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Abstract

A conventional wireless sensor network node consists of a number of compo-
nents: microprocessor, memory, sensor and radio. Advances in nanotechnology
has enabled the miniaturization of these components, thus enabling wireless
nanoscale sensor networks (WNSN). Due to their small size, WNSN nodes are
expected to be powered by harvesting energy from the environment. Unfortu-
nately, there is a mismatch in the energy that can be harvested and the energy
required to power all the aforementioned components in a WNSN node. In this
paper, we propose a simplified sensor node architecture for event detection. We
call our architecture SEMON which stands for Sensorless Event MONitoring
in self-powered WNSNs. A SEMON node consists of only an energy harvester
and a radio with minimal processing capacity. We assume that each event to
be monitored will generate a different amount of energy and we can therefore
use this amount of energy as the signature of an event. When an event occurs,
a SEMON node harvests the energy released by the event and turns it into a
radio pulse with an amplitude proportional to the harvested energy. A remote
station is used to decode the amplitude of the pulse to recognize the event that
has occurred. We propose two methods for the remote station to decode the
events that have occurred. The first method is based on thresholds. The second
method makes use of an event model which gives the probability that a sequence
of events will occur. This enables us to formulate the decoding problem using
Hidden Markov Models. We study the decoding performance of both methods.
Finally, we provide a case study on using the SEMON architecture to monitor
the chemical reactions inside a reactor.



1 Introduction

Nanosensors are emerging from the R&D cycle and we are about to witness their
immediate use in existing macro devices, to reduce cost, power consumption,
and weight while achieving high sensitivity. In this paper we will refer to this
imminent trend as nano-for-macro, as the nanotechnology is basically used to
improve the quality of the macro sensor networks. Table 1.1 compares the power
consumption of some nanosensors against their macro counterparts. As we can
see, nanosensors consume between nW-µW, considerably less than conventional
macrosensors.

Nevertheless, realizing nano-for-nano — such as wireless nanoscale sensor
networks (WNSN) [3] — where nanosensors will be housed in small micro-
scopic devices to produce functional nanomotes, faces challenges. A major issue
facing the realization of nano-for-nano is how to power onboard nanosensors,
given the extraordinary space limitations of a nanomote to house power sup-
ply. Although the power consumption of nanosensors is considered “ultra-low”
for nano-for-macro, it is considered prohibitively high relative to what can be
practically supplied on a tiny nanomote. For example, the most recently devel-
oped nanomaterial-based energy harvesting circuits have power density ranges
between 1mW [49] and 4.5W [57] per cm−3, which may be adequate to generate
enough power in a macro device for an onboard nanosensor, but would generate
only one femto to a few pico W in a microscopic device, due to the severe volume
restrictions. This means that we do not have a powering solution for nanosen-
sor networks that can be adequately duty cycled to meet the high-resolution
monitoring requirements of nano-for-nano applications.

In this paper, we propose SEMON, which stands for Sensorless Event MON-
itoring, to overcome this problem. SEMON attempts to monitor events in the
environment without employing any onboard sensors, which technically solves
the sensor powering problem in a nanomote. It is based on the following idea.
We observe that there are many biological and chemical events of interest that
dissipate energy in some forms when they take place. The amount of energy
released varies depending on the type of event, creating an opportunity to de-
tect and monitor those events from their emitted energies. Given that we now
have a variety of nanoscale energy harvesters capable of harvesting many dif-
ferent types of energy, it should be possible to harvest that energy not only to
use it as a source of powering the nanomote, but also to detect the events at
the same time. Using the instantaneous harvested energy to transmit a short
pulse of proportional amplitude, SEMON enables sensorless event detection and
monitoring at a remote macro station.

Because the harvestable power at a nanomote is very small and the terahertz
waves — the operating frequency of nanoscale antennas [21] — are subject to
severe attenuation and noise due to molecular absorption, a key performance
issue of SEMON is the maximum distance (called ’monitoring distance’ in this
paper) at which events can be monitored with high reliability. We study the
monitoring distance as a function of many physical parameters, such as the
number of distinct event types and the amount of harvested energy. We find
that for the range of harvestable power at nanoscale, SEMON enables reliable
event detection at distances from a few centimeters up to a meter depending on
the number of events to detect. Our contributions in this paper are summarized
as follows:
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• We propose a novel sensorless event-monitoring architecture for wire-
less nanosensor networks, which addresses the sensor powering issue in a
nanomote, enabling immediate realization of nano-for-nano applications.

• We demonstrate that simple threshold-based symbol detection (TBD) can
be deployed at the remote station to monitor completely unknown envi-
ronments with no prior knowledge of the event model.

• We propose a Hidden Markov Model (HMM)-based decoder at the remote
station that can outperform the TBD. We demonstrate that if a priori
knowledge of event transition probabilities is available, HMM-based de-
tection can significantly reduce the event detection error and extend the
monitoring distance by several orders of magnitude compared to the TBD-
based decoder.

• Finally, we propose and validate a novel application of SEMON for high-
resolution monitoring of chemical reactors at the molecular level.

Table 1.1: Power consumption of different types of sensors in both nano-scale
and macro-scale

Category
Nano sensors MEMs or macro sensors

Type Power con-
sumption

Type Power con-
sumption

Gas Sensors

Hydrogen sensor
1 nW [10]

Hydrogen sensor 660 mW [11]
0.1 uW [35], 15
uW [44]

NO2 sensor 10 uW [38] NO2 sensor 20 mW [43]
Methane sensor 4 nW - 4 uW [5] Ethanol sensor 286mW [32]

Biomedical
sensor

Glucose biosen-
sor

0.1 uW [25] Glucose 3 uW [29] 11
mW [26]

Pressure & Pressure sensor 1 nW [20] - 1
uW [55]

Zigbee sensor
node

2.5 mW [41]

Temperature
Sensors

Temperature
sensor

1 nW [30] Zigbee sensor
node

0.3 mW [40]

The rest of the paper is structured as follows. The literature on design-
ing sensor-less mechanisms and HMM-based decoders is reviewed in Section 2.
Section 3 provides a critical examination of the sensor powering bottleneck in
nanomotes. SEMON is presented and motivated in Section 4, followed by its
performance evaluation in Section 5. A novel application of SEMON in indus-
trial chemistry is presented and analyzed in Section 6. The paper is concluded
in Section 7.

