 2) and ∆

(2)
u (Lemma 4) w.r.t. d(u). Results on the datasets pg21, pg29,

yt and orkut are shown in Figure 8.2, where the X-axis depicts d(u) and the Y-axis
depicts ∆

(1)
u and ∆

(2)
u . For clarity, we only reported the results for top-10000 largest
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nodes of yt and orkut. It is clear that ∆
(1)
u is much more skewed and larger than ∆

(2)
u

in all tests. Particularly, we fit the curves for the d(u)-∆(1)
u relationship in the synthetic

graphs. The results show that ∆
(1)
u is almost proportional to d(u)2, which conforms

with the theoretical result in Lemma 2. On the real graphs yt and lj (Figure 8.2(c),
Figure 8.2(d)), besides skewness, we also observe that ∆

(1)
max on lj is nearly half the

size of the data graph. As a result, Φ1(G) can not scale for handling large data graphs.
On the other side, the distributions of ∆

(2)
u are comparatively flat and small over d(u)

in all tests. The results validate that Φ2(G) achieves good load balance and scalability.
The local-graph statistics for all other datasets are similar to those shown in Figure 8.2
and hence have been omitted.

Exp-2: Bushy vs Left-deep. We compare the performance of SEED and SEED-LD
using query q5 on yt to test the advantage of using the bushy join plan. The plans E1
and E2 shown in Figure 3.1 illustrate the optimal execution plans for SEED-LD and
SEED, respectively. Table 8.3 presents the experimental results, in which we observe
a much better performance of SEED, compared to SEED-LD. We also show the output
of mappers and reducers in each stage and compute the cost using Equation 5.3. The
output of reduce3 is not shown, as it is the final result and excluded in the cost. Observe
that the algorithm with smaller cost always ends up with better performance, which
supports our motivation to minimize the cost in Section 6. Clearly, SEED, with smaller
cost, performs better than SEED-LD. The results are similar in the other datasets. We
conclude that the optimal bushy join plan computed via Algorithm 2 outperforms the
left-deep join plan.

M/R map1 red1 map2 red2 map3 Cost Time(s)
SEED 12.3 3.2 12.3 3.2 6.4 471.9 306

SEED-LD 12.3 3.2 15.5 6110.9 6123.9 31365.2 INF

Table 8.3: Cost comparisons while enumerating q5 on yt with SEED and SEED-LD (in
millions).

As we mentioned in Remark 4, the plans E1 and E2 in Figure 3.1 are also the
optimal execution plans computed via the ER model and the PR model, respectively.
In Table 8.3, the outputs of reduce2 of SEED and SEED-LD correspond to |R(P b2 )|
and |R(P ld2 )|, and it is obvious that |R(P ld2 )| � |R(P b2 )|. The results are consistent
with our analysis in Remark 4 that the PR model offers more realistic cost estimation,
which leads to better execution plan.

We chose q5 in this experiment because of two reasons: (1) its optimal join plan is
bushy; (2) the “optimal” join plans computed via ER model and PR model are different.
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Exp-3: Overlapping Join Units. This experiment studied the benefit of over-
lapping the join units (Section 6.2). We processed the queries q2 and q4 on the
dataset yt using SEED and SEED-NO. In q2, SEED joins two triangles p0 =
((v1, v2), (v2, v3), (v1, v3)) and p1 = ((v1, v3), (v1, v4), (v3, v4)), while SEED-
NO, without overlapping the join units, can only join p0 to a TwinTwig p′1 =
((v1, v4), (v3, v4)). Similarly, while processing q4, SEED handles the triangle
((v1, v2), (v1, v5), (v2, v5)) on the top, while SEED-NO can only use the TwinTwig
((v1, v2), (v1, v5)). In practice, the triangle often renders much fewer matches than
the two-edge TwinTwig. Therefore, SEED outperforms SEED-NO, as shown in Fig-
ure 8.3. We obtained similar results on all queries other than q1 (no overlapping exists),
q3, q7 (clique is the join unit), and we only presented q2 and q4 as representatives.

