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Abstract

While most applications work on traditional “flat” data, many domains contain
hierarchical data, such as time, geographic locations, IP addresses etc. Flat
methods are generally not suitable for hierarchical data, and existing hierar-
chical approaches–such as, hierarchical heavy hitters, multilevel and cross-level
association rules–cannot capture the semantics we require when we monitor
data in the form of hierarchically correlated pairs. Therefore, in this work,
we introduce the concept of Hierarchically Correlated Heavy Hitters (HCHH),
which captures the sequential nature between pairs of hierarchical items at mul-
tiple concept levels. Specifically, the approach finds the correlation between
items corresponding to hierarchically discounted frequency counts. We have
provided formal definition for the proposed concept, and developed algorithmic
approaches for solving HCHH efficiently in data streams. The proposed HCHH
algorithms have deterministic error guarantees, and space bounds. They require
O( η

εpεs
) memory, where η is a small constant, and εp ∈ [0,1], εs ∈ [0,1] are user

defined parameters. We have compared the proposed concept of HCHH with
other existing similar hierarchical notions; experimental analysis shows that
HCHH identifies more interesting patterns that other hierarchical notions can-
not capture. Furthermore, experimental results demonstrate that the proposed
HCHH algorithm is much more efficient in terms of memory usage and output
quality compared to benchmark algorithm.
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Figure 1.1: An example of hierarchically correlated heavy hitters, where location
is primary item and product is secondary item.

1 Introduction

One of the widely used approaches in data stream mining is computing an online
summary that offers tremendous potential for extracting useful intelligence and
actionable rules. Such summaries are useful in many applications that require
fast analysis based on the statistical properties of real-time streaming data [13,
30, 17]. For example a heavy hitters summary is used in database joins, data
warehousing (e.g., OLAP), web caching and hits, search engine queries, network
usage monitoring, DDoS detection [7, 5] and more. There has been a great deal
of work in discovering algorithms to find heavy hitters summary under a variety
of scenarios and data arrival models [24, 29, 3, 20].

While most applications work on traditional “flat” data, many domains con-
tain hierarchical data, such as time, geographic locations, and IP addresses.
Techniques developed for flat data summarization are not suitable to capture
the important characteristics of hierarchical data. For example, besides finding
relationship between flat data such as milk and bread, it is often more desir-
able to also show their hierarchical relationship on a different concept level,
such as between wheat bread and 2% milk [15]. The relationship in the latter
statement is expressed at a lower concept level but often carries more specific
information than the former. Summaries with such hierarchical characteristics
deliver substantial benefits for marketing, decision making, and business man-
agement [16, 15].

A related more interesting and important stream summarization problem is
to discover the semantics of the data when we monitor data in the form of hier-
archically correlated pairs. For instance, observing clickstreams containing pairs
of items, such as (location, product) from an e-commerce website, it would be
interesting to find correlation between location and products at various concept
levels. This problem can be best described using Fig. 1.1. The figure shows
taxonomies of both locations and products, with the numbers beside the circles
indicating the count of visitors from those locations and the number of visits
to the products. Note, the number of visits to the products are with respect
to certain location (e.g., in this case CA). An interesting query on this data
could be to find a summary of highly visited products (or categories such as
shoes), for all cities (states or countries) that constitute major proportion of
the website visitors. For instance, Fig. 1.1 shows that for a 25% threshold; New
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York, NY and CA are the major locations of the website visitors (marked Grey),
and for a 30% threshold, highly visited products among CA visitors are casual
shoes, shoes and clothes (marked Orange). This summary describes correlation
between products and users with different demographic backgrounds. It can
be used for dynamic customers segmentation to help marketing efforts serve
better, by targeting specific, smaller groups with messages that those customers
would find relevant and lead them to buy something. Moreover, it can help with
both deeper understanding of customers’ preferences with various demographic
backgrounds, and discovery of what each segment finds most valuable to more
accurately tailor marketing materials toward that segment.

In this work, we introduce the concept of Hierarchically Correlated Heavy
Hitters (HCHH) for data streams containing pairs of items. We refer to the first
and second items of the pair as primary and secondary items respectively. Each
of these items are attributes that are possibly derived from different concept
hierarchies, e.g., both NY, CA belongs to the location hierarchy, and shoes,
shirts belong to the product hierarchy. Our aim is to find a summary consisting
of a set of correlated pairs, which captures the sequential nature or correlation
between pairs of items at multiple concept levels. Below we describe some mo-
tivating scenarios to explain the utility of HCHH; formal definition of HCHH is
provided in Section 2.4.

Motivating Scenarios: Following are the motivating scenarios of the HCHH
concept.

• Network Monitoring: We can find HCHH over packets of streams within
the network, where in each packet the destination address is the primary
item, and the source address is the secondary item. Here HCHH can find
those sources (a source can be a single IP address or network address)
that co-occur most frequently for their corresponding destinations (again
a destination can be a single IP address or network address). For instance,
at higher level of IP hierarchy, this can reveal interesting correlations be-
tween sources (e.g., universities, research labs, and large organizations)
and their corresponding popular destinations (e.g., search engines, pub-
lishers, social networks, and video providers). This can be useful in traffic
planning, identifying interesting trends, and shifts in popularity of sources
or destinations, especially when several IP sources are seen to share the
same primary item (i.e., destination IP address) as a HCHH.

• Clickstream Analysis: Websites and online advertisers spend a large sum
of money for market research on potential online customers; including their
demographics, their interest on specific products and their frequency of
visits and purchases. This information can be obtained through Click-
stream analysis; a process of analysing users clickstream (information
about whatever parts of a web page user clicks on)– which typically
contains user id (if logged in), timestamp, visitors IP address (raw and
geocoded), visited URL, and navigation of visitors within their website.

Using hierarchically correlated heavy hitters over clickstreams can reveal
interesting patterns as explained above with reference to Fig. 1.1. Another
use of HCHH over clickstreams is to predict a list of web links that a
particular user or a group of users will follow with a high probability. By
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applying HCHH on stored navigational patterns (e.g., A→ B→ C, which
records the successive links clicked by a user), we can obtain a list of
highly correlated links for frequently visited web pages (e.g., in the form
of pairs (A,B), (A,C), (B,C) etc.). This can be useful for understanding
user behavior, e.g., which link majority of the users come into a site, highly
visited pages, where the visitors left, and where people are clicking and
where they are not. This would help in placing the marketing material
at the right place, and to build far better, more usable, and revenue-
generating website.

• Medical Domain: In medical domain a huge amount of patient prescription
data is collected by government health agencies and research organizations
in the form of (examination, prescription). There can be many different
examinations suggested to patients. Depending on the results of an ex-
amination there can be many different prescriptions for a patient. Health
care agencies are interested to find out what are the frequently advised
examinations and for any frequent examination, what are the frequently
prescribed medications. Generally, this huge data is very sparse, hence
meaningful rules cannot be derived from the available data [4]. However,
analyzing this data using HCHH at different abstraction levels allows ex-
perts to discover interesting and actionable knowledge which may other-
wise remain hidden (e.g., in the flat data).

• Recommender System: In online shopping websites, personalized prod-
uct recommendation is very important for a business to increase revenue
and for a user to have a rich experience in shopping. The online HCHH
algorithm can parse the transaction as it arrives, to identify a list of addi-
tional products (from various categories) that were bought together with
the most frequently purchased products (at various concept levels). The
performance of a recommender system can be optimize by storing an up-
dated list of HCHH in a cache with a small lookup time, and then perform
recommendation to buyers using HCHH summary rather than performing
recommendation from large disk resident data.

Contributions: The contributions of this paper are as follows:

1. We introduce the concept of HCHH, which can be applied in a variety
of scenarios to discover interesting and actionable patterns. We provide
formal definition for our proposed concept, and develop algorithmic ap-
proaches for solving HCHH problem efficiently in data streams.

2. We show that the proposed HCHH algorithm provides deterministic error
guarantees, and space bounds, specifically it requires O( η

εpεs
) memory,

where η is a small constant, and εp ∈ [0,1], εs ∈ [0,1] are user defined
parameters.

3. To develop HCHH algorithm, we first show how to find flat correlated
heavy hitters optimally. We give a space optimal flat correlated heavy
hitter algorithm that has O( 1

εpεs
) memory bound. Next, we extend the

flat correlated heavy hitter algorithm to develop the HCHH algorithm.

4. Evaluation of the proposed HCHH algorithms with existing similar hi-
erarchical notions shows that HCHH identifies interesting patterns that
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are missed by the other hierarchical notions. Furthermore, experimen-
tal results demonstrate that the proposed HCHH algorithm is much more
efficient in terms of memory usage and output quality compared to bench-
mark algorithm.

The remainder of this paper is organized as follows; In Section 3 we describe
our proposed algorithms and provide the pseudo−codes and theoretical proofs
on bounds in space and accuracy guarantees. The implementation details and
experimental results are shown in Section 4. Section 5 provides a brief insight
on existing work in the area of data streams, specifically on summarization, and
the paper concludes in Section 6.

2 Problem Definition

2.1 Notation

Let the set of transactions T = {(τ1, w1), (τ2, w2), (τ3, w3) · · ·} be a continuous
stream, where each transaction τi is a tuple (pi, si) of pairs such that p is a
primary item and s is a secondary item, wi is the weight associated with τi, and
N is the sum of the weights of the transactions processed so far.

