
A Model-Driven Framework for Interoperable
Cloud Resources Management

Denis Weerasiri1 Boualem Benatallah1 Moshe Chai Barukh1 Cao Jian2

1 University of New South Wales, Australia
{denisw, boualem, mosheb}@cse.unsw.edu.au
2 Shanghai Jiaotong University, Shanghai, China

cao-jian@cs.sjtu.edu.cn

Technical Report
UNSW-CSE-TR-201514

November 2015

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

The proliferation of tools for different aspects of cloud resource Configuration
and Management (C&M) processes encourages DevOps to design end-to-end and
automated C&M tasks that span across a selection of best-of-breed tools. But
heterogeneities among resource description models and management capabilities
of such C&M tools pose fundamental limitations when managing complex and
dynamic cloud resources. We propose Domain-specific Models, a model-driven
approach for describing elementary and federated cloud resources as reusable
knowledge artifacts over existing C&M tools. We also propose a pluggable
architecture to translate these artifacts into resource descriptions and manage-
ment rules that can be interpreted by external C&M tools like Juju and Docker.
The paper describes concepts, techniques and current implementation of the
proposed system. Experiments on a real-world federated cloud resource show
significant improvements in productivity and usability achieved by our approach
compared to traditional techniques.

1 Introduction
Cloud computing is evolving in both public and private cloud networks [12].
A third option involves a hybrid or federated cloud [2, 13], drawing resources
from both public and/or private clouds. The many benefits of cloud comput-
ing, include enabling virtualisation capabilities and outsourcing strategies. It
is estimated that nearly half of all large enterprises will comprise hybrid cloud
service deployments by end of 2017 [6].

However, exploiting cloud services poses great complexity. As development
becomes increasingly distributed across multiple heterogeneous, and evolving
networks, it becomes increasingly difficult to manage interoperable and portable
cloud resource solutions. Moreover, cloud applications may possess varying re-
source requirements during different phases of their life-cycle [12]. Consequently,
designing effective cloud resource C&M techniques that cope with both hetero-
geneous and dynamic environments remains a deeply challenging problem.

Existing cloud C&M techniques typically rely on procedural programming
(general-purpose or scripting) languages [12]. Modern systems such as: Puppet,
Juju, Docker and Amazon OpsWorks provide script-based languages for man-
aging resource configurations over cloud services [5]. Thus even DevOps (i.e.,
software engineers and system engineers who are collectively involved in design-
ing, developing, deploying and managing cloud applications) would be forced
to understand the different low-level cloud service APIs, command line syntax,
Web interfaces, and procedural programming constructs - in order to create and
maintain complex cloud configurations. Moreover, the problem intensifies with
the increasing variety of cloud services, together with different resource require-
ments and constraints for each application. This inevitably leads to an inflexible
and costly environment which adds considerable complexity, demands extensive
programming effort, requires multiple and continuous patches, and perpetuates
closed cloud solutions.

Drawing analogies from techniques in service composition domain, such as
Business Process Execution Language (BPEL), we are encouraged to likewise
support the orchestration of cloud resources by devising rich abstractions to
reason about cloud resource requirements and their constraints. In this paper
we therefore investigate how to effectively represent, organise and manipulate
otherwise low-level, complex, cross-layer cloud resource descriptions into mean-
ingful and higher-level segments. We believe this would greatly simplify the
representation, manipulation as well as reuse of heterogeneous cloud resources.
To enable this, we propose a methodology to support the automated translation
of high-level resource requirements to underlying provider-specific resource and
service calls. More specifically, this paper makes the following main contribu-
tions:

Domain-Specific Models for the representation of Cloud Resource
Management Entities (CRME): DevOps publicly share CRME s in forms
of customizable configuration and/or management scripts, as well as elasticity
rules. These CRME s can be classified into different domains such as tool-
specific (e.g., Juju Charm Store1) and task-specific CRME s (e.g., e-Commerce
software2). To better reason about this Configuration and Management (C&M)
knowledge, we propose Domain-specific Models and a declarative language for

1https://jujucharms.com/
2https://bitnami.com/stacks/e-commerce

1

describing and querying CRME s. Given that we architect this layer over ex-
isting systems, this significantly enhances the potential for knowledge re-use,
since we can better harness interoperability capabilities. The proposed model
features: a vocabulary and set of constructs for describing both elementary
and task-specific cloud resources (e.g., VMs, database services, load balancer
services), federated cloud resources (e.g., packaged virtual appliances), and the
relationships amongst resources (e.g., configuration parameters, resource con-
straints and dependencies). Moreover, our model enables cloud resources to be
combined to create higher-level virtual entities, called Federated CRME s and
Task-specific CRME s which shield from complexity and heterogeneity of under-
lying cloud services. Domain-specific Models also enable the incremental cre-
ation, organisation, curation and collective re-use of domain-specific knowledge
artifacts to enhance productivity.

