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Abstract

More often than not, a multimedia data described by multiplefeatures, such as color
and shape features, can be naturally decomposed of multi-views. Since multi-views
provide complementary information to each other, great endeavors have been dedicated
by leveraging multiple views instead of a single view to achieve the better clustering
performance. To effectively exploit data correlation consensus among multi-views, in
this paper we study subspace clustering for multi-view datawhile keeping individual
views well encapsulated. For characterizing data correlations, we generate a similar-
ity matrix in a way that high affinity values are assigned to data objects within the
same subspace across views, while the correlations among data objects from distinct
subspaces are minimized. Before generating this matrix, however, we should consider
that multi-view data in practice might be corrupted by noise. The corrupted data will
significantly downgrade clustering results.

We firstly present a novel objective function coupled with anangular based regu-
larizer. By minimizing this function, multiple sparse vectors are obtained for each data
object as its multiple representations. In fact, these sparse vectors result from reaching
data correlation consensus on all views. For tackling noisecorruption, we present a
sparsity based approach that refines the angular based data correlation. By using this
approach, a more ideal data similarity matrix is generated for multi-view data. Spectral
clustering is then applied to the similarity matrix to obtain the final subspace cluster-
ing. Extensive experiments have been conducted to validatethe effectiveness of our
proposed approach.



1 Introduction

It is widely known that many high dimensional data can be seenas a set of samples
drawn from aunion of multiple low-dimensional subspaces. Subspace clustering refers
to clustering the data into their original subspaces so as touncover their underlying
structures. Subspace clustering has attracted considerable attentions in computer vi-
sion and machine learning communities, with numerous applications including motion
segmentation [1], and face clustering [2, 3]. Recent work onsparse representation
(SSC) [4, 5, 6], low rank representation (LRR) [3, 7, 2], least square regression (LSR)
[8], and their extensions have attracted much attention dueto their effectiveness in
clustering and robustness to noise. The essence of these approaches lies in construct-
ing an affinity matrix, which is close to a block diagonal matrix with nonzero entries
corresponding to the pairs of data points from the same subspace. They differ in the ob-
jective functions with different regularization, i.e., eitherℓ1-minimization (SSC), rank
minimization (LRR) orℓ2-regularization (LSR). The success of SSC, LRR, and LSR
supports the fact that if data are sufficiently sampled from independent subspaces, a
block diagonal solution can be achieved provided that theirobjective functions satisfy
the Enforced Block Diagonal (EBD) conditions [8].

However, the above methods either encourage sparsity a lot for data selection but
lack of grouping effect (SSC), or exhibit strong grouping effect but are short in subset
selection (LRR and LSR). It has been observed that both sparsity and grouping effect
are important to subspace segmentation. A method of correlation adaptive subspace
segmentation by using trace lasso is presented [9], which isable to simultaneously per-
form data selection and correlated data grouping. Moreover, the authors theoretically
prove that trace lasso can also lead to a block sparse solution if the objective function
satisfies the conditions of Enforced Block Sparse (EBS).

The nature of visual data in practice is multi-view,e.g., an image can be described
by a color view or a shape view. These multiple views often encode compatible and
complementary information [10, 11]. This fact naturally motivates one to either lever-
age all views or simply concatenate them into a monolithic one, in order to improve
the performance achieved by a single view. Given data objects with high dimensions
that lie in a mixture of subspaces and viewed by multiple views, we attempt to segment
data into proper clusters that are consistent among all views by taking advantage of
complementary properties of different views. As pointed out by existing multi-view
based research [12, 13, 10, 11, 14, 15, 16, 17], the critical point to well leverage the
complementary information from different views is to exploit the consensus informa-
tion among all views, which motivates us to achieve the correlation consensus over
subspace clustering for multi-view data objects.

Numerous approaches [17, 18, 19, 20, 21, 22] of multi-view subspace clustering
are already available. However, they may either fail to produce the similarity matrix
that can characterize the data objects within the same subspace [17, 18], or rely on a
rigid data initialization such as Gaussian distribution [19], or even requires the dimen-
sions of projected subspace to be highly parameterized, rather automatically learned.
They may not effectively explore the complementary information from multi-views,
as they simply follow one-combo-fits-all fashion,e.g., [20, 21], by concatenating all
features into one long feature vector, to perform subspace clustering. This, neverthe-
less, will disregard the local (neighborhood) structure ofeach view, downgrading the
performance of subspace clustering for multi-view data.