2.2 Correlated Heavy Hitters

The concept of Correlated Heavy Hitters (CHH) can formally be defined as:

Definition 1 (Correlated Heavy Hitters) Let the frequency of p, fp be defined
as,

fp =
∑
∀pi=p

wi

The frequency of a (p, s) pair, fp,s, is defined as;

fp,s =
∑

∀pi=p∧∀si=s

wi

The user define parameters are φp ∈ [0, 1] and φs ∈ [0, 1]. The CHH problem is
to compute a set Fc so that for all pairs,

(p, s) ∈ Fc, (fp ≥ φpN) ∧ (fp,s ≥ φsfp)

The exact set of CHH cannot be found with limited memory and using one pass
over the data (i.e., stream computational model), hence, the concept of online
identification of CHH is introduced next.

Definition 2 (Online CHH identification problem) Given user defined param-
eters εp, εs, φp ∈ [εp, 1] and φs ∈ [εs, 1], the online CHH identification problem
is to compute a set Fc so that the following conditions are met;
1. Accuracy:

f̂p ≤ fp + εpN

f̂p,s ≤ fp,s + εsfp

2. Coverage:

∀(p
′
, s

′
) /∈ Fc, (fp′ < φpN) ∧ (fp′ ,s′ < φsfp)
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The conditions state that the accuracy of the estimated frequency f̂p is within

εpN of the true frequency fp and the estimated frequency f̂p,s is within εsfp of
the true frequency fp,s.

Lemma 1 Using formulation of CHH from definition 2, false positives are pos-
sible, but false negatives are not.

In other words, while no correlated heavy hitters will be missed, due to limited
memory for storing the unbounded stream, some non-correlated heavy hitters
may be reported. This error is controlled using parameters εp and εs.
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Figure 2.1: A lattice like structure build from two dimensional IP addresses
(e.g., source IP address and destination IP address).

2.3 Generalizing item hierarchies

Here we illustrate the concept of generalization using hierarchies hp, and hs, as
an example, we consider a transaction from network IP data with destination
IP address as p and source IP address as s. This is because the company might
be interested in finding out which of its internet connected servers are receiving
most visitors, and what is the location of these visitors that are most occurring
for the heavily visited servers. This information may be used to improve visitor
experience by creating, relocating or adding redundant servers at closer geo-
location, or customizing the offered services tailored to the frequent visitors.

Consider a example transaction (1.2.3.4/32, 5.6.7.8/32) where 1.2.3.4 and
5.6.7.8 are two IP addresses used for illustration only. The notation x.x.x.x/b
is often used to represent IP addresses where b indicates the number of bits
important to distinguish a given IP address. For example, if b = 32, then all
the 4x8 = 32 bits are significant. If b = 24, then only the first 24 bits (the 24
MSB bits) are significant and the remaining 8-bits are disregarded. The height

5



of hierarchy of both destination and source IP is the same hp = 4 and hs = 4,
when a byte-wise hierarchy is considered, shown in Fig. 2.1.

Each transaction τ can be generalized using item hierarchies. We refer to
the generalized transaction τa as the ancestor of the transaction τ from which
it has been generalized. The generalization can be performed using function
GeneralizeTo(.). For instance, GeneralizeTo(τ , L) is a generalization step of
transaction τ to label L. We represent each label of the hierarchy by L, as a
vector of two integers, where entries Lp ∈ L and Ls ∈ L represent the levels of
hierarchies of the items p and s respectively. For example, L =(4, 4) shows the
transaction, where both items are not generalized. Similarly, L =(3, 3) repre-
sents an ancestor transaction τa where both p and s are generalized to level 3.
Thus, function GeneralizeTo(1.2.3.4/32,5.6.7.8/32, (3, 2)) returns a transaction
τa = (1.2.3.0/24,5.6.0.0/16), where item p is at level 3 and item s is at level
2 of their hierarchies. It is important to note that the generalization, such as
GeneralizeTo(1.2.3.0/24,5.6.0.0/16, (4, 2)) can not be computed, because the
transaction (1.2.3.0/24,5.6.0.0/16) is currently at label (3, 2), and the function
GeneralizeTo(1.2.3.0/24,5.6.0.0/16, (4, 2)) requires to roll down (a concept used
in OLAP [23]) in the hierarchy. However, in this case rolling down the hierar-
chy is not possible because transactions at higher level of generalization could
be rolled down to a large numbers of possible entries (i.e., there is no single
descendant).

By enumerating each possible combination of Lp and Ls using General-
izeTo(.) function, we can build a lattice like structure as shown in Fig. 2.1. In
general, the number of nodes η in lattice build from hp and hs are η = hp × hs,
and the height λ of the lattice built from hp and hs is λ = hp + hs − 1. The
levels of the lattice (not to confuse with the levels of p and s) are numbered
1 (top most node of the lattice) to λ (bottom most node of the lattice), and
represented by an integer l.

2.4 Hierarchically Correlated Heavy Hitters

This section provides the formulations of the HCHH. Let pa and sa be the an-
cestors of p and s at level L respectively, such that (pa, sa) =GeneralizeTo(p, s,
L). For the sake convenience, let the notation ≺ represents ancestor–descendant
relationship, for instance p ≺ pa represents that pa is the generalization of p.
Also, let p 4 pa represents (p ≺ pa) ∨ (p = pa), then the frequency of pa,
fpa and frequency of the pair (pa, sa), fpa,sa can be defined as follows;

Definition 3 (Hierarchically Correlated Heavy Hitters) Let φp ∈ [0, 1] and φs ∈
[0, 1] are user defined parameters, Fm is the set of all HCHH, Fml ⊆ Fm is the
set of HCHH at level l of the hierarchy, where λ ≥ l ≥ 1, then:
1. Fmλ is the set of HCHH, which is computed by simply computing the CHH
of T (using Definition 2) at level λ, and
2. Fml is the set of HCHH at level l of the hierarchy, which is computed as
follows:

(fpa ≥ φpN) ∧ (fpa,sa ≥ φsfpa)

where
fpa =

∑
(p4pa)∧(p/∈Fml+1

)

fp
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fpa,sa =
∑

(p4pa)∧(s4sa)∧((p,s)/∈Fml+1
)

fp,s

3. Fm =
⋃
∀l Fml

A näıve approach would be to apply the CHH definition at each level of gener-
alization; at the leaves, but also for each internal node in the lattice. However,
this definition will identify a large number of CHH at the ancestor level, simply
because they have a descendant CHH. This fails to capture the complexity of
the data distribution in the hierarchy. For example, is a node marked as CHH
merely because it has a descendant which is CHH, or because the aggregation
of its descendants makes it CHH? Therefore, the above definition of HCHH
identifies those nodes whose frequencies do not include the frequencies of its de-
scendant CHH pairs. In other words, any node can be a HCHH but only after
discounting the frequencies of its descendant nodes that are themselves HCHH.

The Definitions 3 require space linearly proportional to the size of input for
computing HCHH with exact frequencies. In the data stream model with con-
straint on the resources, an online version of this problem is defined as follows;

Definition 4 (Online HCHH identification problem) Given a data stream of
transactions τi ∈ T , and user define parameters εp, εs, φp ∈ [εp, 1] and φs ∈
[εs, 1], then HCHH identification problem is to output a set Fm of correlated
pairs of prefixes (pa, sa) : (p 4 pa)∧ (s 4 pa), and approximate bounds on the
frequency of each item pa ∈ Fm and sa ∈ Fm, such that the following conditions
are satisfied;
1. Accuracy:

f̂pa ≤ fpa + εpN

f̂pa,sa ≤ fpa,sa + εsfpa

2. Coverage:

∀ (pa, sa) /∈ Fm, (fpa < φpN) ∧ (fpa,sa < φsfpa)

3 Proposed Algorithms

This section describes the proposed algorithms for flat (i.e., CHH) as well as hi-
erarchical correlated heavy hitters (i.e., HCHH). First, we propose an algorithm
for flat datasets (e.g., when p, and s are not hierarchical items), which we call
OCHHA that has neither of the problem described above; it does not require
the values of φp and φs apriori, has lower false positive rate, is memory optimal,
and can be extended to design algorithm for HCHH computation. Next, we
propose a hierarchy-aware algorithm, which is based on OCHHA, and we call it
HCHHA.

In the following lemma, we show the memory bound for any optimal online
algorithm for solving CHH problem in two dimensional data streams.

Lemma 2 Any algorithm that solves approximate CHH problem from definition
2 requires at least Ω( 1

εp
+ 1

εpεs
) memory.

