
Four-fold Auto-scaling for Docker Containers

Philipp Hoenisch1,2 Ingo Weber2,3, Stefan Schulte1,
Liming Zhu2,3 and Alan Fekete2,4

{p.hoenisch, s.schulte}@infosys.tuwien.ac.at,
{firstname.lastname}@nicta.com.au

1TU Wien, Austria,
2Software Systems Research Group, NICTA, Sydney

3School of Computer Science & Engineering,
University of New South Wales

4School of Information Technologies, University of Sydney, Australia

Technical Report
UNSW-CSE-TR-201513

July 2015

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Virtual machines (VMs) are quickly becoming the default method of hosting
Web applications (apps), whether operating in public, private, or hybrid clouds.
Hence, in many cloud-based systems, auto-scaling of VMs has become a stan-
dard practice. However, VMs suffer from several disadvantages, e.g., the over-
head of needed resources as a full operating system (OS) needs to be started, a
degree of vendor lock-in and the relatively coarse-grained nature. This can be
overcome by using lightweight container technologies like Docker as the OS is
not included in a container, instead, the one from the host machine is used. Like
VMs, containers offer resource elasticity, isolation, flexibility and dependability.
On the one hand, containers need to run on a compatible OS and share resources
through the outside OS, on the other hand, exactly this fact leads to benefits
such as a faster start-up time and less overhead in terms of used resources.

A common approach is to run containers on top of VMs, e.g., in a public
cloud. Doing so, the flexibility for auto-scaling increases, since VMs can then be
sub-divided. However, the additional freedom also means that scaling decisions
become more complex: considering horizontal and vertical scaling on both, the
container and the VM level, auto-scaling is now four-fold.

We address four-fold auto-scaling by (i) capturing the decision space as a
multi-objective optimization model, (ii) solving instances of that model dynami-
cally to find an optimal solution, and (iii) executing the dynamic scaling decision
through a scaling platform for managing Docker containers on top of VMs. We
evaluated our approach with realistic apps, and found that using our approach
the average cost per request is about 20-28% lower.

This technical report provides details omitted from a short conference pa-
per [3], as follows. Section 1 presents the optimization model in detail, after
first introducing the preliminaries needed to understand the model. The con-
trol architecture is described in Section 2, and the evaluation of our approach
is described in Section 3. A broader introduction, a motivating example, and a
discussion of related work in turn can be found in [3].

1 Optimization Approach

The following describes an optimization model to solve the four-fold auto-
scaling, i.e., this multi-objective optimization model computes a VM leasing
plan and places Docker containers among them while ensuring given SLAs and
a minimization of cost.

1.1 Preliminaries

We assume a PaaS scenario: A service provider hosts several different apps of a
specific type. These apps are provided by developers or other content providers
who want to have a fixed hosted solution. Because of this, each app may come
with a different Service Level Agreement (SLA) defining different Service Level
Objectives (SLO), e.g., the response time should not exceed a certain value or
a specific throughput should be possible.

The service provider leases Virtual Machines (VMs) from a Cloud provider
and deploys apps onto them, thus they are available to potential clients. For
that, the app is bundled in a Docker container which is then deployed on a
VM resulting in a certain container instance. Depending on the app’s SLA, the
container may have a specific container configuration defining the requirements
to the underlying VM, e.g., specifying the least amount of of available CPU or
RAM.

The requirements in terms of CPU are defined in CPU shares. By default,
each VM has 1024 CPU shares available which are then shared among the hosted
container instances. For example, considering a VM hosting three containers
where as one of the three containers get a CPU share of 512 and the other two
256 CPU shares each. If all three app will attempt to use 100% of their available
shares, this will result in 50% of CPU for the first container, and 25% for each
of the other two containers. In contrast to that, the requirements in terms of
RAM are fixed values defined in Mega Bytes (MB).

