
Improved VCF Normalization for Evaluation of

DNA Variant Calling Algorithms

Arash Bayat Bruno Gaeta
Aleksandar Ignjatovic Sri Parameswaran

University of New South Wales, Australia
{a.bayat, bgaeta}@unsw.edu.au, {ignjat, sridevan}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201601

Feb 2016

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Variant Call Format (VCF) is widely used to store data about genetic vari-
ations. Applications include evaluation of variant calling workflows and the
study of the similarity of individual variations, where it is required to compare
two sets of variants against each other. However, finding concordance between
VCF files is a complicated task as the same variant can be represented in sev-
eral different ways and is therefore not necessarily reported in a unique way
by different software. In this paper, we have introduced a VCF normalization
method that results in more accurate comparison. Basically, in our proposed
normalization procedure, we apply all variations in a VCF file to the reference
genome to created a mutated genome, and then recall variants by aligning this
mutated genome back with the reference genome. The normalized VCF is not
necessarily closer to the truth but is suitable for comparison purposes. The
result shows over 34 times less disagreement when comparing VCF files normal-
ized by our method relative to unormalized files. Our method mostly relies on
available validated software.

1 Background

Variant calling workflows are evaluated by comparing their discovered variants
(call set) with a set of truth variants (true set) that can be simulated variants
or set of variants identified by a more reliable technique. In this comparison, we
specifically look for the number of variants listed in call set that exist in the true
set (True Positives: TP), those reported but not observed in the true set (False
Positives: FP), and variants missed by the variant caller (False Negatives: FN).
Several evaluation studies [1] [2] [3] have been performed, including [3] Xiangtao
et al. who utilized DWGsim1[5] to simulate human genome variations, and the
VCFtools[6] compare module to compare VCF files.

As we know, VCFtools does not consider different representations of vari-
ants during the comparison. Hence, Adrian et al. in [7] mathematically prove
that each variant could be represented in a normalized form. Their proposed
variant normalization algorithm is implemented in a toolkit called vt normalize.
An alternative normalization method is GATK [8] [9] LeftAlignAndTrimVari-
ant, however, Adrian shows that their method is more efficient in normalizing
variants. Unfortunately, normalizing individual variant does not consider equiv-
alency of sets of variants (referred as sets in the rest of this text). To illustrate
the complexity of recognizing identical sets, Figure 1.1 represents a tiny refer-
ence sequence and three sets each including three variants. All three sets are
equivalent to each other as they result in same mutated sequence, however none
of the variants are recognized as similar by VCFtools. Since vt normalize suc-
cessfully normalizes the last variant (insertion of C), it is determined as a true
positive by VCFtools comparing normalized sets. However, the uniqueness of
the first two variants remains undiscovered.

Pos: 123456789012345678901234567 8901

Ref: TGCATGATGCACTCCGTTGCATCCCCC-TGAG

Mut: TGCATGATGCAC-CC-TTGCATCCCCCCTGAG

 POS REF ALT Description

VCF1: 11 ACT A Delete CT

 16 G C SNP G -> C

 23 C CC Insert C

VCF2: 12 CT C Delete T

 15 CG C Delete G

 24 C CC Insert C

VCF3: 13 T C SNP T -> C

 14 CCG C Delete CG

 25 C CC Insert C

Figure 1.1: Example of three equivalent variant sets. Pos: Right most digit of
position in the sequence. Ref: Reference sequence. Mut: Mutated sequence.
VCF1, VCF2, VCF3: three sets of variants all transform Ref to Mut. Ref and
Mut are aligned together.

Another VCF comparator software is the Next generation sequencing Error
Analysis Toolkit (NEAT)[10] compare module. Although its algorithm has not
published yet, it identifies three perfect matches when comparing the sets in
Figure 1.1. Nevertheless, the example in Figure 1.2 reveals NEAT’s weakness.

1DWGsim is based on wgsim bundled in SAMtools[4]

1

In this example, the resulting mutated sequences differ in a single base (a symbol
in a sequence) while NEAT reports two FPs and two FNs. In this case even
normalizing sets with vt normalize could not change the outcome.

Pos :1234567890 123 Pos :1234567890123

Ref :AAACGTGTAT--AAA Ref :AAACGTGTATAAA

Mut1:AAACG--TATAAAAA Mut2:AAACGTCTAAAAA

 POS REF ALT Description

VCF1: 5 GTG G Delete TG

 10 T TAA Insert AA

VCF2: 7 G C SNP G -> C

 10 T A SNP T -> A

Mut1: AAACGTATAAAAA

Mut2: AAACGTCTAAAAA

Figure 1.2: Example of issue with NEAT. Pos: Right most digit of position in
the sequence. Ref: Reference sequence. VCF1, VCF2: Variant sets. Mut1,
Mut2, Mutated Sequence by VCF1 and VCF2 respectively.