To overcome the above-mentioned limitations, we aim to achieve the correlation or
similarity consensus among all views, while the data objects within the same subspace
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should encode a large similarity and small similarity for data objects within the distinct
subspaces for each view. Our approach is based on the fact that one data point for each
view in a union of subspaces has a sparse representation withrespect to a set of basis
vectors formed by all other data points. This inspires us to construct a data similarity
matrix for multi-views, from which the subspace clusteringfor multi-view data objects
can be obtained through spectral clustering.

Towards these ends, we propose a novel technique based on trace lasso norm [23]
as shown in Eq. 3.1 for each viewe.g., ith view, which learns the sparse coefficients
vectore.g., si

k, of each data objecte.g., xk over the entire data set. One nice property
found in [9] regardingsi

k is:

Lemma 1 [9] Trace lasso has the grouping effect, i.e., the sparse coefficients of a
group of correlated data objects within the same subspace are approximately equal.
Meanwhile, the sparse coefficients of non-correlated data objects are very small.

After learning the sparse representation vector for each data object featured with
the property indicated by lemma 1 against any individual view, we can trivially get the
similarity between any pair-wise data objects via their corresponding sparse represen-
tation values for each view. The remaining challenge is how to achieve the consensus
of the similarities from all views so as to perform the subspace clustering for multi-
view data. To resolve this, we propose a novel angular similarity based regularizer to
regularize the sparse codes for the same data from all views to achieve the consensus.

One may wonder why proposing angular based similarity rather than Euclidean
distance to coordinate the sparse vectors from all views so as to achieve consensus?

We show an example below to penetrate the illustration:

Example 1 Suppose X = {x1, x2, x3, x4}, and we have learned the sparse representa-
tions for x4 from three views e.g., ith, jth and mth views as: si

4 = [1, 1, 0], s j
4 = [3, 3, 0]

and sm
4 = [0, 0, 1] via Eq. (3.1)for each view, the same coefficient is formed by using

trace lasso as per Lemma 1.

The above example indicatessi
4 characterize the same correlations withs j

4, sincex4

has the similar correlations with other three data objects for both ith and jth views.
Specifically,x4 has the large correlations withx1 and x2, but no(small) correlations
with x3. If we evaluate the similarity according to Euclidean distances, then the simi-
larity betweensi

4 ands j
4 is smaller thansk

4, implied by large Euclidean distances. That
apparently violates the fact. Therefore, to address such issue, we propose the angular
similarity metric, leading to the small angular betweensi

4 and s j
4, meanwhile lead to

large angular forsm
4 .

In practice, there may be disturbing noises, missing valuesand corruptions avail-
able for view-specific feature representations. To achievethe robustness and corre-
lations consensus, we propose to decompose the sparse representation vector of each
data object into two parts for all views.

• The first part is the latent consensus sparse representationshared by all views.
We propose to learn such latent consensus sparse representation for each data
object by minimizing the angular similarity between each view-specific sparse
representations learned via Eq.(3.1) and it, so as to achieve the data correlation
consensus encoded in sparse representations among all views.

• The second part describes the possible noise corruptions for each view-specific
feature representations and the view-specific sparse representations for each indi-
vidual view, leading to non-precise and non-consistent data correlations encoded
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in sparse representations. As observed, such noise sparse representations are
sparsely distributed, therefore, we propose to model it viaℓ1 norm.

For our method, a novel objective function is proposed by leveraging our angular simi-
larity based regularizer andℓ1 norm sparse representation to address the possible noise
corruptions for each view-specific feature representations. The final consensus sparse
representations and noise term are yielded by minimizing the proposed objective func-
tion. The consensus sparse representations are further utilized for subspace clustering
over multi-view data. For simplicity, we illustrate our overall framework in Fig.1.1
from two views, which can be naturally extended to multi-view scenario as our pro-
posed technique later.

Please note that the above decomposition model must be upon the following critical
claim: two distinct sparse codes for the same data object across views encode similar
values in their entries, motivated by common assumption forthe multi-view clustering
[22]: the same data object set under different views should reveal the similar correla-
tions.
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Figure 1.1: Overview of our framework. For each dataxk in a given set of data objects
with two viewsX = {xk}

7
k=1 that might be corrupted by noise, we learn its robust sparse

representation with respect to other data points in the samesubspace asxk. This is
achieved by using trace lasso as a sparsity promoter, which can automatically seek
sparse coefficients, regularized by an angular-based regularizer to reach consensus on
all views. By modeling noise via sparse decomposition,e.g., ei

k, we can recover latent
shared sparse vectors (sk) from which the affinity matrix is constructed for subsequent
subspace clustering.