The provider can deploy one or many different container instances (of dif-
ferent types) on a single VM. In addition, to achieve a highly available system,
the provider may deploy a specific container type on several VMs resulting in
various container instances, where each container instance may have a different
configuration.

1.2 System Model

In order to account for several different apps we consider multiple container
types. Each container represents a single app. The set of container types is
defined by D = {1, ..., d#} and d is a specific container type. Each container
has a specific configuration defining the requirements of resources. For the
sake of simplicity, we generalize all types of resources here, however, within our
implementation we differentiate the resources and account for CPU and RAM.
A specifically configured container is defined as cd. Complimentary to that,
Cd = {1d, ..., c#d } defines the set of different configurations of a specific container
type d. The exact requirements of resources of a specifically configured container
of type cd are defined by r(R,cd).

Analogous to containers, we also account for different VM types. The set of
VM types is defined by V = {1, ..., v#} where v is a specific VM type, e.g., a

1

single-, dual-, or quad-core. Each VM type has a different supply of resources
(e.g., CPU cores, RAM, disc size, etc.). Notably, as for the container types,
we do not differentiate between resource types within the paper. However,
the actual differentiation is done within our implementation. VMs need to be
instantiated in order to host containers. Theoretically, unlimited instances of a
specific VM type can be leased, however, we assume a maximum of leasable VM
instances at a certain time, i.e., k#v . Therefore, the set of leasable VM instances
of type v is given by Kv = {1v, ..., k#v }, and a specific VM instance by kv.

The cost which apply for leasing a VM instance is defined by cv and apply
once for a billing cycle called Billing Time Unit (BTU). A BTU is also the
minimum leasing duration. This means, releasing a VM instance kv before the
end of the BTU corresponds to wasting already paid resources. Hence, the
actual leasing duration of a specific VM instance kv is a multiple of the BTU.
The remaining leasing duration of a VM instance kv at time t is defined by
d(kv,t) and is given in milliseconds. At the end of this time, the VM instance
will be terminated automatically or has to be leased for an additional BTU.

As previous stated, a container has to be deployed on a VM instance. The
corresponding deployment time ∆d depends on the container type d. The time
unit is given in milliseconds and only applies for instantiating a container for
the first time on a specific VM instance kv. The container files are cached
within the VM making future deployment times negligibly small, i.e., a few
milliseconds to seconds. The decision if a container d should be deployed on a
VM instance kv at time t is defined in the decision variable x(cd,kv,t). A value
of 1 means that the container of type d and configuration c should be deployed
on the VM instance kv at time t. If a specifically configured container cd has
already been deployed on a VM instance kv, we use z(d,kv,t) = 1. Analogously to
the container deployment time ∆d, the VM start-up time of a specific instance
type v is labeled with ∆v. For specifying that a specific VM instance kv should
be leased at time t the variable y(kv,t) is used. A value of 1 means that the
VM instance kv should be leased for one BTU . If a specific VM instance kv is
already running at time t, we use the variable β(kv,t). A value of 1 means the
VM is running and 0 means it is terminated. The total amount of leased VMs
of type v at time t are defined by the variable γ(v,t).

Having the system model explained in this section, we next present the
optimization model. This model takes as input a set of containers (D) including
their configurations and optional SLAs, a set of VM types (V) including the
information of how many instances are possible for each type including their
configuration and the information of how many requests are to be expected at
time t for each container type d, which is expressed as i(d,t).

1.3 Optimization Model

The overall objective function is defined in (1.1): it is subject for minimiza-
tion the overall cost. This function comprises four terms. The first term, i.e.,∑

v∈V cv · γ(v,t) computes the overall leasing cost which accrue if γ(v,t) VM in-
stances of type v with cost cv each at time t are leased. The second term,
i.e.,

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
(1− z(d,kv,t)) · (x(cd,kv,t) ·∆d)

)
sums up the

time which is needed to deploy a container (∆d) on a specific VM instance. If
a container gets deployed the first time on a VM instance, some data needs
to be downloaded from the container registry. Hence, this procedure may take