2 Related work

Sensorless sensing has been demonstrated in the literature at both macro and
nanoscale. At macroscale, a few sensorless monitoring approaches have been
proposed, mainly for condition monitoring of instruments. In one category of
research, the amount of power consumed by a machine was used as a signature
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to monitor the machine’s status without using any sensors [13, 28]. For example,
Alfonso et al. used the current of the spindle motor of a drilling machine as
a source to recognize defects in the machine [13]. In another category of the
research, a sensorless internal temperature monitoring method for induction
motors was proposed [42, 56]. As stator winding resistance varies with variation
in the temperature, it can be used as a signature to monitor internal temperature
of the induction motors [42]. Finally, Khalifa et al. have recently demonstrated
that human activity can be recognized by analyzing the AC voltage generated by
a piezoelectric vibration energy harvester housed in a wearable device [22, 23].
Unlike our proposed framework, these studies provide no solution to remotely
monitor the condition.

In addition, at the nanoscale, two works study the use of the energy harvest-
ing interface as a sensor at nanoscale [51, 54]. Yang and others have shown that
a pyroelectric nanogenerator made from a single nanowire of zirconate titanate
can play a role as a temperature sensor. The output voltage of the nanogener-
ator linearly increases with an increasing rate of change in temperature, so it
can be used to infer the temperature [51]. In [54], a triboelectric nanogenerator
(TENG), based on the well-known contact electrification effect, has been used
as a gas sensor. As the amount of power that can be harvested via a TENG is
strongly affected by its surface adsorbed molecules, different types of molecules
can be efficiently detected merely by monitoring the output voltage of the TENG
[54]. In these two works, similar to our approach, the energy harvester is used
as a sensor. However, the sensed data (detected temperature or gaseous species)
will not be transferred to a remote station, which is the main objective of sensor
networks. Remote sensorless event monitoring over terahertz channel were first
discussed in our preliminary work [53] in the context of nanoscale monitoring
of chemical reactors. In this work, we present and analyze a more generalized
architecture of such systems and propose a HMM-based decoder that provides
accurate event detection at longer distances.

As we use HMMs to increase the accuracy of event detection, we highlight
few related works in this area. Using HMM to estimate the quality of a wire-
less channel and for signal classification is well-established [39]. For example,
in [24] a binary HMM was trained via Baum-Welch Algorithm (BWA) to de-
tect received signals based on real signal traces. The BWA provides an efficient
method for calculating the parameters of a HMM given an observed (or simu-
lated) data set of events. In this work, the states are the peaks of the signal
and the observations are the detected energy levels at the receiver. By using
a sequence of 300 observation, the accuracy of the signal detection via a given
modulation schema (BPSK) can be improved from 50% to 100% for a given
signal-to-noise ratio (SNR) of -3dB. Although our approach to using a HMM
to increase the accuracy of event detection is conceptually similar to this work,
it has two main differences. First, the channel in these studies is assumed to
be a Rayleigh fading channel, which is different from our terahertz channel
model. Second, our observations are not discrete and have continuous Gaussian
distributions.

In wireless sensor networks, HMMs were also employed to increase the accu-
racy of human activity recognition via body area sensor networks [47, 27, 14].
For example, Wei et al. proposed a HMM for a wearable body sensor network
whose states are 8 human activities and its emissions are the accelerometer out-
puts for those activities [47]. They used BWA to train the system and Viterbi
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Table 2.1: Few existing solutions for harvesting energy at the nano-scale.

Energy
source

Technology Power
Density
(pW/µm3)

Structure

Mechanical

Piezoelectric

0.5 ZnO2 nano wires [46]

energies

1.1 Verticaly align ZnO2 nano wires
(length 5nm, diameter:200nm)
[58]

0.8 A 550nm thick BaTiO3 thin film
[37]

2.8
PZT nanowire array (Length
5mum and diameter of 500nm)
[48]

Triboelectric 2.1 [18]
Piezoelectric and
triboelectric

1.1
Using PVDF, nanostructured Al
and MNDS [18]

Instantaneous dis-
charging triboelec-
tric

3.6
SiO2 NPs assembled on a Au film
[8]

Thermal Pyroelectric

0.05
Using ZnO2 nanowires of 1 µ
length [49]

0.1 Using liquid-based switchable
thermal interfaces [7]

3 Using BaTiO3 film of 200nm thick
[6]

Magnetic
force

Magnetic-
assisted tri-
boelectric

0.5
Is achieved by coupling between
the triboelectric effect and the
electrostatic induction [19]

Magnetic
force and
vibration
energy

Magnetoelectric 4.5
A piezoelectric fibre composite
bonded to a Ni cantilever [57]

algorithm [12] to decode the most probable series of activity, with an accuracy
of 95.82%. Our approach differs from these methods in a few different aspects.
Firstly, the article [47] uses the HMM in the sensor node to reduce the trans-
mission rate between the sink and the sensor node, which is not applicable to
WNSN due to computational limitations. Secondly, the observations are deter-
ministic (the accelerometer output), but in our architecture the received signals
at the sink (observations) would be probabilistic due to Gaussian distribution
of noise in the channel. In most of these studies, the sensor node has all conven-
tional components such as microprocessor, memory, etc., and is not necessary
self-powered, while our design is more appropriate for energy harvesting sen-
sor networks. Finally, they do not consider the restriction of WNSN, so their
contributions might not be directly applicable to WNSN.
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3 Sensor powering bottleneck in nanomotes

For wireless sensor networks, there are two fundamental solutions for power
supply; battery and energy harvesting. Battery is less practical at nanoscale
because it is not possible to house a large battery in a nanomote for prolonged
operations of the network and it is impractical to replace batteries at microscopic
level. Energy harvesting is therefore the most practical option. Although we
have seen in Table 1.1 that the power consumption of nanosensors is significantly
lower than that of macrosensors, to put things into perspective we must compare
these consumption figures with what can be harvested in nano-for-nano, given
the extraordinary space limitations of a nanomote.