The standard definition of finding a set H of heavy hitters from a stream of N
items is;

(∀e ∈ H ⇒ fe ≥ (φ− ε)N) ∧ (∀e
′
/∈ H ⇒ fe′ < φN)
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which requires all items e with fe ≥ εN to be maintained. It has been shown in
[5] that a summary of size Ω( 1

ε ) is needed to maintain all items e with fe ≥ εN ,
and to ensure εN error guarantee. Now, the definition of finding a set Fc of
CHH from a stream of N pairs is;

(∀p ∈ Fc ⇒ fp ≥ (φp − εp)N) ∧ (∀p
′
/∈ Fc ⇒ fp′ < φpN)∧ (3.1)

(∀(p, s) ∈ Fc ⇒ fp,s ≥ (φs − εs)fp) ∧ (∀(p
′
, s

′
) /∈ Fc ⇒ fp′ ,s′ < φsfp) (3.2)

Equation 3.1 is exactly same as the definition of heavy hitters set H, which
require Ω( 1

εp
) memory. By analogy to H equation 3.2 requires (fp,s ≥ εsfp)

to be also satisfied by CHH algorithm. Now using fp ≥ εpN , we can get the
following facts;

fp ≥ εpN ⇒ εsfp ≥ εsεpN

fp,s ≥ εsfp ≥ εsεpN

Which shows that (fp,s ≥ εsfp) requirements can also be satisfied by (fp,s ≥
εsεpN), which needs at least Ω( 1

εsεp
) memory. Thus, to satisfy equation 3.1 and

3.2, we require Ω( 1
εp

) + Ω( 1
εsεp

) = Ω( 1
εp

+ 1
εsεp

).

3.1 Optimal CHH Algorithm (OCHHA)

This section describes OCHHA in detail, and develops theoretical bounds on
memory usage and deterministic error guarantees in answer qualities. OCHHA
creates two sketches, SSp,s and SSp. The sketch SSp,s contains a set of, at
most, ks = 1

εsεp
tuples of the form [(p, s), gp,s,∆p,s], where pair (p, s) is the key

of the tuple, gp,s is the approximate frequency of pair (p, s), ∆p,s is the error in
approximation of frequency of pair (p, s) in stream S. Similarly, the sketch SSp
contains a set of, at most, kp = 1

εp
tuples of the form [p, gp,∆p], where primary

item p is the key of the tuple, gp is the approximate frequency of item p, ∆p is
the error in approximation of frequency of item p.

High level concept of OCHHA: we process each pair (p, s) from the stream
S using Space Saving [25] sketch SSp,s, which maintains a summary of size ks.
The main idea behind OCHHA is to process, any infrequent pair that is deleted
from the sketch SSp,s by another Space Saving sketch SSp, which maintains a
summary of size kp. The difference between sketch SSp,s and sketch SSp is that
the sketch SSp only processes the infrequent primary items p that are deleted
from sketch SSp,s, hence, sketch SSp contains primary items p that belong to
the tail/infrequent pairs of stream S.

Now we describe OCHHA in more detail. For each incoming tuple (pi,si,wi),
OCHHA performs one of the following actions (see Algorithm 1);

• if the pair (pi, si) is present in SSp,s, OCHHA increments the correspond-
ing counter using gpi,si+ = wi;

• if the pair (pi, si) is not present in SSp,s, then the pair with the smallest
counter in SSp,s (say (p, s)) is removed from SSp,s; next, it is replaced
by the pair (pi, si); next, the counter of the pair (pi, si) is set to gpi,si =

g
′

p,s + wi; and finally, the error of the pair (pi, si) is set to ∆pi,si = g
′

p,s.
Next, the deleted pair (p, s) from SSp,s is processed by the second sketch
SSp as follows: the primary item p is taken out from the deleted pair
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Algorithm 1 OCHHA

1: procedure Initialize(εp, εs)

2: Set kp =
⌈

1
εp

⌉
, ks =

⌈
1

εpεs

⌉
;

3: end procedure
4: function Update-SSp,s(pi, si, wi)
5: if (pi, si) ∈ SSp,s then
6: gpi,si+ = wi;
7: else
8: let g

′
p,s = min∀(p,s)∈SSp,s (gp,s);

9: replace (pi, si) with (p, s) in [(p, s), gp,s,∆p,s];

10: c = g
′
p,s −∆p,s;

11: Insert(p, c);

12: ∆pi,si
= g

′
p,s;

13: gpi,si = g
′
p,s + wi;

14: end if
15: Return(p,s,c);
16: end function
17: function Update-SSp(pi, w)
18: if pi ∈ SSp then
19: gpi+ = w;
20: else
21: let g

′
p = min∀p∈SSp (gp);

22: replace pi with p in [p, gp,∆p];

23: c = g
′
p −∆p;

24: ∆pi
= g

′
p;

25: gpi = g
′
p + w;

26: end if
27: Return(p,c)
28: end function
29: procedure Output(φp, φs)
30: Fc = {}, Fp = 0
31: Fp =

∑
∀(pi,si)∈SSp,s:pi=p

(gp,s −∆p,s)

32: Fp+ = gp
33: for each (p, s) ∈ SSp,s do

34: if (Fp ≥ φpN) ∧ (gp,s ≥ φs(Fp − εpNdel)) then
35: Print(p, Fp,∆p, s, gp,s,∆p,s)
36: Fc = Fc ∪ (p, s)
37: end if
38: end for
39: end procedure

(p, s); the count c of the pair (p, s) is calculated from sketch SSp,s using

c = g
′

p,s − ∆p,s; and then the primary item p with count c is given to
sketch SSp (see lines 7-8 of Algorithm 1), where item p is processed by
SSp in the same manner as the pair (pi, si) is processed by sketch SSp,s.

Example: It is easier to understand how OCHHA works with an example.
Figure 3.1 illustrates the runtime mechanism of OCHHA for processing the
stream of pairs. For this example, we assume |SSp,s|= 1

εpεs
= 4 and |SSp|=

1
εp

= 2. Next, we explain each step of the algorithm in detail.

1. Figure 3.1a shows the current status of OCHHA, where SSp,s is full and
SSp is empty. The OCHHA is ready to process the next pair {(x, d), 3}
from the stream.

2. Figure 3.1b shows that the OCHHA has received the pair {(x, d), 3}; first,
it compares {(x, d)} with tuples in SSp,s. Since, there is no tuple in SSp,s
that matches the key (x, d) and SSp,s is full, therefore, OCHHA finds a
tuple [(x, a), 1, 0] in SSp,s with the smallest count, and replaces it with
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𝑆𝑆𝑝,𝑠  

𝑆𝑆𝑝  

[(x, a), 1, 0]

[(x, b), 9, 2]

[(z, c), 7, 0]

[(y, a), 4, 1]

{(x, d), 3}

𝑆𝑆𝑝,𝑠  

𝑆𝑆𝑝  

[(x, d), 4, 1]

[(x, b), 9, 2]

[(z, c), 7, 0]

[(y, a), 4, 1]

[x, 1, 0]

{(x, a), 4}
{(u, e), 4}

{(x, a), 4}

{(u, e), 4}

𝑆𝑆𝑝,𝑠  

𝑆𝑆𝑝  

[(x, a), 8, 4]

[(x, b), 9, 2]

[(z, c), 7, 0]

[(y, a), 4, 1]

[x, 4, 0]

{(u, e), 4}

deleted [(x, a), 1, 0]

deleted [(x, d), 4, 1]

{(u, f), 3} {(u, f), 3}

{(u, f), 3}

𝑆𝑆𝑝,𝑠  

𝑆𝑆𝑝  

[(x, a), 8, 4]

[(x, b), 9, 2]

[(z, c), 7, 0]

[(u, e), 8, 4]

[x, 4, 0]

deleted [(y, a), 4, 1]

{(u, f), 3}

[y, 3, 0]

𝑆𝑆𝑝,𝑠  

𝑆𝑆𝑝  

[(x, a), 8, 4]

[(x, b), 9, 2]

[(u, f), 10, 0]

[(u, e), 8, 4]

[x, 4, 0]

deleted [(z, c), 7, 0]

[y, 3, 0]

𝑆𝑆𝑝,𝑠  

𝑆𝑆𝑝  

[(x, a), 8, 4]

[(x, b), 9, 2]

[(u, f), 10, 0]

[(u, e), 8, 4]

[x, 4, 0]

deleted [y, 3, 0]

[z, 10, 3]

(a)

(c)

(e)

(b)

(d)

(f)

Stream of pairs Stream of pairs

already inserted 

pairs
inserted {(x, d), 3}

inserted {(x, a), 4} inserted {(u, e), 4}

inserted {(u, f), 3}

inserted [ z, 7 ]

Stream of pairs

Stream of pairs

inserted [ x, 1 ]

inserted [ x, 3 ] inserted [ y, 3 ]

Figure 3.1: An illustration of various steps of OCHHA to process a stream
of pairs that contain entries {(p, s), w}, where p is the primary item, s is the
secondary item and w is the frequency of the pair (p, s).

[(x, d), 4, 1], where gx,d = 4 and ∆x,d = 1. Next, OCHHA computes
{x, 1} from the deleted tuple [(x, a), 1, 0] and inserts {x, 1} into SSp.

3. In Figure 3.1c the OCHHA receives the pair {(x, a), 4} and compared {(x,
a)} with tuples in SSp,s. Since, there is no tuple in SSp,s that matches
the key (x, d) and SSp,s is full, therefore, OCHHA finds a tuple [(x, d),
4, 1] in SSp,s with the smallest count, and replaces it with [(x, d), 8, 4],
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where gx,a = 8 and ∆x,a = 4. Next, OCHHA computes {x, 3} from the
deleted tuple [(x, d), 4, 1] and inserts {x, 3} into SSp. As x is found in
SSp, therefore, OCHHA just increments the count of x using gx = 1 + 3.

