
I/O Efficient ECC Graph Decomposition via
Graph Reduction

Long Yuan1 Lu Qin2 Xuemin Lin1 Lijun Chang1

Wenjie Zhang1

1 University of New South Wales, Australia
{longyuan,lxue,ljchang,zhangw}@cse.unsw.edu.au

2 Centre for Quantum Computation & Intelligent Systems,
University of Technology, Sydney, Australia

Lu.Qin@uts.edu.au

Technical Report
UNSW-CSE-TR-201516

November 2015

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

The problem of computing k-edge connected components (k-ECCs) of a graph G for
a specific k is a fundamental graph problem and has been investigated recently. In this
paper, we study the problem of ECC decomposition, which computes the k-ECCs of
a graph G for all k values. ECC decomposition can be widely applied in a variety of
applications such as graph-topology analysis, community detection, Steiner component
search, and graph visualization. A straightforward solution for ECC decomposition is
to apply the existing k-ECC computation algorithm to compute the k-ECCs for all k
values. However, this solution is not applicable to large graphs for two challenging
reasons. First, all existing k-ECC computation algorithms are highly memory intensive
due to the complex data structures used in the algorithms. Second, the number of
possible k values can be very large, resulting in a high computational cost when each k
value is independently considered. In this paper, we address the above challenges, and
study I/O efficient ECC decomposition via graph reduction. We introduce two elegant
graph reduction operators which aim to reduce the size of the graph loaded in memory
while preserving the connectivity information of a certain set of edges to be computed
for a specific k. We also propose three novel I/O efficient algorithms, Bottom-Up, Top-
Down, and Hybrid, that explore the k values in different orders to reduce the redundant
computations between different k values. We analyze the I/O and memory costs for all
proposed algorithms. In our experiments, we evaluate our algorithms using seven real
large datasets with various graph properties, one of which contains 1.95 billion edges.
The experimental results show that our proposed algorithms are scalable and efficient.

1 Introduction
Graphs have been widely used to represent the relationships of entities in real-world
applications such as social networks, web search, collaborations networks, and biol-
ogy. With the proliferation of graph applications, research efforts have been devoted
to many fundamental problems in managing and analyzing graph data. Among them,
the problem of computing all k-Edge Connected Components (k-ECCs) of a graph for
a given k has been recently studied in [31, 37, 5, 10]. Here, a k-ECC of a graph G is a
maximal subgraph g of G such that g is k-edge connected (i.e., g is connected after the
removal of any (k − 1) edges from g).

Computing k-ECCs has many applications. For example, k-ECCs are used in social
network analysis to discover cohesive blocks (communities) in a social network (e.g.,
Facebook) [30]. Computing the components with high connectivity is used to identify
closely related entities in social behavior mining [4]. In computational biology, a highly
connected subgraph is a functional cluster of genes in gene microarray study [27, 11].
Computing k-ECCs can be used to identify groups of researchers with similar research
interests in a collaboration network (e.g., DBLP). Moreover, k-ECCs computation also
plays a role as a building block in many other applications such as the robust detection
of communication networks and graph visualization [5, 10, 29, 32].

ECC Decomposition. In this paper, we study the ECC decomposition problem, which
is to compute the k-ECCs of a graph for all possible k values. We give an example
below:

Jiawei Han

Philip S. Yu

Jian Pei

Xifeng Yang

T. A.Khateeb

 M. M.
Masud

 Latifur
Khan

Bhavani M.
Thuraisingham

10

11

1

2

3

Neda
Alipanah

 Pallabi
Parveen

7

6

5

8
4

9

Charu C.
Aggarwal

k = 2

17

16

15

14
13

12

18

 Hyeoneui
Kim

Lucila
Machado

Jeeyae
Choi

Sarah
Thompson

Lindsay
Meeker

Patricia

C. Dykes

Denise
Goldsmith

k = 3

k = 5

k = 4

k = 6

Figure 1.1: Part of the Coauthor Network

Example 1.1: Fig. 1.1 shows a graph G, which is part of the collaboration network
in the Coauthor dataset (http://arnetminer.org/). We compute the k-ECCs of G for all
2 ≤ k ≤ 6. Here, G itself is a 2-ECC since after removing any edge from G, G is still
connected. G has two 3-ECCs, which are the subgraphs induced by {v1, v2, . . . , v11}
and {v12, v13, . . . , v18} respectively. The subgraph induced by {v12, v13, . . . , v18} is
also a 4, 5, and 6-ECC of G. The subgraph induced by {v1, v2, . . . , v9} is a 4-ECC,
and the subgraph induced by {v4, v5, . . . , v9} is a 5-ECC. As shown in Fig. 1.1, when
k increases, the cohesiveness of the k-ECCs increases, whereas the size of the k-ECCs
decreases. 2

Using ECC decomposition, we can analyze the k-ECCs of a graph for all the k
values rather than a specific k to better understand the network structure in each of the
above-mentioned applications. Furthermore, ECC decomposition can also be used in
many new application scenarios. For example:

1

• Hierarchy Study in Networks. The k-ECCs of a graph for all k values form a hierar-
chical structure. Understanding this hierarchical structure facilitates graph-topology
analysis. In the literature, approximation techniques have been used to compute the
graph connectivity hierarchy in [7, 6, 8], and it is clear that ECC decomposition can
solve the problem accurately.

• Adaptive Community Detection. Computing k-ECCs with high connectivity can be
used to detect cohesive blocks (communities) in a social network [30]. However, it
is not easy for a user to choose the best k. ECC decomposition can help the user to
choose the best k adaptively according to the user’s requirement.

• Steiner Component Search. In many applications, users may often want to find a
subgraph with maximum connectivity that contains a given set of query nodes [9].
Such a subgraph is called a Steiner component. ECC decomposition can be used as
a preprocessing step for the Steiner component search problem.

• Multi-granularity Graph Visualization. When applying k-ECCs in graph visualiza-
tion [29, 32], users may want to visualize the graph in different granularities by zoom
in and zoom out operations. ECC decomposition can be used directly to solve this
multi-granularity graph visualization problem.

Challenges. Given a graph G, a straightforward solution for ECC decomposition is to
independently compute the k-ECCs of G for all k values using a k-ECC computation
algorithm [31, 37, 5, 10]. However, this solution presents the following two challenges:

Challenge 1: High Memory Consumption. All existing k-ECC computation algorithms
assume that the graph G is retained in memory. In order to compute the k-ECCs of
a graph G efficiently, they have to maintain complex data structures that have high
memory cost. For example, on the Orkut dataset (a social network) with only 117.2
million edges used in our experiment, the state-of the art algorithm [10] consumes
15.4 GB memory for ECC decomposition. On the other hand, the size of many real-
world graphs is huge. For example, the Facebook social network contains 1.32 billion
nodes and 140 billion edges1; and a sub-domain of the web graph Clubweb12 contains
978.5 million nodes and 42.6 billion edges2. Therefore, applying the existing k-ECC
computation algorithm on G directly is not scalable for handling large graphs because
of the high memory consumption.

Challenge 2: High Computational Cost. In many real-world graphs, the maximum k
value can be very large. For example, on the sk-2005 dataset used in our experiment,
the maximum k value reaches 4, 510. Applying the k-ECC computation algorithm for
all k values independently will result in high computational cost, since large redundant
computations will be produced due to the overlapping of k-ECCs for different k values.

Our Solution. In this paper, we focus on I/O efficient ECC decomposition. Targeting
Challenge 1, we aim to reduce the memory used to compute the k-ECCs so that it can
handle real-world graphs even when the memory is inadequate. Targeting Challenge
2, we aim to reduce the redundant k-ECC computations between different k values
to improve the efficiency of the algorithm. To achieve this, we define an edge set
Eφ=k(G) for each k value, which is the set of edges in the k-ECC of G, but not in
the (k + 1)-ECC of G. Due to the hierarchical structure of k-ECCs for all k values,
the problem of ECC decomposition of G is equivalent to computing Eφ=k(G) for all k
values. The benefits of computing Eφ=k(G) are twofold:

First (regarding Challenge 1), we observe that the size ofEφ=k(G) is usually much

1http://newsroom.fb.com/company-info
2http://law.di.unimi.it/datasets.php

2

smaller than the size of G and is usually memory-resident. For example, in the uk-
2005 dataset with 936.36 million edges used in our experiment, the maximum size of
Eφ=k(G) is only 15.69 million, which is 1.6% of the graph size. However, it is not
easy to obtain Eφ=k(G) from G directly. Therefore, we define a k-edge connectivity
preserved graph (k-PG), which is a graph G′ such that Eφ=k(G) = Eφ=k(G′). We
aim to reduce the size of the k-PG, and we prove that the size of the optimal k-PG is
the same as the size of Eφ=k(G). Suppose that the k-PG is memory-resident and can
be computed in an I/O efficient manner, we can now obtain Eφ=k(G) by computing
Eφ=k(k-PG) in memory.

Second (regarding Challenge 2), although the k-ECCs for different k values over-
lap, it is easy to see that theEφ=k(G) for different k values are non-overlapping. There-
fore, when computing Eφ=k(G) for all k values, the redundant computations can be
largely reduced if the k-PG is carefully selected and computed.

To make our idea practically applicable, the following issues need to be addressed:
(1) How can a good k-PG be obtained in an I/O efficient manner? and (2) How can the
CPU and I/O costs be shared when computing the k-PGs for all k values?

Contributions. In this paper, we answer the above questions and make the following
contributions.

(1) The first work for I/O efficient ECC decomposition. In this paper, we aim to solve
the ECC decomposition problem on web-scale graphs by considering I/O issues when
the memory size is inadequate. To the best of our knowledge, this is the first work to
study the problem of I/O efficient ECC decomposition.

(2) Two elegant graph reduction operators to reduce memory usage. Our general
idea to reduce the memory usage is graph reduction. We introduce two elegant graph
reduction operators, RE and CE, for the removal and contraction of edges respectively.
We discuss how to use these two graph reduction operators to minimize the size of the
graph (k-PG) that preserves the connectivity information of the edges to be computed.

(3) Three novel I/O efficient algorithms by considering cost sharing. We derive three
algorithms to compute the k-PGs for all k values, through which all k-ECCs can be
computed. We discuss the potential cost sharing of k-PG computation when we explore
k in different orders. Our Bottom-Up algorithm explores k in increasing order and
eliminates edges with high connectivity when computing the k-PG. Our Top-Down
algorithm explores k in decreasing order and eliminates edges with low connectivity
when computing the k-PG. Our Hybrid algorithm takes advantage of both Bottom-Up
and Top-Down and can minimize the size of the k-PG. In each algorithm, we also
discuss how to compute the k-PG in an I/O efficient manner.

(4) Extensive performance studies on seven large real datasets. We conduct extensive
performance studies using seven large real graphs with various graph properties. The
experimental results demonstrate that our proposed algorithms can handle graphs with
billions of edges using limited memory.

Outline. Section 2 provides the formal definition of the problem studied in this paper,
and introduces the in-memory algorithms. Section 3 gives an overview of our approach
and highlights our techniques. Section 4, Section 5 and Section 6 discuss the details of
the techniques and present the peak memory usage and I/O analysis of our Bottom-Up,
Top-Down, and Hybrid algorithms respectively. Section 7 evaluates all the introduced
algorithms using extensive experiments. Section 8 reviews the related work, and Sec-
tion 9 concludes the paper.

3

2 Preliminaries
Consider an undirected graph G = (V,E), where V (G) represents the set of nodes
and E(G) represents the set of edges in G. We denote the number of nodes and the
number of edges of G by n and m respectively. We define the size of G, denoted
by |G|, as |G| = m + n. For each node u ∈ V (G), we use N(u,G) to denote
the set of neighbors of u in G, i.e., N(u,G) = {v|(u, v) ∈ E(G)}. The degree of
a node u ∈ V (G), denoted by d(u,G), is the number of neighbors of u in G, i.e.,
d(u,G) = |N(u,G)|. For simplicity, we use N(u) and d(u) to denote N(u,G) and
d(u,G) respectively if the context is self-evident. Given a set of nodes Vn ⊆ V ,
the node-induced subgraph by Vn, denoted by G(Vn) = (Vn, En), is a subgraph of
G such that G(Vn) = (Vn, {(u, v) ∈ E|u, v ∈ Vn}). Given a set of graphs G =
{G1, G2, . . . , Gn}, V (G) =

⋃n
i=1 V (Gi), E(G) =

⋃n
i=1E(Gi).

Definition 2.1: (Edge-based Graph Connectivity) For a connected graph G, the
edge-based graph connectivity of G, denoted by λ(G), is the minimum number of
edges whose removal makes G disconnected. 2

Definition 2.2: (k-edge Connected) A connected graph G is k-edge connected iff
the remaining graph is still connected after the removal of any k− 1 edges from G. 2

According to Definition 2.1 and Definition 2.2, a connected graph G is k-edge
connected for any 1 ≤ k ≤ λ(G).

Definition 2.3: (k-edge Connected Component) Given a graph G, a subgraph G′ of
G is a k-edge connected component iff 1) G′ is k-edge connected, and 2) any super-
graph of G′ in G is not k-edge connected. For simplicity, we use k-ECC as the abbre-
viation for the k-Edge Connected Component. 2

In this paper, we use Ck(G) to denote the set of k-ECCs in graphG and use different
superscript to distinguish different k-ECCs in Ck(G).