2

some time. However, this data is cached on the VM instance as long as it
is running, thus, future deployment of the same container type will be much
faster as no data has to be downloaded. This information is used to prioritize
placements of containers on VM instance where such a cache already exists.
The third term, i.e.,

∑
v∈V

∑
kv∈Kv

(ωR
f · f(R,kv,t)) computes the amount of free

resources. In order to control the value of this term within the objective func-
tion, we weight the free resources using the weight ωR

f . This term ensures
that containers are deployed on already leased VM instances instead of leas-
ing additional once, provided enough resources are available. The fourth term,
i.e.,

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
ωs · s(i,cd,t) · x(cd,kv,t)

)
sums up the amount

of deployed Docker containers for each container type at time t. It aims at at
reducing the risk of over-provisioning in a way, that it demands to lease the
smallest amount of containers while still fulfilling the demand. As in the third
term, the value of available resources per Docker container (s(i,cd,t)) is weighted
with a constant value ωs in order to reduce the weight of this term within the
overall objective function.

min

[∑
v∈V

cv · γ(v,t) +
∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
(1− z(d,kv,t)) · (x(cd,kv,t) ·∆d)

)
+
∑
v∈V

∑
kv∈Kv

ωR
f · f(R,kv,t) +

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
ωs · s(i,cd,t) · x(cd,kv,t)

)]
(1.1)

The constraint (1.2) ensures that enough resources in any dimension are
available on each VM, this involve CPU and RAM equally. For that, we check
if the resource supply of a specific VM instance kv is greater or equal than the
sum of required resources of each container (and for each configuration, i.e., for
all d ∈ D and all cd ∈ Cd). Notably, the resource demand of a specific container
is only considered if the corresponding container will be deployed on that VM
instance, i.e., if x(cd,kv,t) = 1. On the right side of this equation, one can find
the variable g(kv,t) which will be introduced in constraint (1.12). A value of 1
indicates that the corresponding VM instance kv will be leased or is running at
time t. ∑

d∈D

∑
cd∈Cd

(
r(R,cd) · x(cd,kv,t)

)
≤ s(R,v) · g(kv,t) (1.2)

As mentioned before, the objective function in (1.1) aims at minimizing the
amount of unused resources for each leased VM instance. The corresponding
value f(R,kv,t) is computed in constraint (1.3). For that, the amount of required
resources r(R,cd) are add up for each container d ∈ D and each configuration
cd ∈ Cd which are meant to be deployed on a specific VM instance kv, i.e., if
x(cd,kv,t) = 1. This value is than subtracted by the resource supply s(R,v).

g(kv,t) · s(R,v) −
∑
d∈D

∑
cd∈Cd

(
r(R,cd) · x(cd,kv,t)

)
≤ f(R,kv,t) (1.3)

The constraint (1.4) ensures that enough containers of a specific type d are
deployed at time t. For that, we sum up the amount of possible invocations on

3

each container of type d (all d ∈ D) with configuration c which are meant to be
deployed at time t, i.e., x(cd,kv,t) = 1. The sum has to be greater or equal i(cd,t).
The corresponding variable s(i,cd,t) represents the maximum amount of requests
which are possible on a certain container configuration cd while ensuring given
QoS. s(i,cd,t) is defined in (1.13).∑

cd∈Cd

∑
v∈V

∑
kv∈Kv

s(i,cd,t) · x(cd,kv,t) ≥ i(d,t) (1.4)

The constraint (1.5) ensures that a specific VM instance kv hosts maximum
one container of a specific type d (for all possible configurations, i.e., cd ∈ Cd).∑

cd∈Cd

x(cd,kv,t) ≤ 1 (1.5)

The sum of y(kv,t) ≥ 1 (for all v ∈ V) values in (1.6) indicates the total
number of VM instances of type v which have to be leased in time t. The sum
is represented in γ(v, t). ∑

kv∈Kv

y(kv,t) ≤ γ(v,t) (1.6)