4. In Figure 3.1d the OCHHA inserts incoming pair {(u, e), 4} that cause
tuple [(y, a), 4, 1] to be deleted from SSp,s. The OCHHA computes {y,
3} from the deleted tuple [(y, a), 4, 1] and inserts {y, 3} into SSp.

5. In Figure 3.1e the OCHHA inserts the incoming pair {(u, f), 3} that cause
tuple [(z, c), 7, 0] to be deleted from SSp,s.

6. Figure 3.1f shows that the OCHHA computes {z, 7} from the deleted tuple
[(z, c), 7, 0] and compares z with tuples in SSp. Since, there is no tuple
in SSp that matches the key z and SSp is full, therefore, OCHHA finds a
tuple [y, 3, 0] in SSp with the smallest count, and replaces it with [z, 10,
3], where gz = 10 and ∆z = 3.

As it can be seen a primary item p may exist in both sketches SSp,s and SSp
(e.g., x exists in both sketches SSp,s and SSp, see Figure 3.1), therefore, to find
the approximate frequency of primary item p at query time, we have to calculate
the estimated frequency using both sketches (see lines 25-26 of Algorithm 1);

f̂p =
∑

∀(pi,si)∈SSp,s:pi=p

(gpi,si −∆pi,si) + gpi

The approximate frequency of pair (p,s) can be found simply from sketch SSp,s
using f̂p,s = gp,s. For example, if we want to find f̂x, OCHHA calculates it as
follows.

f̂x = (gx,a −∆x,a) + (gx,b −∆x,b) + gx = (8− 4) + (9− 2) + 4 = 15

To find the approximate frequency of a pair, say (x, a), OCHHA finds it directly

from sketch SSp,s, which is f̂x,a = gx,a = 8.
Next, in order to provide bounds on the accuracy of OCHHA, we proceed as

follows: let Ndel represent the sum of all items processed by SSp (i.e., the sum
of count of deleted pairs from sketch SSp,s), then OCHHA has the following
estimation guarantees;

Lemma 3 (Accuracy)

f̂p ≤ fp + εpN
del

f̂p,s ≤ fp,s + εsfp

Observe that, the only error that we have in the estimation of primary item p
is due to items that are deleted from sketch SSp, thus, the error in estimation
of frequency of primary item p is relative to Ndel. Since, sketch SSp uses O( 1

εp
)

memory, therefore, this error is bounded by εpN
del, i.e., f̂p ≤ fp + εpN

del. Sim-

ilarly, the sketch SSp,s provides f̂p,s ≤ fp,s + εpεsN guarantees due to Space
Saving algorithm [25]. Since, εsfp ≥ εsεpN (see lemma 2), therefore, the sketch

SSp,s provides f̂p,s ≤ fp,s + εsfp guarantees. The overall memory required
by OCHHA is 1

εp
+ 1

εsεp
= O( 1

εsεp
), which is optimal. For arbitrary positive
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counter updates, using a suitable min-heap based implementation of Space Sav-
ing, OCHHA updates will take O(log 1

εsεp
) time, and lookups will require O(1)

time. When all updates are unitary (of the form wi = 1), both insertions and
lookups can be processed in O(1) time using the Stream Summary data struc-
ture [25].

Based on the information available in two sketches SSp,s and SSp, OCHHA
outputs any pair (p,s) when the frequency of the pair (p,s) satisfies the following
threshold (see lines 28 of Algorithm 1);

(Fp ≥ φpN) ∧ (gp,s ≥ φs(Fp − εpNdel))

where Fp = f̂p and gp,s = f̂p,s. The following lemma provides useful observation
on properties of the CHH pairs that are output by OCHHA.

Lemma 4 (Coverage) OCHHA satisfies the coverage property from definition
2.

The criteria for a pair (p, s) ∈ Fc used in the output subroutine of OCHHA can
be written as follows (see lines 26-30 of Algorithm 1);

(Fp ≥ φpN) ∧ (gs ≥ φs(Fp − εpNdel))

⇒ (f̂p ≥ φpN) ∧ (f̂p,s ≥ φs(f̂p − εpNdel)) (3.3)

Now using fp ≤ f̂p and bounds from lemma 3, the above equation becomes;

⇒ (fp + εpN
del ≥ φpN) ∧ (fp,s + εsfp ≥ φs(fp − εpNdel))

⇒ (fp ≥ φpN − εpNdel) ∧ (fp,s ≥ (φs − εs)fp − φsεpNdel) (3.4)

Similarly, in order to find the bounds on pairs (p, s) /∈ Fc, we use the inverse of
equation 3.3, i.e.,

⇒ (f̂p < φpN) ∧ (f̂p,s < φs(f̂p,s − εpNdel))

Again using the bounds from lemma 3, the above equation becomes;

⇒ (fp < φpN) ∧ (fp,s < φsfp) (3.5)

Hence, we conclude from equation 3.4 that ∀(p, s) ∈ Fc, ((fp ≥ φpN−εpNdel)∧
(fp,s ≥ (φs − εs)fp)), and from equation 3.5, ∀ (p

′
, s

′
) /∈ Fc, ((fp′ < φpN) ∧

(fp′ ,s′ < φsfp)).

Theorem 1 OCHHA satisfies all the requirements of definition 2 using memory
O( 1

εpεs
).

Theorem 1 follows directly from lemmas 3 and 4.

3.2 Hierarchical Algorithms

A näıve way of computing HCHH, using OCHHA, would be to find CHH over all
prefixes of all the pairs in the data stream and then to discard extraneous pairs
in a post processing step. We argue that this näıve strategy can be improved
substantially in practice (in terms of the space usage and the answer quality)
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by designing the hierarchy-aware algorithms that we design next. In Section
3.2 we present the näıve algorithm to compute hierarchically correlated heavy
hitters, and in Section 3.2 we develop an efficient hierarchy-aware algorithm
(i.e., HCHHA) with deterministic error guarantees. We consider cash register
stream computational model, where new transactions only arrive and there are
no deletions of previously seen transactions.

Näıve Algorithm

We first describe a näıve algorithm that uses OCHHA as a subroutine. We
will use näıve algorithm as a baseline to compare various results. Basically,
this algorithm maintains information for every label (node) in the lattice, by
maintaining η independent instances of OCHHA, where each one computes (ap-
proximately) CHH for that node in the lattice (see Fig 2.1 for an example of
lattice). The näıve algorithm works as follows. For every update τ , we compute
all generalizations of τ and insert each one separately into respective HCHHA
in the lattice. The output of the näıve algorithm is the union of all the outputs
from each instance of HCHHA. The output from the näıve algorithm is a super-
set of the approximate HCHH (see Definition 4), and satisfies the accuracy and
coverage requirements for HCHH. Nevertheless, it is a costly strategy in terms
of space usage, as well as update costs.

Since, we use η independent instances of OCHHA and place each update
into each of these η instances, the näıve algorithm has O( η

εpεs
) overall space

bound. Moreover, since OCHHA processes each update in constant time, the
näıve algorithm requires O(η) updates to process each τ .

Hierarchically CHH Algorithm (HCHHA)

The main idea behind the HCHHA is to create a two-dimensional lattice (similar
to Fig 2.1b) with η nodes, and in each node maintain a list of CHH using a
frequency discounting strategy (more details to follow). For a given HCHH
query, the algorithm outputs HCHH by starting from the lowest level of the
lattice and progressing towards the top. At each level, it outputs all the CHH
pairs by properly discounting the frequencies of CHH maintained at lower levels
of the lattice using Definition 4.

HCHHA maintains a sketch SSLp,s (that we have described for OCHHA al-
gorithm) at each node of the lattice, where L represents the label of the node in
the lattice. Notice , unlike the näıve algorithm, the HCHHA does not maintain
SSLp sketches at each node of the lattice, except the nodes on the left most
diagonal of the lattice (e.g., nodes (4,4), (3,4), (2,4) and (1,4) in Fig 2.1b). This
is because in the näıve algorithm the sketch SSLp maintains exactly the same
information at each diagonal of the lattice. Since we maintain two sketches (sim-
ilar to OCHHA) at various nodes in the lattice, therefore, we first explain the
operations on sketch SSLp,s in the lattice and then explain operations on sketch

SSLp in the lattice. Each incoming pair from the stream is inserted into sketch

SS(4,4)
p,s at the lowest level of the lattice (e.g., node (4,4) in Fig 2.1b). Whenever

a pair becomes infrequent and is deleted from sketch SS(4,4)
p,s at the lower level,

its frequency is added to its ancestors in sketches SS(3,4)
p,s and SS(4,3)

p,s at the
immediate higher level; such process is known as generalization as explained in

13



Algorithm 2 Update procedure of HCHHA

Require: εp and εs to initialize sketches SSLp,s with 1
εpεs

counters at each node L of the lattice,

and SSLp with 1
εp

counters at nodes L = {(4, 4), (3, 4), (2, 4), (1, 4)} of the lattice.

