
Optimizing HTTP-Based Adaptive

Streaming in Vehicular Environment

using Markov Decision Process

Ayub Bokani1 Mahbub Hassan2 Salil S. Kanhere3

Xiaoqing Zhu 4

1,2,3 University of New South Wales, Sydney, Australia
{abokani, mahbub, salilk}@cse.unsw.edu.au

4 Chief Technology and Architecture Office,
Cisco Systems, San Jose, CA USA

xiaoqzhu@cisco.com

Technical Report
UNSW-CSE-TR-201512

July 2015

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Hypertext transfer protocol (HTTP) is the fundamental mechanics support-
ing web browsing on the Internet. An HTTP server stores large volumes of
contents and delivers specific pieces to the clients when requested. There is a
recent move to use HTTP for video streaming as well, which promises seamless
integration of video delivery to existing HTTP-based server platforms. This
is achieved by segmenting the video into many small chunks and storing these
chunks as separate files on the server. For adaptive streaming, the server stores
different quality versions of the same chunk in different files to allow real-time
quality adaptation of the video due to network bandwidth variation experi-
enced by a client. For each chunk of the video, which quality version to down-
load, therefore, becomes a major decision-making challenge for the streaming
client, especially in vehicular environment with significant uncertainty in mo-
bile bandwidth. In this paper, we demonstrate that for such decision making,
Markov decision process (MDP) is superior to previously proposed non-MDP
solutions. Using publicly available video and bandwidth datasets, we show that
MDP achieves up to 15x reduction in playback deadline miss compared to a
well-known non-MDP solution when the MDP has the prior knowledge of the
bandwidth model. We also consider a model-free MDP implementation that
uses Q-learning to gradually learn the optimal decisions by continuously ob-
serving the outcome of its decision making. We find that MDP with Q-learning
significantly outperforms MDP that uses bandwidth models.

1 Introduction

Due to immense scalability benefits, there is a strong push from the industry
to adopt HTTP as a universal platform for delivering all types of contents,
including video. Apple [1], Microsoft [2], and Adobe [3] have deployed their
own proprietary HTTP-based video streaming platforms while a standard, called
dynamic adaptive streaming over HTTP (DASH) [4], has been introduced by
the world wide web consortium (W3C) to facilitate wide-spread deployment of
this technology.

The key concept in DASH is to code the same video in multiple bitrates
(qualities) and store each stream as a series of small video chunks of 2-10 sec
duration. A client simply downloads and plays a chunk of a given quality using
the standard HTTP GET command used for fetching any other objects on the
Web. Since video has strict display deadlines for every frame, each chunk needs
to be downloaded before its deadline to avoid the ‘freezing’ effect. It therefore
becomes the responsibility of a DASH client to dynamically select the ‘right’
quality of the next chunk to ensure a smooth video at the receiver with the
highest possible quality and minimum number of quality switches from one
chunk to the next. The DASH standard specifies the format of metadata about
the chunks, such as their URL and bitrates, which are sent to the clients in
a manifest file. The actual streaming strategy, i.e., the client intelligence for
selecting the right quality for each chunk in order to produce a high quality of
experience (QoE) for the viewer is left to the developers.

Majority of the previous works [5,6] proposed simple heuristics that make de-
cisions about the next chunk quality based only on the currently buffered video
in the client and the recent observation of network bandwidth. These heuristics
perform reasonably well, but do not optimize the tradeoff between individual
QoE metrics such as picture quality vs deadline miss, especially in vehicular
environments exhibiting significant uncertainty in network bandwidth. The key
objective of this paper is to explore more advanced decision making tools that
would enable an improved tradeoff between conflicting QoE metrics in vehicular
environments. In particular, we study the effectiveness of Markov decision pro-
cess (MDP), which is known for its ability to optimize decision making under
uncertainty [7]. In this paper, we make two fundamental contributions:

• Using publicly available DASH datasets and real-world traces of mobile
bandwidth and vehicular mobility, we show that MDP can reduce playback
deadline miss up to 15 times compared to a well known non-MDP strategy
when the bandwidth model is known a priori.

• We propose a Q-learning implementation of MDP that does not need any
a priori knowledge of the bandwidth, but learns optimal decision making
in a self-learning manner by simply observing the outcome of its decision
making. We demonstrate that, in terms of deadline miss, the Q-learning-
based MDP outperforms the model-based MDP by a factor of 3.

The rest of the paper is organised as follows. We discuss related work in
Section 2. Section 3 shows how DASH can be formulated as an MDP problem.
We discuss the three proposed MDP implementation algorithms in Section 4
followed by the non-MDP approach in Section 5. The simulation setup is ex-

1

plained in Section 6 and the results are presented in Section 7. We conclude the
paper in Section 8.

2 Related work

Several research efforts have recently focused on improving the quality of service
(QoS) of HTTP-based adaptive video streaming. One strategy that is frequently
explored is the use of sender-driven rate adaptation. Lam et al. [8] for instance
proposed a rate adaptation model in which the client-side buffer level is esti-
mated in the server side and bitrate adaptation is done by keeping the buffer
level above a certain threshold. Our study is related to the receiver-driven rate
adaptation in which the client is responsible to choose the best available quality
level based on the estimated network conditions.

The ultimate goal of any decision making about the chunk selection is to
enhance the quality of experience (QoE) of the user. There are many factors
that may effect the QoE, but not all of them will have the same effect. How
to optimize QoE in DASH scenario remains an open problem. Using subjec-
tive quality assessments, McCarthy et al. [9] concluded that mobile users prefer
high resolution more than high frame rate when streaming high motion videos
such as sports materials. This finding suggests that picture quality is a very
important factor for QoE. Other researchers have found [10] that the frequency
of video freezing, i.e., playback deadline miss for the chunks, is the main re-
sponsible factor for the variations in QoE. Therefore, in this paper, we consider
the frequency of video freezing and average picture quality to compare different
streaming algorithms.

There have been several heuristic strategies proposed in literature [6, 11]
that enable the client device to control the bitrate adaptation. With some
minor variations, most of these approaches use the receiver buffer occupancy
level as the primary effective parameter for the rate adaptation. As such, these
strategies are often slow to react to sudden changes in network conditions. In
this paper, we make use of a revenue function which allows us to assign tuneable
weights to not only buffer occupancy but also other effective parameters such
as deadline misses and number of quality changes. Li et al. in [12] presented a
model called PANDA to better probe and adapt to the network conditions in or-
der to reduce the instability of bitrate selection. An experimental evaluation of
rate-adaptation algorithms in adaptive streaming over HTTP has been reported
recently by Akhshabi et al. [13]. They used the Netflix player, Adobe OSMF
player and Microsoft smooth streaming to evaluate the rate adaptation algo-
rithms in their experiments. However, none of these methods considered band-
width statistics to predict the network conditions in different parts of client’s
route in a fast moving environment.

Sobhani et al. [14] designed an intelligent rate adaptation controller to pro-
vide smoother streaming by considering both throughput and buffer size. In
their model, they used a scheduler unit for making the decision about down-
loading or postponing the download of next video chunk in order to prevent
buffer overflow. However, their model is based on Fuzzy logic when we use dif-
ferent MDP algorithms to make the intelligent decision makings. They also used
exponentially weighted moving average (EWMA) of currently observed band-
width to estimate the available throughput while we use bandwidth statistics.

2

Yao et al. [15] and Deshpande et al. [16] have collected bandwidth traces
from 3G networks while driving in a car and using an entropy-based method
have shown that road-segment-based statistics contain more information about
bandwidth compared to global statistics. Authors of [17, 18] have successfully
implemented and tested a platform that allows streaming clients to access band-
width statistics history of a given location in real-time, giving evidence that
location-based streaming optimization is technically viable. Yao et al. [19],
Halvorsen et al. [17], Curcio et al [20], and Singh et al. [18] have investigated
the use of location-based bandwidth statistics to improve video streaming per-
formance. However, none of these approaches have considered the MDP opti-
mization framework that is used in our work.