Automated Generation of C&M Rules: In order to combat the large
number and variety of cloud resources Configuration and Management (C&M)
languages (e.g. procedural, activity based and declarative), as well as the vari-
ous heterogeneous tools/APIs involved to manage resources in different environ-
ments (i.e., public, private and federated) - we propose the automated generation
of a parameterized resource C&M rule-model. This rule-model will deploy or
automatically re-configure the appropriate SaaS, PaaS or IaaS resources with
respect to objects in Domain-specific Models. To enable this, we layer the
notion of Connectors over our Domain-specific Model, which act to transform
resources represented in the higher-level model into native CRME s. DevOps are
thus empowered to write automated management tasks over events and actions
exposed by the Connectors by defining Event-Condition-Action (ECA) rules.
Behind the scenes the exposed actions transform Domain-specific Models into
low-level resource management rules, which thereby abstracts the complexity
of the low-level interfaces (and communication protocols) of the native cloud
C&M tools.

The core benefit of our contributions is to build up an ecological knowl-
edge community of C&M tools by extracting resource C&M models of tools and
represent them in a linked data model (i.e., Domain-specific models) such that
common or related entities among different tools can be exploited. For example,
by identifying common concepts among different tools who have different granu-
larities of C&M features, we can seamlessly merge those features for end-to-end
C&M via our system. For instance, a VM, which is deployed by a particular
tool, can be modified by another tool with fine-grained configuration tasks (e.g.,
installing software within the VM) which are not supported by the initial tool.

The rest of this paper is organised as follows: In Section 2 we further elu-
cidate sharing and re-use capabilities amongst existing cloud resource C&M
techniques, highlighting their limitations. In Section 3 we present the overall
system architecture of our proposed platform. In Section 4 we demonstrate our
methodology via realistic scenarios. While in Section 5 we present our imple-
mentation and evaluation, and conclude in Section 6 with an examination of
related work, and discussion of future work in Section 7.

2

2 Resource Sharing and Re-use for DevOps
As mentioned earlier, we observe that DevOps often share valuable knowledge
regarding the C&M of cloud resources (e.g. resource configuration templates,
elasticity rule templates). This knowledge may then be utilised, as DevOps
may potentially discover knowledge artifacts (e.g. configuration scripts, doc-
umentations, forums, binary installers, and portable packages) when defining
cloud management processes. For example, the user community of Ubuntu Juju
(respectively, Docker) share Charms1 (respectively, Dockerfiles1). Charms and
Dockerfiles are a collection of configuration attributes and executable scripts
that configure, install and start an application. Some other tools share non-
textual packaging formats (e.g., Open Virtualization Format2 (OVF) and Docker
Images3) as resource artifacts. Other type of communities (e.g., Snaps in termi-
nal.com4) share already deployed cloud resources. DevOps reuse those already
deployed resources for purposes of monitoring and controlling them. In the the
rest of this section, we examine the current limitations of existing approaches:

2.1 Heterogeneity in Cloud Management Languages and
Tools

Amongst current cloud Configuration and Management (C&M) tools, DevOps
often bear the burden of mapping application requirements to scripts that imple-
ment the underlying C&M tasks. Typically done using procedures over low-level
resource control APIs. For instance, consider the description of a Java based
Web application stack using Docker: First we would need to identify the re-
quired component resources (i.e., application engine and database) and their
relationships; then, implement or reuse C&M scripts for each component re-
source (e.g., Apache Tomcat as application engine and MySQL as database).
In Docker community these scripts are known as Dockerfiles. Docker provides a
Command Line Interface5 and a RESTful interface6 which interpret Dockerfiles,
build and deploy necessary resources known as Containers on a given Virtual
Machine (VM).

As explained, this inevitably entails great complexity when exploiting cloud
services, and the problems extenuates in distributed environment across multiple
heterogeneous, autonomous, and evolving cloud services. More specifically, with
existing cloud delivery models, developing a new cloud-based solution generally
leads to uncontrollable fragmentation using different C&M languages and tools
(e.g., Puppet, Chef, Juju, Docker, AWS OpsWorks) [4, 5, 8]. This makes it very
difficult to develop interoperable and portable cloud solutions. It also degrades
performance as applications or workloads cannot be partitioned or migrated
easily and arbitrarily to another cloud when demand cycles increase.

1https://docs.docker.com/reference/builder/
2http://www.dmtf.org/standards/ovf
3https://docs.docker.com/userguide/dockerimages/
4https://terminal.com/explore
5https://docs.docker.com/reference/commandline/cli/
6https://docs.docker.com/reference/api/docker_remote_api/

3

Figure 2.1: Cross vs. Inter domain relationships within a Federated Cloud
Resource

2.2 Federated Cloud Resource Relationships
DevOps typically employ multiple C&M tools to automate end-to-end man-
agement tasks (e.g., deploying Docker Containers in VMs, managed by AWS
(see Fig. 2.1)). As every C&M tool has tool-specific resource description mod-
els and management capabilities, DevOps are required to implement ad-hoc
scripts to coordinate C&M tasks among these different tools. Consequently,
these ad-hoc scripts introduce hard-coded relationships among resources that
are orchestrated by different tools. Reusing knowledge artifacts, which include
such ad-hoc scripts, is not scalable as DevOps require to manually analyze those
knowledge artifacts to realise cross-domain relationships among resources within
a federated cloud.