1: procedure Update(pi, si, wi)
2: N+ = wi;
3: L = getLevelV ector(pi, si);

4: (p, s, c) = Update-SSLp,s(pi, si, wi); . See Update-SSp,s(.) of Algorithm 1

5: Updatep,s(p, s, c);
6: Updatep(p, c);
7: end procedure
8: procedure Updatep(p, c)

9: Ndel+ = c;
10: L = getLevel(p)

11: D = Update-SSLp (p, c); . See Update-SSp(.) of Algorithm 1

12: for each (p, c) in D do
13: pa = GetAncestorp(p)
14: if pa is not NULL then
15: L = getLevel(pa)

16: Dp =Update-SSLp (p, c);

17: Add tuples from Dp to the end of D;
18: end if
19: end for
20: end procedure
21: procedure Updatep,s(p,s,c)
22: D = {p, s, c};
23: for each (p, s, c) in D do
24: Let A = {} is a multidimensional set, initially empty
25: A = GetAncestorsp,s(p, s, c)
26: for each (pa, sa, c) in A do
27: L = getLevelV ector(pa, sa)

28: Dp,s = Update-SSLp,s(pa, sa, c);
29: Add tuples from Dp,s to the end of D;
30: end for
31: end for
32: end procedure
33: function GetAncestorsp,s(pi, si, c)
34: (Lp, Ls) = getLevelV ector(pi, si)
35: Let A = {} is a multidimensional set, initially empty
36: L = (Lp − 1, Ls)
37: if pi is generalizable to L then
38: (pa, s) = GeneralizeTo(pi, si, L);
39: A = A

⋃
{pa, s,+c}

40: end if
41: L = (Lp, Ls − 1)
42: if si is generalizable to L then
43: (p, sa) = GeneralizeTo(Ri, L);
44: A = A

⋃
{p, sa,+c}

45: end if
46: L = (L1 + 1, L2 + 1)
47: if (pi, si) is generalizable to L then
48: (pa, sa) = GeneralizeTo(pi, si, L);
49: A = A

⋃
{pa, sa,−c}

50: end if
51: Return A;
52: end function
53: function GetAncestorp(pi)
54: if pi is generalizable to Lp − 1 then
55: Return GeneralizeTo(pi, Lp − 1);
56: else
57: Return NULL;
58: end if
59: end function

Section 2.3. The deletion can happen at higher levels too when a pair becomes
infrequent there, which continues upwards towards the root node.

Since, the deleted pair has to pass its count to two immediate ancestors (or at
most n ancestors for n-dimensional data), which introduces the “over-counting”
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Algorithm 3 Output procedure of HCHHA

1: procedure Output(φp, φs)
2: Fm = {};
3: Fp = {(p, gp) : gp =

∑
∀(pi,si)∈SS(4,4)

p,s :pi=p
(gp,s −∆p,s)};

4: for l = λ to 0 do
5: for each L ∈ Level(l) do
6: Fpa =

∑
(p∈SSLp ∨p∈Fp)∧(p/∈Fm )∧(p 64pa∈Fm ) gp;

7: fpa =
∑

(p∈SSLp ∨p∈Fp)
gp;

8: if Fpa ≥ φpN then

9: for each (p, s) ∈ SSLp,s do

10: (pa, sa) = GeneralizeTo(p, s, L)
11: fpa,sa + = gp,s;
12: if @(ph, sh) ∈ Fm : ((p, s) 4 (ph, sh)) ∧ ((ph, sh) 4 (pa, sa)) then
13: Fpa,sa + = gp,s;
14: end if
15: end for
16: for each (ph, sh) ∈ Fm do
17: (pa, sa) = ancestor((ph, sh), L)
18: if @(pq, sq) ∈ Fm : ((ph, sh) 4 (pq, sq)) ∧ ((pq, sq) 4 (pa, sa)) then
19: Fpa,sa + = − gp,s;
20: end if
21: end for
22: for each (pa, sa) ∈ Level(l) do
23: if Fpa,sa ≥ φsfp then
24: Fm = Fm

⋃
{(pa, sa)};

25: Print (pa, fpa , sa, fpa,sa );
26: end if
27: end for
28: end if
29: end for
30: end for
31: end procedure

problem; well known in multidimensional hierarchical heavy hitters computation
[31, 10]. The problem occurs when the count of a descendant node traverses
up through multiple paths of a lattice and ends up in a single ancestor node.
This means that the same child node’s frequency is counted multiple times at an
upper level node, which is clearly an error. This over-counting can be controlled
using a inclusion-exclusion strategy defined in [31, 10], which inserts the count
of each deleted pair into its immediate parents, and subtracts its count from
common grandparent. This is done for each deleted pair while moving up in the
lattice hierarchy to effectively solve the over-counting problem.

More specifically, for each incoming τi = (pi, si, wi), HCHHA inserts (pi, si)

into SS(4,4)
p,s at the lowest node of the lattice, if SS(4,4)

p,s returns no deleted
pair then HCHHA continues to process next pair from the stream. Otherwise,
HCHHA performs the following actions (see Algorithm 2); let SS(4,4)

p,s returns
a deleted pair (p, s) having count c (where c is defined previously in OCHHA)
then:

1. The deleted pair (p, s) from SS(4,4)
p,s is generalized to parent labels L =

(3, 4) and L = (4, 3) and grandparent label L = (3, 3). Then the general-

ized pair (pa, s) and (p, sa) with count c are given to sketches SS(3,4)
p,s and

SS(4,3)
p,s respectively at the parent nodes of the lattice, and the generalized

pair (pa, sa) with count −c is given to sketch SS(3,3)
p,s at the grandparent

node of the lattice. The insertion of a pair (p, s) into SSLp,s at any ancestor

label L may cause SSLp,s to return another deleted pair, which is general-
ized to its parent and grandparent labels in similar manner as explained

15



𝒑, 𝒔 =  𝒂. 𝒃.∗, 𝒘. 𝒙. 𝒚.∗ 
𝒇𝒑𝒂 ,𝒔𝒂 = 𝟔𝟎, 𝑭𝒑𝒂 ,𝒔𝒂 = 𝟐𝟎 

𝒑, 𝒔 =  𝒂. 𝒃. 𝒄.∗, 𝒘. 𝒙. 𝒚.∗ 
𝒇𝒑𝒂 ,𝒔𝒂 = 𝟒𝟎, 𝑭𝒑𝒂 ,𝒔𝒂 = 𝟐𝟎 
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𝒑, 𝒔 =  𝒂. 𝐛. 𝐜.∗, 𝒘. 𝒙. 𝒚. 𝒛 
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Figure 3.2: An illustration of HCHHA to process and output HCHH from a
two-dimensional stream of IP address pairs that contain entries {(p, s)}, where
p is the primary item corresponding to destination IP address and s is the
secondary item corresponding to source IP address. Both p and s are hierar-
chical items at octet-based granularity. The exact HCHH contain a set of or-
dered pairs of destination-source IP address prefixes. The HCHH set contains
those sources which co-occur most frequently for their corresponding destina-
tions at various levels of their hierarchies. The terms fpa and Fpa represent
the full and discounted count of primary item p respectively. Similarly, the
terms fpa,sa and Fpa,sa represent the full and discounted count of pair pa, sa
respectively. The stream contains 20 repetitions of the pairs (a.b.c.d, w.x.y.z),
followed by pairs (a.b.c.i, w.x.y.i), (a.b.i.d, w.x.y.i), and (a.b.c.i, w.i.y.z), where
i = 1, 2, , · · · , 20. The alphabets a, b, w, y etc. are representing different inte-
gers between 10 and 255. To demonstrate the main concept, we have skipped
the steps of insertion of pairs and only highlighted the HCHH pairs found for
the specific stream described above (where N = 80) by the HCHHA at various
nodes of the lattice for φp = 0.25 and φs = 0.5.

for deleted pair (p, s) above.

2. Also, the primary item p is taken out from the pair (p, s) which is deleted

from SS(4,4)
p,s , and then the primary item p with count c is given to sketch

SS(4,4)
p . Note that this operation is specific to node (4,4) only; i.e., at

no other node this operation happens. However, when infrequent items
p are deleted from sketch SS(4,4)

p , they are generalized and inserted to

sketch SS(3,4)
p . Similarly, infrequent items p deleted from sketch SS(3,4)

p

are generalized and inserted to sketch SS(2,4)
p , and so on.
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The output procedure of HCHHA (see Algorithm 3) is a complex subroutine
that outputs HCHH pairs after properly discounting the counts of HCHH at
lower level of the lattice (see Figure 3.2). It iterates through all the levels of
the lattice, starting at the bottom level of the lattice and work towards the top,
using the inclusion-exclusion strategy mentioned above. At each level it iterates
through all the labels (nodes) belonging to that level. At each label (node) it
iterates through all the items maintained by sketches SSLp,s and SSLp within
that label of the lattice. The subroutine output any prefix pair whose estimated
count exceeds the thresholds φp and φs.

For any record (pa, sa) that belongs to any level and any label at that level,
the subroutine computes Fpa and Fpa,sa , which are the sum of the counts of all
descendants p : p 6 4 pa ∈ Fm and (p, s) : (p, s) 6 4 (pa, sa) ∈ F

m
respectively. In

the case of computing Fpa,sa the subroutine checks if any pair has contributed
twice to an ancestor pair, then the subroutine removes that count of the repeated
pair from the ancestor pair (see loop at lines 17-22 of the pseudo code given in
Algorithm 3). Notice that this is not required for computing Fpa since an item

p forms a tree instead of a lattice, and the sketches SSLp for storing items p
are maintained at the nodes on the left most diagonal of the lattice (e.g., nodes
(4,4), (3,4), (2,4) and (1,4) in Fig 2.1b).