Cuetos and Ross [21] used MDP to jointly optimize scheduling and error
concealment in layered video, while Mastronarde et al. [22] have recently demon-
strated that the power consumption problem of video decoding can be effectively
modelled as an MDP. In [23], the authors used MDP to model the prefetching
decision problem in adaptive multimedia. In [24, 25], the authors have pro-
posed to use MDP to optimize rate adaption of streaming video where the
uncertainty in network bandwidth is modelled as a Markov chain with its own
bandwidth states. The MDP formulation we used in this paper is closest to the
ones reported in [26, 27]. However, the authors of [26, 27] have neither consid-
ered comparing the MDP benefits against the non-MDP solution considered in
this paper nor they have evaluated the value of using Q-learning in their MDP
implementations.

The basic MDP formulation of DASH was also presented in our earlier pub-
lication [28]. However, the current work extends [28] in the following significant
ways. First, we have included a comparison of MDP against a well-known non-
MDP solution. Second, we have proposed and evaluated a Q-learning-based
MDP implementation that does not require any a priori bandwidth knowledge.
Third, to gain better insights to the working principles of Q-learning-based
MDP, we compared its dynamics against a completely random as well as a com-
pletely deterministic decision maker. Finally, unlike [28], which used only the
Big Buck Bunny clip, we have used a publicly available DASH dataset of 4
different video clips for evaluating the proposed MDP algorithms.

3 MDP Formulation of DASH

An MDP is a tuple (S,A, Psa, Rsa, γ), where S is a set of states, A is a set of
actions, Psa is a transition probability distribution over the state space when
action a is taken in state s, Rsa is the immediate revenue for taking action a
in state s, and γ = [0, 1) is a discounting factor for the revenues collected from
future actions and states. The solution of the MDP is a policy that tells us how
to make a decision, i.e., choose an action when a particular state is observed.
There are many possible policies, but the goal is to derive the optimal policy
that maximises the expected revenue by considering the immediate as well as
the future discounted revenues. In this work, we consider two different methods
to derive the optimal policy, namely value iteration and Q-learning. They have
different strengths and weaknesses and our goal is to compare their performances
in the context of DASH quality decision making. Before we present these two
methods, we explain how we obtain the MDP parameters for a DASH client.

3

System states and decision timings: We observe the system state when a
video chunk is completely downloaded. The system state s(ρ, a) is jointly rep-
resented by the quality level (q) of the downloaded chunk and the amount of
time available (ρ) before its playback deadline. There is a deadline miss if the
chunk download is not completed before its deadline (ρ < 0), in which case
the video is frozen for a while until the chunk is downloaded, and it is played
immediately at that time. Therefore, for a deadline miss, ρ is considered zero
instead of negative.

If there is not enough space remaining in the buffer for another chunk after
storing a downloaded chunk, the decision making and start of downloading the
next chunk stall until there is enough room in the buffer. The value of ρ therefore
assumes the value at the time of decision making (when there is space in the
buffer) instead of when the last chunk was downloaded. This provides an upper
bound for ρ, which is basically controlled by the buffer size. For example, if we
have a buffer with a capacity to hold 7 chunks each 2 seconds long, then the
upper bound for ρ is 14 seconds. Note that chunks have different sizes based on
the quality while in most practical systems a buffer will have a maximum size in
terms of bytes. One way to address this issue would be to configure the buffer
size in bytes using the maximum chunk size, but measure buffer occupancy in
units of chunks stored in the buffer. As most of today’s mobile devices have
enough storage capacity to download the entire video clips, the buffer length is
no longer a concern. Although it is beneficial to increase the buffer length for
streaming in higher quality levels [29], yet it is required to be strictly limited in
order to save the network capacity. Therefore, we chose to consider the video
length (i.e., number of chunks) rather than its bit size to limit the buffer length
of video player [30].

Although ρ is a continuous number between zero and upper bound, we pro-
pose to use a discrete interval system to achieve a finite number of MDP states.
We divide each second into n intervals and use an integer to represent the value
of ρ. For example, for a 7-chunk buffer size holding only 2-sec chunks, n = 2
would give us 7× 2× 2 = 28 different values for ρ. Clearly, the higher the value
of n, the larger the state space becomes, requiring the longer for MDP to be
solved. Fig. 3.1 shows the impact of n on the processing times (PT).

Actions: At each state, the decision taken is referred to as an action. For our
adaptive HTTP streaming system, an action is basically a decision about the
quality level for the next chunk. If we have N quality levels to choose from, then
we have N possible actions. Each action will yield a different probability for
completing the download of the next chunk at a specific time interval and hence
specific value for ρ for the following state. Clearly, an action chosen (decision
made) at the current state will influence the transition probability of reaching
to a specific state at the next step.

Transition probabilities: Fig. 3.2 illustrates a fundamental aspect of tran-
sition probabilities in MDP using a buffer size of 7 chunks and the option of
choosing from two different quality levels, i.e., two actions, a1 and a2. It shows
that the probability of reaching to a particular buffer state depends on what
action is taken. Given the action taken, some transition probabilities will be
clearly zero. For example, if the decision is to download the next chunk in qual-
ity level 3, then in the next step, we are only concerned with calculating the
transition probabilities for states with quality 3; the transition probability to
reach any state with quality level other than 3 would be zero. Given the size of

4

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

n

P
ro

ce
ss

in
g

tim
e

(s
ec

on
d)

Figure 3.1: Computation complexity of MDP2: Processing time (PT) in second to solve
MDP with different values of n. MDP computation was run on a laptop with an i5-3320M-
2.60GHz CPU and 8GB RAM.

a chunk is known, the probability that in the next step the system will arrive
at a state with a specific value for ρ can be calculated using the cumulative
distribution function (CDF) of the underlying network bandwidth as follows.
For T -sec video chunks in N quality levels, and assuming a buffer capacity of
M chunks with n discrete intervals per second for measuring the value of ρ, the
transition probability from state s(i, x) to state s′(j, y) can be obtained using
the following equation, which for 1 ≤ q ≤ N , yields a 3D matrix of size
{(M × T × n+ 1)×N} × {(M × T × n+ 1)×N} ×N :

P q
(i,x)(j,y) = {

0 1 ≤ x ≤ N, y 6= q, 0 ≤ i ≤M × T × n, 0 ≤ j ≤M × T × n
P qij 1 ≤ x ≤ N, y = q, 0 ≤ i ≤M × T × n, 0 ≤ j ≤M × T × n

(3.1)

where P qij is calculated as:

P
q
ij =

0 if

{
0≤ i ≤ (M − 1)× T × n
T × n+ i ≤ j ≤M × T × n

P q(T × n+ i− j) if

{
0≤ i ≤ (M − 1)× T × n
1 ≤ j ≤ T × n+ i

1−
∑T×n+i−1
x=1 P q(x) if

{
0≤ i ≤ (M − 1)× T × n
j = 0

P q
((M−1)×T×n)(j)

if

{
(M − 1)× T × n < i ≤M × T × n
0 ≤ j ≤M × T × n

(3.2)

and P q(x) is calculated as:

P q(x) =

{
1− F (n× S(q)) if x= 1

F
(
n×S(q)
(x−1)

)
− F

(
n×S(q)

(x)

)
if x > 1

(3.3)

where S(q) is the size of a chunk in quality q and F () is the CDF of the
underlying network bandwidth. Note that downloading of next chunk starts

5

Figure 3.2: Transition probabilities in MDP for choosing different actions.

immediately if buffer is not full (i ≤ (M − 1) × T × n), but delayed when the
buffer is full (i > (M − 1) × T × n). The amount of delay will vary depending
on the current state (relative progress or the value of i), but the downloading of
next chunk will commence as soon as the buffer has a space (i = (M−1)×T×n),
i.e., it changes its status from full to non-full, irrespective of the amount of delay.
This means that for all i > (M − 1) × T × n, the transition probabilities are
identical and they are equal to the ones with i = (M−1)×T ×n. Consequently,
T × n+ 1 rows of the transition probability matrix will be identical.