10
1

10
2

10
3

10
4

INF

eu lj

R
u

n
n

in
g

 T
im

e
 (

s
)

1003 10131200

6968

SEED+O
SEED

TT
PSgL

(a) q6

10
1

10
2

10
3

10
4

INF

eu lj

R
u

n
n

in
g

 T
im

e
 (

s
)

205

980 12061347

SEED+O
SEED

TT
PSgL

(b) q7

Figure 8.4: The effects of the proposed techniques.

Exp-4: The effects of the proposed techniques. To show the effects of the proposed
techniques, we evaluated the performance of SEED+O , SEED, TT and PSgL by query-
ing q4 and q6 on eu and lj, and reported the results in Figure 8.4(a)-Figure 8.4(b). Ob-
serve that the baseline SEED already dominates the state-of-the-art algorithms TT and
PSgL. SEED processes q7 on eu and lj in 980 seconds and 1347 seconds, respectively,
while neither TT nor PSgL can terminate in the allowed time. SEED outperforms
TT and PSgL, benefiting from the SCP graph storage (Φ2(G)) that supports clique as
the join unit. Consequently, SEED processes q6 by joining the upper triangle and the
bottom 4-clique in just one single round, while TT and PSgL both process 3 rounds.
Although there are extra overheads constructing the new graph storage (see T (G) in
Table 8.2), SEED still performs much better than TT and PSgL after considering these
overheads. For example, SEED processes q6 on lj in 54 + 1347 seconds, while TT runs
6968 seconds and PSgL cannot even terminate.

SEED+O further improves SEED via clique compression (Section 7). Observe
that SEED+O runs faster than SEED in all tests, especially in the process of q6 on
eu, where SEED+O terminates in 1003 seconds but SEED runs out of time. Note
that the effect of clique compression is more notable on eu than that on lj. The reason
is that, to our best speculation, in a web graph like eu, web pages within a domain
tend to link each other to form large cliques, while in a social network like lj, such
a strong tie is rarely formed; Obviously, larger clique in the data graph contributes
to better clique compression. Although we spend time enumerating and maintaining
the large cliques (see T (C) in Table 8.2) for clique compression, the technique does
improve the performance of SEED, and it will play an important role when the data
graph contains many large cliques (e.g. while processing q6 on eu).As SEED+O beats
SEED, we would only compare SEED+O , and exclude the baseline SEED in the rest

32



of the experiments.
We could also use the other queries in this test, but q1, q2, q4 and q5 do not contain

cliques of more than three nodes, and the process of q6 already includes enumerating
q3. Thus, we only use q6 and q7 here to fairly show the advantages of our proposed
algorithms. Next we would compare the algorithms against all queries.
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Figure 8.5: Test against all queries.

Exp-5: Test against all queries. We compared SEED+O with TT and PSgL - by enu-
merating all queries on yt and lj, and reported the results in Figure 8.5(a)-Figure 8.5(g).
When enumerating q1, SEED+O uses the same execution plan, and hence has the same
performance as TT, and they outperform PSgL. In all the other queries, SEED+O sig-
nificantly outperforms TT, due to the use of clique as the join unit. For example,
SEED+O is over 30× faster than TT while processing q2 on both yt and lj, and over
20× faster than TT while processing q3 on lj. Moreover, SEED+O processes com-
plex queries such as q4, q5, q6 and q7 efficiently on both yt and lj. On the contrary,
TT often runs out of time when querying on lj. PSgL can only process q3 on yt and
lj, and q7 on yt, and in these cases, PSgL performs worse than TT. The reasons are
two aspects. First, PSgL can be seen as StarJoin, which is already proven to be worse
than TwinTwigJoin [20]. Second, the Pregel-based PSgL maintains all intermediate re-
sults in the main memory, and the numerous intermediate results produced in subgraph
enumeration can exhaust the memory. In conclusion, the proposed SEED+O algo-
rithm significantly outperforms all existing algorithms, and TT also performs better
than PSgL. Next we would exclude PSgL from the experiments, as it can only process
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simple queries on relatively small datasets.
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Figure 8.6: Vary Datasets.