Next, we provide proofs on computing discounted counts for HCHH identi-
fication by the proposed algorithm HCHHA.

Lemma 5 If Fpa is the count of items p or their descendants, such that:

Fpa =
∑

(gp<φpN)∧(p/∈Fm )∧(p 64pa∈Fm )

gp

then
Fpa ≥ φpN

provides the discounted count of pa.

Since, at the lowest node (4,4) of lattice there are no descendants of p, therefore,
Fpa provides the discounted frequency of pa.

At other upper nodes (e.g., (3,4),(2,4) and (1,4)) Fpa is computed from items
p : (p /∈ F

m
) ∧ (p 6 4 pa ∈ Fm), which means neither p nor any ancestor of p

belongs to set F
m

, that is:

Fpa =
∑

(p/∈Fm )∧(p 64pa∈Fm )

gp

Since,
∀p ∈ Fm , gp ≥ φpN ⇒ ∀p

′
/∈ Fm , gp′ < φpN

therefore,

Fpa =
∑

(gp<φpN)∧(p/∈Fm )∧(p 64pa∈Fm )

gp

Hence, the lemma follows.

Lemma 6 If Fpa,sa is the count of pairs (p, s) or their descendants, such that:

Fpa,sa =
∑

(gp,s<φsfp)∧((p,s)/∈Fm )∧((p,s)≺(pa,sa)/∈Fm )

gp,s
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then
Fpa,sa ≥ φsfp

provides the discounted count of pair (pa, sa).

Since by definition Fpa,sa is computed using:

Fpa,sa =
∑

@(ph,sh)∈Fm : ((p,s)4(ph,sh))∧((ph,sh)4(pa,sa))

gp,s

−
∑

@(pq,sq)∈Fm : ((ph,sh)4(pq,sq))∧((pq,sq)4(pa,sa))

gp,s

See conditions at line 12 and 18 in Algorithm 3. Since;∑
@(ph,sh)∈Fm :((p,s)4(ph,sh))∧((ph,sh)4(pa,sa))

gp,s =
∑

((p,s)/∈Fm )

gp,s (3.6)

and, ∑
@(pq,sq)∈Fm : ((ph,sh)4(pq,sq))∧((pq,sq)4(pa,sa))

gp,s =
∑

((p,s)≺(pa,sa)∈Fm )

gp,s (3.7)

therefore, the subtraction of equation 3.7 from equation 3.6 implies;
F˙p˙a,s˙a =

∑
(gp,s<φsfp)∧((p,s)/∈Fm )∧((p,s)≺(pa,sa)/∈Fm ) gp,s Hence, Fpa,sa pro-

vides the discounted count of pair (p, s).

Theorem 2 HCHHA requires O( η
εpεs

) space to satisfy the Accuracy and Cov-

erage requirements from definition 4 and performs O(η) updates per transaction
from the stream S. The output operation takes O( η

εpεs
) time.

Since we initialize each instance of sketch SSLp by 1
εp

and SSLp,s by 1
εpεs

, there-

fore, the overall space required by the lattice is
hp
εp

+ η
εpεs

, where
hp
εp

is the space

required for maintaining SSLp sketches and η
εpεs

the space required for main-

taining SSLp,s sketches. The SSLp sketches can estimate the frequency of each

item p inserted into it within an error εpN and the SSLp,s sketches can esti-
mate the frequency of each pair (p, s) inserted into it within an error εsfp. As
a result, the Accuracy requirements from Definition 4 is satisfied using overall
hp
εp

+ η
εpεs

= O( η
εpεs

) space. Finally, with this space, combined with lemmas 5

and 6 the Coverage requirements are satisfied.
Next, to show the update cost, we proceed as follows. As described in

algorithm 2, only deleted pairs from lower nodes are inserted into upper nodes.
In the worst case, a pair may be deleted from each node and eventually find
its way to reach the top most node. In practice, we expect this to happen very
infrequently and only for a fraction of pairs, however, the worst case bound is
that items may traverse all the nodes, i.e., η nodes, so the worst case update
cost is O(η) per incoming pair from the stream S, because each insertion for
sketches roughly requires O(1) time (if stream updates are unitary).

For the output operation the algorithm needs to scan all the tuples main-
tained in the sketches at different nodes of the lattice. Even though, there are
searches involving the scan of HCHH output set F

m
, the overall cost of output is

dominated by the linear scan of the sketches at different nodes of lattice, which
requires O( η

εpεs
) time.
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4 Implementation and Evaluation

We have implemented all our proposed algorithms and existing CHH algorithm
[19, 18] using Java (v 1.8); for the sake of clarity, we have labeled existing CHH
algorithm as EXIST. Our implementation of EXIST is based on the pseudo
code provided in [18], including all the optimizations described in [18]. For
testing, we have used an Intel Core i7 machine with 3.4GHz processor, 16 GB
RAM, and 64 bit Windows operating system installed on it. We have compared
CHHA, ICHHA, OCHHA and EXIST for a range of parameters i.e., εp, εs, φp
and φs. The data structures used are based on hashing techniques; it requires
one hashing operation to lookup a particular item in the data structure.

Evaluation Criteria: To measure the efficiency and effectiveness of
our proposed algorithms, we have considered different factors including mem-
ory usage , and quality of the output using exact answer as a frame of refer-
ence. The exact answer is computed for benchmarking purposes by an algorithm
described in [19, 18]. The memory usage is compared using the maximum num-
ber of bytes used by the algorithms during runtime. The quality of output is
compared using a number of measures, including False Positive Rate, Precision,
Recall, Dice Coefficient, Average and Maximum Error.

In the first set of experiments, we provide comparisons and experimental re-
sults of CHH algorithms. In the next set of experiments, we provide comparisons
and experimental results of HCHH algorithms.

4.1 Experiments on Flat Data

In this section, we compare OCHHA and EXIST for various parameters settings.
Datasets: In these experiments, we have used real Internet traffic traces

datasets [26] that are openly available from the WAND Network Research Group
from the University of Waikato, New Zealand. Each of these datasets contain
30 minutes trace of network traffic traces in tcpdump1 format. Wireshark2 was
used to read the tcpdump format data to extract source and destination IP
pairs as two dimensional data for testing; where destination IP is considered as
primary item p and source IP is considered as secondary item s. Note that we
have performed additional experiments on a number of other real word datasets
including Google n-grams dataset3 and other traces to confirm that the results
are demonstrative. The results of those experiments are not included due to
redundancy and space, since those experiments illustrate similar results.

Notice that the proposed algorithms can handle both unitary as well as ar-
bitrary updates, however, EXIST algorithm can only handle unitary updates.
Therefore, to ensure consistency, in all our experiments, we have used the fre-
quency of IP address pair to be the number of packets associated with that pair,
instead of the number of bytes of raw IP packet. Consequently, N refers to the
length of stream or the number of packets processed thus far.

We have evaluated the proposed algorithms for various parameter settings,
and plotted the results against these settings as indicated at the x-axis of all the
figures. In all our experiments, we have used various levels of the threshold φp
for primary item p and φs for secondary item s. In each experiment variations

1http://www.tcpdump.org/manpages/tcpdump.1.html, Accessed: 23/02/2015
2https://www.wireshark.org/, Accessed: 23/02/2015
3http://storage.googleapis.com/books/ngrams/books/data setsv2.html
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in εp and εs are achieved by assigning them to different φp and φs values as

εp =
φp
5 and εs = φs

5 . The thresholds φp and φs are gradually decreased, as can
be seen from figures, to observe the performance of algorithms for a variety of
thresholds.

Overall, the OCHHA outperforms the EXIST algorithm both in terms of
output quality and memory usage. Below, we discuss each aspect in more detail.
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Figure 4.1: Evaluation of OCHHA and EXIST algorithm for the following
parameters settings; εp =

φp
5 , εs = φs

5 .

Output Quality: One of the most important issues with approximate al-
gorithms, such as CHH algorithms, is that these techniques are not guaranteed
to find the exact set of CHH. Thus to evaluate the proposed algorithms, we
have compared them using Precision, Recall, and Dice coefficient measures us-
ing exact answer as a frame of reference. Let Co represents the number of true
CHH pairs (i.e., a pair output by the algorithm is present in the exact answer)
output by the algorithm, Ct represents the number of exact CHH pairs in the
stream, and Ca represents the total number of CHH pairs (i.e., both true and
false pairs) output by the algorithm, then in the context of CHH, Precision,
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Figure 4.2: Evaluation of OCHHA and EXIST algorithm for the following
parameters settings; εp =

φp
5 , εs = φs

5 .