Revenue function: The Revenue function Rq(i, x) uses some rewards and
penalties to evaluate the outcome when action q is chosen at state s(i, x):

Rq(i, x) = u(q)− d(i, q)− c(x, q) (3.4)

where u(q) is a reward to watch a chunk in quality q, d(i, q) is a penalty if a
deadline is missed, and c(x, q) is a penalty for changing a quality level from the
last chunk to the next. Note that u(q) and c(x, q) can be derived immediately
from predefined tables without observing or knowing the next state. The dead-
line miss penalty d(i, q), however, depends on the next state and can be derived
as a function of the probability that the next chunk will miss its deadline:

d(i, q) =

{
1−

T×n+i∑
x=1

P q(x)

}
×D (3.5)

where
{

1−
∑T×n+i
x=1 P q(x)

}
is the probability of missing the deadline (the prob-

ability that the next chunk does not arrive in any of the intervals before the
deadline) and D a constant that we can use to tune the MDP model. We can
reduce the number of deadline misses by selecting a large value for D, and vice
versa. If the solution method does not have access to the transition probabil-
ities, which is the case with Q-learning as will be explained later, we can wait
until the next state is observed and derive the deadline penalty as follows:

d(i, q) =

{
0 if no deadline miss

DQ otherwise
(3.6)

where DQ is a constant that can be used to tune the MDP model.
It should be clear that the parameters of the revenue function allow us to

tune the MDP algorithm according to the importance of certain outcomes. For

6

example, if deadline miss is to be absolutely avoided, then a large value must
be selected for D or DQ. Similarly, if watching the video in the highest quality
is of prime interest, then large reward values should be chosen in u(q) for the
largest q.

4 MDP Solution Methods and Algorithms

As mentioned in the previous section, there are two well known methods for
solving an MDP, value iteration and Q-learning. Value iteration assumes a
priori knowledge of state transition probabilities and using it to derive the
optimal policy before the system starts its operation. On the other hand, Q-
learning assumes no a priori knowledge of transition probabilities, but learns the
optimal policy on-line as actions are taken and states are observed. In essence,
these two methods allow trading learning time with a priori knowledge. We
briefly introduce these two methods followed by a set of proposed algorithms
for a DASH client to make decisions using MDP.

4.1 Value Iteration

The core idea is to use the transition probabilities to work out the future states
and then calculate the expected total revenue or value V (s, a), i.e., for a given
action a taken in a given state s [31]. The action that provides the maximum
revenue for a given state s is selected as the optimal action for that state. Opti-
mal actions for all states then constitute the optimal policy. The values can be
computed using the following algorithm that repeats the process until it con-
verges, i.e., no value change by more than a small number δ:

1. For each state-action pair, initialise V (s, a) = 0.

2. Repeat until convergence
V (s, a) = R(s, a)+maxγ

∑
s P (s, a, s′)V (s′, a′).

As shown in the previous section, the transition probabilities for DASH are
basically obtained from the bandwidth CDF. Value iteration, therefore, requires
a priori knowledge of bandwidth CDF, which may or may not be available to
a DASH client. Next, we show how Q-learning can make optimal decisions
without having to know the transition probabilities of bandwidth CDF.

4.2 Q-learning

In this technique [32], a Q matrix which defines the values of every state s if
action a is taken is initialised with zero. Whenever the DASH client starts out
in state s, takes action a, and ends up in state s′, it updates Q(s, a) as 1:

Q(s, a) ← (1− α)Q(s, a) + α[R(s, a, s′) + γmaxaQ(s′, a′)]

where α is the learning rate. When state s is observed, the Q matrix, or the
particular row in the matrix for state s, is used to make the decisions in the

1Note that we use the expanded notation R(s, a, s′) because the next state has to be
observed in Q-learning before the revenue can be calculated.

7

following way: choose the action that provides the maximum value based on
the current estimates in Q for most of the time, but a random action the rest
of the time. We use the Boltzmann distribution function for this probabilistic
decision making purpose in the following way:

f(s, a) =
eQ(s,a)/θ∑
j e
Q(s,aj)/θ

(4.1)

where f(s, a) is the probability of selecting action a when in state s, and θ,
often referred to as temperature, controls the degree of randomness in choosing
an action. With large θ, actions will be fairly randomly selected irrespective
of the values in Q, but for a small θ closer to zero, the best action based on
Q values will be selected with high probabilities. For a DASH client with no a
priori knowledge of the bandwidth, it is useful to begin with a large θ so the
client makes mostly random decisions and learns from its observations. As it
continues to learn, the Q values are used more often to make the decisions.

4.3 Quality Selection Algorithms for DASH Clients

In the previous subsections, we reviewed two well known methods to derive the
optimal decision making in an MDP. In this section, we propose three practical
algorithms for a DASH client based on these methods. The first two algorithms,
MDP1 and MDP2, are based on value iteration, while MDP3 uses Q-learning.

MDP1: For this algorithm (Algorithm 1), we assume that the bandwidth
model or bandwidth map [19], i.e., the distribution and its parameters, of every
road segment is continuously measured, studied, and made available as a service
by a third party. The DASH client simply uses the bandwidth CDF available
from such bandwidth maps to solve the MDP once at the beginning of a trip,
or until there is an update of the bandwidth map, using the value iteration. It
then uses the optimal policy, which is a deterministic mapping between states
and actions (quality levels), throughout the trip to select video quality level.

Algorithm 1

1: Load the bandwidth map of the route
2: Calculate Psa and derive optimal policy π using value iteration
3: Download the first chunk using the lowest quality
4: REPEAT
5: Calculate state s using remaining time to the playback deadline
6: Select quality level for next chunk as a = π(s)
7: Download the next chunk using quality a
8: CONTINUE

MDP2: While bandwidth maps provide the a priori knowledge necessary
for value iteration, such services may not be always available. However, a DASH
client could use its own experiences to build a personal bandwidth map [33]
incrementally as the user travels the same route over and over again. We propose
MDP2 (Algorithm 2) to take advantage of such personal bandwidth maps to
solve value iteration each time the map is updated significantly, which could
occur even inside a given trip.

MDP3: Finally, we propose MDP3 (Algorithm 3) which uses Q-learning to
make optimal decisions without having to know the bandwidth models.

8

Algorithm 2

1: Load the current version of the personal bandwidth map
2: Calculate Psa and derive optimal policy π using value iteration
3: Download the first chunk using the lowest quality
4: REPEAT
5: Update personal bandwidth map
6: IF bandwidth map changes significantly
7: Recompute optimal policy using value iteration
8: ENDIF
9: Calculate state s using remaining time to the playback deadline

10: Select quality level for next chunk as a = π(s)
11: Download the next chunk using quality a
12: CONTINUE

Algorithm 3

1: Initialize Q to zero
2: Download the first chunk using the lowest quality and observe next

state
3: REPEAT
4: Update Q
5: Calculate Boltzmann probability and use it to select quality q

of next chunk
6: Download the next chunk using quality q and observe next state
7: CONTINUE

5 Non-MDP Adaptation

While there exists many streaming algorithms, the rate adaptation algorithm [6]
has been considered as a representative of non-MDP solutions for DASH in this
paper due to its recent references in the literature (e.g., [34], [35], and [36]). In
the following, we provide a brief overview and discuss some modifications that
were made while implementing this scheme.

This algorithm generally uses two different parameters to switch the qual-
ity up or down. However, as a result, this only achieves one fixed trade-off
point among streaming quality dimensions (i.e., average quality, quality change
and deadline miss). In our MDP approach, by varying the weights of quality
change and deadline miss penalties, we get a wide range of streaming options
with various combinations of the quality dimensions. The single result of rate
adaptation algorithm can be one of the MDP results which in first place shows
the advantage of MDP. We chose to vary the switch up and down thresholds to
achieve more streaming performance options and have a more fair comparison
with the MDP strategy as following:

First, we define µ as the ratio of media segment duration to segment fetch
time which detects congestion and probes the spare network capacity as:

µ =
MSD

SFT
(5.1)

where MSD denotes the media segment duration and SFT is the current
segment’s average fetching time. Then, we use the switching up and down for
bitrate adaptation as:

switch up if µ > (1 + ε)× α (5.2)

9

where α is a tuning parameter and used to vary the switch up and achieve
various combination of the three streaming quality dimensions. In our simula-
tions we varied α from 0 to 1 with the incremental step of 0.1 (α = 1 in the
original paper). ε is the switch up factor which can be determined as:

ε = max

{
Br(i+ 1)−Br(i)

Br(i)
, ∀i = [0, 1, ..., N − 1]

}
(5.3)

where Br(i) denotes the encoded media bitrate of quality level (i) and N is
the highest available quality level.

switch down if µ < λ (5.4)

where λ is the switch down threshold that effects the streaming performance.
In simulations we vary λ from 0 to 1 with 0.1 incremental step (λ = 0.67 in
the original paper). We also need to limit the maximum amount of buffered
media data in order to save network bandwidth consumption as well as memory
resources of the receiver. Therefore, we use the idle time calculation to prevent
the client buffer overflow as prescribed in the original paper [6].