For example: in Fig. 1.1, C5(G) contains two 5-edge connected components in-
duced by {v4, v5, . . . , v9} and {v12, v13, . . . , v18}, which are denoted as C15(G) and
C25(G) respectively.

Problem Statement. In this paper, we study the problem of edge connected component
(ECC) decomposition, which is defined as follows: Given a graph G, ECC decompo-
sition computes the k-ECCs of G for all 2 ≤ k ≤ kmax, where kmax is the maximum
possible k value. Since the k-ECC computation operation is memory consuming, we
aim to minimize the memory usage and focus on designing I/O efficient algorithms to
compute the k-ECCs for all k values in the graph G.

When analyzing the I/O complexity of our algorithms, we use the standard I/O
complexity notations in [2] as follows: M is the main memory size and B is the disk
block size. The I/O complexity to scan N elements is scan(N) = Θ(NB), and the I/O
complexity to sort N elements is sort(N) = O(NB · logM

B

N
B).

The In-memory Algorithms. In the literature, there are several in-memory algorithms
to compute k-ECCs for a specific k [31, 37, 5, 10]. In the following, we use Mem-
Decom to denote the in-memory algorithm that computes k-ECCs for a specific k. The
state-of-the-art in-memory algorithm is proposed in [10]. The algorithm is based on a
graph decomposition paradigm. For a given graph G and an integer k, a non k-edge
connected subgraph of G is iteratively decomposed into several connected subgraphs
by the removal of edges in all cuts of G with values less than k. The time complexity

4

of the algorithm is O(h · l · |E|) where h and l are usually bounded by small constants.
Based on Mem-Decom, a naive solution for solving the ECC decomposition prob-

lem is to use Mem-Decom to compute the corresponding k-ECCs on G directly for all
possible k values. However, this solution has two drawbacks. First, due to the complex
data structures used in Mem-Decom, this solution usually consumes a large amount
of memory and is not scalable for large graphs. For example, on the Orkut dataset
with only 117.2 million edges used in our experiment, this solution using the state-of-
the-art algorithm [10] consumes 15.4 GB memory for ECC decomposition. Second,
computing the k-ECCs for each k value individually is costly. Although some simple
heuristics are used in [9] to compute all k-ECCs of a graph, the overlapping of k-ECCs
for different k values, which is critical for reducing the overall computational cost, is
not considered. Therefore, in this paper, we focus on I/O efficient issues to reduce the
size of the memory used for ECC decomposition and we try to minimize redundant
computation in ECC decomposition to reduce the CPU and I/O costs.

3 I/O Efficient ECC Decomposition
In this section, we present the general idea of our algorithms for I/O efficient ECC de-
composition. We first define a k-edge connectivity preserved graph k-PG and analyze
the problem. Then, we give an overview of our algorithms.

3.1 k-edge Connectivity Preserved Graph
We define the edge connectivity number and connectivity bounded edge-set as follows:

Definition 3.1: (Edge Connectivity Number) Given a graph G and an edge e, the
edge connectivity number of e, denoted by φ(e,G), is defined as φ(e,G) = max{k :
e ∈ E(Ck(G))}. We use kmax to denote the maximum edge connectivity number of
edges in G, i.e. kmax = maxe∈E(G){φ(e,G)}. 2

Definition 3.2: (Connectivity Bounded Edge-Set) Given a graph G and a condition
f(φ) on the edge connectivity number, the connectivity bounded edge-set, denoted by
Ef(φ)(G), is the set of edges whose edge connectivity number φ(e,G) satisfies f(φ).

2

For example, given a graph G and the condition φ = k, Eφ=k(G) consists of edges
whose edge connectivity number is k, i.e. Eφ=k(G) = {e|e ∈ E(G), φ(e,G) =
k}. For simplicity, when the context is self-evident, we use φ(e) and Ef(φ) to denote
φ(e,G) and Ef(φ)(G), respectively. With φ(e) for all e ∈ E(G), the k-ECCs of G can
be constructed based on the following proposition:

Proposition 3.1: For a given graph G, the k-edge connected component set Ck(G)
consists of the subgraphs of G constructed by edges in Eφ≥k(G). 2

Proof: We prove this by contradiction. Suppose there exists a k′-edge connected com-
ponent Cik′(G) contains an edge e with φ(e,G) = k′′, where k′′ < k′. According
to Definition 3.1, we have max{k : e ∈ E(Ck(G))} = k′′. This contradicts with
Definition 2.3. Thus, the proposition holds. 2

Based on Proposition 3.1, we can deduce that if we can compute φ(e,G) for each
e ∈ E(G), we can construct all k-edge connected components easily by Eφ≥k(G) for
any 2 ≤ k ≤ kmax. Since the setsEφ=k(G) for different k values are non-overlapping,
if we can compute Eφ=k(G) for every 2 ≤ k ≤ kmax, then we can solve the ECC

5

decomposition problem. Therefore, we provide an alternative problem definition as
follows:

Definition 3.3: (Problem Definition∗) Given a graph G, ECC decomposition com-
putes Eφ=k(G) for any 2 ≤ k ≤ kmax. 2

Recall that the setsEφ=k(G) for different k values are non-overlapping. Therefore,
by computing Eφ=k(G) only, we have more possibilities for minimizing the redundant
computations than computing the k-ECCs for all k values. Based on Definition 3.3, we
define the k-edge connectivity preserved graph as follows:

Definition 3.4: (k-edge Connectivity Preserved Graph k-PG) Given a graph G and
an integer k, a k-edge Connectivity Preserved Graph (k-PG) G′ is a graph such that
Eφ=k(G′) = Eφ=k(G). 2

With Definition 3.4, to compute Eφ=k(G), we can construct a k-edge Connectiv-
ity Preserved Graph (k-PG) G′ of G, and compute Eφ=k(G′) using the in-memory
algorithm. We aim to reduce the size of the k-PG in order to minimize memory usage.

3.2 Problem Analysis
To reduce the size of the k-PG, we define the following two types of graph reduction
operators:

Definition 3.5: (Operator RE(G,Er)) Given a graph G and a set of edges Er =
(e1, e2, . . .), RE(G,Er) generates a new graph Gr by removing all the edges in Er
and all the nodes with degree 0 after removing the edges in Er. 2

Definition 3.6: (Operators CE(G, e) and CE(G,Ec)) Given a graph G and an edge
e = (u, v), CE(G, e) removes e, merges u and v into a new vertex v′, and revises each
edge e′ incident to either u or v to be incident to v′. Given a graph G and a set of
edges Ec = (e1, e2, . . .), CE(G,Ec) generates a new graph by applying CE(G, e) on
all edges e ∈ Ec. 2

Note that after applying CE(G,Ec), parallel edges may be created. Using the graph
reduction operators RE(G,Er) and CE(G,Ec), we devise the following two proposi-
tions:

Proposition 3.2: Given a graph G and a certain k, for any edge e ∈ E(G), if
φ(e,G) < k, RE(G, {e}) is a k-PG of G, i.e., Eφ=k(G) = Eφ=k(RE(G, {e})). 2

Proof: According to Definition 2.3 and Proposition 3.1, for a given graph G and a
certain k, the removal of any edge e with φ(e,G) < k does not affect the edge con-
nectivity number of edges e′ with φ(e′, G) ≥ k. Based on Definition 3.5, for a given
G and an e with φ(e,G) < k, we have the edges e′ with edge connectivity number
φ(e′) ≥ k in G and RE(G, {e}) are the same, i.e.,Eφ=k(G) = Eφ=k(RE(G, {e})).
Thus, the proposition holds. 2

Proposition 3.3: Given a graph G and a certain k, for any edge e ∈ E(G), if
φ(e,G) > k, CE(G, {e}) is a k-PG of G, i.e., Eφ=k(G) = Eφ=k(CE(G, {e})). 2

Proof: Without loss of generality, let e = (u, v) be an edge in G with φ(e,G) > k,
Cik(G) be the k-ECC of G that contains e, v′ be the merged node of u and v and Gc
be the generated graph of CE(G, {e}). Let G′ be the subgraph induced by the nodes
V (Cik(G)) \ {u, v} ∪ {v′} on Gc. We first prove that G′ is a k-ECC of Gc. To prove
this, we first prove that G′ is k-edge connected. Let x, y be any two distinct nodes in
G′. Since x, y ∈ Cik(G), based on the Definition 2.3, there are k edge-disjoint paths
from x to y in Cik(G), denoted by {p1, . . . , pk}. We consider the following two cases:

6

(1) If there exists no path in {p1, . . . , pk} that contains e, then {p1, . . . , pk} are also in
G′ and then there are k edge-disjoint paths from x to y in G′. (2) If there exists one
path in {p1, . . . , pk} that contains e, and let pi be that path. Let px→u be the segment
of pi from x to u in G and pv→y be the segment of pi from v to y in G. Let p′i be
the path by concatenating px→u and pv→y at u and v. It is not hard to see that p′i is a
path from x to y in G′. Then there are also k edge-disjoint paths from x to y in G′.
Based on (1) and (2), G′ is k-edge connected. Since G′ is the subgraph induced by
V (Cik(G)) \ {u, v}∪{v′} on Gc, there are no super-graph of G′ in Gc which is k-edge
connected. ThusG′ is a k-ECC ofGc. According to Definition 2.3 and Proposition 3.1,
we have Eφ=k(G) = Eφ=k(CE(G, {e})). Thus, the proposition holds. 2

According to Proposition 3.2, we can derive the following proposition by applying
the RE(G, {e}) operator on all edges with φ(e,G) < k.

Proposition 3.4: Given a graph G and a certain k, RE(G,Eφ<k) is a k-PG of G, i.e.,
Eφ=k(G) = Eφ=k(RE(G,Eφ<k)). 2

Proof: The proposition can be proved according to Proposition 3.2 directly. 2

Similarly, by applying the CE(G, {e}) operator on all edges with φ(e,G) > k, we
can derive the following proposition:

Proposition 3.5: Given a graph G and a certain k, CE(G,Eφ>k) is a k-PG of G, i.e.,
Eφ=k(G) = Eφ=k(CE(G,Eφ>k)). 2

Proof: This proposition can be proved according to Proposition 3.3 directly. 2

By combining Proposition 3.4 and Proposition 3.5, we have the following proposi-
tion:

Proposition 3.6: Given a graph G and a certain k, CE(RE(G, Eφ<k), Eφ>k) is a
k-PG of G, i.e., Eφ=k(G) = Eφ=k(CE(RE(G, Eφ<k), Eφ>k)). 2

Proof: We prove this proposition in two phases. First, according to Proposition 3.4,
we have Eφ=k(G) = Eφ=k(RE(G,Eφ<k)). Second, according to Proposition 3.5, we
have Eφ=k(G) = Eφ=k(CE(RE(G, Eφ<k), Eφ>k)). Thus, the proposition holds. 2

Note that graph CE(RE(G,Eφ<k), Eφ>k) contains exactly the same set of edges in
Eφ=k. Therefore, CE(RE(G,Eφ<k), Eφ>k) is an optimal k-PG. However, computing
this k-PG I/O efficiently is not easy. In this paper, instead of computing Eφ<k and
Eφ>k, we compute two sets E′φ<k ⊆ Eφ<k and E′φ>k ⊆ Eφ>k. We can derive the
following proposition easily.

Proposition 3.7: Given a graph G and a certain k, for any E′φ<k ⊆ Eφ<k
and E′φ>k ⊆ Eφ>k, CE(RE(G,E′φ<k), E′φ>k) is a k-PG of G, i.e., Eφ=k(G) =

Eφ=k(CE(RE(G,E′φ<k), E′φ>k)). 2

Proof: This proposition can be proved similarly as Proposition 3.6. 2

We try to maximize both |E′φ<k| and |E′φ>k| in an I/O efficient manner to mini-
mize the size of CE(RE(G,E′φ<k), E′φ>k). We illustrate this idea using the following
example:

Example 3.1: Consider the graph G shown in Fig. 3.1. Suppose, for instance, k =
5. The edges with edge-connectivity number 5 in G are the edges in the subgraph
induced by nodes {v2, v3, . . . , v7}. After applying CE(RE(G,Er), Ec) where Er =
{(v0, v2), (v0, v3), (v1, v3), (v1, v4), (v9, v15), (v10, v15)} andEc consists of the edges
in the subgraph induced by {v8, v9, . . . , v14}, we can obtain the graph G′, which is
shown on the right side of Fig. 3.1. Since Er ⊆ Eφ<5 and Ec ⊆ Eφ>5, according
to Proposition 3.7, we have Eφ=5(G) = Eφ=5(CE(RE(G, Er), Ec)), i.e., CE(RE(G,
Er), Ec) is a 5-PG of G. 2

7

6

2

3

5 4

7

14

13

12

11 10

9

8 0

1

6

2

3

5 4

7

 8’

RE

CE

G G’

 𝜙 𝑒 = 5

15

RE

Figure 3.1: A 5-edge Connectivity Preserved Graph (5-PG)

Challenges. To make our idea practically applicable for ECC decomposition on large
graphs, we have two main challenges:

(1) How can a good k-PG be obtained in an I/O efficient manner? As discussed
above, to obtain a good k-PG, we need to find E′φ<k ⊆ Eφ<k and E′φ>k ⊆ Eφ>k and
try to maximize both |E′φ<k| and |E′φ>k|. However, to compute E′φ<k and E′φ>k I/O
efficiently is nontrivial.