Exp-6: Vary Datasets. We compared SEED+O with TT by querying q2 and q7

on all datasets in order to show the advantages of SEED+O regarding different data
properties. The results are shown in Figure 8.6(a)-Figure 8.6(b). In all tests, SEED+O
significantly outperforms TT, with the performance gain varying from an order of
magnitude to over 50× (enumerating q2 on lj). Specifically, SEED+O processes q2 on
the two largest datasets - uk and lj, in less than 20 minutes, while TT cannot terminate
in the allowed time. This experiment demonstrates that SEED+O scales better for
handling large data graphs due to the use of clique as the join unit, and the optimal
bushy join plan with overlapping join units.

Exp-7: Vary Graph Size. We extracted subgraphs of 20%, 40%, 60%, 80%, and
100% nodes from the original graph of fs, and tested the algorithms using queries q2

and q7. The results are shown in Figure 8.7(a) and Figure 8.7(b) respectively. When the
graph size increases, the running time of TT grows much more sharply than SEED+O
. When the graph size is over 60%, only SEED+O finishes enumerating q2 in the time
limit. The test shows the high scalability of our SEED+O algorithm.

Exp-8: Vary Average Degree. We fixed the set of nodes and randomly sampled 20%,
40%, 60%, 80%, and 100% edges from the original graph fs to generate graphs with
average degrees from 11 to 55, and tested the algorithms using queries q2 and q7. The
results are shown in Figure 8.7(c) and Figure 8.7(d) respectively. In Figure 8.7(d),
SEED+O is 10, 15, 19 and 17 times faster than TT when the average degree varies
from 11 to 55, which shows the advantage of SEED+O for dense data graphs.

Exp-9: Vary Slave Nodes. In this experiment, we varied the number of slave nodes
from 6 to 14, and evaluated our algorithms on the lj and orkut datasets using queries
q2 and q7. The test results are shown in Figure 8.8(a)-Figure 8.8(d) respectively. When
the number of slave nodes increases, the running time of all algorithms decreases, and
it drops more sharply when the number of slave nodes is small. On the one hand,
increasing the number of slave nodes improves performance by sharing the workload;
on the other hand, it introduces extra communication costs from data transmissions
among the slave nodes. As shown in Figure 8.8(b), even when 14 slave nodes are
deployed, SEED+O is the only algorithm that can process q7 on lj. We also tested
other queries with various amount of slave nodes, and found curves similar to those in
Figure 8.8(a)-Figure 8.8(d), thus the results have been omitted.

Exp-10: MapReduce VS. Spark. In this experiment, we compared the imple-
mentations of both SEED and TwinTwigJoin algorithms in MapReduce (Hadoop)
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Figure 8.7: Vary Graph Properties
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Figure 8.9: Spark VS. MapReduce
and Spark, the two most popular large data processing engines. We adopted three
caching mechanisms in Spark, namely MEMORY ONLY, MEMORY AND DISK and
DISK ONLY1. We first compared SEED+O with SEEDS[(M), (DM), (D)] by pro-
cessing q2, q4 and q7 on the datasets yt and lj, and show the results in Figure 8.9(a)-
Figure 8.9(c). SEEDS(M) performs better than SEEDS(DM) and SEEDS(D), due to
the memory-caching strategy. The benefits are not very obvious in most queries. While
processing q2, SEEDS(M) performs only slightly better (5%), and the reason may be
that the communication cost dominates the cost of caching the (intermediate) results.
As for q7, SEEDS[(M), (DM), (D)] have the same performance, since the process ter-
minates in a single round without result caching when we use clique as the join unit.
When we compared the MapReduce version - SEED+O - to SEEDS(M), it is surprising
to see that SEEDS(M) do not show advantages given its memory-caching mechanism.
As we can see, SEED+O outperforms SEEDS(M) in the tests of q2 and q4. A possible
reason is that MapReduce (Hadoop) overlaps the shuffle and map stages, which can
effectively hide the huge communication overhead in subgraph enumeration. On the
contrary, Spark’s shuffle must wait for the completions of all mappers. The authors
in [32] also reported similar observations. As for q7, SEEDS(M) does perform bet-
ter than SEED+O , and in this single-round process, Spark may possibly benefit from
the adoption of the Kryo serialization, which is significantly faster and more compact
than Java serialization adopted in Hadoop 2. Finally, it is worth noting that all Spark
implementations fails while processing q4 on lj. We have found enormous matches
of q4 on lj, and SEEDS(M) stops with “OUT OF MEMORY” error when attempting
to caching all (intermediate) results in memory. SEEDS(DM) and SEEDS(D) face an
“RDD OVERSIZE” error when some partitions of the results exceed the maximum
size of an “RDD” (RDD is a basic storage unit in Spark). This has been reported as