Our major contributions are summarized as follows.

• To the best of our knowledge, this is the first work on applyingtrace lasso into
multi-view data for subspace clustering.

• To exploit the data correlation consensus on views, we propose a novel angu-
lar based regularizer over the data sparse codes in multi-views. The objective
function is minimized under the regularization of this new regularizer.
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This paper is an extension of [11] with additionally constructive contribu-
tions below.

• To cope with input data that might be corrupted by noise, we develop an approach
that can effectively recover a shared latent sparse representation from multiple
views, which well reflects the true clustering information.

• More extensive experiments have been conducted on real-world image datasets,
which demonstrate the effectiveness of exploiting the correlation consensus among
sparse codes of data objects across views for multi-view subspace clustering.

2 Related Work

In this section, we briefly review existing typical work related to multi-view subspace
clustering.

Using a co-training based method[24, 10], Kumaret al. [17] constructs a compati-
ble multi-view similarity matrix in eigen-subspaces spanned by Laplacian matrix, such
that the similarity matrix in one view is affected by that in another view. However, they
simply calculate the similarity matrix in a K-nearest neighbors manner. This degrades
the performance if data points are nearby the intersection of two distinct subspaces.
That is, the neighborhoods of a data point may cover data points from different sub-
spaces. The same problem exists in [18] as well. In [19], the multi-view data are
projected into one common subspace, then the clustering algorithm, e.g., K-means,
is applied to yield the subspace clustering results. Such a method, however, is sen-
sitive to data initialization. Specifically, it requires that the data initialization should
strictly follow the Gaussian distribution while keeping different groups of data objects
separated. Besides, the number of dimensions for the projected subspace needs to be
known in advance. Matrix factorization is also utilized to perform subspace clustering
for multi-view data, such as [20, 21]. Its essential idea is that the features of heteroge-
neous views are first concatenated into a single-long feature, then non-negative matrix
factorization is applied to obtain subspace clustering results. One limitation of such
a one-combo-fits-all strategy is that the data correlation information in each of origi-
nal view-specific feature space is not well exploited. To overcome this limitation, [22]
proposes a joint non-negative matrix factorization on eachindividual view to compute
distinct coefficient matrices, which are then regularized towards a commonconsensus
that represents the clustering structure shared by all views. This method, however, suf-
fers from the drawback that the dimension number of latent reduced subspace needs to
be manually parameterized, rather than automatically determined.

3 Proposed Technique

In this section, we first formalize the problem of subspace clustering on multi-view
data, then model data correlations in a single view, followed by a non-trivial exten-
sion towards correlation consensus on multiple views. After that, we present a novel
technique for noise decomposition in multi-view data.
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3.1 Notations and Problem Definition

Let X = {xk}
n
k=1 be a set of data points withn data instances. Suppose that each data

object hasV views. Without loss of generality, for thei-th view, we haveXi = {xi
k}

n
k=1,

(i = 1, . . . ,V), wherexi
k is the feature representation ofxk under thei-th view. We

denotesi
k as the sparse representation vector ofxi

k based onXi. The trace lasso [23]
is defined as‖XiDiag(si

k)‖∗, whereDiag(si
k) is the diagonal matrix with itsi-th diag-

onal element corresponding to thei-th entry of si
k, and‖A‖∗ is the nuclear norm (the

summation of all the singular value) of a matrixA. The norms of‖a‖1, ‖a‖2 and‖a‖∞
denote theℓ1 (sum of absolute value of each entry),ℓ2 norm of a vectora andℓ∞ (max-
imum value of entry). Considering that multi-view data objects are possibly corrupted
by noise,e.g., possible corrupted or missing values for any feature representations, we
model the view-specific noise by a sparse decompositionei

k for eachsi
k.

With the notations defined above, we aim to learn the latent robust sparse represen-
tationssk for eachxi

k (i = 1, . . . ,V) shared by all views of possible noisy multi-view
data objects. The representations are then utilized to construct a compatible similarity
matrix W for multi-view data objects. The subspace clustering result is achieved by
applying spectral clustering uponW.

3.2 Modeling Data Correlations in single view

The challenge of modeling data correlations in each individual view is to ensure high
correlations for data points within the same subspace, while eliminating connections
among data objects from distinct subspaces. To achieve thisgoal, we employ the trace
lasso norm to learn the sparse representations for each dataobject.