(2) How can the CPU and I/O costs be shared when computing the k-PG for all
2 ≤ k ≤ kmax? Currently, we still consider that Eφ=k is computed independently on
graph G for each 2 ≤ k ≤ kmax. However, if we utilize the relationships of the k-PG
computations for different k values, we can further improve the algorithm by exploring
the possible opportunities to share the computational cost of ECC graph decomposition.
However, this is still nontrivial.

In the next subsection, we will give an overview of our solution with three algo-
rithms which try to maximize the computational cost sharing for different k values
(Challenge 2). The I/O efficient issues (Challenge 1) for the three algorithms will be
discussed in detail in Section 4, Section 5 and Section 6 respectively. We summarize
the notations used in the paper in Table 3.1.

Symbol Description
G = (V,E) graph with nodes V ane edgesE

V (G) all nodes ofG
E(G) all edges ofG

N(u,G) neighbors of node u inG
d(u,G) the number of neighbors of u inG
λ(G) the minimum number of edges whose removal makesG disconnected
Ck(G) the set of k-edge connected components ofG
φ(e,G) the edge connectivity number of e inG
kmax the maximum edge connectivity number of edges inG

Ef(φ)(G) the set of edges inG whose edge connectivity number satisfies f(φ)
k-PG k-edge connectivity preserved graph
Uk the set of unprocessed connectivity numbers before a certain k
Gk the input graph before processing a certain connectivity number k
φ(e) lower bound of φ(e)
Gkcert the union of (k + 1) edge-disjoint spanning forests of a graph
φ(e) upper bound of φ(e)

degree(e,G) the edge degree number of e inG

Table 3.1: Notations

3.3 Solution Overview
In this subsection, we give an overview of our solution. As shown in Section 3.2,
we need to compute Eφ=k for each connectivity number 2 ≤ k ≤ kmax, and try to

8

Gk

RE/CE

compute

RE/CE, increase/decrease k

KPG(G’)

𝐸′𝜙>𝑘(𝐺𝑘)

 G

 G

 G’

G

k-PG

𝐸𝜙=𝑘(𝐺) k-PG Compute

𝐸′𝜙<𝑘(𝐺𝑘)

𝐸𝜙=𝑘(𝐺) Gk
Gk

Figure 3.2: The Algorithm Framework

Algorithm 1 Bottom-Up(Graph G)

1: k ← 1;Gk ← G;
2: whileGk 6= ∅ do
3: k-PG← CE(Gk, Eφ>k(Gk));
4: Eφ=k ← E(k-PG) \ E(Mem-Decom(k-PG, k + 1));
5: Gk+1 ← RE(Gk, Eφ=k);
6: k ← k + 1;

maximize the computational cost sharing among different k values. To do this, we can
reduce the input graph by removing unnecessary edges based on the already processed
k values instead of using the original graph G as the input graph for each k value. To
better describe our idea, we first provide the following definitions.

Definition 3.7: (Uk, and Gk) We use Uk to denote the set of unprocessed connectivity
numbers before processing a certain connectivity number k, and use Gk to denote the
input graph before processing a certain connectivity number k. 2

Algorithm Framework. The framework of our approach is illustrated in Fig. 3.2.
Given the input graph Gk for a certain k, we first apply the graph reduction operator
RE/CE on Gk to compute the k-PG of Gk based on Proposition 3.7. Then we compute
Eφ=k(G) on the k-PG using an in-memory algorithm. With Eφ=k(G), we refine the
input graph by applying graph reduction operator RE/CE on Gk to generate the input
graph for the next k value. The algorithm terminates when all k values have been
processed.

To compute Eφ=k(G) for all the connectivity numbers 2 ≤ k ≤ kmax correctly
using the framework shown in Fig. 3.2, the set of unprocessed connectivity numbers
Uk and the input graph Gk for each k should satisfy the following two properties.
• (Unseen-Connectivity Preservable): For each connectivity number i ∈ Uk,
Eφ=i(G) = Eφ=i(Gk).

• (Input-Graph Computable): The input graph Gk can be computed by applying the
reduction operators RE and CE on the input graph Gk′ for the previous iteration.

Following the framework, we propose three algorithms based on different orders of
processing the connectivity numbers, namely, Bottom-Up, Top-Down, and Hybrid.

Algorithm Bottom-Up. The Bottom-Up algorithm computes all Eφ=k in increasing
order of k. Therefore, we have Uk = {i|k ≤ i ≤ kmax}. We define the input graph
Gk for a certain k to be the graph by removing all edges with φ < k using the RE
operator, i.e., Gk = RE(G,Eφ<k). The unseen-connectivity preservable property and
the input-graph computable property are satisfied by the following two propositions
respectively:

Proposition 3.8: Given a graph G and a certain connectivity number k, for any k ≤

9

Algorithm 2 Top-Down(Graph G)

1: k ← kmax;Gk ← G;
2: while k > 1 do
3: k-PG← RE(Gk, Eφ<k(Gk));
4: Eφ=k ← E(Mem-Decom(k-PG, k));
5: Gk−1 ← CE(Gk, Eφ=k);
6: k ← k − 1;

i ≤ kmax, Eφ=i(G) = Eφ=i(RE(G,Eφ<k)). 2

Proof: This proposition can be directly derived from Proposition 3.4. 2

Proposition 3.9: Given a graph G and a certain connectivity number k,
RE(G,Eφ<k+1) = RE(RE(G,Eφ<k), Eφ=k). 2

Proof: For a given G and k, RE(G,Eφ<k) consists of the edges e of G with
φ(e,G) ≥ k and RE(RE(G,Eφ<k), Eφ=k) consists of the edges e′ with φ(e′, G) > k.
RE(G,Eφ<k+1) consists of the edges e′′ with φ(e′′, G) > k. Then RE(G,Eφ<k+1) =
RE(RE(G,Eφ<k), Eφ=k). Thus, the proposition holds. 2

Intuitively, Proposition 3.8 follows the fact that the sets Eφ=k(G) for different
k values are non-overlapping and removing the edges with small edge connectiv-
ity number does not affect the values of edge connectivity number of the remaining
edges. Proposition 3.9 is based on the property that E(Ck(G)) ⊆ E(Ck−1(G)) for any
2 ≤ k ≤ kmax and Gk can be computed according to Gk−1 by RE operator.

To compute the k-PG for Gk, according to Proposition 3.7, we need to compute
two sets E′φ<k ⊆ Eφ<k and E′φ>k ⊆ Eφ>k. Since Gk = RE(G,Eφ<k), there is no
edge with φ < k inGk. Therefore, we only need to computeE′φ>k. However, the exact
φ(e) values for edges e with φ(e) > k are hard to obtain. Therefore, we first compute
a lower bound φ(e) of φ(e) for each e ∈ E(Gk). It is evident that Eφ>k ⊆ Eφ>k. In
this way, we can compute the k-PG by CE(Gk, Eφ>k).

The framework of Bottom-Up is shown in Algorithm 1. We start processing
k = 1 and initially Gk is the original graph G (line 1). The algorithm iteratively
increases k until Gk = ∅ (lines 2-6). In each iteration, for a certain k, we first com-
pute the k-PG by Proposition 3.10 (line 3). Then, we can compute Eφ=k using E(k-
PG) \ E(Mem-Decom(k-PG, k + 1)) (line 4), because according to Proposition 3.1,
Mem-Decom(k-PG, k + 1) computes the set Eφ≥k+1, and the k-PG does not include
edges in Eφ<k. Here, Eφ=k is correctly computed because of Proposition 3.8. Lastly,
we construct Gk+1 for the next iteration (line 5) based on Proposition 3.9. We have the
following proposition:

Proposition 3.10: For a certain connectivity number k, the k-PG for the Bottom-Up
algorithm is CE(RE(G,Eφ<k), Eφ>k). 2

Proof: We first prove that for a certain k, the graph returned in line 3 of Bottom-Up
is CE(RE(G,Eφ<k), Eφ>k). According to Proposition 3.9 and the operation in line 5,
Gk used in line 3 is RE(G,Eφ<k). Based on the operation in line 3, the returned graph
in line 3 is CE(RE(G,Eφ<k), Eφ>k). From Proposition 3.7, when E′φ<k = Eφ<k and
E′φ>k = Eφ>k, we can derive that the returned graph in line 3 is a k-PG of G for the
given k. Thus, the proposition holds. 2

Algorithm Top-Down. The Top-Down algorithm computes all Eφ=k in decreasing
order of k. Therefore, we have Uk = {2 ≤ i ≤ k}. We define the input graph
Gk for a certain k to be the graph by contracting all edges with φ > k using the CE
operator, i.e., Gk = CE(G,Eφ>k). The unseen-connectivity preservable property and
the input-graph computable property are satisfied by the following two propositions
respectively:

10

Algorithm 3 Hybrid(Graph G)

1: k ← kmax;Gk ← G;
2: while k > 1 do
3: G′ ← RE(Gk, Eφ<k(Gk));
4: Compute the k-PG ofG′ by Bottom-Up(G′);
5: Eφ=k ← E(k-PG);
6: Gk−1 ← CE(Gk, Eφ=k);
7: k ← k − 1;

Proposition 3.11: Given a graph G and a certain connectivity number k, for any
2 ≤ i ≤ k, Eφ=i(G) = Eφ=i(CE(G,Eφ>k)). 2

Proof: This proposition can be directly derived from Proposition 3.5. 2

Proposition 3.12: Given a graph G and a certain connectivity number k,
CE(G,Eφ>k−1) = CE(CE(G,Eφ>k), Eφ=k). 2

Proof: For a given G and k, CE(G,Eφ>k) consists of the edges e of G with
φ(e,G) ≤ k and CE(CE(G,Eφ>k), Eφ=k) consists of the edges e′ with φ(e′, G) < k.
CE(G,Eφ>k−1) consists of the edges e′′ with φ(e′′, G) < k. Then CE(G,Eφ>k−1) =
CE(CE(G,Eφ>k), Eφ=k). Thus, the proposition holds. 2

Similar to Bottom-Up, to compute the k-PG for Gk in Top-Down, according to
Proposition 3.7, we need to compute two sets E′φ<k ⊆ Eφ<k and E′φ>k ⊆ Eφ>k.
Since Gk = CE(G,Eφ>k), there is no edge with φ > k in Gk. Therefore, we only
need to compute E′φ<k. However, the exact φ(e) values for edges e with φ(e) < k

are hard to obtain. Therefore, we first compute an upper bound φ(e) of φ(e) for each
e ∈ E(Gk). It is evident that Eφ<k ⊆ Eφ<k. In this way, we can compute the k-PG
by RE(Gk, Eφ<k).

The framework of Top-Down is shown in Algorithm 2. Since kmax is unknown, we
compute an upper bound kmax of kmax. We start processing k = kmax and initially
Gk is the original graph G (line 1). The algorithm iteratively decreases k until k ≤ 1
(lines 2-6). In each iteration, for a certain k, we first compute the k-PG by Propo-
sition 3.13 (line 3). Then, we can compute Eφ=k using E(Mem-Decom(k-PG, k))
directly (line 4), because according to Proposition 3.1, Mem-Decom(k-PG, k) com-
putes the edge set Eφ≥k, and the k-PG does not include edges in Eφ>k. Here, Eφ=k is
correctly computed because of Proposition 3.11. Lastly, we constructGk−1 for the next
iteration (line 5) based on Proposition 3.12. We can derive the following proposition:

Proposition 3.13: For a certain connectivity number k, the k-PG for the Top-Down
algorithm is RE(CE(G,Eφ>k), Eφ<k). 2

Proof: We first prove that for a certain k, the graph returned in line 3 of Top-Down is
RE(CE(G,Eφ>k), Eφ<k). According to Proposition 3.12 and the operation in line 5,
Gk used in line 3 is CE(G,Eφ>k). Based on the operation in line 3, the returned graph
in line 3 is RE(CE(G,Eφ>k), Eφ<k). From Proposition 3.7, when E′φ<k = Eφ<k and
E′φ>k = Eφ>k, we can derive that the returned graph in line 3 is a k-PG of G for the
given k. Thus, the proposition holds. 2

Algorithm Hybrid. Hybrid takes advantage of both Bottom-Up and Top-Down to fur-
ther reduce the size of the k-PG. According to Proposition 3.13, the k-PG of the Top-
Down algorithm contains the set of edges Eφ≥k(Gk) where Gk = CE(G,Eφ>k). In
other words, the k-PG contains the edges e with φ(e) ≥ k and φ(e) ≤ k. Hybrid aims
to further reduce the size of the k-PG by eliminating those edges with φ(e) < k. The
Bottom-Up algorithm can be naturally applied to handle this. The framework of Hybrid
is shown in Algorithm 3. It generally follows the framework of Algorithm 2. However,
after computing G′ = RE(Gk, Eφ<k(Gk)) in line 3, we do not use G′ as the k-PG.