1http://spark.apache.org/docs/latest/programming-guide.html
2http://spark.apache.org/docs/latest/tuning.html
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one of the biggest yet unresolved issues of Spark at current version 3. This concludes
that Spark hardly competes with MapReduce in the task of subgraph enumeration.
Subgraph enumeration often produces numerous intermediate results, which exceeds
Spark’s processing capacity, which partly explained that we performed most tests using
MapReduce.

We further compared SEEDS(D) and TTS[(M), (DM), (D)] by processing the
queries q2 and q7 on yt, and demonstrated the results in Figure 8.9(d). We did not show
the results for lj as the TTS[(M), (DM), (D)] failed all cases. As we mentioned earlier,
SEEDS(D) maintains the intermediate results on the disk and is relatively slower, but it
beats TwinTwigJoin in all test cases. In particular, SEEDS(D) processes q2 on yt in 47
seconds, while TTS[(M), (DM), (D)] cannot terminate in the allowed time. The result
set of q7 on yt is too small to demonstrate the advantage of SEED, but SEEDS(D) is still
over two times faster than TTS[(M), (DM), (D)]. As a complement of the comparisons
in MapReduce, the results in this test confirm that SEED outperforms TwinTwigJoin
regardless of the platforms.

9 Related Work

Subgraph Matching. Most subgraph matching approaches work in labeled context,
where nodes (and/or edges) are assigned labels in both data and query graphs. For
example, node labels in the neighborhood are used to filter unexpected candidates in
[14] and [39]. In [13], the authors observe that a good matching order can significantly
improve the performance of subgraph query. Lee et al. [21] provide an in-depth com-
parison of subgraph isomorphism algorithms. Subgraph enumeration in a centralized
environment is also studied in exact and approximate settings. The exact solutions
including [3] and [11] are not scalable for handling large data graphs. The approxi-
mate solutions [2, 10, 40] only estimate the count, but do not locate all the subgraph
instances.

Subgraph Matching in Cloud. Many recent works have focused on solving subgraph
matching in the cloud. Zhao et al. [40] introduced a parallel color coding method for
subgraph counting. Ma et al. [23] studied inexact graph pattern matching based on
graph simulation in a distributed environment. Sun et al. [33] proposed a subgraph
matching algorithm that uses node filtering to handle labeled graphs in the Trinity
memory cloud. Recently, Shao et al. [30] developed PSgL to list subgraph instances in
Pregel, which can be seen as a StarJoin-like algorithm and already proven to be worse
than the TwinTwigJoin algorithm [20].