Recall, and Dice coefficient can formally be defined as:

Precision =
Co
Ca
, Recall =

Co
Ct
, Dice =

2Co
Ct + Ca

Recall is the measure of the ability of an algorithm to output all CHH pairs,
while precision is the measure of the ability of an algorithm to output only
CHH pairs. Recall of an algorithm is high if it does not miss any CHH pair
(even if it outputs a lot of non-CHH pairs), and precision of an algorithm is
high if it does not output any non-CHH pair (even if it misses a lot of true
CHH pairs). The relative importance of recall and precision is subjective; in
the context of document retrieval high precision is desirable, since missing a
relevant document is acceptable as compared to overwhelming the user with a
lot of irrelevant documents. Similarly, in the context of intrusion detection high
recall is desirable, since detecting a legitimate event as intrusion (i.e., accepting
false positives) is acceptable as compared to missing an intrusion altogether.
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An interesting observation is (following lemma 1), approximate algorithms for
computing CHH in data streams are guaranteed to have 100% recall, because
they do not miss any true CHH pair, however, 100% precision is not guaranteed.
Therefore, we have evaluated the proposed algorithms in terms of precision, dice
(which is the harmonic mean of precision and recall) and output cardinality.

Figure 4.1a compare the proposed CHH algorithm against EXIST in terms
of the precision measure. Precision score varies between 0 and 1; where the
lower score indicates poor performance and the higher score indicates better
performance. For Figure 4.1a, it can be seen that OCHHA performs superior
than EXIST. Precision score of EXIST gradually decreases with lower thresholds
of φp and φs, while for OCHHA it remains unchanged for different thresholds of
φp and φs. This clearly demonstrates that EXIST outputs a significant number
of false CHH pairs (in addition to true CHH pairs); while OCHHA outputs
virtually no false CHH pairs. This can also be verified from figures 4.1b, where
we have plotted the output cardinality for the same settings as those of Figure
4.1a.

In general, the number of CHH pairs increases with lower values of φp and φs
because many correlated pairs satisfies the threshold. Approximate algorithms
require to lower the thresholds φp and φs further by a factor of εp and εs in
order to safeguard against missing the true CHH pairs, due to uncertainty in
the estimated frequencies of items maintained in summary. Consequently, such
approach may cause the algorithm to output some false positive CHH pairs,
however, we have observed this effect to be worse for EXIST than OCHHA.

We have also evaluated the output quality of the propose algorithms in terms
of average relative estimation error in the frequencies of CHH pairs output by
the algorithms. We define the average relative estimation error A of the output
as;

Ap =

∑
p∈Fc

|f̂p−fp|
N

Ca
,Ap,s =

∑
(p,s)∈Fc

|f̂p,s−fp,s|
fp,s

Ca
where the subscript p and p, s indicates primary and secondary items respec-

tively. Clearly, Ap is less than the maximum theoretical error εp, and Ap,s is
less than the maximum theoretical error εs. Here, we provide results for Ap,s
only, because in all our experiments there is little difference in the values of Ap.

Figure 4.2a compare the algorithms in terms of Ap,s and Mp,s measures.
Note that, Ap,s andMp,s are plotted on the left y-axis and maximum theoretical
error εs on the right y-axis of figures 4.2a . This is because the relative estimation
error for both the algorithms is very small compared to maximum theoretical
error, and plotting them on the same scale (or even on the log scale) would not
show the difference between algorithms. From Figure 4.2a, OCHHA has the
lowest average relative estimation error; while, CHHA has the highest average
relative estimation error. The relative estimation error of EXIST is higher than
OCHHA.

In summary, the output quality of OCHHA is superior to the existing algo-
rithm, in terms of all the measures, i.e., precision, recall, dice, output cardinality,
and average estimation error.

Memory Usage: In this section we explain the memory usage of the algo-
rithms. Although, we have given theoretical memory usage in terms of maximum
number of tuples that our algorithms can maintain, we are providing results on
practical memory usage in terms of maximum actual bytes used. Figure 4.2b
shows the memory usage of OCHHA and EXIST for various values of εp and
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Figure 4.3: Comparisons of HCHH, cross-level association rules (CLAR) and
hierarchical heavy hitters (HHH) in terms of jaccard distance for various
values of φp and φs.

εs. Note that the memory usage is independent of φp and φs. From Figure
4.2b, OCHHA uses smallest amount of memory than EXIST algorithm. The
memory requirements for both the algorithms increase, as expected, with the
lower values of εp and εs, however, for EXIST this increase is more prominent
than OCHHA.

We conclude that, OCHHA is better than EXIST algorithm in terms of
memory usage and output quality. OCHHA is based on a simple design; it can
be implemented using any available off-the-shelf implementation of heavy hitter
algorithms. Thus, it offers an easy to implement tool for finding CHH from two
dimensional data streams.

4.2 Experiments on Hierarchical Data

This section presents experimental results of HCHH algorithms. First, we com-
pare our newly proposed HCHH notion with other hierarchical notions of in-
teresting elements, such as cross-level association rules mining and hierarchical
heavy hitters. Next, we compare HCHHA with näıve algorithm in terms of
output quality and memory usage.

Comparisons of HCHH, cross-level association rules and hierarchical
heavy hitters

Datasets: In these experiments, we have used a clickstream dataset from an
anonymous e-commerce website, which contains an information trail a user
leaves behind during her visit to the website. The dataset is semi-structured
website log files that contain timestamp, IP address of the visitor (both raw
and geocoded), user ID, visited URL and products. We extracted addresses
of the visitors containing information about city, state and country, and used
this as primary items p. The hierarchy of item p is of the form city→ state→
country. We also extracted visited products that contains information about
product category such as clothing, handbags, computers, electronics etc, and
used this as secondary items s.
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Figure 4.4: Comparisons of HCHH, cross-level association rules (CLAR) and
hierarchical heavy hitters (HHH) for φp = 0.1, φs = 0.01. (Top row) pattern
found by HCHHA, (middle row) pattern found by CLAR mining algorithm,
and (bottom row) pattern found by HHH algorithm.

In the first set of experiments, we compare HCHH to cross-level association
rules and hierarchical heavy hitters. We found that HCHH make up a distinct
set of pairs that cannot be found by other hierarchical notions of interesting
elements. The best way to demonstrate this is to use some measures that can
find distance between two sets, such as Jaccard distance, which finds the distance
between two sets A and B to be 1 − A∩BA∪B . The distance 0 means that the two
sets are exactly the same and the distance 1 means they are totally disjoined.
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Figure 4.5: Evaluation of HCHHA and Näıve algorithm for the following
parameters settings; εp =

φp
5 , εs = φs
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In Fig 4.3, HCHH, cross-level association rules and hierarchical heavy hitters
sets are found as follows: various values of φp and φs are used as thresholds for
HCHH sets; for cross-level association rules φp is used as support and φs is used
as confidence; for hierarchical heavy hitters φp is used as threshold. From Fig
4.3, we can see that the set of HCHH is very dissimilar to both the sets produced
by cross-level association rules and hierarchical heavy hitters approaches. In
our experiment we found that the results produced by cross-level association
rules and hierarchical heavy hitters are on average 76% dissimilar, however, the
results produced by HCHH are on average 92% dissimilar to both cross-level
association rules and hierarchical heavy hitters; demonstrating that these three
definitions are strictly describing very distinct phenomena. This indicates that
the notion of the proposed HCHH is different from existing hierarchical notions,
i.e., hierarchical heavy hitters and cross-level association rules.

Semantic analysis of HCHH: In this set of experiments, we demonstrate
the utility of HCHH notion through interpretation of the results where we
know the semantics of the data. Semantic analysis on the output generated
by HCHH, cross-level association rules and hierarchical heavy hitters demon-
strate that HCHH offers additional value and insights into certain type of data
relationships.

Figure 4.4 shows interesting statistics of the users clicks of an e-commerce
website; it groups the users according to their geographic locations at various
concept levels and shows the percentage of visitors to the website that are in-
terested in different products within that group. Particularly, it highlights the
locations (the heading of pie charts) the majority of the visitors are coming
from; and for each of those major areas a numerical proportion of visitors that
are interested in different products. As an example, consider the top left pie
chart, it shows that among all the visitors from New York city, 40% visitors
are interested in clothes, 20% in shoes, 3% in movies, 7% in home and gardens,
20% in handbags, 3% in electronics and 7% in computers. Note that these
percentages are not relative to the total visitors of the website but are relative
to the total visitors from New York city only. Other pie charts have the same
interpretations. In Figure 4.4, the top, middle and bottom rows are the small
subsets of the results produced by HCHH, cross-level association rules and hi-
erarchical heavy hitters approaches respectively, where a dotted pie represents
the patterns missed by the respective approaches.