11

Instead, we compute the k-PG of G′ as the k-PG of G by invoking Bottom-Up(G)
(line 4). Since by Proposition 3.10, Bottom-Up can remove all edges with φ < k when
computing the k-PG, we can easily derive the following proposition:

Proposition 3.14: For a certain connectivity number k, the k-PG for the Hybrid algo-
rithm is RE(CE(G,Eφ>k), Eφ<k). 2

Proof: We first prove that for a certain k, the graph returned in line 4 of Hybrid is
RE(CE(G,Eφ>k), Eφ<k). According to Proposition 3.12 and the operation in line 6,
Gk used in line 3 is CE(G,Eφ>k). Based on the operation in line 3, G′ in line 3 is
RE(CE(G,Eφ>k), Eφ<k). Based on Proposition 3.10, the returned graph in line 4 is
RE(CE(G,Eφ>k), Eφ<k). From Proposition 3.4 and Proposition 3.5, we can derive
that the returned graph in line 4 is a k-PG of G for the given k. Thus, the proposition
holds. 2

In other words, Hybrid can compute the optimal k-PG. Furthermore, since the graph
CE(RE(G,Eφ<k), Eφ>k) contains exactly the same set of edges in Eφ=k, we can use
E(k-PG) as Eφ=k (line 5) without invoking Mem-Decom(k-PG , k). The rationale
for applying the Bottom-Up algorithm on G′ is that G′ can preserve the edges e with
φ(e) = k according to Proposition 3.7. Note that by invoking Bottom-Up(G′), we also
compute the set Eφ=k′(G′) for any 2 ≤ k′ < k. However, since G′ does not satisfy the
unseen-connectivity preservable property, this set on G′ cannot be used as the result in
the original graph G.

4 Bottom-Up Decomposition
In this section, we discuss Bottom-Up in detail. We first describe how to compute a
tight φ(e). Then we show how to implement Bottom-Up I/O efficiently. Lastly, we
analyze the peak memory usage and I/O complexity of Bottom-Up.

4.1 φ(e) Computation
As discussed in Section 3.3, the key issue to obtaining a good k-PG in Bottom-Up is
to compute a tight φ(e) for any edge e in the graph G. According to Definition 3.1,
for an edge e in G, its edge connectivity number in G cannot be smaller than that in a
subgraph of G, then a valid φ(e) can be computed based on the following proposition:

Proposition 4.1: For any subgraphGs ofG and edge e ∈ E(Gs), φ(e,Gs) ≤ φ(e,G).
2

Proof: We prove this proposition by contradiction. Without loss of generality, for a
given edge e, let k1 = max{k : e ∈ E(Ck(Gs)) and k2 = max{k : e ∈ E(Ck(G)).
Suppose that φ(e,Gs) > φ(e,G), then we have k1 > k2 and e /∈ E(Ck1(G)). Since
e ∈ E(Ck1(Gs)), then we have E(Ck1(Gs)) " E(Ck1(G)), which contradicts with Gs
is a subgraph of G. Thus φ(e,Gs) ≤ φ(e,G) and the proposition holds. 2

By Proposition 4.1, we can select a subgraph Gs of G, and use φ(e,Gs) as φ(e)
for each e ∈ E(Gs). However, arbitrarily selecting a subgraph Gs of G may result in a
very loose φ(e). Recall that in the Bottom-Up algorithm, the k-PG is computed using
CE(Gk, Eφ>k(Gk)). A loose φ(e) may lead to a large k-PG when k becomes large.
Nevertheless, in CE(Gk, Eφ>k(Gk)), we only care about those edges e with φ(e) > k
in Gk when computing the k-PG. Therefore, when k is small, although Gk is large,
φ(e) does not need to be very tight since φ(e) > k can be easily satisfied by selecting

12

a small subgraph of Gk. When k is large, Gk becomes small, and thus we can afford
to select a subgraph of a large portion of Gk to compute a tight φ(e).

Based on the above discussion, we can adaptively compute and update φ(e) in Gk
when k increases from 2 to kmax. We denote the subgraph used to compute φ(e) inGk
as a certificate graph Gkcert.

Certificate Graph Gkcert. We construct the certificate graphGkcert fromGk as follows:
Initially, Gkcert = (V (Gk), ∅). We construct Gkcert using k+ 1 iterations. In each itera-
tion, we first compute a spanning forest F of the graph with edges E(Gk) \E(Gkcert),
and then update the edge set of Gkcert to be E(Gkcert) ∪ E(F). It is easy to derive the
following proposition:

Proposition 4.2: |E(Gkcert)| ≤ (k + 1)× (|V (Gk)| − 1). 2

Proof: For a spanning forest F of Gk, E(F) ≤ (|V (Gk)| − 1). Since Gkcert contains
k+1 spanning forests, then |E(Gkcert)| ≤ (k+1)×(|V (Gk)|−1). Thus, the proposition
holds. 2

The size of Gkcert can be bounded because although |V (Gk)| is large, we only need
to load a small number of spanning forests of Gk to construct Gkcert when k is small,
and when k is large, |V (Gk)| becomes small, thus we can load more spanning forests
of Gk to construct Gkcert.

Fig. 4.1 (a) shows a comparison of |G|, |Gk| and |Gkcert| for Bottom-Up on the
uk-2005 dataset when we increase k from 2 to 100. |Gk| decreases as k increases. For
|Gkcert|, we observe that, when k is small, |Gkcert| increases as k increases. After reach-
ing the peak point with k = 20, |Gkcert| decreases as k increases. Notably, the peak
size of Gkcert is only around 20% of |G|, which is much smaller than |G|. Therefore, it
is usually suitable to use Gkcert to compute φ(e) in Gk.

Computing φ(e) for e ∈ E(Gkcert). Since Gkcert is the union of (k + 1) edge-disjoint
spanning forests of a graph, we can derive the following proposition based on the the-
oretical result derived in [23] and Definition 2.2:

Proposition 4.3: Given a graph G and k, for any 2 ≤ i ≤ k+ 1, the graph Gkcert of G
is i-edge connected if G is i-edge connected. 2

The proof is based on the following definition:

Definition 4.1: (local edge-connectivity) Given a graph G and two distinct nodes
u and v, the local edge-connectivity between u and v, denoted by λ(u, v;G), is the
maximum number of edge-disjoint u-v paths in G. 2

Proof: The proof is based on a theoretical result in [23], which shows the following
result:

For a graphG = (V,E), letFj = (V,Ej) be a maximal spanning forest inG\E1∪
E2 ∪ · · · ∪ Ej−1, for j = 1, 2, ..., |E|, where possibly Ej = Ej+1 = · · · = E|E| = ∅
for some j. Then each spanning subgraph Gj = (V,E1 ∪ E2 ∪ · · ·Ej) satisfies

λ(x, y;Gj) ≥ min{λ(x, y;G), j}

for all x, y ∈ V .
In our setting, the process of constructing Gkcert is the same as Gj and j = k,

then we have λ(x, y;Gkcert) ≥ λ(x, y;G) for all x, y ∈ V , which means Gkcert is a
k-edge connected graph ifG is a k-edge connected graph. According to Definition 2.2,
we have the graph Gkcert of G is i-edge connected if G is i-edge connected for any
2 ≤ i ≤ k + 1. Thus, the proposition holds. 2

13

0.2G

0.4G

0.6G

0.8G

1.0G

2 10 20 30 40 50 60 70 80 90 100

G
ra

ph
 S

iz
e

|G|
|Gk|

|Gk
cert|

|k-PG|

(a) Vary k (Bottom-Up)

0.2G

0.4G

0.6G

0.8G

1.0G

2 10 20 30 40 50 60 70 80 90 100

G
ra

ph
 S

iz
e

|G|
|Gk|

|k-PG|

(b) Vary k (Top-Down)

Figure 4.1: Size of Different Graphs on the uk-2005 Dataset

Recall that the graph Gk of Bottom-Up is defined as Gk = RE(G,Eφ<k). There-
fore, for each edge e ∈ E(Gk), we have φ(e,Gk) ≥ k, i.e., Gk is k-edge connected.
Since Gkcert is constructed based on Gk, Gkcert is also k-edge connected according to
Proposition 4.3. Therefore, the following proposition holds:

Proposition 4.4: For each edge e ∈ E(Gkcert), φ(e,Gkcert) ≥ k. 2

Proof: This proposition can be derived directly from Proposition 3.10 and Proposi-
tion 4.3. 2

Since φ(e) varies in different Gk, we denote φ(e) for Gk as φ
k
(e). With Gkcert,

for each e ∈ E(Gkcert), φ
k
(e) can be simply computed as φ(e,Gkcert). However, to

compute φ(e,Gkcert), we need to compute the k′-ECC for all 2 ≤ k′ ≤ kmax in Gkcert,
which is costly. Recall that the aim of computing φ

k
(e) is to obtain the set Eφ>k(Gk).

Therefore, for an edge e ∈ E(Gkcert), as long as we guarantee φ
k
(e) > k, we do

not need to compute the exact φ
k
(e). In other words, for each e ∈ E(Gkcert), if we

guarantee φ(e,Gkcert) > k, we can simply set φ
k
(e) as k + 1 without computing

φ(e,Gkcert). Based on this, we can define φ
k
(e) for each e ∈ E(Gkcert) as follows:

φ
k
(e) = min{φ(e,Gkcert), k + 1} (4.1)

Based on Eq. 4.1 and Proposition 4.4, we have the following proposition:

Proposition 4.5: For each e ∈ E(Gkcert), k ≤ φ
k
(e) ≤ k + 1. 2

Proof: According to Eq. 4.1, we have φk(e) ≤ k + 1. Based on Proposition 4.4, we
have φ

k
(e) ≥ k. Thus, the proposition holds. 2

According to the above discussion, for each edge e ∈ E(Gkcert), we only need to
compute the (k + 1)-ECC of Gkcert in memory to compute φ

k
(e). If e belongs to the

(k + 1)-ECC of Gkcert, we can set φ
k
(e) to be k + 1; otherwise, we set φ

k
(e) to be

k. Note that our objective is to maximize the number of edges with φ
k
(e) = k + 1.

By Proposition 4.5, for each e ∈ E(Gkcert), φ
k
(e) is tight in the sense that φ

k
(e) only

differs from (k + 1) by at most 1.

Computing φ(e) for e /∈ E(Gkcert). Note that there are also edges in E(Gk) that do

not belong to E(Gkcert). For each such edge e = (u, v), if u and v belong to the
same (k + 1)-ECC of Gkcert, u and v also belong to the same (k + 1)-ECC of Gk,
thus we can set φ

k
(e) to be (k + 1); otherwise, φ

k
(e) is set to be k since Gk itself is

a k-ECC. The rationale for this is that, by combining (k + 1) edge-disjoint spanning
forests of Gk, most parts of the (k + 1)-ECCs of Gk are also preserved in Gkcert. For
example, on the uk-2005 dataset with 39.45 million nodes and 936.36 million edges
used in our experiment, 96.2% of nodes in the (k + 1)-ECCs of Gk are preserved in

14

Algorithm 4 Bottom-Up(Graph G)

1: Gk ← G; k ← 1;
2: whileGk 6= ∅ do
3: if |Gk| × α ≤Mpeak then
4: computeEφ=k′ (Gk′) for k′ ≥ k in memory following Algorithm 1;
5: break;
6: Gkcert ← DisjointForest(Gk);
7: G′ ←Mem-Decom(Gkcert, k + 1);
8: k-PG← CE-Disk(Gk, G

′);
9: Eφ=k ← E(k-PG) \ E(Mem-Decom(k-PG, k + 1));

10: Gk+1 ← RE-Disk(Gk, Eφ=k);
11: k ← k + 1;

12: procedure DisjointForest(Disk GraphGk)
13: Gkcert ← ∅;
14: for i = 0 to k do
15: F ← ∅;
16: for all edge (u, v) ∈ E(Gk) by sequential scanningGk on disk do
17: if (u, v) /∈ Gkcert and u, v are not connected in F then
18: F ← F ∪ (u, v);
19: Gkcert ← Gkcert ∪ F ;
20: returnGkcert;

21: procedure CE-Disk(Disk GraphGk, GraphG′)
22: Gc ← ∅ on disk;
23: create a node w.r.t. each connected component ofG′ in memory;
24: for all edge (u, v) ∈ E(Gk) by sequential scanningGk on disk do
25: if u ∈ V (G′) then
26: wu ← the node w.r.t. the connected component inG′ that contains u;
27: else wu ← u;
28: if v ∈ V (G′) then
29: wv ← the node w.r.t. the connected component inG′ that contains v;
30: else wv ← v;
31: if wu 6= wv then
32: add edge (wu, wv) inGc on disk;
33: returnGc;

34: procedure RE-Disk(Disk GraphGk, Edge SetE)
35: Gr ← ∅ on disk;
36: for all edge (u, v) ∈ E(Gk) by sequential scanningGk on disk do
37: if e /∈ E then
38: add edge (u, v) inGr on disk;
39: returnGr ;

Gkcert on average. Based on this, φ
k
(e) can still be effectively computed for each edge

e ∈ E(Gk) \ E(Gkcert) .

The General Case. Given Gkcert, according to the cases of e ∈ E(Gkcert) and e /∈
E(Gkcert), we can derive a general method to compute φ

k
(e) for each e ∈ E(Gk)

based on the following proposition:

Proposition 4.6: For each e = (u, v) in E(Gk), if u and v belong to the same (k+ 1)-
ECC of Gkcert, φk(e) = k + 1; otherwise φ

k
(e) = k. 2

Proof: This proposition can be directly derived from Definition 2.3 and Proposi-
tion 4.4. 2

Fig. 4.1 (a) shows the size of the k-PG constructed by computing φ
k
(e) using the

above method in the uk-2005 dataset when varying k from 2 to 100. For all k values,
the size of the k-PG is much smaller than |G| and even smaller than |Gkcert|, which
indicates that the φ

k
(e) values computed in this way are effective.