6 Simulations

In this section, we outline the simulation setup that we have used to evaluate
the proposed video streaming approach. We first provide an overview of the
vehicular mobile bandwidth dataset that are used in the evaluations. This
is followed by the details of the video clips and video dataset used to drive
the simulations for MDP1, MDP2 and MDP3 clients. Finally, we present the
parameters used by the MDP to derive the optimal strategies.

In our MATLAB simulator, we use pre-collected bandwidth traces and start
to fetch the first video chunk at time 0 and quality q. Then, the fetching time
is calculated based on current available bandwidth in the testing trip and the
system time gets updated. For each video chunk we choose one of the available
bitrates based on streaming policy of the algorithm we use. Three video quality
dimensions, i.e., bitrate, stability (quality changes) and freezing (deadline miss)
are stored after receiving every video chunk. The average of these numbers over
multiple testing trips will be used in our evaluations.

6.1 Vehicular bandwidth dataset

We use the real-world vehicular bandwidth traces collected empirically by Yao et
al in our experiments. [15]1. The dataset provides measurement of the downlink
mobile bandwidth at approximately every 10s while driving along a route in
the city of Sydney. The route is 24 Km long and typical drive time ranges
from 22 to 30 minutes. The bandwidth measurements were tagged with the
GPS coordinates and time. Measurements were conducted simultaneously for
two 3G providers. In this paper, we use the traces from one provider. Table 6.1
illustrates an example of 6 measurements in a given trip. Column one represents
the time when samples are recorded, column two and three are the geographical

1This dataset is available on-line at:
http://www.cse.unsw.edu.au/∼mahbub/PDF Publications/Sydney bandwidth
2008.zip.

10

Table 6.1: Illustrative Example of Bandwidth Traces

time latitude longitude bandwidth (Kbps)
1 1186549400 -33.919785 151.228913 1663.1440
2 1186549410 -33.919635 151.227787 1964.7330
3 1186549420 -33.91958 151.227322 2038.8659
4 1186549430 -33.91958 151.227322 2011.2631
5 1186549440 -33.91953 151.22692 1838.6578
6 1186549450 -33.91905 151.226322 1208.2767

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bandwidth (Kbps)

C
D

F

Empirical CDF
Normal CDF

Figure 6.1: Normal Vs. Empirical CDFs of bandwidth samples.

coordinates and last column is the measured downlink bandwidth. 71 repeated
trips were made along this route, resulting in a total of 71 bandwidth traces.
This dataset therefore provides a rich set of historical bandwidth observations
for a vehicular route. More detailed descriptions of the dataset including the
hardware and the measurement methodology are available from [15,19].

In our simulations, data from 65 traces, totalling 12649 samples, are used
to build the bandwidth statistics. We first investigate if the bandwidth can
be approximated by a known distribution. Assuming a normal distribution we
compute the mean and standard deviation of the collective samples, µ = 1518.35
Kbps and σ = 503.10 Kbps. In Fig. 6.1, we plot the empirical CDF of the band-
width and compare it with the CDF assuming that the bandwidth is normally
distributed (using the above computed µ and σ). One can readily observe that
two CDFs are very similar thus indicating that the bandwidth can be assumed
to be normally distributed. This is an important observation because it al-
lows the MDP1 client to simply store the µ and σ of each given route and use
them for calculating the normal CDF. This also simplifies the calculation of the
transition probabilities (P) and revenues (R) as discussed earlier in Section 4.
This procedure, which is adopted in our simulations, significantly reduces the
implementation complexity of the MDP1 strategy.

6.2 Video Clips and DASH Dataset

We carried out two sets of simulations each with different set of video clips.
In the first instance, we used the Big Buck Bunny movie [37]. The original
clip was only 9:56 min long, but we repeated the movie until the end of a trip.
We created five different quality versions of the movie. We used ffmpeg [38] to
encode the original video file using bit-rates of 186 kbps (quality 1), 499 kbps

11

Figure 6.2: Five different quality levels for Big Buck Bunny.

Table 6.2: Mean, standard deviation, and coefficient of variance (Cv) of 2-sec chunk size (in
Kb)

q1 q2 q3 q4 q5

µ 375.29 938.77 2027.54 2360.88 3513.08

σ 10.91 122.22 255.82 351.84 874.84

Cv 0.03 0.13 0.13 0.15 0.25

(quality 2), 1101 kbps (quality 3), 1292 kbps (quality 4) and 1898 kbps (quality
5). Fig. 6.2 illustrates one particular frame of this video encoded at these
5 different quality levels. Each video stream was multiplexed with a common
128 kbps audio file to form a corresponding single MPEG-2 TS stream. The
resulting stream is divided into 2 second chunks. We compute the average and
variance of the chunk sizes for each quality of the movie. As observed in Table
6.3, the variance is small, so in our simulations we use the average chunk size
instead of their exact sizes for all of video chunks (EQ. 3.3 shows how chunk size
is used in calculating transition probability). This video clip is used to illustrate
all the major results obtained in this paper.

For the second set of simulations we used a publicly available DASH dataset
[39]. This dataset has video chunks and manifest files available for many differ-
ent video clips. We used data for the following 4 different video clips: Elephant
Dream, Of Forest and Men, The Swiss Account, and Valkaama. The details of
these clips are shown in Table 6.3.

6.3 MDP Parameters

As explained in the previous sections, MDP is a flexible optimization framework,
the outcome of which can be influenced to prioritise any of the three dimensions

12

Table 6.3: Mean, standard deviation, and coefficient of variance (Cv) of 2-sec chunk size (in
Kb) for 5 different video clips. All video chunks and manifest files are freely available at [39])

Clips q1 q2 q3 q4 q5
Rate (kbps) 200 500 1200 1500 2000

Elephant µ 350.90 746.02 2016.13 2403.12 2918.83
Dream σ 64.53 234.43 488.93 672.67 1019.38

Cv 0.18 0.31 0.24 0.28 0.35
Rate (kbps) 200 500 1100 1400 2000

Of Forest µ 362.03 923.58 1960.10 2471.02 3439.16
and σ 63.32 438.16 402.21 544.97 902.57
Men Cv 0.17 0.47 0.21 0.22 0.26

Rate (kbps) 200 500 1200 1500 2000
The µ 340.40 845.07 1890.00 2575.12 3376.19
Swiss σ 45.66 196.09 387.60 399.81 572.13

Account Cv 0.13 0.23 0.21 0.16 0.17
Rate (kbps) 200 500 1100 1400 2000

µ 342.67 861.24 1933.92 2418.73 3646.90
Valkaama σ 48.49 183.47 261.34 381.74 444.59

Cv 0.14 0.21 0.14 0.16 0.12

of streaming performance (i.e., picture quality, quality change and deadline
miss) by adjusting its reward and penalty parameters. For MDP1 and MDP2
strategies, we keep the reward parameters fixed as shown in Table 6.4, but vary
the deadline (D) and quality change (C) penalties. The value of D is varied
between 2 and 5000 and C is varied as a factor of the base values shown in
Table 6.5 (we considered 10 different factors between 0.1 to 1.9). The values of
other MDP parameters are: N= 5, M= 7 and n= 2 andγ (discount factor)=
0.9. For MDP3, we change the reward to u(q) = u(q) × 10, to encourage the
Q-learning selecting higher quality levels. α = 0.9, γ = 0.9, θ is initiated with 15
and ε = 0.005. All of these values are found to be the most appropriate tuning
options among many trials.

Table 6.4: Reward function

quality level (q) 1 2 3 4 5

u(q) 1 2 4 7 10

Table 6.5: Base penalty values for changing quality level from i to j

i\j 1 2 3 4 5

1 0 1 5 10 25

2 10 0 1 5 10

3 50 10 0 1 5

4 250 50 10 0 1

5 500 250 50 10 0

7 Results

In this section, we present the simulation results to demonstrate the efficacy
of MDP-based adaptive streaming. First, we explain the inherent flexibility
of MDP that allows the client to control the trade-off between deadline miss
and the picture quality. Second, we provide a quantitative comparison between

13

Table 7.1: MDP streaming performance as a function of penalty values. The columns show
different values of quality change penalty and the rows show the deadline miss penalties.