In constraint (1.3) we compute the amount of unused resources. This is only
required if a VM instance kv is leased at time t. For this, we use the helper
variable g(kv,t) which takes the value 1 if the VM instance kv is already leased
in time t (β(kv,t) = 1) or will be leased (y(kv,t) = 1) in time t (constraints
(1.7)-(1.9)).

g(kv,t) ≥ y(kv,t) (1.7)

g(kv,t) ≥ β(kv,t) (1.8)

g(kv,t) ≤ y(kv,t) + β(kv,t) (1.9)

The decision variable x(cd,kv,t) indicates if a certainly configured container
cd should be deployed on VM instance kv at time t. This requires the VM
instance to be running which is ensured in (1.10). Since it might be the case
that several different container types are assigned to one particular VM instance
kv, the left-hand side of this equation may exceed the value 1. Thus, in order to
satisfy this constraint, the right-hand side of this equation is multiplied with an
arbitrary large number M, i.e., g(kv,t) ·M . We chose 1,000 for M as it is unlikely
that a single VM instance will host more than 1,000 different containers a time.∑

d∈D

∑
cd∈Cd

x(cd,kv,t) ≤ g(kv,t) ·M (1.10)

The optimization model ensures that enough resources are leased to handle
the upcoming demand. Hence, the outcome of the optimization model is two-
fold: 1) it indicates whether additional VM instances need to be leased or if
already leased VM instances can be terminated and 2) it indicated on which VM
instance what container types should be deployed. Consequently, the system
landscape is under a continuous change, i.e., VM instances may come up or

4

Controller

Cloud Controller

Load Balancer

Optimizer

Docker

Controller

R

Container

B

R

Monitoring EngineDocker Engine

R

Virtual Machine 1

Container

B

R

Container

A

Docker Registry

Container

B

Virtual Machine 1

Docker Engine

R

Monitoring Engine

Container

A

Database

R

R

R

R

R

Backend

Client

Monitoring

Controller

R

R

R
R

Container

B

Container

B

Figure 2.1: Architecture

disappear from time to time. The decision whether a particular VM should be
accounted as available in time t, i.e., the resources are available for deploying
containers is ensured in constraint (1.11) for all d ∈ D, cd ∈ Cd. This constraint
demands, that either a specific VM instance kv is leased at least another 60, 000,
or if the instance has to be leased for another full leasing cycle, i.e., a full
BTU . If the VM instance’s remaining leasing duration is less than 60,000, i.e.,
d(kv,t) · β(kv,t) ≤ 60, 000 and the VM instance will not be leased (y(kv,t) = 0),
then no containers will be deployed on that particular VM instance. We haven
chosen a value of 60,000 milliseconds as this is the maximum interval of running
the optimization.

d(kv,t) · β(kv,t) +BTU · y(kv,t) ≥ x(cd,kv,t) · 60, 000 (1.11)

The remaining constraints in (1.12) demand the co-domain of the used vari-
ables. The optimization model is assembled by the presented constraints (1.1)-
(1.13) and solved in a regular interval of 60 seconds.

x(cd,kv,t), y(kv,t), g(kv,t), β(kv,t) ∈ {0, 1} (1.12)

i(cd,t), s(i,cd,t) ∈ N0 (1.13)

2 Architecture

We here show how the optimization model from Section 1 can be used to control
scaling decisions in a deployment of Docker containers. For concreteness, we
describe the prototype implementation of our architecture, done in Java 1.7
and using IBM CPLEX 1 as a solver, accessed through the Java ILP interface.
We plan to make the source code of our prototype available in the coming
months.2 The architecture is presented in Fig. 2.1 and depicts two top level
entities: the Controller, hosting the core decision-making functionality, and the
Backend, consisting out of an arbitrary number of VMs, each hosting one to
many Docker containers and a Monitoring Engine to collect CPU and RAM
load statistics.