Moreover understanding and visualizing component resources and their rela-
tionships are always useful due to several reasons. For example, managing cloud
resources without properly understanding or ignoring the available relationships
leads to Service-Level-Agreement (SLA) violations. A team of DevOps may de-
ploy multipleMySQL database servers in a VM for different applications without
reusing an existing database server due to little awareness about resources al-
ready deployed within the VM. In general, limited awareness of global and local
view of component resources and relationships hinders optimal resource C&M
processes that span across different tools. Consequences of such situations can
be catastrophic by disrupting the complete resource infrastructure7.

3 Federated Cloud Resources Management Ar-
chitecture: An overview

To overcome the limitations described in Section 2, we propose a layered ar-
chitecture that enables: (a) Domain-specific Models; linked-data-model based
Configuration and Management (C&M) of cloud resources; and (b) Connectors;
automated translations of these high-level Domain-specific Models into low level
resource descriptions and management rules. This architecture thereby shields
consumers from heterogeneity and complexity of underlying cloud services. Fur-
thermore, curators (i.e., experts in cloud resource C&M tools) in our framework
incrementally and collectively: (i) derive Domain-specific Models; and (ii) im-
plement transformation rules. DevOps communities are thus able to reuse these
models and transformation rules to describe and manage elementary, federated
and task-specific cloud resources.

7http://aws.amazon.com/message/65648/

4

Domain-‐Specific	 Models	

Exis4ng	 Resource	 Management	
Communi4es	

Juju-‐
Connector	

Chef-‐
Connector	

Puppet-‐
Connector	

Ansible-‐
Connector	

Docker-‐
Connector	

Ansible	
DSM	

Docker	
DSM	 Chef	 DSM	 Juju	 DSM	

Puppet	
DSM	

Tool	 specific	 resource	 layer	
DSM=Domain-‐specific	 Model	

Federated	 resource	 layer	

Key-‐Value-‐Storage-‐
Community	

Database-‐
Community	 CRM-‐Community	 Task-‐specific	 resource	 layer	

is	 composed	 of	

Connectors	

fed	 into	

generates	

is	 registered	
with	

Federated-‐
Resource-‐
Connector	

Figure 3.1: System Overview

Fig. 3.1 illustrates the system design and interactions of main layers in our
proposed approach; which are elucidated as follows:

Existing Resource Management Communities represent tools and APIs
available for cloud resource C&M.We discussed about cloud resource C&M com-
munities and their knowledge reuse aspect extensively in Section 2.

Domain-specific Models layer consists of three sub layers: (i) Tool-specific
resource layer; (ii) Federated resource layer; and (iii) Task-specific resource layer.
All sub-layers consist of a collection of Domain-specific Models. Tool-specific
resource layer includes Domain-specific Models, each of which represents cloud
resource management entities (CRME) (e.g., resource description, deployment
and management events and actions) and relationships among those entities of
a particular Existing Resource Management Community. For example, Docker
DSM (see Fig. 3.1) includes linked CRMEs, which are provided by Docker en-
gine, to describe, configure and manage cloud resources. Tool-specific CRME s
can also be combined to create higher-level Domain-specific Models to repre-
sent and manage federated cloud resources, which are to be managed by a set
of Existing Resource Management Communities. Federated resource layer rep-
resents such higher-level Domain-specific Models. Task-specific resource layer
represents categorisations of Domain-specific Models for specific categories of
cloud applications. For example, Database Community (see Fig. 3.1) may in-
clude a set of Domain-specific Models, each of which facilitates particularly for
Configuration and Management (C&M) of databases such as key-value stor-
ages, relational databases and graph databases. The goals of Domain-specific
Models are to (a) capture essential C&M entities: resource description model,
management action model and event model offered by a particular community
by abstracting out heterogeneous notations (e.g., Docker Image, Juju Charm,
OVF1); and (b) query and analyse (e.g., dependency analysis) the underlying
cloud resources. We further elucidate on Domain-specific Models in Section 4.

Connectors layer includes rules that transformDomain-specific Model based
resource descriptions into native resource description artifacts. Connectors also
include rules that transform event and action entities of the Domain-specific
Model into event descriptions and actions exposed by the Existing Resource

1http://www.dmtf.org/standards/ovf

5

Management Community. DevOps implement management tasks over events
and actions exposed by Connectors. For example, DevOps may implement
ECA rules such as: when event patterns (e.g., a user changes a configuration
attribute of a cloud application) are matched and their conditions (e.g., appli-
cation is started) are satisfied, the specified C&M actions (e.g., deploy, delete,
re-configure, start and stop) are fired. Underlying implementations of the spec-
ified actions transform Domain-specific Models into low-level resource descrip-
tions and manipulation rules. A further goal of Connectors is to abstract out
the complex and low-level interfaces and communication protocols of C&M tools
from users. We further exemplify and illustrate technical details of Connectors
in Section 4.3 using Docker as an example.

4 Extracting Domain-specific Models from Tool-
specific Resource Artifacts

In this section we illustrate our methodology of analysing existing Configuration
and Management (C&M) tools to derive Domain-specific Models. Using a real-
world example, we demonstrate how we derive their key entities (i.e., resource
description entities, management actions and events) which thereby constitute
the Domain-specific Models.