4.2 The Bottom-Up Decomposition Algorithm
In this subsection, we discuss how to implement Bottom-Up I/O efficiently. For

simplicity, we assume that graph Gk (2 ≤ k ≤ kmax) is connected. Otherwise, we can
handle each connected component of Gk individually.

The Bottom-Up algorithm is shown in Algorithm 4, which follows the framework

15

of Algorithm 1 and processes k in its increasing order. We use Mpeak to denote the
peak memory usage of the algorithm. When Gk can be processed in Mpeak memory
(|Gk|×α ≤Mpeak), we can just apply the in-memory algorithm following Algorithm 1
to compute Eφ=k′ for all k′ > k (lines 3-5). Here, α is determined by the in-memory
algorithm Mem-Decom used to compute the k-ECCs of a graph. If Gk cannot be pro-
cessed inMpeak memory, we first computeGkcert by invoking procedure DisjointForest
(line 6), and compute the k-PG using the CE operator by invoking procedure CE-Disk
(lines 7-8). Then, we load the k-PG in memory, and after computingEφ=k on the k-PG
in memory (line 9), we compute Gk+1 using the RE operator by invoking procedure
RE-Disk. Below, we introduce the procedures DisjointForest, CE-Disk, and RE-Disk
in detail.

Procedure DisjointForest. The DisjointForest procedure is used to compute Gkcert of
Gk (stored on disk). It initializes Gkcert (line 13) and computes Gkcert by scanning all
edges inGk sequentially on disk for k+1 times. In each scan (lines 15-19), a spanning
forest is computed (lines 16-18) and added to Gkcert (line 19). To compute a spanning
forest of E(Gk) \ E(Gkcert), we do not compute E(Gk) \ E(Gkcert) explicitly as Gk
needs to be scanned once more. Instead, for each edge (u, v) ∈ E(Gk), we only need
to check whether (u, v) ∈ E(Gkcert) in memory. If (u, v) /∈ E(Gkcert), we further
check whether u and v are connected in the current spanning forest F (line 17) using
the union-find data structure in memory. If not, we add (u, v) to the spanning forest F .
After computing F , we add it to Gkcert (line 19). The procedure terminates and returns
Gkcert after k + 1 disjoint spanning forests are added to Gkcert.

Procedure CE-Disk. The procedure CE-Disk is used to compute the k-PG on Gk
(stored on disk) by CE(Gk, Eφ>k(Gk)). According to Proposition 4.6, to obtain
Eφ>k(Gk), we need to compute the (k + 1)-ECC G′ of Gkcert (line 7). With G′, we
invoke CE-Disk(Gk, G

′) to compute the k-PG (line 8). In CE-Disk(Gk, G
′) (lines 21-

33), based on Proposition 4.6, to contract edges with φ > k, we only need to compute
the connected components of G′ and contract the nodes in each connected component
into one node in Gk to obtain CE(Gk, Eφ>k(Gk)). To do so, we first create a node
w.r.t. each connected component of G′ in memory (line 23). Then we scan all edges
(u, v) ∈ E(Gk) sequentially on disk. If u (or v) is contracted to a new node, we revise
the edge (u, v) by replacing u (or v) to be the corresponding contracted node (lines 25-
30). We denote the revised edge as (wu, wv) and add it into the result graphGc on disk
if it is not a self-edge (i.e., wu 6= wv) (lines 31-32). Here, by revising (u, v) inGk to be
(wu, wv) in Gc, we still consider (u, v) and (wu, wv) as the same edge when they are
compared. This can be implemented easily using node mapping. Lastly, after scanning
all edges in Gk once, we can return Gc on disk as CE(Gk, Eφ>k(Gk)) (line 33).

Proecdure RE-Disk. The procedure RE-Disk(Gk, E) is used to compute Gk+1 (stored
on disk) by operator RE(Gk, E) with E = Eφ=k on graph Gk (stored on disk). The
procedure scans all edges of Gk sequentially on disk (line 36). For each edge (u, v), if
(u, v) /∈ E, (u, v) belongs to RE(Gk, E), and thus we add (u, v) to the result graph on
disk (line 38). After scanning all edges in Gk once, we return the result graph on disk
(line 39).

Example 4.1: Fig. 4.2 illustrates a running example of Bottom-Up. Consider the
graph G in Fig. 3.1 as the input graph. For k = 2, the input graph G2 is G itself.
We obtain G2

cert by computing 3 edge-disjoint spanning forests which are illustrated
with different types of lines in Fig. 4.2(a). Then we compute G′ based on G2

cert, which
has two connected components and is highlighted with dotted circles in Fig. 4.2 (a).
After contracting the connected components in G′ on G2, we obtain 2-PG. When

16

𝐺2

6

2

3

5 4

7

0

1

6

2

3

5 4

7

 8’

RE

CE

 𝜙 𝑒 = 5

 8’ 9

0

1

 2’

CE(𝐺𝑐𝑒𝑟𝑡 , 𝐸𝜙≥3(𝐺𝑐𝑒𝑟𝑡))

2-PG

𝐸𝜙≥3(2-PG)

9

14 13

12

11

10

8

15

15

𝐺2 𝐺2 CE(𝐺𝑐𝑒𝑟𝑡, 𝐸𝜙≥3(𝐺𝑐𝑒𝑟𝑡))

𝐺𝑐𝑒𝑟𝑡
(a) k = 2

6

2

3

5 4

7

14

13

12

11 10

9

8

G

6

2

3

5 4

7

𝐺′3
𝐸𝜙=5(𝐺)

(b) k = 5

6

2

3

5 4

7
6

2

3

5 4

7

14

13

12

11 10

9

8

14

13

12

11 10

9

8

𝐺′′3
𝐸𝜙=6(𝐺)

(c) k = 6

Figure 4.2: Bottom-Up Example
we have obtained 2-PG, we compute Eφ≥3(2-PG) by Mem-Decom(G2

cert, 3). Then
Eφ=2(2-PG) is computed by E(2-PG) \ Eφ≥3(2-PG), which is Eφ=2 = {(v0, v2),
(v0, v3), (v1, v3), (v1, v4), (v6, v8), (v5, v10), (v9, v15), (v10, v15)}. Then we remove
Eφ=2 from G2 and move to k = 3. Note that after removing Eφ=2, the graph is
divided into 2 subgraphs, namely the subgraphs induced by {v2, v3, . . . , v7} (G′3) and
{v8, v9, . . . , v14} (G′′3), respectively. Now, we can handle G′3 and G′′3 individually. For
k = 3, 4, the cases are trivial and Eφ=3 = ∅ and Eφ=4 = ∅. For k = 5, 6, Eφ=5

consists of the edges in G′3 and Eφ=6 consists of edges in G′′3 , which are shown in
Fig. 4.2 (b) and Fig. 4.2 (c), respectively. 2

Complexity Analysis. Below, we show the peak memory usage and I/O complexity of
our Bottom-Up algorithm (Algorithm 4):

Theorem 4.1: Given a graphG, letM bu
cert(G) be the maximum size ofGkcert,M

bu
kpg(G)

be the maximum size of k-PG, and M bu(G) be the peak memory used in Bottom-Up
(Algorithm 4), we have:

(1) M bu
cert(G) = O(max1≤k≤kmax{k · |V (Eφ≥k(G))|});

(2) M bu
kpg(G) = O(max1≤k≤kmax{|Eφ≥k,φ≤k(G)|});

(3) M bu(G) = O(max{M bu
cert(G),M bu

kpg(G)}). 2

Here, |V (Eφ≥k(G))| is the number of nodes in the graph consisting of edges in
Eφ≥k(G). According to our discussion in Section 4.1, both M bu

kpg(G) and M bu
cert(G)

are usually much smaller than |G|. Therefore, M bu(G) is usually much smaller than
the memory consumed by the in-memory algorithm.
Proof: The peak memory usage of Algorithm 4 is determined by the maximum
size of Gkcert and k-PG generated during the processing for every possible k. For
Gkcert, according to Proposition 4.2, the maximum size of Gkcert for all the possi-
ble k is M bu

cert(G) = O(max1≤k≤kmax{k · |V (Eφ≥k(G))|}); for k-PG, according
to Proposition 3.10, the maximum size of k-PG for all the possible k is M bu

kpg(G) =

O(max1≤k≤kmax{|Eφ≥k,φ≤k(G)|}). Combining these two cases together, we have

17

M bu(G) = O(max{M bu
cert(G),M bu

kpg(G)}). 2

Theorem 4.2: Given a graph G, let Ibu(G) be the number of I/Os used in Bottom-Up
(Algorithm 4), we have:

Ibu(G) = O(
∑kmax
k=1 k · scan(|Eφ≥k(G)|)). 2

Here, we use the standard I/O notations in [2] and the I/O complexity to scan N ele-
ments is scan(N) = Θ(NB), where B is the disk block size.
Proof: In Algorithm 4, for each k, DisjointForest scans Gk k + 1 times, which needs
O((k + 1) · scan(|Eφ≥k(G)|)) I/Os. Besides, procedure CE-Disk and procedure RE-
Disk need 2 · scan(Gk) I/Os. Then the total I/Os of Algorithm 4 is O(

∑kmax
k=1 k ·

scan(|Eφ≥k(G)|)). 2

Discussion. Bottom-Up (Algorithm 4) exhibits the worst case behaviour when the in-
put graph is a clique. In this case, when k < kmax, Eφ=k = ∅ in line 9 and we cannot
remove any edges in line 10. Then Gk is always the same as G when k < kmax. In
this case, M bu(G) = O(|E(G)|) and Ibu(G) = O(k2max · scan(|E(G)|).

5 Top-Down Decomposition
In this section, we discuss Top-Down in detail. We first introduce how to compute a
tight φ(e). Then we show how to implement Top-Down I/O efficiently. Lastly, we
analyze the peak memory usage and I/O complexity of Top-Down.

5.1 φ(e) Computation

From the analysis of Section 3.3, we need to compute an upper bound φ(e) for each e ∈
E(G) to compute a good k-PG. In addition, φ(e) should be computed I/O efficiently
without introducing much extra I/O or memory cost. To achieve this, we first define
the edge degree number as follows:

Definition 5.1: (Edge Degree Number degree(e,G)) For a given graphG and an edge
e = (u, v), the edge degree number of e, denoted by degree(e,G), is the minimum
degree of u and v in G, i.e., degree((u, v), G) = min{d(u,G), d(v,G)}. 2

We also use degree(e) to represent degree(e,G) when it is self-evident. Based on
Definition 5.1, the following proposition holds:

Proposition 5.1: Given a graph G and an edge e ∈ E(G), we have degree(e,G) ≥
φ(e,G). 2

Proof: We prove this by contradiction. Suppose there exists an edge e = (u, v) ∈
E(G) such that degree(e,G) < φ(e,G). Without loss of generality, let d(u,G) <
d(v,G), d(u,G) be k1 and φ(e,G) be k2. Based on the assumption, we have k1 < k2.
According to Definition 3.1, u ∈ V (Ck2(G)). From Definition 2.3, we can derive that
u has at least k2 neighbours in G and k2 > k1. This contradicts with the definition of
d(u,G). Thus, the proposition holds. 2

According to Proposition 5.1, we can compute φ(e,G) for any e ∈ E(G) using the
following equation:

φ(e,G) = degree(e,G) (5.1)

It is clear that φ(e,G) can be easily computed with no extra I/O and memory costs.
Fig. 4.1 (b) shows a comparison of |G|, |Gk|, and |k-PG| on the uk-2005 dataset when
we decrease k from 100 to 2 in Top-Down. Here, the k-PG is obtained based on the

18

Algorithm 5 Top-Down(Graph G)

1: compute φ(e) for all e ∈ E(G);
2: sort all edges e inE(G) on disk by non-increasing order of φ(e);
3: k = maxe∈E(G){φ(e)};
4: G′k ← ∅;
5: while k > 1 do
6: k-PG← G′k;
7: for all edge e with φ(e) = k by sequential scanningG on disk do
8: E(k-PG)←E(k-PG) ∪ {e} ;
9: Eφ=k ← E(Mem-Decom(k-PG, k));

10: G′k−1← CE-Mem(k-PG, Eφ=k);
11: k ← k − 1;

φ(e) values computed in Eq. 5.1. As shown in the figure, |Gk| decreases as k decreases.
For |k-PG|, it increases as k decreases when k is large. After reaching a peak point with
k = 50, |k-PG| decreases as k decreases. Notably, the peak size of the k-PG is only
around 5% of |G|, which is much smaller than |G|. This indicates that degree(e,G)
is a good upper bound of φ(e,G). Note that in Fig. 4.1, we use the same notation
Gk to denote the input graph before processing a certain connectivity number k for
Bottom-Up and Top-Down, but the specific Gk with the same k value for Bottom-Up
and Top-Down are different. This is because we process k in different orders, Gk for
Bottom-Up is the subgraph constructed by Eφ≥k(G) while Gk for Top-Down is the
subgraph constructed by Eφ≤k(G).

Based on the above discussion, a global upper bound for φ(e) can already result in
a good k-PG in Top-Down. Therefore, to save I/O cost, we will not recompute φ(e)
for each k value as we do in the Bottom-Up algorithm.

5.2 The Top-Down Decomposition Algorithm
In this subsection, we focus on how to implement Top-Down in an I/O efficient

manner.