1http://www.ibm.com/software/commerce/optimization/cplex-optimizer, accessed
29/07/15

2https://reliableops.com

5

http://www.ibm.com/software/commerce/optimization/cplex-optimizer
https://reliableops.com

The Controller includes the Optimizer which implements the optimization
model and is responsible for creating a detailed VM leasing and Docker con-
tainer placement plan. To set up the optimization task, the Optimizer collects
required data such as information about the actual system state and VM leasing
and Docker placement plan. This information can be gained from the Database.
Solving the optimization model happens at regular intervals or it can be trig-
gered by relevant events.

The outcome of the optimization model needs to be actioned. The VM provi-
sioning is done by the Cloud Controller. It is connected with the IaaS provider,
in our prototype an OpenStack-based cloud (OpenStack Folsom)3. The Cloud
Controller arranges the leasing of additional VM instances or terminates un-
needed ones. It makes use of the open-source JClouds library 4. The Cloud
Controller can perform three different actions. First, leasing a new VM in-
stance for a full BTU cycle. Second, terminating an existing VM instance, i.e.,
releasing it. And third, renewed leasing an existing VM instance for another
full BTU cycle.

The Docker Controller is responsible for placing the Docker containers as
indicated by the solution of the optimization task. It is connected to the Docker
Engine on each Backend VM using the standard Docker remote API 5. The
Docker Controller can arrange to start a new container of a certain type, stop
an existing container, or resize an existing container, i.e., change the amount of
available resources for that particular container. A Database is deployed which
stores monitoring information from the Backend VMs as well as the outcome of
each optimization run.

The Backend consists out of an arbitrary number of VM instances, called
Backend VMs. Each hosts one or many Docker containers of different types. In
addition, each Backend VM instance provides a Docker Engine for deployment,
and a Monitoring Engine which collects information from the Docker Engine
using the standard Docker API. This data will be requested by the Monitoring
Controller.

The system also provides a Load Balancer and a Docker Registry. The Load
Balancer is the entry point for Clients who want to access the apps. It serves
as a single entry point and transparently forwards the requests to the hosted
containers based on a round-robin adjusted for the available resources. We
use the open-source HAProxy 6 for our Load Balancer. The Docker Registry
contains the Docker images for the various apps.

3 Evaluation

Our proposed optimization-based control of scaling has been evaluated through
measuring behavior of the prototype implementation described in Section 2. We
compare this against two state-of-the art baselines for making scaling decisions.
The details of the evaluation scenario including the arrival patterns are explained
in Section 3.1-3.3 and the outcome is discussed in Section 3.4.

3http://www.openstack.org/software/folsom/, accessed 27/7/15
4https://jclouds.apache.org/, accessed 27/7/15
5https://docs.docker.com/reference/api/docker_remote_api/, accessed 27/7/15
6http://www.haproxy.org, accessed 27/7/15

6

http://www.openstack.org/software/folsom/
https://jclouds.apache.org/
https://docs.docker.com/reference/api/docker_remote_api/
http://www.haproxy.org

3.1 Arrival Patterns

In our evaluation we take up the scenario from Section 1.1 and use three different
Docker container types which differ in their technologies as well as in the demand
of computing resources. We apply two different arrival patterns which can be
seen in Fig. 3.1a and Fig. 3.2a. Each figure shows how a different amount of
parallel requests were sent to each app, round-by-round. A round lasts for one
minute, i.e., the whole scenario ran for about 40 minutes. A value of 50 on
the vertical axis means that 50 requests for the particular app were send over
a time span of 10 seconds. The available VM types in our evaluation were 1)
a single-core VM with 1 CPU and 1,820 MB RAM, 2) a dual-core VM with
2 CPUs and 3,750 MB RAM, and 3) a quad-core VM with 4 CPUs and 7,680
MB RAM, with costs that made a quad-core cheaper than two dual-cores, and
a dual-core cheaper than two single-cores.