Table 2.1 shows the amount of power that can be harvested using differ-
ent combinations of energy source and transduction technique for a 1 cubic
micron volume, which would be a reasonable percentage of the total volume
of a nanomote via an average excitement applied to the harvester. A quick
comparison between Tables 1.1 and 2.1 reveals that for most sensors the power
consumptions of nanosensors are many orders of magnitude higher than what
could possibly be harvested. The problem is exacerbated by the fact that in
many applications an array of sensors may be required to accurately detect a
complex event, which would consume even more power. The only way to operate
would then be to duty cycle the nanomotes at an extremely low rate, i.e., leave
them in sleep or inactive mode for most of the time. Given that many nanoscale
events of practical interest usually occur at a very high frequency, such low duty
cycling would defeat the purpose of developing microscopic sensor networks in
the first place.

It is clear that the high consumption-to-harvesting power ratio of a nanomote
severely limits the applicability of nanoscale sensor networks. Novel sensing
mechanisms are needed for nanomotes to realize their full potential. In the
following section, we propose a sensorless monitoring architecture for nanomotes
that achieves event detection in an energy-harvesting sensor network without
the help of any sensors.

4 The SEMON Architecture

In the conventional self-powered wireless sensor network (WSN) architecture,
energy harvesting is used to recharge a battery or accumulate energy in a ca-
pacitor to simultaneously power all elements of a WSN node, which includes a
microprocessor for processing data and communication algorithms, a memory
for temporary storage of data, one or more sensors to measure the relevant phys-
ical variables of the environment, and a radio for transmitting measured data
to the sink. In contrast, a SEMON node has only two components: an energy
harvester and a radio with some minimal in-built processing capability. This
section explains how this simplified node architecture enables event detection.

4.1 Working Principle

Let us consider an environment monitoring task which requires the deployment
of nanomotes at specific locations to monitor the occurrence of a known set of
events. Each nanomote is to collect the relevant data and send them wirelessly
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to a remote station that processes the data to infer the type and timing of the
events that have occurred. We assume that each event emits a certain amount
of energy when it occurs, which can be harvested using a suitable nanoscale
energy harvester onboard the nanomote. We further assume that the amount of
energy generated by an event depends on the type of event. If different events
generate different amounts of energy, then conceptually, it is possible to use the
harvested energy as a signature for event recognition. The SEMON architecture
is based on this concept.

Nano mote Remote Station

EH-modulated 

THz pulse
Ex

Energy 

Harvester
Radio

Harvested 

energyEmitted Energy

Receiver
Event 

Detector

Detected 

energy

Energy Harvester

Graphene based 

nano-antenna

a

b

ErxEtx

Figure 4.1: (a) Conceptual drawing of a SEMON nanomote. (b) Schematic of
the SEMON architecture which includes a nanomote and a remote station.

Figure 4.1 shows the schematic of the SEMON architecture, which consists of
a nanomote and a remote station. The nanomote, which consists of an energy
harvester and a nanoradio1, is located at where the events take place. If an
event occurs, the energy emitted by the event is first harvested and then used in
its entirety to power a radio pulse transmission in the terahertz band using the
onboard nanoradio. The pulse amplitude is, therefore, implicitly modulated by
the amount of energy harvested or emitted by the event. At the remote station
(receiver or sink) the pulse energy is detected by integrating the received energy
over an interval using widely used pulse energy detection methods [17]. Because
different events emit different amounts of energy, the remote station detects the
events from the detected energy at the receiver.

4.2 Event Detection

Event detection at the receiver is non-trivial. Due to the molecular absorption
and random noise of the terahertz band, the detected energy of a given transmit-
ted pulse becomes a random Gaussian variable. The detected energy of different
events then overlap with each other, making accurate event detection a challeng-
ing problem. We propose and compare two different event detection algorithms
for SEMON. The first algorithm assumes no prior knowledge of the event model

1We may need some built-in processor in the radio module to drive the antenna, i.e.,
generate the Gaussian pulse.
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and employs a simple energy threshold-based algorithm. The second algorithm
assumes a priori knowledge of event transition probabilities and uses a HMM to
reduce event detection errors. Before describing these two algorithms, we first
present the event model and the receiver model.

Event model

Our aim is to use SEMON to monitor a set ofM possible event types s1, s2, . . . , sM .
We assume that when an event of type si occurs, it emits Ee,i amount of energy
and all Ee,i’s are distinct. For a reason which will become clear in Section 4.3,
we assume that the event types are ordered in ascending order of event emission
energy, i.e. Ee,1 < Ee,2 < ... < Ee,M .

Let qt denote the t-th event that has occurred where t = 0, 1, 2, .... This
means that the sequence of events that has occurred is [q0, q1, q2, ...] where each
qt is one of s1, s2, . . . , sM . (Note that t is used to index the events and the
inter-event time is not necessarily a constant.) We assume that the sequence
of events is a realization of a Markov chain. This is a fairly natural model.
For example, the evolution of a set of chemical reactions can be modeled by a
continuous-time Markov chain (CTMC) [16] where state transitions are caused
by chemical reactions; these chemical reactions are the events and we can model
the sequence of events by using an embedded Markov chain formed by the state
transitions of CTMC.