A Basic Solution. Given a graph G, suppose φ(e) has been computed for all e ∈
E(G), a straightforward solution for Top-Down is to strictly follow the framework in
Algorithm 2 as follows: We process k in decreasing order. For each k, we compute
the k-PG using RE(Gk, Eφ<k(Gk)) by scanning Gk once on disk. Then we compute
Eφ=k on the k-PG in memory. Lastly, we compute Gk−1 using CE(Gk, Eφ=k) by
scanning Gk once again on disk.

I/O Cost Reduction. Recall that in our Top-Down algorithm, Gk = CE(G,Eφ>k),
and we use a global φ(e) for all e ∈ E(G). Based on this, we can sort all edges
e ∈ E(G) in non-increasing order of φ(e) on disk. It is easy to see that the edges in
Gk for each k value are stored sequentially on disk. Therefore, to compute Gk, we do
not need to explicitly materialize Gk on disk. On the other hand, if we compute the
k-PG using RE(Gk, Eφ<k(Gk)), we still need to scan Gk once again on disk. To save
the I/O cost when computing the k-PG, we can utilize the following proposition:

Proposition 5.2: Given a graph G, suppose k-PG = RE(CE(G, Eφ>k), Eφ<k), for
any 2 ≤ k < kmax, we have:

E(k-PG) = E(CE((k + 1)-PG, Eφ=k+1) ∪ Eφ=k. 2

Proof: This proposition can be derived directly from Definition 3.5. 2

To compute the k-PG using Proposition 5.2, we define a new graph:
G′k = CE((k + 1)-PG, Eφ=k+1).

Suppose we have computed (k + 1)-PG. We can compute the set Eφ=k+1 in the (k +

19

6

2

3

5 4

6

2

3

5 4

 8’

14

13

12

11 10

9

8

RE
 𝜙 𝑒 = 5

CE(6-PG,𝐸𝜙=6)

6-PG 𝐺’5
(a) k = 6

 8’

RE
CE

 𝜙 𝑒 = 5

6

2

3

5 4

7

 8’

5-PG

 2’

𝐺’4

CE(5-PG, 𝐸𝜙=5)

(b) k = 5

RE
CE

 𝜙 𝑒 = 5

6

2

3

5 4

7

 8’

2-PG

 8’ 2’

0

1

15

(c) k = 2

Figure 5.1: Top-Down Example

1)-PG and compute the graph G′k+1 using CE((k + 1)-PG, Eφ=k+1). According to
Proposition 5.2, the edges in the k-PG can be computed asE(k-PG) = E(G′k)∪Eφ=k.
Note that the edges e ∈ E(G) are sorted in non-increasing order of φ(e), and we
process all k values in decreasing order. Therefore, Eφ=k can be easily obtained using
sequential scan on disk when processing the corresponding k value.

Based on the above discussion, our Top-Down algorithm is shown in Algorithm 5.
We first compute φ(e) for all e ∈ E(G) using Eq. 5.1 (line 1), and sort all edges
e ∈ E(G) by non-increasing order of φ(e) on disk (line 2). Since kmax is unknown,
we compute an upper bound of kmax as kmax = maxe∈E(G){φ(e)}. We initialize k
to be kmax (line 3) and G′k to be ∅ (line 4). Then we process all k values iteratively in
decreasing order of k. In each iteration (lines 6-11), we first compute the k-PG using
E(k-PG) = E(G′k) ∪ Eφ=k. To do this, we initialize k-PG to be G′k (line 6) and
scan all the edges e ∈ E(G) with φ(e) = k sequentially on disk (line 7). For each
such edge e, we add e into E(k-PG) (line 8). After computing the k-PG, we can com-
pute Eφ=k by invoking Mem-Decom(k-PG, k) in memory. Lastly, we compute G′k−1
using CE(k-PG, Eφ=k) in memory (line 10) and move to process the next k (line 11).
Here, CE-Mem is the in-memory version of the CE-Disk procedure in Algorithm 4 (see
Section 4.2).

Example 5.1: Fig. 5.1 shows a running example of Top-Down on the graph in Fig. 3.1.
The degree number of (v0, v2), (v0, v3), (v1, v3), (v1, v4), (v9, v15), (v10, v15) is 2.
The degree number of (v2, v7), (v3, v7), (v4, v7), (v5, v7), (v6, v7) is 5. The degree
number of (v8, v9), (v8, v10) and (v9, v10) is 7, and the degree number of the remaining
edges is 6. We start from k = 7, and 7-PG consists of (v8, v9), (v8, v10), and (v9, v10),
and Eφ=7 = ∅. The 6-PG is shown on the left of Fig. 5.1 (a). We compute Eφ=6,
whose edges are shown with bold lines, and contract them. The contracted graph G′5
is shown in Fig. 5.1 (a). Then we move to handle k = 5. We add the edges with
degree(e) = 5 and obtain the 5-PG. After computingEφ=5 based on 5-PG, we contract
Eφ=5 and obtain G′4 (Fig. 5.1 (b)). As there are no edges with degree(e) being 4 or

20

3, Eφ=4 = Eφ=3 = ∅ and G′4 = G′3 = G′2. When k = 2, we obtain 2-PG by
adding the edges with degree(e) = 2 into G′2 and compute Eφ=2(2-PG) (Fig. 5.1 (c)).
The corresponding Eφ=2 = {(v0, v2), (v0, v3), (v1, v3), (v1, v4), (v6, v8), (v5, v10),
(v9, v15), (v10, v15)}. 2

Complexity Analysis. The peak memory usage and I/O complexity of Top-Down
(Algorithm 5) are shown below:

Theorem 5.1: Given a graph G, let M td(G) be the peak memory used in Top-Down
(Algorithm 5), we have:

M td(G) = O(max2≤k≤kmax{|Eφ≤k,φ≥k(G)|}). 2

Here, |Eφ≤k,φ≥k(G)}| is the size of the k-PG. According to our discussion in
Section 5.1, the size of the k-PG is usually much smaller than |G|. Therefore, M td(G)
is usually much smaller than the memory consumed by the in-memory algorithm.
Proof: The peak memory usage of Algorithm 5 is determined by the maximum size
of k-PG generated in line 6 for every possible k. According to Proposition 3.13, the
size of the k-PG is O(|Eφ≤k,φ≥k(G)|). Thus the peak memory usage of Algorithm 5
is M td(G) = O(max2≤k≤kmax{|Eφ≤k,φ≥k(G)|}). 2

Theorem 5.2: Given a graph G, let Ibu(G) be the number of I/Os used in Top-Down
(Algorithm 5), we have:

Itd(G) = O(scan(|E(G)|) + sort(|E(G)|)). 2

Here, we use the standard I/O notations in [2]: the I/O complexity to scan and to sort
N elements is scan(N) = Θ(NB) and sort(N) = O(NB · logM

B

N
B) respectively, where

M is the main memory size and B is the disk block size. Comparing Theorem 5.2
with Theorem 4.2, the I/O cost of Top-Down to scan edges is smaller than it is for
Bottom-Up. However, Top-Down consumes extra I/O cost to sort all edges in G.
Proof: The number of I/Os used in Algorithm 5 contains two parts: the first part is used
for sorting G in line 2 and the I/O cost is O(sort(|E(G)|)); the second part is used for
constructing k-PG in line 7-8 and the I/O cost is O(scan(|E(G)|)) in total. Thus the
number of I/Os used in Algorithm 5 is Itd(G) = O(scan(|E(G)|) + sort(|E(G)|)).

2

Discussion. Top-Down (Algorithm 5) exhibits the worst case behaviour when the in-
put graph is a clique. In this case, the k-PG computed in line 8 is exactly G when
k = kmax. In this case, M td(G) = O(|E(G)|) and Itd(G) = O(scan(|E(G)|) +
sort(|E(G)|)).

6 Hybrid Decomposition
In this section, we discuss our Hybrid algorithm. As discussed in Section 3.3, Hybrid
combines Top-Down and Bottom-Up to seek more opportunities to reduce the size
of the k-PG. Hybrid generally follows the Top-Down algorithm, and for each k-PG
computed by Top-Down, Hybrid tries to apply the Bottom-Up algorithm to further
reduce the size of the k-PG instead of loading the k-PG in memory. Note that according
to the discussion in Section 5.1, the k-PG in Top-Down is usually much smaller than
G. Therefore, applying Bottom-Up to further reduce the size of the k-PG will not
incur much additional I/O cost. On the other hand, as introduced in Section 2, the
Mem-Decom algorithm is usually memory intensive. Reducing the size of the k-PG is
critical to the scalability of ECC decomposition. Therefore, Hybrid aims to reduce the

21

Algorithm 6 Hybrid(Graph G)

1: compute φ(e) for all e ∈ E(G);
2: sort all edges e inE(G) on disk by non-increasing order of φ(e);
3: k = maxe∈E(G){φ(e)};
4: G′k ← ∅ on disk;
5: while k > 1 do
6: for all edge e = (u, v) with φ(e) = k by sequential scanningG on disk do
7: add edge (u, v) inG′k on disk;
8: compute k-PG by invoking Bottom-Up(G′k) (Algorithm 4);
9: Eφ=k ← E(k-PG)

10: G′k−1← CE-Disk(G′k , k-PG);
11: k ← k − 1;

size of the k-PG without introducing much extra I/O cost.
The Hybrid algorithm is shown in Algorithm 6. The algorithm follows the frame-

work of Algorithm 3. Line 1-3 is the same as Algorithm 5, which computes φ(e) for
all e ∈ E(G), sorts edges according to φ(e), and initializes k. Unlike Algorithm 5, the
graphG′k in Hybrid is stored on disk. The algorithm iteratively processes all k values in
decreasing order of k. In each iteration (lines 6-11), the algorithm updates G′k on disk
by adding all edges e with φ(e) = k using sequential scan (lines 6-7). Then, instead of
computing Eφ=k on G′ directly, the algorithm invokes Bottom-Up(G′k) (Algorithm 4)
to compute the k-PG (line 8) and according to the discussion in Section 3.3, the k-PG
contains exactly the set of edges in Eφ=k (line 9). Lastly, the algorithm computes the
graph G′k−1 on disk by invoking CE-Disk(G′k,k-PG) (line 10) and moves to process
the next k (line 11). The procedure CE-Disk was introduced in Section 4.2.

𝐺2

6

2

3

5 4

6

2

3

5 4

7

 8’

RE

CE

 𝜙 𝑒 = 5

 8’

𝐺2 𝐺2

2-PG of 𝐺′6

14

13

12

11 10

9

8

 8’ 2’

𝐺𝑐𝑒𝑟𝑡 of 𝐺′6

CE(𝐺𝑐𝑒𝑟𝑡, 𝐸𝜙≥3(𝐺𝑐𝑒𝑟𝑡))

(a) Bottom-Up for G′
6 (k=2)

6

2

3

5 4

14

13

12

11 10

9

8

6

2

3

5 4

 8’

RE
 𝜙 𝑒 = 5

G5(G) 𝐺3 of 𝐺′
6

(b) Bottom-Up for G′
6 (k=3)

6

2

3

5 4

14

13

12

11 10

9

8

6

2

3

5 4

 8’

RE
 𝜙 𝑒 = 5

6-PG

𝐺′5
(c) CE-Disk

Figure 6.1: Hybrid Example when Processing G′6

Example 6.1: Fig. 6.1 shows a running example of Hybrid on the graph in Fig. 3.1.
Here, we only show the steps to process G′6 which is the same as 6-PG in Fig. 5.1.
We invoke Bottom-Up with G′6 as the input graph. For k = 2, we compute the cor-
responding G2

cert(G
′
6) and 2-PG of G′6, which is shown in Fig. 6.1 (a). We can then

22

obtain Eφ=2(G′6). After removing Eφ=2(G′6), we get G3 of G′6, which consists of
two separate subgraphs and can be handled individually. We then continue to handle
k = 3, 4, 5 and obtain Eφ=6, whose edges are marked with bold lines in Fig. 6.1 (b).
When Eφ=6 has been obtained, we contract Eφ=6 and obtain G′5 (Fig. 6.1 (c)). 2

Complexity Analysis. The peak memory usage and I/O complexity of Hybrid (Algo-
rithm 6) are shown below:

Theorem 6.1: Given a graph G, let Ghyk = RE(CE(G, Eφ>k), Eφ<k), and Mhy(G)
be the peak memory used in Hybrid (Algorithm 6), we have:

Mhy(G) = O(max2≤k≤kmaxM
bu(Ghyk)). 2

Here, M bu(Ghyk) is the memory used to process Ghyk in Bottom-Up (Algorithm 4).
Compared to Theorem 4.1, sinceM bu(Ghyk) ≤M bu(G), Hybrid outperforms Bottom-
Up w.r.t. memory usage. Compared to Theorem 5.1, since M bu(Ghyk) < O(|Ghyk |),
Hybrid also outperforms Top-Down w.r.t. memory usage.
Proof: The peak memory usage of Algorithm 6 is determined by maximum mem-
ory usage in line 8. According to Theorem 4.1, for each k, the memory usage in
line 8 is M bu(Ghyk). Thus, the peak memory usage of Algorithm 6 is Mhy(G) =

O(max2≤k≤kmaxM
bu(Ghyk)). 2

Theorem 6.2: Given a graph G, let Ghyk = RE(CE(G, Eφ>k), Eφ<k), and Ihy(G) be
the number of I/Os used in Hybrid (Algorithm 6), we have:
Ihy(G) = O(scan(|E(G)|) + sort(|E(G)|) +

∑kmax
k=2 Ibu(Ghy

k)). 2

Here, Ibu(Ghyk) is I/O cost to process Ghyk in Bottom-Up (Algorithm 4), scan(N) =

Θ(NB) and sort(N) = O(NB · logM
B

N
B), where M is the main memory size and B is

the disk block size. Compared to Theorem 5.2, Hybrid consumes an extra I/O cost of
O(

∑kmax
k=2 Ibu(Ghyk)) over Top-Down. However, as discussed in Section 5.1, Ghyk is

usually much smaller than graph G. Therefore, the extra I/O cost is usually small.
Proof: Since Algorithm 6 follows a similar framework of Algorithm 5 by adding
Algorithm 4 as an optimization. The number of I/Os of Algorithm 6 contains two
parts: the first part is the number of I/Os used for the framework of Algorithm 5.
According to Theorem 5.2, this part is O(scan(|E(G)|) + sort(|E(G)|); the sec-
ond part is the number of I/Os consumed in line 8. According to Theorem 4.2,
this part is

∑kmax
k=2 Ibu(Ghyk)). Thus, the number of I/Os used in Algorithm 6 is

Ihy(G) = O(scan(|E(G)|) + sort(|E(G)|) +
∑kmax
k=2 Ibu(Ghyk)). 2

Discussion. Similar to Top-Down (Algorithm 5), Hybrid (Algorithm 6) exhibits the
worst case behaviour when the input graph is a clique. In this case, G′k computed
in line 7 is exactly G when k = kmax. In this case, Mhy(G) = O(|E(G)|) and
Ihy(G) = O(k2max · scan(|E(G)|) + sort(|E(G)|)).