3.2 Baseline

We compare our approach against two different baseline scaling techniques,
which are threshold-based: additional resources are leased if a particular upper
threshold has been exceeded, or released if the load dropped below a lower
threshold [4, 2, 1]. The thresholds differ for each container and type and their
values have been chosen through stress testing each configuration prior to our
evaluation. These same thresholds are used for our approach as for the baselines.
The first baseline scales with a One-for-All placement strategy: each VM has
all the container types. Initially a quad-core VM is leased hosting a container of
each type. If the load increases past the threshold, an additional quad-core VM
will be leased and given one container of each app type. If the load decreases,
one VM will be released.

The second baseline scenario follows a One-for-Each strategy with a separate
VM for each container. At the beginning three single-core VMs are leased
having exactly one container deployed each. An additional single-core VM (with
another one instance of the same container type) will be leased if the load passes
the threshold on a current VM with that container type; and a VM-container
pair will be released if the load gets too low.

3.3 Metrics

To assess the quality of our approach, we use different metrics and compare
them against the results of the baselines. The main objective of our approach is
to minimize cost. Hence, comparing the VM leasing cost is an obvious option.
Cost for leasing a VM instance apply only once per BTU. Leasing not enough
resources will definitely have an impact on the QoS. Hence, we measured the
response times and compare the overall SLA violations. Last but not least, we
compute the cost per invocation. We run each scenario and setting three times
to get reliable numbers and also provide the standard deviation σ.

3.4 Discussion

The result of our evaluation can be found in Table 3.1 and Table 3.2 and are
shown as charts in Fig. 3.1c and Fig. 3.1b for arrival pattern 1, and for arrival

7

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40

R
e

q
u

e
s
ts

Rounds

App 1 App 2 App 3

(a) Arrival Pattern

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40

C
P

U
 c

o
re

s

Rounds

One for All One for Each Optimization

(b) Total Leased Cores

 0

 0.25

 0.5

 0 5 10 15 20 25 30 35 40

C
o

s
t

p
e

r
In

v
o

c
a

ti
o

n

Rounds

One for All One for Each Optimization

(c) Cost per Invocation

Figure 3.1: Arrival Pattern 1

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40

R
e

q
u

e
s
ts

Rounds

App 1 App 2 App 3

(a) Arrival Pattern

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40

C
P

U
 C

o
re

s

Rounds

One for All One for Each Optimization

(b) Total Leased Cores

 0

 0.25

 0.5

 0 5 10 15 20 25 30 35 40

C
o

s
t

p
e

r
In

v
o

c
a

ti
o

n

Rounds

One for All One for Each Optimization

(c) Cost per Invocation

Figure 3.2: Arrival Pattern 2

Table 3.1: Evaluation Results – Arrival Pattern 1

Arrival Pattern 1
Optimized One-for-All One-for-Each

Leased Cores
(σ)

28.13
(0.38)

39.5
(0)

29.68
(0.14)

Leasing Cost
(σ)

378.4
(0.92)

505.6
(0)

474.67
(2.31)

Cost/Invocations
(σ)

0.17
(0.012)

0.23
(0.22)

0.21
(0.02)

SLA Adherence 97.47% 98.02% 98.22%

pattern 2 in Fig. 3.2c and Fig. 3.2b. For each chart, on the horizontal axis, the
rounds are presented. On the vertical axis either the amount of leased CPUs or
the cost per invocation are shown. As can be seen in Table 3.1 and Table 3.2,
the SLA adherence for both scenarios and for each scaling strategy are very
similar. They vary only for about a few percentage points. This can be reduced
to the fact that we used the same thresholds for scaling up or down. Hence, in
the following we will focus more about the leased CPUs and produced cost. It
is not surprising that the One-for-All scenario produced the most cost. In this
scaling strategy, only quad-core VMs were leased, and each app was allocated
the same number of containers (equal to the number of VMs), leading to a
highly overprovisioned system as the resources were not needed for whichever
app was getting low load in that round. Hence, leasing smaller VM types makes
more sense (∼5% cheaper). However, even leasing smaller VMs may not be
perfect. In the One-for-Each scenario, only single-core VMs were leased, each
hosting exactly one container type. As single-core VMs can not hold as much