D\C 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

195.4 202.8 207.0 230.4 268.8 277.4 280.8 282.6 282.8 286.4
10 4.74 4.74 4.75 4.77 4.80 4.81 4.81 4.82 4.81 4.81

47.60 34.00 26.40 20.80 14.60 13.80 13.00 12.60 12.00 10.80

66.80 62.60 60.00 59.80 55.20 52.40 54.20 51.40 48.40 43.20
15 4.58 4.57 4.57 4.56 4.55 4.54 4.54 4.52 4.50 4.44

61.40 48.80 39.80 34.20 32.00 31.20 30.40 29.20 27.40 24.60

48.00 46.80 47.80 44.20 39.60 41.60 36.20 33.40 30.20 27.60
20 4.55 4.55 4.54 4.54 4.53 4.52 4.47 4.43 4.37 4.32

64.00 46.20 39.60 34.60 32.40 32.00 28.40 26.00 23.00 20.60

40.80 36.60 37.60 37.40 34.40 30.80 31.20 26.60 26.80 25.60
24 4.53 4.53 4.53 4.52 4.50 4.45 4.41 4.34 4.30 4.25

65.60 47.20 40.20 37.20 33.20 28.80 27.20 21.60 20.20 17.00

28.00 32.40 32.60 32.20 33.40 30.20 27.60 24.60 24.00 20.00
27 4.51 4.52 4.51 4.50 4.47 4.41 4.33 4.29 4.27 4.21

73.40 47.20 41.80 37.20 33.60 26.80 23.60 20.00 20.20 16.20

22.40 27.60 29.80 29.60 26.60 25.60 23.60 24.00 23.20 21.80
30 4.50 4.50 4.50 4.47 4.42 4.35 4.30 4.28 4.23 4.20

78.80 51.20 44.80 36.40 30.40 26.00 21.60 20.80 17.80 16.20

10.60 13.20 17.60 16.80 15.00 15.20 16.40 17.40 16.60 16.60
50 4.44 4.42 4.35 4.27 4.22 4.20 4.18 4.17 4.16 4.15

87.20 72.60 54.80 42.60 28.00 26.40 21.60 18.40 17.80 16.20

7.40 8.40 12.20 11.80 12.00 12.00 11.60 12.60 12.00 12.40
70 4.41 4.36 4.26 4.19 4.18 4.15 4.14 4.14 4.12 4.11

98.20 73.80 52.40 42.80 33.60 29.20 26.20 24.60 23.20 22.40

5.20 6.20 6.20 5.80 6.80 6.60 6.80 9.20 8.40 8.00
100 4.37 4.26 4.20 4.14 4.12 4.11 4.10 4.09 4.06 4.05

107.2 65.40 47.00 39.60 35.60 33.60 28.80 26.80 26.00 23.40

4.40 5.20 5.80 5.00 5.20 5.00 4.60 5.20 4.60 6.60
130 4.31 4.22 4.14 4.12 4.10 4.09 4.08 4.04 4.02 4.03

107.2 62.80 41.20 36.80 36.00 32.20 27.60 25.20 23.40 22.40

4.00 5.80 5.60 6.00 5.00 4.20 4.20 4.80 4.20 4.60
150 4.28 4.18 4.12 4.11 4.09 4.08 4.05 4.01 4.01 4.02

107.0 57.20 40.60 38.20 36.20 33.00 29.20 24.40 23.00 23.80

. .

MDP-based and the state-of-the-art non-MDP-based adaptation strategies. Fi-
nally, we compare the performance of model-based vs model-free MDP strate-
gies.

7.1 Deadline Miss Vs. Quality Trade-off with MDP

Table 7.1 shows the average streaming performance of MDP2 client for various
combinations of deadline miss penalty D (rows) and quality change penalty C
(columns). For each combination of D and C, the three real numbers represent
the performance in three dimensions. The top number represents the number
of deadline miss (DM) for the video session, the middle represents the average
chunk quality (AQ), and the bottom represents the number of times quality was
changed (QC) in the session. All these numbers are averaged over six test trips,
from trip 66 to trip 71, streaming the Big Buck Bunny video clip. Note that
each deadline miss will cause the video to freeze, which is considered one of the
most important quality of experience metrics for video streaming.

Table 7.1 clearly demonstrates the extensive opportunity for tuning the per-
formance of MDP. For instance, by setting a high value for D, say D=150 (last
row), one can keep the deadline misses to a minimum (only 4 deadline misses
for the entire trip). Moreover, for a selected value of D (say D = 150), one can
either set a small value for C (say 0.1) which affords a high quality viewing ex-
perience (average video quality level of 4.28) but with a large number of quality
changes (107), or chose a large value for C (1.9) which significantly reduces the
number of quality changes (23.8) albeit with a slightly lower AQ of 4.02.

Fig. 7.1 further illustrates the flexibility afforded by MDP using a scatter
plot of the DM and AQ values obtained from many different combinations of
D and C settings. In particular, we observe that for a given AQ it is possible
to trade-off between DM and QC (the size of circles indicates the QC). See for

14

3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6
0

10

20

30

40

50

60

70

Average Quality (AQ)

D
ea

dl
in

e
M

is
s

(D
M

)

y = p1*x10 + p2*x9 +
 p3*x8 + p4*x7 +
 p5*x6 + p6*x5 +
 p7*x4 + p8*x3 +
 p9*x2 + p10*x +
 p11

Coefficients:
 p1 = 47800
 p2 = −1.9685e+06
 p3 = 3.6416e+07
 p4 = −3.985e+08
 p5 = 2.8567e+09
 p6 = −1.4017e+10
 p7 = 4.7673e+10
 p8 = −1.1098e+11
 p9 = 1.6923e+11
 p10 = −1.5263e+11
 p11 = 6.183e+10

Norm of residuals =
 69.686

Figure 7.1: Scatter plot of AQ and DM data. The size of each circle corresponds to the
number of QC with larger circles denoting more QC, and vice versa.

example AQ values between 4 and 4.5. In this interval, we have different DM for
the same AQ, but smaller DM is achieved with larger QC, as the system has to
switch to a lower quality more often in order to avoid a potential deadline miss.
We further observe that MDP yields a non-linear trade-off between video quality
and deadline misses with the number of deadline misses increasing rapidly if we
try to watch the video in very high quality. It is however difficult to find a
good fit to analytically capture this tradeoff (the purple curve shows the best
fit, which is a ninth degree polynomial).

For the remainder of this section, we will use this trade-off to compare various
approaches to streaming adaptation. One approach would be considered better
than the other if it achieves a better trade-off, i.e., less DM for similar AQ or
higher AQ for similar DM.

7.2 MDP vs. non-MDP

In this section, we will consider MDP1 as a representative implementation of
MDP as this is the most basic implementation options among the three. Now,
to compare the performance of MDP and non-MDP algorithms, we must first
find a way to derive the deadline misses vs. quality trade-off curves for both
algorithms. As explained in Section 5, for the non-MDP algorithm, we can study
the trade-off curve by considering a range of values for the two parameters, α
and λ (default values of 1 and 0.67 respectively). The lower the values of these
parameters, the higher the picture quality and conversely, greater the number
of deadline misses encountered. For the trips 66-71, Table 7.2 shows the multi-
dimensional performance of the non-MDP algorithm (in a similar manner as
Table 7.1 for the MDP algorithm) when streaming Big Buck Bunny video clip.
These values are then used in Fig. 7.2a to compare the trade-off curves of the
non-MDP algorithm against that of the MDP algorithm. Each resulting point
in this graph is the average of 12 results in each column. The values of α and
λ are varied between 0 and 1 with granularity of 0.1 first, then 18 more values
between 0.5 and 0.7 with incremental step of 0.01 are added to the α values to
have more result points within the quality range of 3.8 to 4.5.