2 Our Method

To mitigate issues discussed in Section 1 we propose a VCF normalization
method which takes into account all the variants presented in VCF file in-
stead of focusing on a single variant. Our method can be abstracted into two
sub-processes: injecting all mutations from the input VCF file into the refer-
ence sequence to produce the mutated sequence, then recalling all variants by
aligning both sequences together. Since equivalent sets will result in exactly the
same mutant sequence, independent from the representation issue, the former
sub-process leads to a sole output. Furthermore, due the singularity of the re-
discovery approach in latter sub-processes, the recalled set is similar if the given
sequences are the same.

Although the above procedure simply supports homozygous variants 1, to
handle heterozygous variants 2 we use a trick. We divide the input VCF file
into two where each heterozygous variant appears only in one of the output
files. For this purpose, we suggest to use the phasing 3 if available; Otherwise,
random phasing works as well. There might be rare cases, discussed in Section
5, where random phasing might cause inaccuracy. The output VCF files are
then normalized independently, and merged to produce the final output.

Our proposed method does not normalize individual variants but the whole
VCF file. Thus, we strongly recommend, as it is necessary, to use vt normalize
to process our produced output file. We also advise the use of vt normalize to
process the input VCF file as some VCF files contain errors which are detected
and sometimes fixed by vt normalize. Details are discussed in Section 5.

Figure 2.1 elaborates on the normalization procedure in details. In the be-
ginning, the input VCF is processed using vt normalize. Then, the scripts we

1Variants appear in both copy of a chromosome uniquely.
2Variants appear differently in each copy of a chromosome.
3A data field in the VCF file that describes how each chromosome in a chromosome pair

is affected by a heterozygous variant.

2

wrote divide it into two based on the genotype of the variants. GATK FastaAl-
ternateReferenceMaker (FARM) produces a mutated genome from the reference
and the given VCF file. NUCmer, delta-filter, and show-snps from the MUMmer
[11] [12] [13] whole genome alignment toolkit are used to align the genomes, fil-
ter the best alignment, and recall variations respectively. A modified version of
a script, taken from the web[14], converts the MUMmer snps file into VCF files.
Finally the normalized VCF files are combined using GATK CombineVariants,
and normalized using vt normalize. It is important to note that our approach
does not consider the quality of variants, and it is purely quantitative.

vt
normalize

VCF
Spliter

Combine
Variants

vt
normalize

GATK
FARM

NUCmer
delta-
filter

show-
snps

snp2vcf

GATK
FARM

NUCmer
delta-
filter

show-
snps

snp2vcf

Input VCF Output VCN

Figure 2.1: Proposed Normalization Scheme

3 Experimental Setup and Evaluation Method

As a case study, we simulate individual variants and short reads from chromo-
some 20 of the human genome using DWGsim with the following options. All
other options remain default.

• Variation ratio is set to 0.002.

• Paired-end short read length is set to 100.

• Folded coverage is set to 20.

Short reads are mapped using BWA MEM [15] and sorted using Picard [16].
Then variants are called from mapped reads using SAMtools [4], SNVer [17],
GATK UnifiedGenotyper and GATK HaplotypeCaller. The simulated variants
generated by DWGsim and those called by the above variant callers are then
normalized by both vt normalize alone (referred as VTN files) and the procedure
represented in Figure 2.1 (referred to as VCN files).

We use VCFtools, NEAT, and NEATf (NEAT fast mode with no equivalency
check) VCF comparators to find the concordance (TP, FP, and FN) between
each discovered VCF/VTN/VCN file against the simulated VCF/VTN/VCN
file. Since each of the comparison algorithms considers different criteria to check
for equivalency of variants, in most cases, their outcome slightly differ while
comparing the same input. Picard and GATK also include a VCF compare
modules, however due to incompatibility with other variant callers’ output, we
decided to not to use them.

Since no mathematically proven definition of best-normalized variants set
has been proposed yet, we define a better normalization technique as one which
results in a higher level of agreement between the outcome of various compare
algorithms. If the difference between the number of TP, FP, and FN reported

3

by different comparators is lower, this means there are less left for comparison
algorithm to optimize and better normalization has been applied. Note that
this definition is entirely independent of the accuracy of the variant caller. The
reason that several variant callers are used is to show how different VCF files,
produced by different algorithms, can be normalized.