Our event model is therefore a Markov chain specified by an initial prob-
ability distribution of π and the transition probability matrix of T . We use
πi = P (q0 = si) to denote the probability that the first event is from type si.
The transition probability ti,j is

ti,j = P (qt = sj |qt−1 = si) for t ≥ 1

Receiver model

The receiver model aims to characterize the signal received by the remote sta-
tion. When an event of type si occurs at the nanomote, it generates an amount
of energy equals to Ee,i. We assume both the energy harvester and the nanora-
dio are ideal, which means the nanomote generates a pulse with energy Ee,i to
be transmitted to the remote station. (Note that inefficiency in energy harvest-
ing and radio can be taken care of easily.) We further assume that the pulse
generated by the nanoradio has a duration of Tp = 10−13s and its power spectral
density (PSD) uniformly spread in the 0.1-10 THz band. We denote B = 10
THz as the bandwidth of the pulse and Ui(f) as the PSD of the transmitted
signal at frequency f when event type si occurs.

A key problem in using the terahertz band for communication is that molec-
ular absorption creates a noisy communication channel. We assume the trans-
mission medium has X types of molecules which are indexed by x, molecule
type x has a mole fraction of mx and absorption coefficient at frequency f is
Kx(f). The molecular absorption coefficient K(f) of the medium at frequency
f is the weighted sum:

K(f) =

X∑
x=1

mxKx(f) (4.1)
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Note that the absorption coefficients Kx(f) of individual molecule species can
be obtained from the HITRAN database [4].

Let d denote the distance between the nanomote and the remote station.
The total attenuation due to spreading and molecular absorption at frequency
f at a distance d from the radio source, A(f, d), is given by [21]:

A(f, d) =

(
4πf0d

c

)2

eK(f)d (4.2)

where f0 = B
2 is the centre frequency and c is the speed of light.

The PSD of the received signal Pr,i(f, d) at frequency f and distance d is:

Pr,i(f, d) =
Ui(f)

A(f, d)
(4.3)

The average received energy for a given event of si then would be:

Er,i(d) =

∫
B

Pr,i(f, d)Tpdf (4.4)

where Tp is the duration of the transmitted pulse in second. The PSD of the
molecular absorption noise Nabs(f, d) which is due to the re-radiation of ab-
sorbed radiation by the molecules in the channel is given by [21]:

Nabs(f, d) = kBT0(1− exp(−K(f) ∗ d)) (4.5)

where T0 is the reference temperature 296K and kB is the Boltzmann constant.
Assuming a flat noise spectrum, the noise PSD at distance d would be:

N(d) =

∫
B
Nabs(f, d)df

B
(4.6)

The remote station uses an energy detector (ED) to determine the energy
level of the received signal. The ED requires the design of a filter, matched to
the received pulse shape. We assume the bandwidth of the filter is equal to B.
If an event of type si occurs at the nanomote, the received energy level has a
Gaussian distribution of gi with mean µi and variance σ2

i given by [9]:

µi = NTintB + Er,i (4.7)

σ2
i = N2TintB + 2N × Er,i (4.8)

where N is the noise PSD at distance d that can be calculated from Eq. (4.6),
Er,i is the average received energy for symbol si that can be calculated from
Eq. (4.4). Tint is the integration time which is a design parameter, typically
Tint ≥ Tp.

4.3 Threshold-based event detection

This section presents the threshold-based decoder (TBD) which uses the received
energy at the remote station to determine the event that has occurred at the
nanomote. TBD uses only the current received energy and does not use the
history of past received energy. Recall from Section 4.2 that if event type si has
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occurred, then the received energy has a Gaussian distribution with mean µi

and variance σ2
i given in Eq. (4.7) and (4.8). Also, recall from Section 4.2 that

for two event types si and sj with i < j, we have Ee,i < Ee,j where Ee,i and
Ee,j are respectively the energy emitted when the event types si and sj occurs.
Consequently, we have µi < µj for i < j or the mean received energies µi are
sorted in ascending order.

In order to distinguish between the M event types, we need M − 1 different
thresholds, which are denoted by ξ1,2, ξ2,3, ..., and ξM−1,M . The value of ξi,j
(i = 1, ...,M − 1 and j = i + 1) is given by the intersection of the Gaussian
density functions with parameters (µi, σ

2
i ) and (µj , σ

2
j ), i.e. ξi,j satisfies

1√
2πσi

e
−(ξi,j−µi)

2

(2σ2
i
) =

1√
2πσj

e

−(µj−ξi,j)
2

(2σ2
j
) (4.9)

and we have µi < ξi,j < µj .
Let er be the received energy at the remote station, then the estimated event

type î is determined according to:

î =

 1 if er < ξ1,2
i if ∃i ∈ {2, 3, ...,M − 1} s.t. ξi−1,i < er < ξi,i+1

M if er > ξM−1,M

(4.10)

It can be shown that the error probability Pe,TBD of the TBD method is
given by:

Pe,TBD = P [Er > ξ1,2|s1]P [s1] (4.11)

+

M−1∑
i=2

(P [Er < ξi−1,1|si] + P [Er > ξi,i+1|si])P [si]

+ P [Er < ξM−1,M |sM ]P [sM ] (4.12)

where P [si] is the probability that event type si occurs, Er is the random vari-
able of received energy at the remote station and P [Er > ξ|si] is the conditional
probability that the received energy is greater than ξ given that the event type
si has occurred. Note that the conditional probability is in fact a Gaussian
distribution with mean µi and variance σ2

i . Therefore, given the event model
and the receiver model, it is possible to determine the classification error.

4.4 HMM-based event detection

The TBD method does not use the past history of received energy for event de-
tection and classification. The classification accuracy of TBD can be improved
by using the past history of received energy as well as the event model at the
remote station. Given that the evolution of events can be modeled by a Markov
chain and the received energy can be modeled by a Gaussian distribution for any
event type, the classification problem can be modeled by a HMM. In particular,
the sequence of events q0, q1, q2, ... occurring at the nanomote is the unknown
state of the HMM and the evolution of qt is governed by the event model. Each
unknown event qt generates a pulse which is received by the remote station.
Let er,t be the energy received by the remote station when the t-th event has
occurred. We consider an event window of size W consisting of the sequence
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of received energies [er,t, er,t+1, ..., er,t+W−1]. Our aim is to use HMM to de-
termine the most likely event sequence [qt, qt+1, ..., qt+W−1] that gives rise to
the sequence of received energies. This problem can be solved by the Viterbi
algorithm [12].