We observe that the MDP algorithm provides a much better trade-off be-
tween deadline miss and quality compared to the non-MDP strategy, especially

15

Table 7.2: Performance of the Rate Adaptation Algorithm (i.e. non-MDP) . Different results
achieved by varying α and γ which are used to make the decision for switching the streaming
bit-rate up and down respectively. Switch up when µ < (1 + ε) × α and switch down when
µ < γ. Based on Liu et all. [6] α = 1 and γ = 0.67 are the default settings. (Video Clip: The
Swiss Account)

λ, α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

535.6 535.6 535.6 535.6 535.8 530 428 370.8 353.4 351.6 350.4
0 4.99 4.99 4.99 4.99 4.98 4.97 4.76 4.58 4.40 4.25 4.25

4 4 4 4 4 4 4 3.8 3.8 3.6 3.6

535.4 535.4 535.4 535.4 533.2 523 377.2 334.4 316.6 314.6 313.4
0.1 4.98 4.98 4.98 4.98 4.98 4.97 4.67 4.45 4.26 4.17 4.17

6 6 6 6 6 6 5.8 5.6 5.6 5.6 5.6

531.6 531 531 530.6 528.4 489 321.8 200 149.4 141.8 140.6
0.2 4.98 4.98 4.98 4.98 4.96 4.90 4.57 4.16 3.85 3.69 3.69

11.6 12 12 12 11.6 11 10.4 9.4 9.4 9 9

532.2 532.6 529 529 519.6 432.2 258 122.8 95.2 88.4 88.4
0.3 4.97 4.97 4.97 4.96 4.94 4.81 4.45 4.02 3.62 3.50 3.50

19.2 19.6 18.8 18.8 18.2 18.6 16 14.6 13.2 12.8 12.8

526.4 526.8 516.2 509.6 504.4 370.8 177 81 37.8 32 32.2
0.4 4.97 4.96 4.95 4.94 4.89 4.72 4.27 3.82 3.47 3.40 3.39

32.8 33.2 35.2 33.2 32.6 29.8 25.2 20 17 15.8 15.8

513.6 513.8 502.2 492 480.2 318.4 134.6 61.2 29.4 27.4 27.2
0.5 4.94 4.94 4.92 4.89 4.84 4.63 4.18 3.72 3.34 3.27 3.26

62.4 63.2 69.6 52.8 51 42.8 33.6 27.2 23.2 21.6 21.6

502.8 502.6 485.8 473 440.4 232.8 67.6 18.6 9.6 10.8 9.4
0.6 4.91 4.91 4.87 4.82 4.73 4.48 4.00 3.52 3.24 3.15 3.13

115.6 116.4 128.4 103.6 80.2 64 49.6 37.6 31.2 28 27.6

502.2 500.4 477.2 458.6 407.4 157 25.6 15.8 9.4 8.8 8.8
0.67 4.87 4.87 4.83 4.76 4.63 4.37 3.90 3.48 3.21 3.12 3.10

180.4 180 192.6 176.6 112 88.8 62 44.4 38 35.6 35.2

493.4 494.8 476.2 447 394.8 134.8 21 13 8.8 8.4 8.2
0.7 4.85 4.85 4.82 4.73 4.60 4.33 3.87 3.46 3.19 3.10 3.08

203 203.8 214.2 205.8 121.2 96 66.4 48 39.6 36.8 36

423.8 422.8 402 358.2 263.6 37.2 9.6 8.4 6 5.6 5.8
0.8 4.76 4.76 4.72 4.60 4.44 4.14 3.73 3.36 3.09 3.02 3.00

349.4 351.4 362.2 388 264.8 147 96.4 62 51.2 47.2 45.2

310 307.4 293.8 233.4 83.6 11.4 7.2 6.4 5.6 5.6 5.4
0.9 4.65 4.65 4.61 4.47 4.25 3.99 3.62 3.27 3.04 2.97 2.95

530.6 533.4 543.8 578 477.4 189.2 124.2 80.8 62 57.6 56

231.6 225 209.6 154.6 24.6 9.2 7.6 6.2 5.8 5.8 5.2
1 4.58 4.57 4.54 4.40 4.12 3.84 3.48 3.19 3.00 2.94 2.91

663.6 665 676.4 710.4 676.2 321.2 160 109.6 77.2 67.4 65.4

if the user wishes to watch the videos in higher qualities. For example, when
watching the video at an average quality level of 4, the MDP algorithm misses
only 2 playback deadlines during the entire trip on average compared to 20 for
the non-MDP. Similarly, users experience 18 more DM if the AQ is increased
from 3.8 to 4.15, and a further 43 if the AQ is lifted slightly from 4.15 to 4.25.
In contrast, users can expect only 4 DM for an AQ increase from 3.8 to 4.15 and
a further 9 for an AQ increase from 4.15 to 4.25. Overall, for the AQ interval
between 3.8 and 4.3, which can be considered a high picture quality range for
our experiments, the non-MDP would freeze the video 22.5 times on average
in comparison to only 5.7 times caused by the MDP algorithm. This means
that for high quality viewing, the MDP solution can reduce DM by a factor
of 4 compared to non-MDP solutions. We have repeated the simulations with
4 other video clips of Table 6.3. As shown in Fig. 7.2b and Table 7.3, MDP
significantly outperforms the non-MDP algorithm for all of these clips with the
maximum and average DM reductions being 15x and 8x, respectively.

7.3 Model-based vs. Model-free MDP strategies

MDP1 requires a priori knowledge of the bandwidth model to arrive at the
optimal decision making strategy. Because it may not be always possible to
obtain this prior knowledge, we considered a model-free MDP implementation,
i.e., MDP3, which is based on Q-learning. MDP3 learns the optimal decision
over time as it observes the outcomes of its decisions, thus obviating the need
for the a priori knowledge of the bandwidth model.

16

3.8 3.9 4 4.1 4.2 4.3 4.4
0

10

20

30

40

50

60

70

80

Average Quality (AQ)

D
ea

dl
in

e
M

is
s

(D
M

)

non−MDP
MDP1

18 more freezes

4 more
freezes

9
more freezes

43
more freezes

(a)

3.9 4 4.1 4.2 4.3 4.4 4.5
0

50

100

150

200

250

Average Quality (AQ)

D
ea

dl
in

e
M

is
s

(D
M

)

non−MDP clip1
non−MDP clip2
non−MDP clip3
non−MDP clip4
MDP1 clip1
MDP1 clip2
MDP1 clip3
MDP1 clip4

non−MDP

MDP1

(b)

Figure 7.2: Comparison between MDP1 and non-MDP algorithms. MDP1 significantly
outperforms non-MDP algorithm by achieving less DM for the same AQ. Testing trips: 66-71,
(a) Big Buck Bunny, (b) Different video clips: 1- Elephant Dream, 2- Of Forest and Men, 2-
The Swiss Account, 4- Valkaama

17

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

D
M

trip #

QL
Random

(a)

0 10 20 30 40 50 60 70
0

1

2

3

4

5

A
Q

trip #

QL
Random

(b)

Figure 7.3: Comparing MDP3 (Q-learning) against a random decision maker (DQ=15000,
θ = 15, ε = 0.0005)

18

Table 7.3: Comparison between MDP1 and non-MDP algorithms: Average number of DM
within AQ range of 3.9 - 4.5

Avg DM/trip
Video Clip MDP non-MDP DM reduction

1 Elephant Dream 2.24 35.46 15.83x
2 Of Forest and Men 11.98 68.58 5.72x
3 The Swiss Account 11.69 61.91 5.30x
4 Valkaama 8.03 103.55 12.89x

µ 8.48 67.37 7.94x

In this section, we first study the performance dynamics of MDP3 and
then compare it with the model-based MDP implementation that incremen-
tally learns the model, i.e., MDP2. We choose to compare MDP3 with MDP2
instead of MDP1 because both MDP3 and MDP2 attempt to learn the opti-
mal decision as more trips are being made. The difference between them is that
MDP2 learns the model and uses the model to derive the optimal strategy using
value iteration, whereas MDP3 uses Q-learning to learn optical decision mak-
ing. Similar to previous results, we vary the penalty values to achieve different
performance results.

Observing the dynamics of Q-learning

As mentioned in Section 4, Q-learning selects its decisions probabilistically from
the set of available actions with the weights for different actions influenced by
the current state of the Q matrix. We also explained that the probability of
selecting a particular quality level (action) is further modified by the Boltzmann
distribution to ensure that the MDP client makes more random decisions in
the beginning to allow adequate learning and slowly handing it over to the
Q matrix to make more intelligent decisions as time goes on. It would be
therefore interesting to see how MDP3 compares with a decision maker that
always make random decisions, i.e., selects any one of the 5 video quality levels
with a probability of 0.2.