We built Domain-specific Models for a diverse range of tools and languages:
Docker, Juju and TOSCA. For each, we first analyzed existing knowledge sources
(e.g., C&M language specifications, user documentations, forums and resource
description repositories) to understand and extract key entities for describing
cloud resources. Next, we extracted relationships between the entities by under-
standing how entities are associated when describing composite cloud resources.
These entities and relationships constitute the resource description model of
the respective Domain-specific Model. Likewise, to model management capa-
bilities of the Domain-specific Model, we again analyzed knowledge sources and
extracted what actions and events are provided by these tools, such as for ma-
nipulating the given resource. Finally we integrated the extracted events and
actions as two sets of entities to the Domain-specific Model.

4.1 An Embryonic Cloud Resource Configuration & Man-
agement Model

During this kind of reverse engineering analysis, we need a language that cap-
tures characteristics of Domain-specific Models. It should be noted that we
use conventional Entity-Relationship (ER) models to represent Domain-specific
Models. In this manner, ER-constructs can capture the high-level design of
CRME s as entities, and likewise explicitly represent relationships between CRME s.
Additionally, ER-model based resource descriptions act as documentations that
explicitly describe the resource, and the relationships amongst other resources.
This may then allow DevOps to browse, visualise and comprehensively analyse
a global view of cloud resources across multiple C&M tools. Alternatively with
existing script-based approaches, complex cloud resources are often just docu-
mented separately in forms of ad-hoc Wikis that outdate quickly unless contin-
uously maintained. ER based Domain-specific Models also support a machine-

6

readable syntax, which is consumed by software like Connectors to automati-
cally generate cloud resource descriptions, deployment scripts and management
scripts of C&M tools. Our embryonic data model consists of two aspects.

1. Resource Description Model: It describes language constructs provided for
representing cloud resources in a C&M tool, in terms of relevant entities
and relationships. Entities and relationships include attributes that char-
acterise them. For example, an entity that represents a VM may include
CPU, memory and storage as attributes.

2. Resource Management Model: It expresses language constructs, provided
to configure, deploy, monitor and control cloud resources by a C&M tool.
Resource Management Model consists of two sub-models.

(a) Action Model: It specifies available actions (e.g., deploy, configure,
migrate), which manage cloud resources, as a set of entities with rel-
evant attributes that express required input and output parameters.

(b) Event Model: It expresses events related to the life cycle of cloud
resources in terms of entities with necessary attributes that describe
events [12]. It should be noted that, the issues of event detection
while important, they are complementary to research issues addressed
in our work and outside the scope of this paper.

In the following section we explain how we leverage our embryonic model
to define a Domain-specific Model, using Docker as a real-world example. We
chose Docker as it is open-source and emerging industry standard, which is
vastly praised by DevOps communities.

4.2 Docker-based Domain-specific Model
Docker comprises CRME s that required for application deployment over soft-
ware containers. Docker is a Container-based virtualization technique, which of-
fers a lightweight and portable resource isolation alternative to VMs. Container-
based virtualization techniques have been emerged to simplify and accelerate the
modeling and deployment of cloud resources. More specifically, for composite
service-based cloud resources, which depend on multiple service platform for
their operations, container-based virtualization techniques enable accelerated
and efficient modeling and deployment of optimally configured, scalable and
lightweight platform instances. By analyzing the Docker language specifica-
tion1 we identified four key resource description entities: (1) Container, (2)
Image, (3) Registry and (4) Hosting-Machine (see Fig. 4.1).

The central entity: Container represents a virtualised software container
where DevOps deploy an application or a component of an application (e.g.,
an Apache Web-Server installed on Ubuntu OS with dependent libraries). De-
ployment knowledge of the application and its dependencies (or application
components) is represented via the entity, Image. Such knowledge is either
represented using one monolithic Image instance or a set of Image instances
that each represents deployment knowledge of an application component. In
other words, the Image possesses deployment knowledge required to instantiate

1https://docs.docker.com/reference/builder/

7

Image

name

version

script

Container

name

state

port-binding-rules

optional-attributes

cpu

memory

Registry

id

url

port

Distribution

1:1

distributed by0:N

distribute

1:1

0:N
instantiate

instantiated by

0:1
source

0:N
target

Link

0:N

provider

0:N

consumer

Volume

1:1 0:N

Base-Image

parent child

Hosting-Machine

FQDN

access-credentials

name

1:1 deploy

0:N deployed by

Deployment

EventTypeActionType

createContainer

containerDesc

pauseContainer

containerName

stopContainer

containerName

startContainer

containerName

deleteContainer

containerName

createImage

dockerFile

pushImage

imageName

pullImage

imageName

deleteImage

imageName

createRegistry

registryDesc

deleteRegistry

repoID

createLink/Volume

containerName

deleteLink/Volume

containerName

Resource Description Model Resource Management Model

Figure 4.1: Domain-specific Model for Docker

a Container. The entity Registry represents a repository of Images where
DevOps organise, curate and share resource deployment knowledge. Likewise,
the entity Hosting-Machine represents the location where a Container is hosted
(e.g., VM or physical machine).