8

Table 3.2: Evaluation Results – Arrival Pattern 2

Arrival Pattern 2
Optimized One-for-All One-for-Each

Leased Cores
(σ)

28.75
(0.43)

39.5
(0)

29.88
(0.25)

Leasing Cost
(σ)

393.2
(1.38)

505.6
(0)

478.00
(4)

Cost/Invocations
(σ)

0.17
(0.03)

0.24
(0.06)

0.22
(0.04)

SLA Adherence 96.95% 96.92% 97.1%

load as higher-cored VMs, more instances are needed. In addition, based on
the cost model, leasing two single-core VMs is more expensive than leasing one
dual-core VM (∼20% more expensive). Thus vertical scaling would have been
helpful: leasing the right VM size depending on the need will lead eventually
to less leasing cost. Our four-fold optimization approach can benefit from this.
This can be seen in Fig. 3.1c and Fig. 3.2c which show the cost per invocation.
The high values at the beginning are related to the low number of requests, as
more requests come in, the lower the cost per invocation gets. Eventually, using
arrival pattern 1, we achieved savings of ∼28% (with ∼33% less cores) over the
One-for-All scenario and a monetary saving of ∼23% (∼4% less cores) over the
One-for-Each. Using arrival pattern 2, we achieved with our optimization a cost
saving of ∼25% (∼32% less cores) over the One-for-All and a saving of ∼20%
(∼4% less cores) over the One-for-Each scaling strategy.

4 Conclusion

Traditionally, apps are hosted directly on VMs. However, this approach suffers
from different disadvantages such as the overhead of needing a full OS leading
to a slow start-up time, a degree of vendor lock-in and their relatively coarse-
grained nature. Those problems can be overcome by using lightweight linux
container technologies such as Docker containers. These add an additional ab-
straction layer on top of VMs which allows more efficient resource usage. How-
ever, when containers are deployed on top of VMs, auto-scaling decisions are
getting more complex.

We addressed this now four-fold auto scaling as a multi-objective optimization
problem, and we proposed a control architecture which is able to dynamically
and elastically adjusted the VM and container provisioning. Based on a proto-
type implementation in Java 1.7, we evaluated our approach and compared it
against naive scaling strategies: One-for-All and One-for-Each. The numbers
reveal, that following our approach, a cost reduction of 20-28% can be achieved.

9

Bibliography

[1] Marc E. Frincu, Stéphane Genaud, and Julien Gossa. On the Efficiency
of Several VM Provisioning Strategies for Workflows with Multi-threaded
Tasks on Clouds. Computing, 96:1059–1086, 2014.

[2] Stéphanse Genaud and Julien Gossa. Cost-wait Trade-offs in Client-side
Resource Provisioning with Elastic Clouds. In 4th Intern. Conf. on Cloud
Computing (CLOUD 2011), pages 1–8. IEEE, 2011.

[3] Philipp Hoenisch, Ingo Weber, Stefan Schulte, Liming Zhu, and Alan Fekete.
Four-fold auto-scaling on a contemporary deployment platform using Docker
containers. In International Conference on Service Oriented Computing (IC-
SOC), Goa, India, November 2015.

[4] Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger,
and Schahram Dustdar. Cost-Efficient and Application SLA-Aware Client
Side Request Scheduling in an Infrastructure-as-a-Service Cloud. In 5th
Intern. Conf. on Cloud Computing (CLOUD 2012), pages 213–220. IEEE,
2012.

10

	Optimization Approach
	Preliminaries
	System Model
	Optimization Model

	Architecture
	Evaluation
	Arrival Patterns
	Baseline
	Metrics
	Discussion

	Conclusion