5 Performance evaluation of SEMON

This section aims to study the accuracy of event detection using SEMON. We
first explain the methodology, then followed by the event detection results for
TBD and HMM-based decoders.

5.1 Methodology

We assume that a SEMON node is used to monitor M distinct events. These
events occur in random order and are generated by an embedded Markov chain
with initial probability distribution π and transition probability matrix T , as
described in the event model in Section 4.2. We further assume that the initial
probability of each event is the same, i.e. 1

M because there are M events. This
probabilistic event model allows us to generate many possible event sequences.
After generating an event sequence, we use the receiver model in Section 4.2,
in particular Eq. (4.7) and (4.8), to derive the probability distribution of the
received energy at the remote station of each event.

We investigate the performance of two decoders: TBD and HMM. For TBD,
the classification rule is given by Eq. (4.10) and the error probability is com-
puted by Eq. (4.12). For HMM, we use the HMM Toolbox for Matlab [36] which
implements the Viterbi algorithm. We input both the event model and measure-
ment model (i.e. Gaussian distribution of the received energy) to the Viterbi
algorithm to determine the most probable path through the HMM states. In
order to vary the SNR, we will vary the average harvestable power of the M
events, which is denoted by EH . The distance d between the nanomote and the
remote station will also be varied. Unless otherwise stated, we assume these de-
fault parameters: M = 4, standard air composition for the transmission medium
and EH = 1pW.

5.2 Performance of threshold-based detector

In this Section, we assume the power levels generated by the events are 0.25,
0.75, 1.25 and 2 pW. With these power levels and the receiver model, we plot
in Figure 5.1 the Gaussian distributions of the received power for two values of
d: 2mm and 4mm. The figure shows that for a higher distance d, the average
received energy is lower for each event type and there is more overlap of the
Gaussian distributions. This is due to higher attenuation and higher noise for
a larger d. The probabilities of incorrect classification for 2mm and 4mm are,
respectively, 9% and 37.9%.

We now study how the distance d impacts on the classification error. Figure
5.2 plots the classification error against distance d. The error remains small
for d ≤ 2mm but beyond that, the error increases rapidly and becomes very
high for large distance d. The shape of the curve can be understood by the fact
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Figure 5.1: The received energy distribution for M = 4 event types. (a) d =
2mm. (b) d = 2mm.

that noise and attenuation in a terahertz channel increases exponentially with
distance, as shown in Eq. (4.5) and (4.2).

The distance at which events can be decoded accurately is an important
factor in any remote environmental monitoring task. Thus we define the moni-
toring distance, η, as the maximum distance at which all events can be detected
with less than 10% error. We now study the impact of different parameters on
the achievable monitoring distance using TBD. The parameters that we con-
sider are: (1) Mean absorption coefficient of the transmission medium; (2) The
number of events; and, (3) The average harvestable power EH . In this study,
we vary one of these three parameters at a time. The parameters that we do
not vary will take on the default value: the mean absorption coefficient is that
of standard air, M = 4, and EH = 1pW . Figure 5.3a shows the effect of mean
absorption coefficient of the transmission medium on the monitoring distance
η. We vary the absorption coefficient by changing the chemical composition
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Figure 5.2: The effect of distance on the accuracy of event detection with EH ≈
1pW .

of the transmission medium. On a log-log plot, the monitoring distance η de-
creases linearly with increasing absorption coefficient. We next vary the number
of events from 2 to 1000. Figure 5.3b shows that the monitoring distance is a
decreasing function of the number of events M . Lastly, Figure 5.3c shows the
monitoring distance as a function of average harvestable power varies between
1fW and 1nW. This figure highlights the limitation of the TBD as the maximum
η is limited to 2cm even if SEMON can harvest around 100pW on average; we
will show later on that the HMM decoder can improve the performance.

5.3 Performance of HMM-based decoders

The main difference between the TBD and HMM decoders is that the HMM
decoder makes use of the event model for decoding. As a start, we want to
understand when an event model will be useful. On one extreme, if the events
take place in a predictable order, then the event model will be useful. On the
other extreme, if the events occur randomly, then the event model will not be of
much use; and, we expect TBD and HMM decoders to have similar performance
because the HMM decoder cannot exploit the event model. We would like to
quantify this intuition. Recall that the event model is assumed to be a Markov
chain with initial state probability π and transition matrix T = [ti,j ]. Let
ζi denote the stationary probability of being in state i. We can quantify the
uncertainly of a Markov chain by its entropy Φ, which is given by

Φ = −
M∑
i=1

ζi ×
M∑
j=1

ti,j × log2(ti,j) (5.1)
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Figure 5.3: Monitoring distance, η (error<10%) as a function of different pa-
rameters.

For a Markov model with M states, its entropy varies between 0 and log2M
where an entropy of log2M means the events appear randomly or ti,j = 1

M ∀i, j.
In order to investigate the effect of the entropy Φ on the performance of the
HMM decoders, we assume M = 4 and consider ten scenarios with ten different
entropies ranging from 0 to 2:

TΦ=0
1 :

(
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

)
, TΦ=0.15

2 :

(
0.01 0.01 0.01 0.97
0.01 0.01 0.97 0.01
0.97 0.01 0.01 0.01
0.01 0.97 0.01 0.01

)
, . . . , TΦ=2

10 :

(
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

)

For each scenario, we assume the mean harvestable power is 1pW and distance
between the nanomote and remote station is 50cm. For each scenario, we use
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Figure 5.4: The effect of the entropy of the events on the performance of the
HMM-based decoder (M=4, distance=50cm, EH=1pW and medium is standard
air).

the event model to generate 50 sequences of 100 events, and then generate the
observations using the receiver model. For decoding, we use both HMM and
TBD. For HMM, we assume the entire sequence of observations is available.
Figure 5.4 plots the event detection error against entropy. The figure shows
that the error rate of the HMM decoder increases with the entropy. If the order
of events are fairly predictable (low entropy), then the error rate is low. If the
order of events are very random (high entropy), then HMM and TBD decoders
give similar error rates. The figure also shows that HMM-decoder performs
better than TBD-decoder for all values of entropy.