Subgraph Enumeration in MapReduce. Subgraph enumeration in MapReduce has
attracted a lot of interests. Tsourakakis et al. [35] proposed an approximate triangle
counting algorithm using MapReduce. Suri et al. [34] introduced a MapReduce al-
gorithm to compute exact triangle counting. Afrati et al. [1] proposed multiway join
in MapReduce to handle subgraph enumeration. Plantenga [27] introduced an edge
join method in MapReduce which can be used for subgraph enumeration. In [9], small
cliques are enumerated using MapReduce, however the method can only be used to
enumerate small cliques rather than any general pattern graphs. The TwinTwigJoin
algorithm was proposed in [20], which has proven to be instance optimal in the left-
deep-join framework. However, using TwinTwig as the join unit is still inefficient

3https://issues.apache.org/jira/browse/SPARK-6190
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when processing large-degree nodes and the left-deep join plan may result in non-
optimal solutions.

10 Conclusions
In this paper, we studied the subgraph enumeration problem, considering that existing
solutions did not scale well to large graphs. We proposed SEED, a scalable distributed
subgraph enumeration algorithm. Compared to the-state-of-the-art TwinTwigJoin,
SEED is featured with the following: (1) a novel SCP graph storage mechanism that al-
lows using cliques, in addition to stars, as the join unit; (2) a comprehensive cost model
based on the PR model; (3) a dynamic-programming algorithm to compute the optimal
bushy join plan with overlapping join units; (4) the clique compression technique that
further improves the performance. We have conducted extensive performance studies
on real graphs with up to billions of edges, which shows that SEED outperforms the
state-of-the-art works by over an order of magnitude.
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APPENDIX
In this appendix, we introduce the algorithm of symmetry breaking in [11] and for-
mally prove its correctness. we first give some preliminary knowledge of automor-
phism. Then we show the intuition of eliminating duplicated enumeration by the order-
preservation constraint, and present the symmetry-breaking algorithm via assigning the
partial orders among nodes in the pattern graph introduced in [11]. Finally, we show
the correctness of the algorithm.

Automorphism. We denote the automorphism group of a graph Γ as AΓ. We say
v1 and v2 in a graph Γ is automorphism equivalent, denoted v1 ∼ v2, iff there is an
automorphism α of Γ s.t. α(v1) = v2. The equivalence classes of the nodes of a graph
under the action of the automorphisms are called node orbits. Here we simply call it
orbit. An orbit is trivial if it contains only one node. We denote OA the set of orbits
given by the automorphism group A.

We often use a permutation π to express an automorphism, which is further repre-
sented in the disjoint cycle form.
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Example 10. Considering an automorphism that maps (v1, v2, v3, v4, v5, v6)
to (v3, v2, v1, v6, v5, v4), correspondingly. It gives the permutation π =(
v1 v2 v3 v4 v5 v6
v3 v2 v1 v6 v5 v4

)
, which has the disjoint cycle form as π = (v1v3)(v2)(v4v6)(v5).

For the sake of simplicity, we will ignore an element v in the cycle form of an
automorphism α if α(v) = v. For example, (v1v3)(v2)(v4)(v5)(v6) will be simplified
as (v1v3). We use I to denote the identity.

Order-Preservation Constraint and Symmetry Breaking. Suppose a subgraph g
of G is isomorphic to the pattern graph P . Let f be the match that maps V (P )
to V (g). We consider an orbit {v1, v2, · · · , vk} of P w.r.t AP , and a data node set
{u1, u2, · · · , uk}. Without loss of generality, we assume u1 has the smallest order, and
f(vi) = ui for all 1 ≤ i ≤ k. Taking v1 as an example, it is clear that there exists an
automorphism αi ∈ AP where αi(v1) = vi for 2 ≤ i ≤ k. Therefore, for all the αi,
the mapping αi ◦ f from V (P ) to V (g) corresponds to the same subgraph instance g,
leading to duplicated enumerations. We then consider an order< among some nodes in
the orbit and apply the order-preservation constraint on the mapping (order-preserved
mapping). More specifically, if vi < vj , the mapping f is allowed iff f(vi) ≺ f(vj).
In this case, we enforce the order v1 < vi for all 2 ≤ i ≤ k, which eliminates all
α ◦ f where α(v1) 6= v1 (or similarly preserves only α ◦ f where α(v1) = v1) by order
preservation. In this way, we avoid the duplicated enumeration caused by v1. Note that
by enforcing such an order, a mapping f from V (P ) to V (g) is valid iff f(v1) = u1,
which means v1 can only be mapped to a fixed node in a given subgraph instance.