By further analyzing into the main entities, we derive attributes that char-
acterize each entity. For example, a Hosting-Machine in Docker is identified
using a FQDN (Fully Qualified Domain Name) of VM or physical machine.

Finally we extract and integrate events and actions, offered by the tool (see
Fig. 4.1). For example, Docker exposes actions like create, start, stop, pause and
delete to manipulate Containers. Similarly Docker offers actions to manipulate
other entities and relationships, but does not support any events.

4.3 Implementing Connectors
Once a Domain-specific Model is described, curators may then implement a Con-
nector that serve to bridge the Domain-specific Model with the interface of the
particular Configuration and Management (C&M) tool. In our framework, we
provide a mechanism for DevOps to contribute Connectors. The interface of our
Connector has one mandatory operation called init. DevOps must implement
this operation such that init: (i) accepts ER-model based resource descriptions;
(ii) generates native resource descriptions; and (iii) return a unique id that
represents the generated resource description. DevOps refer this unique-id for
subsequent management operations on that particular resource description. Ad-
ditionally a Connector can have any number of operations that include rules to
perform management operations supported by the native tool. For example, the
Connector for Docker has a method called createContainer which: (a) accepts
a unique id; (b) prepare the Hosting-Machine to deploy a Container; and (c)
invoke docker run command in the Docker CLI2 along with an Image.

2https://docs.docker.com/reference/commandline/cli/

8

Image-Tomcat Image-MySQL

Registry-1

Container-Tomcat Container-MySQL

HostingMachine-1

Tr
an

sf
or

m
at

io
n

Lo
gi

c

 /(root)

 Docker/

 Tomcat/ MySQL/

build.sh

 Dockerfile

build.sh

 DockerfileDeployment

Distribution
Distribution

Deployment

Instantiation Instantiation

Link

Figure 4.2: Technical transformation of Domain-specific Models (per each Image
instance)

Therefore, once both the Domain-specific Model and Connector are reg-
istered in our framework, DevOps are then able to create cloud resources and
moreover, implement management processes based on theDomain-specific Model.

Finally, although we demonstrate our methodology for a specific framework
chosen above, the same could equally be applied to derive the Domain-specific
Models and Connectors for any cloud resource C&M tool in our framework. In
Appendix ??, we illustrate the Domain-specific Model for Ubuntu juju.

Technical transformation of Docker-based Domain-specific Models:

The transformation logic to generate the native resource descriptions from in-
stances of the Domain-specific Models are heavily linked to the particular Ex-
isting Resource Management Communities. We describe the approach below
to perform a transformation from instances of Docker-based Domain-specific
Model. The right side of Fig. 4.2 shows two files, named Dockerfile and
build.sh, are generated for each Image instance, named Image-Tomcat and
Image-MySQL, in the left side of Fig. 4.2. Dockerfile is a script that includes
configuration rules that are required to generate a concrete Image in Docker
runtime. These configuration rules are stored within the script attribute of an
Image instance (see Fig. 4.1).

The file, build.sh is generated based on a sequence of commands which (1)
read the Dockerfile, (2) generate a concrete Image, (3) upload the generated con-
crete Image to a specified Registry (i.e., Registry-1 in Fig. 4.2), and (4) create
a concrete Container from the concrete Image in a specified Hosting-Machine
(i.e., HostingMachine-1 in Fig. 4.2). In addition, build.sh may include com-
mands to instantiate relationships (i.e., Links and Volumes in Fig. 4.1) between
dependent concrete Containers. The transformation logic extracts required in-
put data for these commands from attributes specified within the instances of
Docker-based Domain-specific Model.

When it is required to reuse an existing Image from Docker Registry, in-
stead of constructing one from scratch, Image instances are modeled without a
script attribute. In such situations, the transformation logic does not gener-
ate a Dockerfile, but include additional commands within build.sh to reuse an
existing concrete Image to generate a concrete Container.

9

Entity-Schema

Name Version Author

Description Associated-Tool

Properties

property-1

property-2

...

Type

Default-Value

Required?

Description

Integer

yes no

Figure 4.3: Entity-Schema

Relationship-Schema

Name Version Author

Description Associated-Tool

Participating-Entity-Schema

participant-1

participant-2

Entity-version

Role

Cardinality

String

Min-value 00

INF

Figure 4.4: Relationship-Schema

4.4 Incremental & Collective Evolution of Domain-specific
Models

Analyzing a typically script-based C&M tool, in order to extract its Cloud
Resource Management Entities (CRME), is inherently a manual and tedious
process. It also entails DevOps’ expertise of the particular C&M tool. To
facilitate this manual process, our proposed framework allows DevOps to incre-
mentally and collectively create and curate Domain-specific Models. In this way,
distributed curators may build upon the efforts of others, and thus provides a
more reliable solution.