In the earlier study, we assume that the HMM decoder uses the entire se-
quence of observations for decoding. In this study, we introduce a window size
parameter W . With a window size W , the HMM decoder waits for W observa-
tions to arrive and then proceed to decode the sequence of W observations. The
decoder will then wait for another W observations before starting the decod-
ing process again. A large W means the HMM-based decoder will have more
opportunity to use the underlying probabilistic model to improve the detection
process. To study the effect of window size on the performance of the HMM
decoder, we generate 50 sequences with 200 events each; the other parameters
being: M = 4, EH = 1pW, d = 50cm, event model entropy Φ = 1. We vary
the window size W from 1 to 200. Figure 5.5 shows the average error over 50
realizations of event sequence. For a small W , the HMM and TBD decoders
have similar performance; this is due to a lack of opportunity to use the event
model. The error rate decreases with increasing W , but the error rate reaches a
plateau beyond a certain value of W . It appears that there is not much benefit
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distance=50cm, EH =1pW, Φ = 1) and standard air in the wireless channel.

to increase the window size beyond a certain value.
Finally, we investigate the maximum monitoring distance η that can be

achieved via both TBD and HMM-based decoders with these parameters: stan-
dard air as the medium, M=4, Φ ≈ 1 and EH=1pW. Figure 5.6 shows that
HMM can significantly improve the η by around three orders of magnitude. It
shows a monitoring distance up to 50 cm can be achieved using a harvestable
power at 1 pW.

Our earlier investigation shows that it is advantageous to use the HMM de-
coder when the events to be monitored are not completely random. In fact,
natural events inherently are not completely random and the correlation be-
tween events is considerable. In the next section we study a real environmental
monitoring task in which a SEMON nanomote is used to monitor chemical re-
actions within a chemical reactor at the molecular level.

6 An application of SEMON in industrial chem-
istry

Because of the extremely small form factor of nanosensors, researchers are con-
sidering deploying them in embedded environments to observe physical phe-
nomena at the molecular scale. Monitoring chemical processes within a reactor
for the possibility of controlling the process from the bottom up is one such
application recently discussed in industrial chemistry literature [52]. However,
the work in [52] assumed that the nanosensor nodes have continuous power sup-
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Figure 5.6: The monitoring distance as a function of average harvestable power
via different events for both TBD and HMM-based decoders (M = 4, standard
air in the medium, Φ ≈ 1). The HMM decoder can increase the monitoring
distance by three orders of magnitude.

ply from a battery. In this section, we examine chemical process monitoring
assuming self-powered sensor nodes capable of harvesting energy from the em-
bedded environment. This section has two goals. First, we want to demonstrate
the conceptual feasibility of using thermoelectric energy harvesting signatures to
monitor chemical reactions using a pyroelectric-based SEMON (Pyro-SEMON).
Second, we want to show that by exploiting the fact that chemical reactions can
be modeled as a Markov chain, the HMM decoder can be used to improve the
detection accuracy. We begin with a review on the energy harvesting mecha-
nism.

6.1 Pyroelectric energy harvester

A pyroelectric nanogenerator converts any temperature variation to electricity
where the pyroelectric current generated is proportional to the temperature
change. The detectable current i(t) of a pyroelectric material is proportional to
the rate of change of its temperature and can be expressed as [49]:

i(t) = PC ×A× (
dT (t)

dt
) (6.1)

where PC is the pyroelectric current coefficient of the material, which is mea-
sured experimentally by measuring the output current [31]. A is the surface
area of the electrode connected to the pyroelectric material during measure-
ments. A larger electrode will collect larger number of electrons and hence the
measured current will increase. The dT/dt denotes the temporal temperature
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Figure 6.1: Overall microscopic monitoring of chemical reactor using SEMON
nodes. (1) a picture from a small industrial Velocys pilot plant of FT reactors
[45]. (2) data from the reactor will be collected and transferred to the monitor
room for further analysis. (a) schematic of a single chemical reactor. (b) a
snapshot cross section of a catalyst tube. (b) a schematic of the inner surface
of the catalyst that its sites have been equipped with Pyro-SEMON node. (c)
the working principle of the Pyro-SEMON nodes in reaction monitoring. As an
example, an R7 reaction raises the site temperature by 300µK, which generates
a 5.8 pW of instantaneous power supply for the radio.

gradient. Larger changes in temperature over shorter periods generate larger
output current. The pyroelectric current coefficient depends on the material of
the nanogenerator. In this work we use the zinc oxide pyroelectric nanogenera-
tor proposed in [49] which has a coefficient of 1.2−1.5 nC/cm2 K. The harvested
power is then derived as:

PH = I2 ×R (6.2)

where R is the device resistance, which has the value of 50 MΩ in [50].

6.2 Reaction monitoring using a Pyroelectric SEMON

Chemical reactions can be exothermic, i.e., they produce heat, or endothermic,
i.e., they consume heat from the environment. This thermal effect of chemical
reactions could be used as a practical source of energy for powering a Pyro-
SEMON node.