Fig. 7.3 shows that, in the beginning, MDP3 performs similar to the random
decision maker. However, as more trips are made, MDP3 clearly outperforms
the random decision maker in AQ (Fig. 7.3b). As it’s hard to capture from Fig.
7.3a, we look at Table 7.5 where we can see that on average MDP3 misses less
number of deadlines (i.e., 3.97 vs. 4.81). Table 7.4 shows that the Boltzmann
probabilities are identical for all the 5 available quality levels in trip 1, but they
change significantly in trip 33 as a result of the learning process. In particular,
quality 5 has very high probability while the probabilities for all other quality
levels are very small, implying that quality 5 will be selected most of the times.
This observation clearly validates the fundamental principle of Q-learning.

Table 7.4: Boltzmann probability distribution (P)

a 1 2 3 4 5
seg:1, trip:1 P 0.2 0.2 0.2 0.2 0.2
seg:1, trip:33 P 0.0088 0.0088 0.0088 0.0885 0.885

19

Table 7.5: Comparing MDP3 outcomes against those of random and deterministic decision
makers over 71 trips

MDP3 Random Deterministic
AQ 3.78 2.99 3 4 5
DM 3.97 4.81 4.35 8.38 309.1

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

P

trip #

1
2
3
4
5

quality 4

quality 5

(a) Low risk state

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

P

trip #

1
2
3
4
5

quality 5

quality 4

quality 3

quality 1

(b) Medium risk state

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

P

trip #

1
2
3
4
5

quality 2, 3, 5

quality 4

quality 1

(c) High risk state

Figure 7.4: Convergence of Boltzmann probabilities in high, medium and low risk states

20

0 10 20 30 40 50 60 70
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

D
M

 r
at

e

trip #

Tune 1
Tune 2

(a)

0 10 20 30 40 50 60 70
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

A
Q

trip #

Tune 1
Tune 2

(b)

0 10 20 30 40 50 60 70
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

D
M

 r
at

e

trip #

Tune 1
Tune 2

(c)

0 10 20 30 40 50 60 70
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

A
Q

trip #

Tune 1
Tune 2

(d)

Figure 7.5: Learning with MDP2 (a, b) and MDP3 (c, d) for Big Buck Bunny

21

Next, we compare the Q-learning against a deterministic decision maker
that always selects a particular action and never selects any other actions. Note
that there is no learning involved in both random and deterministic decision
makers. For the deterministic decision maker, we evaluate its performance for
three different quality levels, 3, 4, and 5. Table 7.5 summarises the average
results over 71 trips. As we can see MDP3 outperforms both the random as
well as the deterministic decision makers, highlighting the value of Q-learning.

Finally, Fig. 7.4 shows how the Boltzmann probabilities converge over time
giving higher weights to different quality levels for different states. A low risk
state is the one when the playout buffer is full, i.e., the there is plenty of time
until the playback deadline for the next chunk to be downloaded. Similarly, high
risk means the playout buffer is empty and medium risk represents a half-full
buffer. We see that for the low risk state (Fig. 7.4a), the probabilities converge
in a way such that the probability of quality 5 is extremely high compared to
all other probabilities, which allows MDP3 to select quality 5 most of the time
as the risk of DM is very low. In contrast, for the high risk state (Fig. 7.4c), the
situation is reversed with quality 1 having extremely high probability. For the
medium risk state (Fig. 7.4b), both 3 and 4 have higher probability compared
to the rest of quality levels, allowing MDP3 to achieve an AQ between 3 and 4.

Comparing MDP2 and MDP3

Next, we compare MDP3 against MDP2 to study whether Q-learning has any
benefit over model learning, which could be achieved using only the personal
bandwidth maps generated by the mobile device. Figure 7.5 plots the DM rates
(average number of DM per chunk) and the AQ as a function of the number
of trips made for different values of the deadline miss penalties. We make two
important observations:

• MDP2 is more sensitive to parameter tuning than MDP3. This is clearly
seen in the DM rates, where MDP2 achieves significantly different DM
rates depending on the penalty values selected. In contrast, DM values
are not sensitive to the penalty values for MDP3. While AQ values are
sensitive to parameter tuning when learning occurs (at the beginning),
over time they converge to similar values for MDP3. However, for MDP2,
AQ values diverge for different parameter settings. This can be attributed
to the fact that unlike MDP2, MDP3 makes its decisions probabilistically,
which does not tie it rigidly to a particular parameter setting. This can
be of advantage in vehicular context where bandwidth models cannot be
known perfectly and some deviations from the model used in the derivation
of the optimal strategy is more realistic.

• MDP3 reduces DM significantly compared to what can be achieved with
MDP2 for the comparable AQ. Considering the case when the performance
has converged, i,e, after 15 trips, we find that MDP3 achieves similar AQ,
but about 3x less DM compared to MDP2. Again, this performance dis-
crepancy can be attributed to the fact that models are only estimates
of the bandwidth; as such, MDP2, which uses bandwidth models to de-
rive the optimal strategy and then sticks to that strategy, is bound to
suffer from any unexpected bandwidth experiences. On the other hand,
Q-learning is model free, which frees MDP3 from any model related issues.

22

8 Conclusions and Future Works

Using publicly available DASH datasets, we have evaluated the benefits of using
MDP for adaptive multimedia streaming. We have found that, comparing to a
well-known non-MDP method, it reduces deadline miss rate by a factor of 4-15
when the bandwidth model is known a priori. We have also proposed and evalu-
ated a model-free MDP implementation that uses Q-learning to gradually learn
the optimal decisions over time. We find that MDP with Q-learning converges
to optimal decision making after about 15 trips and outperforms the model-
based MDP by a factor of 3 in terms of deadline miss rates. Our next target
is to develop a practical implementation of a DASH player that incorporates
the proposed MDP options and evaluate their performances in real road traffic
using real video streams.

In this paper, we focussed on video freezing, which have been found as the
most important factor affecting user QoE. However, long term stability prob-
lem [40] caused by frequent adaptation of the picture quality is another impor-
tant metric that could be studied with MDP. The current MDP model can be
extended to consider the instability by extending the state definition to include
a stability parameter, which would define the current state of stability for the
video stream. Then the penalty function will have to be extended to introduce
penalties that are dependent on the current state of stability. These extensions
will enable MDP to tune the stability performance of DASH streaming, albeit
at higher complexity. How to best design the MDP for stability control would
constitute a significant future work.

Acknowledgement

Ayub Bokani’s PhD is supported by an Australian Postgraduate Award and a
PhD enhance scholarship from National ICT Australia (NICTA).

Bibliography

[1] Apple, “HTTP Live Streaming Overview,” [Online accessed 01-March-
2013], URL: https://developer.apple.com/library/ios/#documentation/
networkinginternet/conceptual/streamingmediaguide/Introduction/
Introduction.html.

[2] A. Zambelli, “IIS smooth streaming technical overview,” Microsoft Corpo-
ration, vol. 3, 2009.

[3] Adobe, “HTTP Dynamic Streaming on the Adobe Flash Platform,” [Online
accessed 04-March-2013], URL: http://www.adobe.com/au/products/hds-
dynamic-streaming.html.

[4] T. Stockhammer, “Dynamic Adaptive Streaming Over HTTP: Standards
and Design Principles,” in Proceedings of the second annual ACM con-
ference on Multimedia systems (MMSys), San Jose, USA, 23-25 February
2011.

23

https://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/Introduction/Introduction.html
https://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/Introduction/Introduction.html

[5] T.-Y. Huang, R. Johari, and N. McKeown, “Downton Abbey Without
the Hiccups: Buffer-Based Rate Adaptation for HTTP Video Streaming,”
in Proceedings of the 2013 ACM SIGCOMM workshop on Future human-
centric multimedia networking, Hong Kong, China, 16 August 2013.

[6] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate Adaptation for Adaptive HTTP
Streaming,” in Proceedings of the second annual ACM conference on Mul-
timedia systems (MMSys’ 11), New York, USA, 23 February 2011.