We call the node v in the pattern graph P the fixed node if given a subgraph g of
G, all the valid matches (according to Definiton 1) that map v to a fixed node in g.
We know that each node that belongs to a trivial orbit is a fixed node. As discussed
previously, after assigning the orders to v1, that is v1 < vi for all 2 ≤ i ≤ k, v1

becomes a fixed node by the order-preserved matching.

Symmetry Breaking Algorithm. The algorithm in [11] first initializes the automor-
phism group A as A ← AP . It then runs the following steps iteratively until A = {I}.
• Pick up the largest orbit {vi1 , vi2 , vi3 , · · · , vik} from OA.
• Assign the order vi1 < vi2 , vi1 < vi3 , · · · , vi1 < vik to make vi1 a fixed node.
• Refine A ← {α|α ∈ A ∧ α(vi1) = vi1}.

The final step refines the automorphism groupA which contains only the automor-
phisms that map v1 to itself. It is easy to verify that after the refinement A is still a
group. Note that after A is refined, OA is refined correspondingly. We show a running
example using the pattern graph presented in Figure A.1.

Example 11. The automorphism group A is initialized as AP =
{I, (v1v2v3)(v4v5v6), (v1v3v2)(v4v6v5), (v2v3)(v5v6), (v1v3)(v4v6), (v1v2)(v4v5)}.
The automorphisms partition the nodes into two orbits, namely OA = {{v1, v2, v3},
{v4, v5, v6}}. We first pick up v1 from {v1, v2, v3}, and assign the order
v1 < v2, v1 < v3. We then refine A to contain the automorphisms that map
node v1 to itself, which gives A = {I, (v2v3)(v5v6)}, and the new orbits given by
A on the remaining nodes are clearly OA = {{v2, v3}, {v5, v6}}. We further pick
up v2 and assign the order v2 < v3. After this, A should be refined to contain the
automorphisms that map v1 to v1, and v2 to v2, which gives A = {I}. The algorithm
hence terminates by assigning the following order: v1 < v2, v1 < v3, v2 < v3.

Next, we prove the correctness of the techniques proposed in [11] by showing that
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Figure A.1: A pattern graph for symmetry breaking
the results after applying the order restraints given by the algorithm 1) are complete; 2)
contain no duplicated results.

Correctness of the Algorithm. 1) Completeness. We prove the completeness of the re-
sults by induction on the step of the algorithm. By completeness we mean that the algo-
rithm only eliminates the matches introduced by automorphisms. To start, namely step
0, the results are clearly complete. In step k, we assume that the results are complete.
In step k+ 1, according to the algorithm, we pick up an orbit, {vi1 , vi2 , · · · , vik} from
OA, and assign the order vi1 < vi2 , vi1 < vi3 , · · · , vi1 < vik . We consider vi1 < vi2 ,
and the automorphism α = (vi1vi2). For any match f where f(vi1) ≺ f(vi2), the
order vi1 < vi2 only eliminates α ◦ f and nothing more is affected, which means that
the order only eliminate duplicated results due to automorphism. We have identical
results for the remaining orders. Therefore, the results after assigning the order (by
order preservation) are still complete, which completes the proof.

2) No Duplicates. Assume that there are two isomorphisms f1 and f2 that map (by
order preservation) the pattern graph to the same subgraph in the data graph. There
must exist an non-trivial automorphism α ∈ A s.t. f1 = α ◦ f2. This is impossible
since this contradicts the termination condition of the algorithm in [11], where only the
identity will be preserved in A.

Given this, we conclude that by assigning the orders via [11], we can break the
symmetry which ensures, 1) completeness; 2) no duplicates.
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