Figure 6.1 illustrates the overall process of energy harvesting and communi-
cation of a Pyro-SEMON nanomotes used to monitor a given chemical reactor
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at the molecular level. Figure 6.1a depicts a chemical reactor which contains
many tubes designed to maximise the contact surface area between chemical re-
actants and the catalyst which lined the inner surface of the tubes. The catalyst
surface (see Figure 6.1b) has many sites and chemical reactions will take place
at these sites. Our proposal is to deploy a Pyro-SEMON node at a catalyst
site to monitor the reactions that are taking place at that site. We assume that
remote stations can be deployed on the outer surface of the tubes as shown in
Figure 6.1b. The space between the inner and outer surfaces of the tubes is a
space where cooling water flows. This implies that the communication medium
between the Pyro-SEMON nodes and the remote stations is water.

Table 6.1: Surficial Reactions and Released Energy in KJ/mol for Fischer-
Tropsch Synthesis

Reaction Released Energy
(KJ/mole)

Water Formation
R1 O(s) + H(s) −−→ OH(s) + s 103.80±0.96

R2 OH(s) + H(s) −−→ H2O(s) + s 86.22±0.62

Chain Initiation
R3 C(s) + H(s) −−→ CH(s) + s 77.66 ±0.7

R4 CH(s) + H(s) −−→ CH2(s) + s 11.94±0.1

R5 CH2(s) + H(s) −−→ CH3(s) + s 61.88±0.5

Chain Growth
R6 CnH2n+1(s) + CH2(s) −−→ CmH2m+1(s) (m=n+1) 44.79±0.43

Hydrogenation to Paraffin (HTP)
R7 CnH2n+1(s) + H(s) −−→ CnH2n+2 + 2 s 117.75±0.67

β -Dehydrogenation to Olefin (DTO)
R8 CnH2n+1(s) −−→ CnH2n + H(s) 96.27±0.5

The production (or consumption) of heat by the reactions would increase (or
decrease) the temperature of the site. This instantaneous temperature variation
can be converted to electrical energy by the pyroelectric energy harvester on a
Pyro-SEMON node. The harvested power can be directly used to generate and
transmit a radio pulse to a nearby remote station. If each chemical reaction
produces or consumes a different amount of heat, then this amount of heat can
be used as a signature of the chemical reaction. Therefore, we can apply the
SEMON architecture and use the energy of the received pulse to detect the
chemical reactions taking place at a Pyro-SEMON node1. In this paper, we
consider the communication between a SEMON node and a remote station. If a
remote station is to receive from multiple SEMON nodes, then some multiplex-

1Note that in this paper we assume that the remote station uses an energy detector to
detect the pulses. This means that we will not be able to distinguish between an exothermic
reaction and an endothermic reaction that generate the same amount of heat. These two
reactions will create temperature gradients of the same magnitude but in different directions.
This means the pyroelectric currents generated by these two reactions flow in the opposite
directions, which in turn means the pulses sent by the Pyro-SEMON node will have the same
amplitude but opposite phases. It is not possible to use an energy detector alone to distinguish
these pulses because an energy detector is blind to the phase. However, if we choose a more
complex detector that can detect the phase, then these reactions become distinguishable.
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ing scheme is required. One possibility is for the SEMON nodes to use different
pulse shapes so that the frequency contents of the pulses are different. In this
case, the remote station can use a filter bank to demultiplex and passed the de-
multiplexed signal through an energy detector. We will not study multiplexing
and demultiplexing in this paper, and will leave it as future work.
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Figure 6.2: Estimating harvested power from temperature rise in a site using the
pyroelectric model of [49]. A site is assumed to have a mass of 1.5 fg and thermal
capacity of 0.45 J/gK. Each reaction involves two molecules and is assumed to
last for a pico second. The average harvested power via 8 reactions is 2.7 pW.

In order to make our discussion concrete, we have selected the Fischer-
Tropsch Synthesis (FTS) [2] as a case study. However, the discussion and
methodology in this paper is entirely general. FTS synthesis is a major process
for converting natural gas to liquid hydrocarbons in a chemical reactor. FTS
involves a complex set of chemical reactions of many chemical species. How-
ever, it is possible to classify all the chemical reactions into eight categories of
chemical reactions [33]. We denote these eight categories as R1 to R8 and they
are listed in Table 6.1. FTS is a highly exothermic process, generating heat at
an extremely high rate. Commercial FTS reactors employ significant cooling
infrastructure, such as continuously circulation of water along the outer surface
of the reactor, to control the temperature within the reactor. High rate of heat
generation means that the pyroelectric energy harvesting model discussed ear-
lier would be able to generate significant amount of power whenever a reaction
takes place at a site.

We now estimate the amount of harvestable power by using pyroelectric
nanogenerators. We begin with the energy released by each category of reac-
tions, which is given in the last column of Table 6.1 [33]. We first need to derive
the rate of temperature change, which can be obtained as dT

dt ≈
∆T

treaction
, where

∆T is the amount of temperature rise in the site due to the reaction heat and

19



treaction is the reaction time. The temperature rise ∆T can be obtained directly
from the heat formula as ∆T = H

Cp×m , where H is the amount of heat released

by the chemical reaction (Table 6.1) to the site, Cp is the specific heat capacity
of the catalyst (0.45 J/gK for iron), and m is the mass of the catalyst site (which
is 1.5fg assuming each site has a surface area of 0.3µm× 0.3µm). By assuming
a reaction time treaction = 1ps, we have dT

dt ≈ ∆T × 1012. This means that even
for a small ∆T , we can expect a significant rate of change in the temperature
and eventually the harvested power. Reaction recognition is possible from the
pulse energy at the remote station if different types of reactions produce differ-
ent amounts of heat, i.e., if they have very different energy signatures. Figure
6.2 shows the temperature rise in each site of an iron-based catalyst and the
resulting harvested power Ph,i for i-th category of reactions, using the pyro-
electric model of [49]. We can see that there are significant differences in the
amount of energy generation by each category of reactions, giving hope that
the proposed energy-signature-based event monitoring method would work for
FTS. However, as explained earlier, the actual reaction recognition accuracy
would depend on the amount of noise and signal attenuation experienced by the
transmitted pulses and also the type of the decoder in the remote station.