7 Performance Studies
In this section, we present our experimental results. All our experiments are conducted
on a machine with an Intel Xeon 2.9 GHz CPU (8 cores) and 32 GB main memory
running Linux (Red Hat Enterprise Linux 6.4, 64bit).

Datasets. We use seven different types of real-world graphs with different graph prop-
erties for testing (see Table 7.1). Of these, LiveJournal and Orkut are downloaded

23

DatasetG Type |V (G)| |E(G)| Avg Degree
DBLP Citation 986,324 6,707,236 13.60

LiveJournal Social 4,847,571 68,993,773 28.47
Orkut Social 3,072,441 117,185,083 76.28

uk-2005 Web 39,459,925 936,364,282 47.46
it-2004 Web 41,291,594 1,150,725,436 55.74

twitter-2010 Social 41,652,230 1,468,365,182 70.51
sk-2005 Web 50,636,154 1,949,412,601 76.99

Table 7.1: Datasets used in Experiments

from SNAP (http://snap.stanford.edu/), and the others are downloaded from WEB
(http://law.di.unimi.it/).

Algorithms. We implement and compare five algorithms:
• Random-Decom: In-memory algorithm based on [5].
• Exact-Decom: In-memory algorithm based on [10].
• Bottom-Up: Algorithm 4 (Section 4).
• Top-Down: Algorithm 5 (Section 5).
• Hybrid: Algorithm 6 (Section 6).

All algorithms are implemented in C++ and compiled with GNU GCC 4.8.2.
Random-Decom and Exact-Decom are the in-memory algorithms used for ECC de-
composition by applying the k-ECC computation algorithm in [5] and [10] respec-
tively for all k values. The source code of [5] and [10] was obtained from the authors.
A simple heuristic used in [9] is applied in both Random-Decom and Exact-Decom,
which computes k-edge connected components in an increasing order of k and takes
the k-edge connected components as the input for computing (k + 1)-edge connected
components. In Bottom-Up, Top-Down and Hybrid, we use [10] as Mem-Decom. For
each test, we set the maximum running time as 48 hours. For all experiments, we com-
pare the peak memory usage, the total processing time, and the total number of I/Os.
However, since the curves for the total number of I/Os are similar to these of the total
processing time, we omit the results for the total number of I/Os.

Exp-1: Comparison with In-memory Algorithms. In this experiment, we compare
the total processing time and peak memory usage of the five algorithms on three
datasets, DBLP, LiveJournal and Orkut. The results are shown in Table 7.2. If a test
can not terminate in the time limit, or fails as a result of out of memory exception, we
mark the corresponding cell with ’-’.

Generally, the processing time and peak memory usage increase as the size of the
graph increases. Random-Decom spends the most time and consumes the most mem-
ory of these five algorithms. It can only complete the ECC decomposition on the small-
est dataset DBLP. The reason for Random-Decom’s long processing time is the large
number of iterations involved, which is the fundamental step of [5], during processing.

For the remaining four algorithms, Exact-Decom consumes much more memory
than our proposed algorithms. For example, on Orkut, it consumes 3.5, 7.7, and 8.1
times more memory than Bottom-Up, Top-Down and Hybrid respectively. This is be-
cause Exact-Decom keeps the whole graph in memory during processing. Top-Down
runs fastest among our proposed algorithms. This is because apart from sorting the
input graph once, Top-Down only scans the input graph once in total. The process-
ing time of Hybrid is close to Top-Down (18% more on LiveJournal and 10% more
on Orkut), and Hybrid consumes the least memory. The reason for this is that Hybrid
uses Bottom-Up to reduce peak memory usage. On DBLP, Hybrid does not show sig-
nificant improvement, since the memory usage of Top-Down is already very small.
Bottom-Up takes less memory than Exact-Decom because the size of Gkcert and k-PG
used in Bottom-Up is much smaller than |G|. Of our proposed algorithms, however, it
takes the most time and memory on these three datasets. This is because Bottom-Up

24

Alg
Graph DBLP LiveJournal Orkut

time mem time mem time mem
Random-Decom 3890s 931.02M - - - -
Exact-Decom 18.9s 636.52M 1090.8s 5.98G 1.3 hrs 15.4G
Bottom-Up 38.1s 135.9M 2677.2s 752.5M 4.0 hrs 4.4G
Top-Down 21.9s 66.6M 1451.3s 643.8M 1.0 hrs 2.0G
Hybrid 22.0s 66.57M 1711.5s 598.7M 1.1 hrs 1.9G

Table 7.2: Comparison with In-Memory Algorithms

0

4K

8K

12K

16K

20% 40% 60% 80% 100%

P
ro

ce
ss

in
g

T
im

e
(s

)

Random
Exact

Bottom-Up
Top-Down

Hybrid

(a) Orkut (Time)

0

4

8

12

16

20

20% 40% 60% 80% 100%

P
ea

k
M

em
or

y
(G

B
)

Random
Exact

Bottom-Up
Top-Down

Hybrid

(b) Orkut (Peak Memory)

Figure 7.1: Vary |V | (Scalability)

needs to scan Gk multiple times for a certain k, and the size of Gkcert is usually big-
ger than the k-PG used in Top-Down and Hybrid. Remarkably, on Orkut, Top-Down
and Hybrid outperform Exact-Decom on processing time (1.0 hours, 1.1 hours and 1.3
hours respectively). This is the result of the carefully designed cost sharing technique
used in our proposed algorithms to reduce redundant computations.

Exp-2: Performance on Big Graphs. In this experiment, we compare the total pro-
cessing time and peak memory usage of our proposed algorithms on four big real
datasets: uk-2005, it-2004, twitter-2010 and sk-2005. The results are shown in Ta-
ble 7.3. Since both Random-Decom and Exact-Decom run out of memory on all four
big graphs, we only compare our proposed algorithms.

On these four datasets, Top-Down runs fastest and the processing time of Hybrid is
close to Top-Down. However, compared with the saved memory, the extra time cost for
Hybrid is usually small. For example, on the largest dataset sk-2005, Hybrid takes 9.6%
more time than Top-Down but consumes 21% less memory than Top-Down. Of the
three algorithms, Bottom-Up takes more processing time and memory than the other
two. For example, on uk-2005, the processing time and peak memory usage of Bottom-
Up are respectively 2.64 and 2.70 times more than Top-Down, and Bottom-Up cannot
finish the decomposition on twitter-2010 and sk-2005. Note that although Bottom-Up
is slower and consumes more memory than Top-Down and Hybrid, it is still useful for
the following two reasons: First, Bottom-Up is used as a subroutine of Hybrid, and
by exploiting Bottom-Up, Hybrid consumes less memory than Top-Down, as shown
in Table 7.3. Second, in some applications, such as [20], a user may be interested in
the k-ECCs with a small k, for example, k ≤ 5. Bottom-Up is very suitable for these
applications whereas Top-Down and Hybrid need to explore all the possible k values
from kmax to 2 to compute these k-ECCs (see Exp-4 for more details).

Exp-3: Scalability Testing. In this experiment, we compare the scalability of the five
algorithms in this paper. Since Random-Decom and Exact-Decom can only complete
the decomposition on Orkut, we vary |V | from 20% to 100% of Orkut and compare the
total processing time and peak memory usage of these five algorithms. The results are
shown in Fig. 7.1. To further test the scalability of our proposed algorithms, we vary
|V | and |E| from 20% to 100% of two large datasets it-2004 and sk-2005 and compare

25

0

12

24

36

48

60

20% 40% 60% 80% 100%

P
ro

c
e
s
s
in

g
 T

im
e
 (

h
rs

)

Bottom-Up
Top-Down

Hybrid

(a) it-2004 (Time)

0

4

8

12

16

20

20% 40% 60% 80% 100%

P
e
a
k
 M

e
m

o
ry

 (
G

B
)

Bottom-Up
Top-Down

Hybrid

(b) it-2004 (Peak Memory)

0

12

24

36

48

60

20% 40% 60% 80% 100%

P
ro

c
e
s
s
in

g
 T

im
e
 (

h
rs

)

Bottom-Up
Top-Down

Hybrid

(c) sk-2005 (Time)

0

4

8

12

16

20

20% 40% 60% 80% 100%
P

e
a
k
 M

e
m

o
ry

 (
G

B
)

Bottom-Up
Top-Down

Hybrid

(d) sk-2005 (Peak Memory)

Figure 7.2: Vary |V | (Scalability)

Alg
Graph uk-2005 it-2004 twitter-2010 sk-2005

time mem time mem time mem time mem
Bottom-Up 15.56 hrs 9.34G 32.17 hrs 12.93G - - - -
Top-Down 5.90 hrs 3.45G 11.01 hrs 5.62G 34.87 hrs 7.22G 16.17 hrs 10.03G
Hybrid 6.52 hrs 2.97G 12.06 hrs 4.03G 35.01 hrs 6.81G 17.73 hrs 7.92G

Table 7.3: Performance on Big Graphs

the total processing time and peak memory usage of these three algorithms. The results
are shown in Fig. 7.2 and Fig. 7.3.

Fig. 7.1 shows that both the processing time and peak memory usage generally in-
crease for all algorithm when |V | increases. Random-Decom has the worst scalability.
It can finish the decomposition only when |V | = 20%. For the remaining four algo-
rithms, Exact-Decom, Top-Down and Hybrid consume similar time for all |V | while
Bottom-Up takes much more time than them (Fig. 7.1(a)). In terms of peak memory
usage, Exact-Decom consumes much more memory than Bottom-Up, Top-Down and
Hybrid as |V | increases (Fig. 7.1(b)). Hybrid uses less memory but consumes more
time than Top-Down for all |V |.

As shown in Fig. 7.2, both the processing time and peak memory usage increase for
our proposed algorithms when |V | increases. This is because as |V | increases, the max-
imum size of k-PG (and also Gkcert for Bottom-Up) for each algorithm also increases.
Of all the algorithms, Bottom-Up consumes the most time and memory while Top-
Down takes the least processing time and Hybrid consumes the least memory, which is
consistent with our complexity analysis. In Fig. 7.2 (a) and (c), the gap in processing
time between Top-Down and Hybrid remains stable as |V | increases, while the gap in
peak memory usage increases more sharply as |V | increases (Fig. 7.2 (b) and (d)). This
is because, for Top-Down, as |V | increases, the number of edges with φ(e) ≥ k and
φ(e) < k for each k-PG also increases. Hybrid eliminates this kind of edges and ob-
tains a smaller k-PG without much extra cost. In Fig. 7.2 (a) and (b), Bottom-Up takes
much more processing time and memory than Top-Down and Hybrid, and Fig. 7.2 (c)
and (d) show that when |V | > 60%, Bottom-Up cannot finish the decomposition.

Fig. 7.3 shows that, when |E| increases, both the processing time and peak mem-
ory usage increase for all algorithms. For Top-Down and Hybrid, the processing time
on it-2004 (Fig. 7.3 (a)) and sk-2005 (Fig. 7.3 (c)) is very close while the difference

26

0

12

24

36

48

60

20% 40% 60% 80% 100%

P
ro

c
e
s
s
in

g
 T

im
e
 (

h
rs

)

Bottom-Up
Top-Down

Hybrid

(a) it-2004 (Time)

0

4

8

12

16

20

20% 40% 60% 80% 100%

P
e
a
k
 M

e
m

o
ry

 (
G

B
)

Bottom-Up
Top-Down

Hybrid

(b) it-2004 (Peak Memory)

0

12

24

36

48

60

20% 40% 60% 80% 100%

P
ro

c
e
s
s
in

g
 T

im
e
 (

h
rs

)

Bottom-Up
Top-Down

Hybrid

(c) sk-2005 (Time)

0

4

8

12

16

20

20% 40% 60% 80% 100%
P

e
a
k
 M

e
m

o
ry

 (
G

B
) Bottom-Up

Top-Down
Hybrid

(d) sk-2005 (Peak Memory)

Figure 7.3: Vary |E| (Scalability)

in peak memory usage increases as |E| increases (Fig. 7.3 (b) and (d)). This is be-
cause Hybrid can obtain a smaller k-PG by eliminating the edges with φ(e) ≥ k and
φ(e) < k. Bottom-Up takes the most processing time and memory and cannot finish
the decomposition when |E| > 40% on sk-2005 (Fig. 7.3 (c) and (d)).