In order to find the above rules (e.g., (New York, Cloth, 40%) or (New
York, shoes, 20%)) we can use cross-level association rules. Using cross-level
association rules we can find all frequent 1-itemsets and 2-itemsets (e.g., greater
10% threshold) from the two-dimensional dataset from which we can generate
the above rules. However, cross-level association rules does not output any
two-itemset that contains (New York, Cloth) or (New York, shoes) since, their
frequencies are 3% and 2% in the context of the overall dataset, hence below
the desired threshold of 10%. Clearly, cross-level association rules misses these
items because there may be a large number of such items involving New York,
but each of these items is infrequent. Similarly, hierarchical heavy hitters also
suffers from the same problem. On the other hand, HCHH first finds the frequent
primary item (e.g., New York) in the context of the dataset, then it finds the
frequent secondary item (Cloths, Shoes) in the context of the given primary
item (New York), so the derived rule (New York, Cloth) has a 40% confidence
in the context of all the other rules involving New York as a primary item.
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We can see that HCHH provides useful insight about the major locations
and interests of users from those locations, however, majority of the interest-
ing patterns are missed by both cross-level association rules and hierarchical
heavy hitters (see middle and bottom rows). As an example, for New York city,
there was no rules from either cross-level association rules or hierarchical heavy
hitters. The reasons is that both these notions treat the two elements of the
pair equally (i.e., they do not split the pair into separate items), hence, looking
for the pairs such as (New York, shoes) or (New York, clothing) to be higher
than the threshold– a pair whose count is more than 10% of all the visitors–
which is clearly very inadequate to find interesting local patterns within in the
context of some global popular items (e.g., finding the patterns of the visitors’
interests within certain locations rather than finding the visitors’ interests glob-
ally). In contrast, the HCHH notion takes into account the linear relationship
of the items within the pair, thus, looking for the first item from the pairs (New
York, shoes) or (New York, clothing) to be higher than the threshold 10% of
all the visitors, and finds the second items from the pairs that are popular with
respect to the first item, not with respect to all the visitors (e.g., globally).
Consequently, the results from these approaches are very different, which can
be observed from Figure 4.4; each pie chart represents a significantly interesting
patterns from the data but many of these patterns are missing by other two
approaches. Finally, we can see a missing pattern of California for both HCHH
and hierarchical heavy hitters, the reason is that both HCHH and hierarchical
heavy hitters use a discounting strategy; a pattern at higher level in the hi-
erarchy is considered significant only if it is within the given thresholds after
deducting the count of its descendant patterns that are also significant. Since
both of these approaches already output the descendant pattern (i.e., Los Ange-
les), so both these approaches do not output the ancestor pattern as it provides
little further information. This strategy is not used in cross-level association
rules mining, hence it outputs many redundant ancestor patterns. Note that
there are other approaches [16, 22, 21] proposed in literature to avoid such re-
dundancy in cross-level association rules mining, but they were not considered
here.

Thus, we conclude that existing hierarchical notions cannot capture the se-
mantics of hierarchical correlation between items.

Comparisons of HCHHA and Näıve algorithm

This section presents experimental results of HCHH algorithms and compari-
son with näıve algorithm (which generates similar output to HCHH) in terms
of output quality and memory usage. These results are computed using real
Internet traffic traces dataset described in Section 4.1.

Output Cardinality: First we compare the output sizes of HCHHA and
näıve algorithm using the exact output size as a frame of reference. Figure 4.5a
provides the results of HCHHA and näıve algorithm for various thresholds φp
and φs. The naive algorithm gives the largest output size and the difference in
the output sizes of the algorithms increases with lower thresholds. The output
sizes from HCHHA are close to exact output sizes and are better than the näıve
algorithm. Generally, the näıve algorithm produces outputs that are an order
of magnitude larger than those of HCHHA for all the thresholds; the quality of
output gradually decreases with decrease in thresholds.
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Output Quality: We have also studied the quality of output from HCHHA
and näıve algorithm keeping exact answer as a frame of reference. Figure 4.5b
plots the precision score against a range of φp and φs values. The precision
score clearly demonstrates that the output of HCHHA is of high quality even
with gradual decrease in thresholds.

Memory Usage: Figure 4.5c compares the efficiency of HCHHA with
näıve algorithm in terms of memory requirements. It clearly demonstrates that
HCHHA needs less memory than näıve algorithm for various parameter set-
tings. In general, for lower values of εp and εs, the memory requirements of
the approximate algorithms increase, however, this increase is worse for näıve
algorithm compared to HCHHA. The Figure 4.5c also provides memory require-
ments of OCHHA as a frame of reference, which considers no hierarchy in the
data. We can see that the HCHHA has a significant memory advantage over
the other hierarchical näıve approach, and require only a little higher memory
than the OCHHA, even with complex internal design to accommodate the hi-
erarchical nature of the data. Thus, We emphasize that the näıve strategy can
be improved substantially in practice in terms of the space usage and answer
quality by designing the hierarchy-aware algorithms like HCHHA.

5 Related Work

The concept of heavy hitters has been extensively studied in the data mining and
database literature, which can be tracked back to the early eighties [29, 6], where
simple algorithms were developed that are based on tracking items and their
counts. The concept has been extended to develop algorithms for finding heavy
hitters over a stream of data; these algorithms provide approximate answers
(heavy hitters) that provide either deterministic or probabilistic guarantees in
answer qualities. For example, [25, 24, 29, 3] are deterministic algorithms those
provide guarantees in terms of user defined parameter ε; it maintains all items
whose frequency is more than εN , where N is the number of items in the stream
so far. Majority of these stream processing algorithms require O( 1

ε ) memory,
which is the minimum memory required for tracking every item with frequencies
higher than or equal to εN . Similarly, [8, 1, 11, 9] are randomized algorithms
that provide probabilistic guarantees in answer qualities.

Several studies on computing heavy hitters have evolved from simple track-
ing of items and their frequencies to more complex notions; such as hierarchical
heavy hitters (when items belongs to a concept hierarchy. The idea behind com-
puting heavy hierarchical hitters is to find nodes in the hierarchy that are heavy
hitters by aggregating frequency of their descendants) [10, 31]; computing cor-
related aggregates, e.g., min, max and average [14, 32]; time-decayed correlated
aggregates [12]; correlated sum and count [2], correlated and conditional heavy
hitters [18, 19, 27, 28].

Previous studies on correlated aggregates considered queries in a different
form than correlated heavy hitters queries. For instance, the correlated aggre-
gate query [19] first applies a selection predicate along primary dimension p such
as p ≥ c or p < c, where c is provided at query time. Next, the query needs to
perform selection on the secondary dimension s. The difference between previ-
ous definition and the new correlated heavy hitters concept is that, in correlated
heavy hitters the selection predicate along primary dimension involves frequen-
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cies fp and extracts heavy hitters, rather than a simple comparison, i.e., p ≥ c
or p < c. Gehrke et al [14] proposed technique based on adaptive histograms
to find correlated aggregates, such that the aggregate along the primary dimen-
sion is min, max or average, and the aggregate along the secondary dimension
is sum or count. The drawback of this technique is that it does not provide any
provable guarantees. Ananthakrishna et al [2] has proposed algorithm based on
quantile summary to find correlated sum or counts with provable error bounds,
however, the approach is not suitable for finding correlated heavy hitters.

Another interesting idea has been considered by Cormode et al [12]; they
focused on time-decayed correlated aggregates, where items in the stream are
weighted based on arrival time of the items. Although their work considered sum
aggregates, it cannot be directly applied to find heavy hitters. In this paper,
we explore limitations of existing algorithms of correlated heavy hitters over a
stream of two dimensional data, and provide algorithms for finding correlated
heavy hitters in data streams.

Although there exists a correlated heavy hitters algorithm to compute flat
HHH [19, 18] we have discovered several significant problems that prohibits its
use for developing HCHH algorithm. First, the existing correlated heavy hitters
algorithm may suffer from high false positive rate due to lack of threshold adjust-
ments, which is important when constraints on memory usage of the algorithm
are optimized. Second, the memory requirements of the existing correlated
heavy hitters algorithm is O( 1

εpε2s
), which is very high for many streaming appli-

cations. Third, the existing correlated heavy hitters algorithm needs the values
of φp and φs apriori, which we believe is very restrictive for a variety of real
life applications that require analysis of the data streams for various thresholds.
Finally, the existing correlated heavy hitters algorithm cannot be extended to
design an algorithm for hierarchical datasets (e.g., when p, and s are hierarchi-
cal items), because our definition of approximate HCHH requires a bottom-up
approach, which means that infrequent items deleted (due to space constraint
of stream) from lowest concept level needs to be combined at higher concept
level. Therefore, at the time of deletion the count of all the deleted items for
the period since they were inserted needs to be known, which is used to aggre-
gate them at higher concept level for measuring the correlation there. However,
the algorithm proposed in [19, 18] does not provide the count of deleted items;
deleted items always have zero count.

Apart from the above, there are some techniques that summarize hierarchi-
cal data, such as hierarchical heavy hitters [31, 10], multilevel and cross-level
association rules [16]. However, these notions treat the two elements of the
pair equally–not taking into account the sequential nature of items’ relationship
within the pairs–thus cannot discover the hierarchical correlation semantics be-
tween items at multiple concept levels. Therefore, in this work, we introduce
the concept of HCHH that captures the correlation between pairs of items at
multiple concept levels (see Section 2.4 for formal definition of HCHH).

6 Conclusion

Finding HCHH are useful for many online applications that require to capture
the semantics in the form of hierarchically correlated pairs. It can be useful in
network monitoring, anomaly detection and data analysis for business intelli-
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gence and planing. This paper described a new notion of hierarchically corre-
lated heavy hitters and proposed proposed algorithms to solve HCHH problem
in two dimensional streams, where items have been drawn from different hierar-
chies. The proposed algorithms are based on approximation with deterministic
provable error guarantees. Experimental results on real benchmark datasets
have confirmed the utility of the proposed algorithms. In future, we aim to
extend our algorithms to the sliding window computational model and compare
with other hierarchical notions.
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