Based on the definition above, we determine our evaluation metric in the
following manner. First, for each TP, FP, and FN of each comparison, we sum up
the differences and name it Disagreement Factor (DF). For instance, if 10, 15, 13
are reported as the number of FNs by different comparators, then DF is equal to
[(15-10)+(13-10)+(15-13)]=10. We sum up DF for all comparison on the same
normalization level (VCF/VTN/VCN) and name it Total Disagreement Factor
(TDF). We expect VCN results in the lowest TDF and VCF (un-normalized
files) results in the highest TDF.

Finally to check that our normalized VCF file, VCN file, is equivalent to the
original VCF file, we used GATK FARM to create mutated genome sequences
from both VCF and VCN files. Both genome sequences were compared against
each other using the Linux diff which showed they were identical.

4 Results

Table 4.1 summarizes all comparison results and Figure 4.1 shows the TDF for
each metric (TP, FP, and FN) separately as well as summed together on a log
scale. The sum of TDF for VCF is over 34 times larger than that for VCN while
the difference between VCF and VTN is small.

Table 4.1: Comparison Result

Variant
Caller

Compare
Algorithm

Un-normalized VCF VTN Normalized VCN Normalized
TP FN FN TP FN FN TP FN FN

SNVer
VCFtools 86157 32718 13 86160 32715 10 86159 32730 10
NEATf 86153 32726 27 86153 32721 27 86161 32724 19
NEAT 86157 32722 24 86157 32717 24 86161 32724 19

SAMtools
VCFtools 104984 8347 4586 109756 8747 4986 105263 13319 3525
NEATf 105199 13680 9918 109832 9042 5285 105110 13775 3992
NEAT 109264 9615 5854 109840 9034 5278 105114 13771 3988

GATK
Unified

Genotyper

VCFtools 109818 9046 6278 111788 7076 4308 111796 7086 4297
NEATf 106114 12765 5605 107891 10983 3828 111616 7269 4472
NEAT 107870 11009 3849 107899 10975 3820 111624 7261 4465

GATK
Haplotype

Caller

VCFtools 38589 80295 919 38697 80187 811 38699 80200 809
NEATf 23050 95829 264 23108 95766 206 38686 80199 823
NEAT 23108 95771 206 23110 95764 204 38686 80199 823

5 Limitation

Although our normalization method works well when a realistic variation ratio
is considered there are rare cases in which our scheme does not fit well. In our
normalization scheme, we recall variants base on the best alignment. When
comparing two highly discordant VCF files with a high concentration of varia-
tions, specially indels, in a small region of the genome, it is possible for NUCmer
to produce different alignments for each mutated genome on such regions. In
spite of the fact that the recalled variants are still valid, they are not well pre-
pared for the purpose of comparison and may result in a higher number of FPs
and FNs than expected.

Another limitation exists when the phasing is not available in an input VCF
file containing complex multi-allelic variants. There could be extremely rare

4

47
05
4	

49
18
8	

16
97
6	

11
32
18
	

39
15
4	

39
57
4	

28
22
	

81
55
0	

69
6	 12
92
	

13
30
	

33
18
	

1	

10	

100	

1000	

10000	

100000	

1000000	

TP	 FN	 FP	 TP+FP+FN	
VCF	 VTN	 VCN	

Figure 4.1: TDF for TP, FP, FN and sum of them.

cases where considering random phasing results in different normalized VCF.
Figure 5.1 is a hypothetical example for such case.

Pos: 1234 56 789 Pos: 1234 56 789

A1x: ACTA--CCCCTCG A2x: ACTA--CC--TCG

Ref: ACTG--CC--TCG Ref: ACTG--CC--TCG

A1y: ACTGCCCC--TCG A2y: ACTGCCCCCCTCG

 POS REF ALT Phase1 Phase2

VCF 4 G A,GCC x|y x|y

IN: 6 C CCC,C x|y y|x

Ref: ACTGCC--TCG Ref: ACTGCC----TCG

A1x: ACTACCCCTCG A2x: ACTACC----TCG

A1y: ACTGCCCCTCG A2y: ACTGCCCCCCTCG

 POS REF ALT

VCF 4 G A,G

REC1: 6 C CCC

VCF 4 G A,G

REC2: 6 C CCCCC,C

Figure 5.1: Example of issue with our method and random phasing. Pos: Right
most digit of position in sequence. Ref: Reference sequence. VCF IN: input
VCF. Phase1 and Phase2 are two different random phasing for VCF IN. A1x
and A1y: two mutated alleles considering first Phase1. A2x and A2y two mu-
tated alleles considering Phase2. VCF REC1 and VCF REC2: Recalled VCF
considering Phase1 and Phase2 respectively

Finally, the reason we decided to use vt normalize for the input VCF is
DWGsim that it sometimes reports indels with two preceding bases, i.e., ACT
replaced with AC, while in VCF format the symbol A is unnecessary. We have
seen that GATK FARM skips such variants without producing warnings or
errors. Another issue happens when we use the NEAT variant simulator. With
the help of vt normalize we noticed that the position reported for some of the
simulated indels was incorrect and therefore we avoided using the NEAT variant
simulator in our experiment. These errors are extremely rare and have almost
no impact on the final comparison result. However, we decided to avoid them
by using vt normalize on the input to maintain perfectness of the work.