As Domain-specific Models are based on ER model, our framework provides
DevOps two schemas: Entity-Schema and Relationship-Schema (see Fig. 4.3
and 4.4) respectively, showing how we would define the structure of entities and
relationships among entities of Domain-specific Models. DevOps leverage these
two schemas and create schema objects to describe CRME of C&M tools. In
our current implementation, we reuse JSON-Schema specification [7] to define
Entity-Schema and Relationship-Schema. Accordingly, the derived Domain-
specific Models employing the ER-schemas for a particular C&M tool result the
models as previously illustrated (see Fig. 4.1).

The Entity-Schema and Relationship-Schema enforce curators to provide
mandatory attributes (i.e., name, version, author, associated tool) for book-
keeping and curation tasks of Domain-specific Models. The Entity-Schema al-
lows defining any number of arbitrary attributes under Properties section. The
Relationship-Schema enforces curators to specify two participating entities (e.g.,
the relationship between Container and Image in Fig. 4.1), roles of the enti-
ties and cardinality constraints (i.e., minimum and maximum number of entity
objects that may join the relationship).

5 Implementation and Evaluation
For evaluation purposes, we built: (i) A Java-based Proof-Of-Concept (POC)
prototype of our framework; and (ii) Domain-specific Models for Docker and
Juju. We conducted two experiments analysing overall usability (i.e., learnabil-
ity and efficiency) and productivity (i.e., total number of lines-of-code (LOC)
to produce a solution) of our approach.

10

Implementation:

Our POC implementation includes a Git repository whereDomain-specific Models
and their objects reside. We also implemented a Command-Line-Interface (CLI)
that create and manage model objects in the repository. Domain-specific Models
in the repository are encoded using JSON-Schema1 such that existing tools2 are
reused to: (i) generate template resource descriptions as Javascript object No-
tation (JSON) objects; (ii) verify; and (iii) visualise those objects. To generate
templates of resource descriptions and instantiate them, we integrated a JSON
Editor3 into our POC implementation, which generates resource description
templates for a given Domain-specific Model. Connectors are implemented as
RESTful services which are exposed via ServiceBus API (based on our previous
work) [3]. To execute ECA rules over Domain-specific Models, we implemented
a Java-based rule engine. Based on the methodology explained in Section 4, we
derived two Domain-specific Models from Docker and Juju (see Fig. 4.1) and
registered in the Git repository. Docker and Juju were chosen due to their large
community-bases. Furthermore, Docker and Juju specialise on two different
concerns (i.e., application deployment inside software containers vs. application
deployment across VMs and software containers), which facilitate to evaluate
the adaptability of our approach to cater different aspects of cloud resource
C&M.

Use-Case Scenario:

We demonstrate our implementation based on a use-case scenario. Consider
we would like to model and deploy a software development and distribution
platform. This platform is intended for software engineers who want to manage
the entire lifecycle of a project. Multiple projects can leverage this platform by
just cloning the deployment multiple times. This platform requires an AWS-
EC2 VM where a Docker Container resides in. The Docker Container includes
Redmine4, a project management service, and a Git client5. The Redmine
service is intended to (1) extract commits from a specified source repository
in GitHub via the Git client and (2) link them with relevant bug reports. In
addition AWS-S3 bucket (i.e., a key-value storage), which acts as a software
distribution repository, is required.

To model the above resource configurations, we first use the JSON Editor15
to create a graph of objects from Juju-based Domain-specific Model. Such that,
the object graph represents an AWS-EC2 VM, where Docker engine is installed.
We then deploy the object graph via our CLI. We invoke the init action of
Juju Connector via the CLI with the object graph as an input. The init action
(1) commits the object graph into the Git repository, (2) generates a native
resource description, and (3) returns a unique reference id back to the user. We
then invoke deployCharm action with the returned reference id. The successful
execution of deployCharm action (1) deploys the AWS-EC2 VM, and (2) commits
a new version of the object graph into the Git repository. The new version

1http://json-schema.org/latest/json-schema-core.html
2http://json-schema.org/implementations.html
3https://github.com/jdorn/json-editor
4http://www.redmine.org/
5http://git-scm.com/

11

represents the deployed VM. From the new version, we extract the IP address
and access credentials, which are required when deploying the Docker Container.

Next, we model an object graph from Docker-based Domain-specific Model,
such that the object graph represents resources and dependencies required to
deploy Redmine and Git client as a Docker Container. The Hosting-Machine
object of the object graph includes attributes whose values are initialized with
the IP address and the access credentials of the previously deployed AWS-EC2
VM by Juju Connector. Similar to how we used CLI with Juju connector, we
execute init and deployContainer actions to deploy the Docker Container and
commit the object graph in the Git repository.

Once resources are deployed, they generate events. Relevant Connectors are
responsible to capture those events and publish them through defined event
types in the relevant Domain-specific Model. ECA rules can be deployed in our
rule engine or employ CloudBase (based on our previous work) [14] to subscribe
to particular events and implement management processes by exploiting actions
offered by the relevant Domain-specific Model.