Exp-4: Performance for Each k. In this experiment, we compare the cumulative pro-
cessing time and peak memory usage as k increases for Bottom-Up, and decreases for
Top-Down and Hybrid on uk-2005 and it-2004. The results are shown in Fig. 7.4.

Fig. 7.4 (a) shows that for Bottom-Up, as k increases, the processing time grows
sharply at first (from k = 2 to k = 64), and then remains stable (from k = 64 to
k = kmax). This is because initially, Gk is too large to be processed in memory and
Bottom-Up needs to scan Gk on disk to compute Gkcert and k-PG; as k increases,
more edges with φ(e) < k are removed and Gk can be processed in memory. All
the operations are then performed in memory. For the same reason, the processing
time of Bottom-Up demonstrates similar trends on it-2004 (Fig. 7.4 (c)). For the peak
memory usage, in Fig. 7.4 (b), as k increases, the peak memory usage increases and
reaches the peak point when k = 16. Thereafter, it remains unchanged. This is because
the maximum size of Gkcert usually determines the peak memory usage of Bottom-Up.
According to Proposition 4.2,E(Gkcert) ≤ (k+1)×(|V (Gk)|−1), therefore, when k is
small, |V (Gk)| is large and the decreasing rate of |V (Gk)| is slower than the increasing
rate of k. As a result, the size of Gkcert increases. At some certain k, Gkcert reaches the
peak point and after that, |V (Gk)| becomes small and the peak size of Gkcert remains
unchanged, although k still increases. The peak memory usage for Bottom-Up has a
similar trend on it-2004 (Fig. 7.4 (d)).

Fig. 7.4 (a) shows that for Top-Down, the processing time remains stable at first
(from kmax to 256) and then grows fast (from 256 to 2) as k decreases. The reason is
that the degree of the graph follows a power-law distribution and the edges with 2 ≤
degree(e) ≤ 256 constitute the majority of the edges of the graph. Therefore, the size
of corresponding k-PG with 2 ≤ k ≤ 256 is also large. Consequently, the cumulative
processing time grows fast when k decreases from 256 to 2. As the size of k-PG
also determines the peak memory usage of Top-Down, peak memory also remains

27

0

5

10

15

20

25

2 4 8 16 32 64 128 256 kmax

P
ro

c
e
s
s
in

g
 T

im
e
 (

h
rs

)
Bottom-Up
Top-Down

Hybrid

(a) uk-2005 (Time)

0

3

6

9

12

15

2 4 8 16 32 64 128 256 kmax

P
e
a
k
 M

e
m

o
ry

 (
G

B
) Bottom-Up

Top Down
Hybrid

(b) uk-2005 (Peak Memory)

0

12

24

36

48

2 8 32 128 512 kmax

P
ro

c
e
s
s
in

g
 T

im
e
 (

h
rs

)

Bottom-Up
Top-Down

Hybrid

(c) it-2004 (Time)

0

4

8

12

16

20

2 8 32 128 512 kmax
P

e
a
k
 M

e
m

o
ry

 (
G

B
) Bottom-Up

Top-Down
Hybrid

(d) it-2004 (Peak Memory)

Figure 7.4: Performance for Each k

stable when k decreases from kmax to 256 and then grows fast when k decreases from
256 to 2, as shown in Fig. 7.4 (b). We make a similar observation on it-2004 for
processing time (Fig. 7.4(c)) and peak memory usage (Fig. 7.4(d)). As Hybrid follows
a similar framework to Top-Down, it exhibits similar trends to Top-Down in Fig. 7.4.
The effectiveness of reducing Hybrid’s memory is evident when k becomes small. For
example, it is evident when k < 64 in Fig. 7.4 (b) and when k < 256 in Fig. 7.4 (d),
while the corresponding processing time is close to that of Top-Down in Fig. 7.4 (a)
and Fig. 7.4 (c).

Exp-5: Real Application Study on DBLP. In this experiment, we present multi-
granularity graph visualization on real dataset by applying ECC decomposition. In
this application, users want to visualize the graph in different granularities by zoom in
and zoom out operations. We build a collaboration network from DBLP for case study.
A node represents an author and an edge is added between two authors if they have
co-authored one paper. The network contains 986, 324 nodes and 6, 707, 236 edges.
Due to space limitations, Fig. 7.5 just shows a subgraph of DBLP.

In Fig. 7.5, the k-ECCs of the graph are illustrated by different shadows. The whole
graph (G0) is a 2-ECC. And the 3-ECCs, 4-ECCs, 5-ECCs are distributed in the graph.
For example, G1 is a 3-ECC and it is a 4-ECC at the same time. And its subgraph G2

is a 5-ECC. In G0, we use big circles to represent 6-ECCs (v0, v1, v2, v3). Users can
further explore the graph by zoom in operation. For example, in Fig. 7.5, by applying
zoom in operation on v3, the details of the 6-ECC (G3) represented by v3 is presented to
the users. G3 is also a 7-ECC. And its subgraph is also a 8-ECC. In this way, users can
visualize the graph in different granularities according to their different requirements.

8 Related Work
We review the related work from two categories, namely, cohesive subgraph models
and I/O efficient graph algorithms.

Cohesive Subgraph Models. Cohesive subgraph computation is an important problem

28

G2

G3

k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8

G0

v1

v0

v2 v3

G1

Figure 7.5: Case Study (Part of DBLP)

in network analysis and there are many different models of cohesive subgraphs in the
literature. One of the earliest graph models is the clique model [19]. However, the
definition of clique is often too restrictive for many applications and thus more clique
relaxation models have been proposed. The n-clique model [18] requires the distance
between any two nodes in the subgraph to be at most n and the n-club model [22]
restricts the diameter to at most n. Compared with clique, k-plex model [26] relaxes
the degree of each node in the subgraph from (c−1) to (c−k), where c is the number of
nodes in the subgraph. The quasi-clique model can be either a relaxation on the density
[1] or the degree [21, 24]. Other models are also studied in the literature. k-core [25]
is the largest subgraph of a graph in which the degree of each node is at least k. The
k-truss [16] model, triangle k-core [32] model and DN-Graph [29] model are defined
based on triangles. A k-mutual-friend subgraph model is introduced in [36]. k-edge
connected component computation is studied in [31, 37, 5, 10].

I/O Efficient Graph Algorithms. With the increase in graph size, traditional (in-
memory) graph algorithms cannot be applied to handle large disk-resident graphs be-
cause of the huge I/O communication cost. Therefore, several graph algorithms fo-
cusing on I/O efficiency have been proposed in the literature. In [12], Cheng et al.
describe an I/O efficient algorithm for the core decomposition problem in massive net-
works. Zhang et al.[34] study an I/O efficient algorithm to compute the strongly con-
nected components in a graph in the semi-external model and extend the algorithm to
the external memory model in [33]. I/O efficient algorithms for the triangle enumera-
tion problem are presented in [15, 17]. For the maximal clique enumeration problem,
Cheng et al. [13] propose an I/O efficient algorithm by recursively extracting the core
part of the input graph. Subsequently, Cheng et al. [14] describe an I/O efficient maxi-
mal clique enumeration algorithm using graph partitioning. The I/O efficient algorithm
for the k-truss problem is investigated in [28]. A connectivity index for massive-disk
resident graphs is studied in [3]. An I/O efficient semi-external algorithm for the depth
first search has recently been proposed in [35].

9 Conclusion
In this paper, we study the problem of ECC graph decomposition, which seeks to com-
pute the k-edge connected components (k-ECCs) for all k values in a graph, and can be

29

applied in a variety of application domains. We observe that directly applying existing
k-ECC computation algorithms can result in both high memory consumption and high
computational cost. Therefore, we propose I/O efficient techniques to reduce the size
of the graph to be loaded into memory and explore possible cost sharing when comput-
ing k-ECCs for different k values. We introduce two elegant graph reduction operators
to reduce the memory size and three novel algorithms, Bottom-Up, Top-Down, and
Hybrid, to reduce the CPU and I/O costs. We conduct extensive experiments using
seven real large datasets to demonstrate the efficiency of our approach.

Bibliography
[1] J. Abello, M. G. Resende, and S. Sudarsky. Massive quasi-clique detection. In LATIN 2002: Theoretical Informatics.

2002.

[2] A. Aggarwal, J. Vitter, et al. The input/output complexity of sorting and related problems. Communications of the
ACM, 31(9), 1988.

[3] C. Aggarwal, Y. Xie, and P. S. Yu. Gconnect: A connectivity index for massive disk-resident graphs. PVLDB, 2(1),
2009.

[4] R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu. Mining newsgroups using networks arising from social behavior.
In Proc. of WWW’03, 2003.

[5] T. Akiba, Y. Iwata, and Y. Yoshida. Linear-time enumeration of maximal k-edge-connected subgraphs in large net-
works by random contraction. In Proc. of CIKM’13, 2013.

[6] J. I. Alvarez-Hamelin, L. DallAsta, A. Barrat, and A. Vespignani. How the k-core decomposition helps in understand-
ing the internet topology. In ISMA Workshop on the Internet Topology, 2006.

[7] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. K-core decomposition of internet graphs: Hierar-
chies, self-similarity and measurement biases. Networks and Heterogeneous Media, 3(2), 2008.

[8] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model of internet topology using k-shell decomposition.
Proceedings of the National Academy of Sciences, 104(27), 2007.

[9] L. Chang, X. Lin, L. Qin, J. X. Yu, and W. Zhang. Index-based optimal algorithms for computing Steiner components
with maximum connectivity. In Proc. of SIGMOD’15, 2015.

[10] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang. Efficiently computing k-edge connected components via
graph decomposition. In Proc. of SIGMOD’13, 2013.

[11] J. Chen and B. Yuan. Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics,
22(18), 2006.

[12] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core decomposition in massive networks. In Proc. of ICDE’11,
2011.

[13] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding maximal cliques in massive networks. ACM Transactions
on Database Systems, 36(4), 2011.

[14] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for maximal clique enumeration with limited memory. In Proc.
of SIGKDD’12, 2012.

[15] S. Chu and J. Cheng. Triangle listing in massive networks. ACM Transactions on Knowledge Discovery from Data,
6(4), 2012.

[16] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National Security Agency Technical Report, 2008.

[17] X. Hu, Y. Tao, and C. Chung. Massive graph triangulation. In Proc. of SIGMOD’13, 2013.

[18] R. D. Luce. Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15(2), 1950.

[19] R. D. Luce and A. D. Perry. A method of matrix analysis of group structure. Psychometrika, 14(2), 1949.

[20] T. L. Magnanti and S. Raghavan. Strong formulations for network design problems with connectivity requirements.
Networks, 45(2), 2005.

[21] H. Matsuda, T. Ishihara, and A. Hashimoto. Classifying molecular sequences using a linkage graph with their pairwise
similarities. Theoretical Computer Science, 210(2), 1999.

[22] R. J. Mokken. Cliques, clubs and clans. Quality & Quantity, 13(2), 1979.

30

[23] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-
connected graph. Algorithmica, 7(1-6), 1992.

[24] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In Proc. of SIGKDD’05, 2005.

[25] S. B. Seidman. Network structure and minimum degree. Social Networks, 5(3), 1983.

[26] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique concept. Journal of Mathematical
Sociology, 6(1), 1978.

[27] V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular networks. Proceedings of the
National Academy of Sciences, 100(21), 2003.

[28] J. Wang and J. Cheng. Truss decomposition in massive networks. PVLDB, 5(9), 2012.

[29] N. Wang, J. Zhang, K. Tan, and A. K. H. Tung. On triangulation-based dense neighborhood graphs discovery. PVLDB,
4(2), 2010.

[30] D. R. White and F. Harary. The cohesiveness of blocks in social networks: Node connectivity and conditional density.
Sociological Methodology, 31(1), 2001.

[31] X. Yan, X. Zhou, and J. Han. Mining closed relational graphs with connectivity constraints. In Proc. of SIGKDD’05,
2005.

[32] Y. Zhang and S. Parthasarathy. Extracting analyzing and visualizing triangle k-core motifs within networks. In Proc.
of ICDE’12, 2012.

[33] Z. Zhang, L. Qin, and J. X. Yu. Contract & expand: I/O efficient SCCs computing. In Proc. of ICDE’14, 2014.

[34] Z. Zhang, J. X. Yu, L. Qin, L. Chang, and X. Lin. I/O efficient: Computing SCCs in massive graphs. In Proc. of
SIGMOD’13, 2013.

[35] Z. Zhang, J. X. Yu, L. Qin, and Z. Shang. Divide & conquer: I/O efficient depth-first search. In Proc. of SIGMOD’15,
2015.

[36] F. Zhao and A. K. Tung. Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB, 6(2),
2012.

[37] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li. Finding maximal k-edge-connected subgraphs from a large
graph. In Proc. of EDBT’12, 2012.

31