[7] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley.com, 2009, vol. 414.

[8] L. Lam, J. Y. Lee, S. C. Liew, and W. Wang, “A Transparent Rate Adap-
tation Algorithm for Streaming Video Over the Internet,” in The 18th
International Conference on Advanced Information Networking and Appli-
cations (AINA), Fukuoka, Japan, 29-31 MArch 2004.

[9] J. D. McCarthy, M. A. Sasse, and D. Miras, “Sharp or Smooth?: Com-
paring the Effects of Quantization Vs. Frame Rate for Streamed Video,”
in Proceedings of the SIGCHI conference on Human factors in computing
systems, Vienna, Austria, 2429 April 2004.

[10] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the Quality of
Experience of HTTP Video Streaming,” in Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on, Dublin, Irland, 23-27
May 2011.

[11] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, “Adaptation Algorithm
for Adaptive Streaming Over HTTP,” in The 19th International Packet
Video Workshop (PV), Munich, Germany, 10-11 May 2012.

[12] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe
and Adapt: Rate Adaptation for HTTP Video Streaming at Scale,” Selected
Areas in Communications, IEEE Journal on, vol. 32, no. 4, pp. 719–733,
2014.

[13] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An Experimental Evaluation
of Rate-Adaptation Algorithms in Adaptive Streaming Over HTTP,” in
Proceedings of the second annual ACM conference on Multimedia systems,
San Jose, USA, 23-25 February 2011.

[14] A. Sobhani, A. Yassine, and S. Shirmohammadi, “A Fuzzy-based Rate
Adaptation Controller for DASH,” in Proceedings of the 25th ACM Work-
shop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV ’15), Portland, USA, 20 March 2015.

[15] J. Yao, S. S. Kanhere, and M. Hassan, “An Empirical Study of Bandwidth
Predictability in Mobile Computing,” in Proceedings of the third ACM in-
ternational workshop on Wireless network testbeds, experimental evaluation
and characterization (MobiCom-WiNTECH), San Francisco, USA, 14-19
September 2008.

24

[16] P. Deshpande, X. Hou, and S. R. Das, “Performance Comparison of 3G
and Metro-Scale WiFi for Vehicular Network Access,” in Proceedings of
the 10th ACM conference on Internet measurement, Melbourne, Australia,
13 November 2010.

[17] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen,
“Video Streaming Using a Location-Based Bandwidth-Lookup Service for
Bitrate Planning,” ACM Transactions on Multimedia Computing, Commu-
nications and Applications, vol. 8, no. 3, p. 24, 2012.

[18] V. Singh, J. Ott, and I. D. Curcio, “Predictive Buffering for Streaming
Video in 3G Networks,” in IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco,
USA, 25-28 June 2012.

[19] J. Yao, S. S. Kanhere, and M. Hassan, “Improving QoS in High-Speed Mo-
bility Using Bandwidth Maps,” IEEE Transactions on Mobile Computing,
vol. 11, no. 4, pp. 603–617, 2012.

[20] I. D. Curcio, V. K. M. Vadakital, and M. M. Hannuksela, “Geo-Predictive
Real-Time Media Delivery in Mobile Environment,” in Proceedings of the
3rd workshop on Mobile video delivery (MoViD), Firenze, Italy, 25 October
2010.

[21] P. de Cuetos and K. W. Ross, “Optimal Streaming of Layered Video: Joint
Scheduling and Error Concealment,” in Proceedings of the eleventh ACM
international conference on Multimedia (MM ’03), Berkeley, USA, 02-08
November 2003.

[22] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M. van der
Schaar, “Markov Decision Process Based Energy-Efficient On-Line Schedul-
ing for Slice-Parallel Video Decoders on Multicore Systems,” IEEE Trans-
actions on Multimedia, vol. 15, no. 2, pp. 268–278, 2013.

[23] V. Charvillat and R. Grigoraş, “Reinforcement Learning for Dynamic
Multimedia Adaptation,” Journal of Network and Computer Applications,
vol. 30, no. 3, pp. 1034–1058, 2007.

[24] M. Xing, S. Xiang, and L. Cai, “Rate Adaptation Strategy for Video
Streaming over Multiple Wireless Access Networks,” in IEEE Global Com-
munications Conference (GLOBECOM), Anaheim, 3-7 December 2012.

[25] S. Xiang, L. Cai, and J. Pan, “Adaptive Scalable Video Streaming in Wire-
less Networks,” in Proceedings of the 3rd Multimedia Systems Conference
(MMSys), Chapel Hill, USA, 22-24 February 2012.

[26] C. C. Wüst and W. F. Verhaegh, “Quality Control for Scalable Media
Processing Applications,” Journal of Scheduling, vol. 7, no. 2, pp. 105–117,
2004.

[27] D. Jarnikov and T. Özçelebi, “Client Intelligence for Adaptive Streaming
Solutions,” Signal Processing: Image Communication, vol. 26, no. 7, pp.
378–389, 2011.

25

[28] A. Bokani, M. Hassan, and S. Kanhere, “HTTP-Based Adaptive Streaming
for Mobile Clients using Markov Decision Process,” in Proceedings of the
20th Packet Video Workshop (PV), San Jose, USA, 12-13 December 2013.

[29] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “Using
the Buffer to Avoid Rebuffers: Evidence from a Large Video Streaming
Service,” arXiv preprint arXiv:1401.2209, 2014.

[30] G. Zhong and A. Bokani, “A Geo-Adaptive JavaScript DASH Player,” in
Proceedings of the 2014 Workshop on Design, Quality and Deployment of
Adaptive Video Streaming (ACM-CoNEXT ’14), Sydney, Australia, 2-5
December 2014.

[31] J. Van Der Wal, Stochastic Dynamic Programming. Methematisch Cen-
trum, Amsterdam, The Netherlands, 1980.

[32] C. J. C. H. Watkins, “Learning From Delayed Rewards.” Ph.D. dissertation,
University of Cambridge, 1989.

[33] G. Murtaza, A. Reinhardt, M. Hassan, and S. S. Kanhere, “Creating Per-
sonal Bandwidth Maps Using Opportunistic Throughput Measurements,”
in IEEE International Conference on Communications (ICC), Sydney, Aus-
tralia, 10-14 June 2014.

[34] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “QDASH: a QoE-aware
DASH system,” in Proceedings of the 3rd Multimedia Systems Conference
(MMSys ’12), Portland, USA, 18-20 March 2015.

[35] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and sta-
bility in http-based adaptive video streaming with festive,” in Proceedings
of the 8th international conference on Emerging networking experiments
and technologies (CoNEXT ’12), Nice, France, 10-13 December 2012.

[36] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in dy-
namic HTTP streaming,” in Proceedings of the 8th international confer-
ence on Emerging networking experiments and technologies (CoNEXT ’12),
Nice, France, 10-13 December 2012.

[37] BlenderFoundation, “Big Buck Bunny,” [Online accessed 04-March-2013],
URL: http://www.bigbuckbunny.org.

[38] FFmpegProject, “FFmpeg,” [Online accessed 04-March-2013], URL: http:
//ffmpeg.org.

[39] S. Lederer, C. Müller, and C. Timmerer, “Dynamic adaptive streaming over
HTTP dataset,” in Proceedings of the 3rd Multimedia Systems Conference,
MMSys’12, Chapel Hill, NC, USA, 22-24 February 2012.

[40] S. akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What Hap-
pens When HTTP Adaptive Streaming Players Compete for Bandwidth?”
in Proceedings of the 22nd international workshop on Network and Operat-
ing System Support for Digital Audio and Video (NOSSDAV ’12), Toronto,
Canada, 7-8 June 2012.

26

http://www.bigbuckbunny.org
http://ffmpeg.org
http://ffmpeg.org

	Introduction
	Related work
	MDP Formulation of DASH
	MDP Solution Methods and Algorithms
	Value Iteration
	Q-learning
	Quality Selection Algorithms for DASH Clients

	Non-MDP Adaptation
	Simulations
	Vehicular bandwidth dataset
	Video Clips and DASH Dataset
	MDP Parameters

	Results
	Deadline Miss Vs. Quality Trade-off with MDP
	MDP vs. non-MDP
	Model-based vs. Model-free MDP strategies

	Conclusions and Future Works