Evaluation:

To evaluate our approach, we measured the overall productivity and usability
gained by fourteen DevOps (eight system administrators and six software engi-
neers) from a cloud-based software development company. Prior to the experi-
ments, we introduced our system through presentations and hands-on sessions.
We then provided each participant a deployment specification of the software
development and distribution platform, which we introduced under the Use-
Case Scenario in Section 5. The deployment specification only illustrated the
high-level requirements and participants were supposed to understand high-level
requirements and implement those requirements using our system. For quanti-
tative comparison purposes, we implemented the same deployment specification
in three other cloud resource management approaches; (a) Docker, (b) Juju;
and (c) Shell scripts. The main reason to choose Shell scripts was to estimate
an upper bound of the result set.

We measured (i) the total number of LOC (actual LOC written and how
many generated by our approach), excluding white spaces and comments; (ii)
number of external dependencies/libraries required to describe and deploy the
software development and distribution platform; and (iii) time taken to com-
plete the modeling task. We measured the correctness of the modeling tasks by
deploying each resource description and checking whether the resultant deploy-
ment complied with the initial deployment specification.

5.1 Analysis and Discussion
Results of the experiment (see Table 5.1) show that lines-of-code (LOC), num-
ber of external dependencies, and time-to-modeling are improved when using
our framework over other prevalent resource management techniques. More
specifically, the time-to-modeling is reduced by 26.7% compared to the aver-
age of other approaches. We argue that graphical modeling support and re-
source management over explicit event and action models improve the time-to-
modeling. Comparing with proprietary and script-based management languages
like Docker and Juju, we argue that providing an entity-relationship (ER) model

12

Table 5.1: Results of the experiment

Parameters Shell Scripts Docker Juju Our approach

average time-to-modeling (min) 103 95 72 66

#lines-of-code (LOC) 107 116 127 82 (manual)

839 (generated)

knowledge shareable from different C&M tools? no no no yes

based abstraction for describing cloud resources further improves the time-to-
modeling for users. Moreover, our high-level modeling approach enables knowl-
edge reuse which much easily facilitates implementing management processes
spanning across multiple vendors. Pure shell-scripts, Docker and Juju based
solutions required 116 LOC on average to model the deployment plan. Whereas
in contrast, our framework based solution only required 82 manual LOC and
generated 839 LOC - due to the assistance of the JSON-based resource descrip-
tion templates and Java-based Connectors which are more verbose compared
to shell script based approaches. The study thus confirms the overall improved
usability and productivity by employing the Domain-specific Model method-
ology. Moreover, by embracing a knowledge-sharing paradigm (inspired from
industry6), the benefits of our approach are further improved: Given the fact
users in this scenario would not require the efforts of development, registration
and maintenance of the resource descriptions - since this could be pre-done once
and re-used multiple times for the benefit of many.

6 Related Work
In this section we briefly explore the technological landscape and survey cloud
resource Configuration and Management (C&M) languages; as well as interoper-
ability concerns amongst cloud resource C&M tools. We compare and contrast
our proposed approach with these related work.

Cloud resource C&M tools (e.g., Puppet, Chef, Juju, Docker, AWS OpsWorks),
and research initiatives provide domain specific languages to represent and man-
age resources in a cloud environment [4, 5, 8, 17]. These languages are either
template-based or model-driven [9]. Template-based approaches (e.g., Open
Virtualization Format) aggregate resources from a lower level of the cloud stack
and expose the package, along with some configurability options, to a higher
layer. Model-driven approaches (e.g., TOSCA [11]) define various models of the
application at different levels of the cloud stack, and aim to automate the C&M
of abstract pre-defined composite solutions on cloud infrastructure [10]. Our
approach proposes Domain-specific Models, a methodology to extract cloud re-
source management entities from such model-driven and template-based C&M
languages. These Domain-specific Models provide a vocabulary to build ele-
mentary and federated cloud resources, as an abstract-layer over these multiple
and diverse languages.

To build federated cloud resource management solutions across heteroge-
neous C&M tools, we need a middleware that either: (a) defines a unified cloud

6https://jujucharms.com/

13

resource C&M language (e.g., TOSCA, MODAClouds [11, 1]), which is con-
formed by every tool; or (b) provide a pluggable architecture that accepts and
interprets different resource C&M models, offered by any tool. The former
method is unfeasible as it would require existing tools undergo major architec-
tural changes or complex model transformations to conform to a new language
provided by the middleware. We thus believe the latter approach provides a
more pragmatic and adaptive solution that can be integrated amongst a set of
already existing and prevalent tools.

TOSCA is an open standard for unified representation and orchestration of
cloud resources [11]. Wettinger et al. propose a model transformation tech-
nique that generates TOSCA based resource descriptions from resource descrip-
tions in Chef and Juju [16]. Wettinger et al. and our work both focus on
addressing drawbacks of heterogeneity among different Configuration and Man-
agement (C&M) tools. But our main goal is to build up a knowledge ecosystem
by extracting resource C&M models of tools and represent them in a linked
data model (i.e., Domain-specific models) such that common or related con-
cepts across different tools can be exploited. For example, in Docker, the entity
named Hosting-Machine (see Fig. 4.1) represents a VM where Containers
are deployed, albeit Docker run-time cannot itself provision VMs. JuJu on the
other hand focuses on managing a set of VMs, and can thus provision VMs. If
Domain-specific models for both of tools are linked together, we can automate
end-to-end deployment of Docker Containers on VMs which are provisioned by
Juju.