5

6 Conclusions

Besides available variant normalization methods that process variants individ-
ually or look at small sets of variants within a narrow region of the reference
sequence, based on the result represented in this paper, it is required to make use
of high level VCF normalization method which recalls variants using a unique
procedure. Although the best-normalized VCF file has not been defined yet,
our proposed VCF normalization technique shows considerable improvement in
resolving ambiguities in variant representation.

References

[1] Jason O’Rawe et al. “Low concordance of multiple variant-calling pipelines:
practical implications for exome and genome sequencing.” In: Genome
medicine 5.3 (Jan. 2013), p. 28. issn: 1756-994X. doi: 10.1186/gm432.

[2] Mehdi Pirooznia et al. “Validation and assessment of variant calling pipelines
for next-generation sequencing”. In: Human Genomics 8.1 (Jan. 2014),
p. 14. issn: 1479-7364. doi: 10.1186/1479-7364-8-14.

[3] Xiangtao Liu et al. “Variant callers for next-generation sequencing data: a
comparison study.” In: PloS one 8.9 (Jan. 2013), e75619. issn: 1932-6203.
doi: 10.1371/journal.pone.0075619.

[4] Heng Li et al. “The Sequence Alignment/Map format and SAMtools.” In:
Bioinformatics (Oxford, England) 25.16 (Aug. 2009), pp. 2078–9. issn:
1367-4811. doi: 10.1093/bioinformatics/btp352.

[5] Whole Genome Simulator for Next-Generation Sequencing. url: https:
//github.com/nh13/DWGSIM (visited on 01/02/2016).

[6] “The variant call format and VCFtools.” In: Bioinformatics (Oxford, Eng-
land) 27.15 (Aug. 2011), pp. 2156–8. issn: 1367-4811. doi: 10.1093/

bioinformatics/btr330.

[7] Adrian Tan, Gonçalo R Abecasis, and Hyun Min Kang. “Unified represen-
tation of genetic variants.” en. In: Bioinformatics (Oxford, England) 31.13
(July 2015), pp. 2202–4. issn: 1367-4811. doi: 10.1093/bioinformatics/
btv112.

[8] Aaron McKenna et al. “The Genome Analysis Toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.” In: Genome
research 20.9 (Sept. 2010), pp. 1297–303. issn: 1549-5469. doi: 10.1101/
gr.107524.110.

[9] Mark A DePristo et al. “A framework for variation discovery and geno-
typing using next-generation DNA sequencing data.” In: Nature genetics
43.5 (May 2011), pp. 491–8. issn: 1546-1718. doi: 10.1038/ng.806.

[10] Next-generation sequencing Error Analysis Toolkit. url: http://web.

engr.illinois.edu/~zstephe2/read_simulator/ (visited on 01/02/2016).

[11] A L Delcher et al. “Alignment of whole genomes.” In: Nucleic acids re-
search 27.11 (June 1999), pp. 2369–76. issn: 0305-1048.

6

[12] A. L. Delcher. “Fast algorithms for large-scale genome alignment and com-
parison”. In: Nucleic Acids Research 30.11 (June 2002), pp. 2478–2483.
issn: 13624962. doi: 10.1093/nar/30.11.2478.

[13] Stefan Kurtz et al. “Versatile and open software for comparing large
genomes.” In: Genome biology 5.2 (Jan. 2004), R12. issn: 1465-6914. doi:
10.1186/gb-2004-5-2-r12.

[14] MUMmer SNP format to VCF format converter. url: https://github.
com/douglasgscofield/bioinfo/blob/master/scripts/mummer2Vcf.

pl (visited on 01/02/2016).

[15] Heng Li. “Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM”. In: (Mar. 2013), p. 3. arXiv: 1303.3997.

[16] Picard Tools. url: http://broadinstitute.github.io/picard (visited
on 01/02/2016).

[17] Zhi Wei et al. “SNVer: a statistical tool for variant calling in analysis of
pooled or individual next-generation sequencing data.” In: Nucleic acids
research 39.19 (Oct. 2011), e132. issn: 1362-4962. doi: 10.1093/nar/
gkr599.

7