6.3 Threshold based decoder

Given the harvestable power Ph,i (i = 1, ..., 8) for each category of reactions, we
can use the receiver model in Section 4.2 to determine the Gaussian distribu-
tion of the energy received by the remote station. After that, we can use the
procedure in Section 4.3 to determine the thresholds required for TBD decoding.

6.4 HMM-based decoder

The HMM decoder assumes that events generated can be modeled by a Markov
chain. For this particular application, the events are the categories of chemi-
cal reactions in the FTS, which are labeled as R1, ..., R8. The state space of
the Markov chain is therefore {R1, ..., R8}. We will need to derive the param-
eters of the Markov chain, which are the initial probability of the states and
the transition probabilities. We have chosen to determine these parameters
empirically. We begin with the fact that chemical reactions can be modeled
by a CTMC whose state vector is the number of molecules of each chemical
species and state transitions are caused by chemical reactions [16]. We then use
the Stochastic Simulation Algorithm (SSA) [15], which is a method to simulate
chemical reactions or CTMC, to simulate the FTS. In particular, we record the
sequence of chemical reactions taking place in the simulation. By mapping the
chemical reactions to the category that they belong, we obtain a sequence of
R1, ..., R8. By repeating the simulation a number of times, we determine the
initial state probability and the transition probability matrix. The transition
matrix for FTS was found to be:

TΦ=1.3
FTS =


0.051 0.300 0.220 0.154 0.080 0.024 0.044 0.112
0.004 0.045 0.433 0.211 0.083 0.028 0.044 0.152
0.005 0.041 0.250 0.440 0.079 0.019 0.055 0.109
0.005 0.033 0.203 0.226 0.328 0.090 0.040 0.075
0.003 0.017 0.173 0.095 0.079 0.171 0.145 0.317
0.002 0.008 0.065 0.038 0.029 0.179 0.079 0.599
0.008 0.033 0.427 0.209 0.070 0.022 0.052 0.180
0.016 0.068 0.288 0.234 0.224 0.046 0.067 0.057

 ,
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This Markov chain is found to have an entropy of 1.3. Given that the maximum
possible entropy for a Markov chain with 8 states is 3, the entropy of the Markov
chain for FTS is relatively low.

6.5 Methodology

In order to simulate the observations for TBD and HMM decoding. We start by
simulating the FTS using the SSA algorithm. We assume that FTS is supplied
with an initial feeding gas with 100 CO molecules and 250 H atoms. We use
a conventional FTS reactor with the following reaction rate constants for the 8
reactions categories: 0.2 for R1, 2 for R2 and 7 for R3 to R8. The output of
SSA is a sequence of chemical reactions that have taken place.

We assume an ideal pyroelectric nanogenerator that converts all the heat
released by the chemical reactions into electrical energy. For each chemical
reaction, we assume the Pyro-SEMON node generates a Gaussian pulse with
a width of 100 fs. Since the transmission medium consists of water, we use
the molecular absorption coefficient of liquid water in the receiver model to
determine the probability distributions of the detected energy at the remote
station. These probability distributions allow us to generate the sequence of
observations to be supplied to the TBD and HMM decoders.

We would like to point out that water is a challenging transmission medium
to work with for terahertz band signals. This is because water has a higher
molecule absorption coefficient compared with many other chemical species.
HITRAN database [4] only contains absorption coefficient,K(f), of the gaseous
molecules but in our case study the communication medium is composed of pure
liquid water which is not available in HITRAN. There are a lots of studies in
the literature attempting to measure the absorption coefficient of liquid water in
different spectrum which can be found in [1] but only few of them have studied
the terahertz band. In this study, we use the molecular absorption of the liquid
water extracted from [34].

6.6 Results

We vary the distance d between the Pyro-SEMON node and the remote station
from 10µm to 1m. For each distance, we simulate the FTS 50 times. We use
both TBD and HMM as decoders, and determine the average decoding error
over 50 simulations. Figure 6.3 plots the average error against the distance
d. The figure shows that the HMM decoder outperforms the TBD decoder.
If we use the monitoring distance (which is defined as the distance with 10%
decoding error) as the performance criterion, then the monitoring distance for
TBD and HMM are, respectively, 0.15mm and 15cm. The monitoring distance
offered by TBD, at 0.15mm, may not be appropriate for our chemical reactor
architecture as the distance between the SEMON node and the remote station
is limited. Furthermore, our results are obtained under the assumption that all
the heat release is converted into energy in the pulse. Therefore, under non-ideal
assumptions, the actual monitoring distance is expected to be even smaller. On
the other hand, the HMM decoder offers a monitoring distance of 15cm, which
is 3 orders of magnitude higher than that provide by TBD.
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Figure 6.3: The average reaction recognition error via TBD over 30 distances
ranging from 10µm to 1m that has been obtained from 50 iterations of SSA
simulation.

7 Conclusions

We have proposed a simplified architecture for self-powered nanomotes com-
posed of a nanoscale energy harvester and a nanoradio. It uses the energy
signatures of monitored events to efficiently detect events at the remote sta-
tion. By directly using the instantaneous harvested energy to transmit a pulse
of proportional amplitude, the proposed architecture obviates the need for sev-
eral conventional sensor node elements including the microprocessor, memory,
and sensor. The architectural simplicity significantly reduces the total size and
energy demand of the sensor node, which is important for WNSN.

We have proposed a simple threshold based decoder at the sink which is able
to detect the events merely based on their received signal energies. Due to signal
attenuation, which reduces the received energy difference between two different
event pulses, accuracy diminishes as a function of distance. We have shown that
event recognition accuracy can be significantly improved over larger distances
by using the underlying probabilistic model between events as a hidden Markov
model to improve the inference process at the sink.

The application of the proposed architecture has been explored with a real
example of reaction monitoring within a chemical reactor. The numerical results
confirmed the viability of accurate reaction recognition when a sensor node
communicates with the sink in a single hop wireless transmission over a short
distance.
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