In the domain of multi-cloud application development, wrapping heteroge-
neous cloud resources has been researched [10] and implemented as language
libraries (e.g., Apache jclouds1). However, the fact that providers furnish dif-
ferent offerings and change them frequently often complicates these approaches.

7 Conclusion and Future Work
In this paper, we have presented a Domain-specific Model with declarative lan-
guage to describe and query reusable resource management entities of complex
cloud environments. We further propose a pluggable architecture, which trans-
lates these entities into deployment and/or management scripts, as well as elas-
ticity rules of existing C&M tools. To evaluate the usability and productivity
of our approach, we implemented a proof-of-concept prototype. Our approach
yields significantly promising results, a 26.7% reduction of modeling time com-
pared to traditional C&M techniques. We deduce the improved productivity
and usability of Domain-specific Model based cloud resource C&M. As future
work, we plan to provide (1) a visual language over Domain-specific Models for
interactive exploration and comprehension of cloud resource configurations; (2)
a cloud resource recommender system based on a C&M knowledge acquisition
technique (by extending our previous work [15]); and (3) resource migration
support across different Domain-specific Models.

1http://jclouds.apache.org

14

Bibliography
[1] D. Ardagna and et al. Modaclouds: A model-driven approach for the

design and execution of applications on multiple clouds. In MISE, 2012
ICSE Workshop on, pages 50–56, June 2012.

[2] A. Bahga and V. K. Madisetti. Rapid prototyping of multitier cloud-based
services and systems. Computer, 46(11):76–83, 2013.

[3] M. C. Barukh and B. Benatallah. Servicebase: A programming knowledge-
base for service oriented development. In DASFAA, pages 123–138.
Springer, 2013.

[4] T. C. Chieu and at al. Solution-based deployment of complex application
services on a cloud. In SOLI, 2010 IEEE International Conference on,
pages 282–287. IEEE, 2010.

[5] T. Delaet, W. Joosen, and B. Vanbrabant. A survey of system configuration
tools. In Proceedings of the 24th International Conference on LISA, pages
1–8. USENIX Association, 2010.

[6] Gartner says cloud computing will become the bulk of new it spend by 2016.
http://www.gartner.com/newsroom/id/2613015. Accessed: 07/12/2014.

[7] Json schema. http://json-schema.org/latest/json-schema-core.
html. Accessed: 6/12/2014.

[8] A. V. Konstantinou and et al. An architecture for virtual solution compo-
sition and deployment in infrastructure clouds. In Proceedings of the 3rd
International Workshop on VTDC, pages 9–18. ACM, 2009.

[9] V. Misic and et al. Guest editors’ introduction: Special issue on cloud
computing. IEEE Transactions on Parallel and Distributed Systems,
24(6):1062–1065, 2013.

[10] F. Moscato and et al. An analysis of mosaic ontology for cloud resources
annotation. In FedCSIS, 2011, pages 973–980. IEEE, 2011.

[11] OASIS. Topology and Orchestration Specification for Cloud Applications
(TOSCA), Version 1.0, 2013.

[12] R. Ranjan and B. Benatallah. Programming cloud resource orchestration
framework: Operations and research challenges. CoRR, abs/1204.2204,
2012.

[13] B. Veeravalli and M. Parashar. Guest editors’ introduction: Special issue
on cloud of clouds. IEEE Transactions on Computers, 63(1):1–2, 2014.

[14] D. Weerasiri, B. Benatallah, and M. C. Barukh. Process-driven config-
uration of federated cloud resources. In Database Systems for Advanced
Applications, pages 334–350. Springer, 2015.

[15] D. Weerasiri, B. Benatallah, and J. Yang. Unified representation and reuse
of federated cloud resources configuration knowledge. Technical Report
UNSW-CSE-TR-201411, Department of CSE, University of New South
Wales, 2014.

15

http://www.gartner.com/newsroom/id/2613015
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html

[16] J. Wettinger, U. Breitenbucher, and F. Leymann. Standards-based devops
automation and integration using tosca. In Utility and Cloud Computing
(UCC), 2014 IEEE/ACM 7th International Conference on, pages 59–68,
Dec 2014.

[17] M. S. Wilson. Constructing and managing appliances for cloud deploy-
ments from repositories of reusable components. In Proceedings of the 2009
Conference on HotCloud’09. USENIX Association, 2009.

16

	Introduction
	Resource Sharing and Re-use for DevOps
	Heterogeneity in Cloud Management Languages and Tools
	Federated Cloud Resource Relationships

	Federated Cloud Resources Management Architecture: An overview
	Extracting Domain-specific Models from Tool-specific Resource Artifacts
	An Embryonic Cloud Resource Configuration & Management Model
	Docker-based Domain-specific Model
	Implementing Connectors
	Technical transformation of Docker-based Domain-specific Models:

	Incremental & Collective Evolution of Domain-specific Models

	Implementation and Evaluation
	Implementation:
	Use-Case Scenario:
	Evaluation:

	Analysis and Discussion

	Related Work
	Conclusion and Future Work