As shown in [9], trace lasso is more adaptive thanℓ1 or ℓ2 norm, and it is equal to
ℓ1-norm orℓ2-norm if data points are uncorrelated (orthogonal) or highly correlated.
Thereby, we have‖si

k‖2 6 ‖X
iDiag(si

k)‖∗ 6 ‖s
i
k‖1. The sparse representationsi

k of xi
k

can well reflect the correlation betweenxi
k and other data points under thei-th view.

In particular, if we normalize each column ofX to one, the problem of learning sparse
code vectors of each data point in thei-th view can be formulated below:

min
si

k

1
2
‖xi

k − Xi
ksi

k‖
2
2 + λ‖X

i
kDiag(si

k)‖∗, (3.1)

whereXi
k represents the data set excludingxi

k. The parameterλ controls the effect of the
trace lasso term. Through trace lasso,si

k is composed of the approximately equal yet
large coefficients on a few data objects, implying their strong correlations with respect
to xi

k. Meanwhile, the coefficients of data having no (weak) correlation toxi
k are set to

0. This conclusion also holds for thej( j , i)-th view.
The convex optimization problem (3.1) can be solved by usingthe Alternating Di-

rection Method (ADM) [9], which can converge globally. The work in [23] indeed
introduces an iteratively reweighted least squares algorithm for estimating the vector
si

k, however, the solution is not necessarily globally optimaldue to an additional term
to avoid non-invertible. To apply the ADM method, we first convert the problem (3.1)
into its equivalent formulation as follows,

min
si
k ,M

i
k

1
2
‖xi

k − Xi
k si

k‖
2
2 + λ‖M

i
k‖∗, s.t.M

i
k = Xi

kDiag(si
k). (3.2)

Then, problem (3.2) can be solved by ADM, which works on the following augmented
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Figure 3.1: For any data objectxk, (k = 1, . . . , n) , its sparse codesi
k associated with an

individual view i (i = 1, . . . ,V) can be naturally decomposed into two parts: a shared
latent sparse codesk that reflects the true clustering information, andei

k encoding a
view-specific deviation error vector that encodes the noisein sparse codes in each view,
together with a view-specific sparse representation for each view.

Lagrangian function:

L(Mi
k, s

i
k) =

1
2
‖xi

k − Xi
k si

k‖
2
2 + λ‖M

i
k‖∗

+ T r((Y i
k)

T (Mi
k − Xi

kDiag(si
k))) +

α

2
‖Mi

k − Xi
kDiag(si

k)‖
2
F ,

(3.3)

whereY i
k ∈ R

d×n is the Lagrange multiplier, andα > 0 is the penalty parameter for the
violation of linear constraint.L(Mi

k, s
i
k) is separable to two subproblems with regard

to Mi
k and si

k, respectively. Hence,si
k can be updated with a closed form solution,

that is, for iterationt, si
k = Ai

k

(

(Xi
k)

T xi
k + diag((Xi

k)
T ((Y i

k)
t + αt(Mi

k)
t+1))

)

whereAi
k =

(

(Xi
k)

T Xi
k + α

tDiag(diag((Xi
k)

T Xi
k))

)−1
.

3.3 Exploiting Correlation Consensus in Multiple Views

It is non-trivial to learn sparse representations that characterize the correlation consen-
sus on all views by considering the subspaces from which theycome. This is because
many multi-view learning methods,e.g., [25], rely on common label spaces across
views. Without label information, it thus becomes more challenging to exploit their
consensus property shared by views.

The principle of multi-view clustering [22] is that the trueunderlying clustering
would assign corresponding data objects across views to thesame cluster. According
to this principle, we propose to exploit the data correlation consensus among all views,
which further determines the subspace clustering on multi-view data objects.
Basic idea: Angular based similarity. We attempt to effectively exploit the corre-
lation consensus on multi-views while keeping their individuality well-encapsulated.
One natural question is how to quantify the similarities among the sparse representa-
tions of the same data object with different views. One may consider a distance metric,
e.g., Euclidean distance. However, as aforementioned, a small Euclidean distance can-
not indicate a similar data correlation shared by two sparserepresentations, illustrated
by Example 1 in Section 1. Fortunately, the sparse code of anydata object,e.g., si

k
for xi

k, can well reflect the correlation betweenxi
k and other data points under thei-th
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Figure 3.2: An example of illustrating the angular based similarity. The same shape
indicates that data objects are in the same cluster, and the same filled pattern means
that data objects come from the same view space. The sparse code of x3 yielded by
trace lasso issi

3 (s j
3) under thei-th ( j) view. In the case of noise free, the coefficients

in si
3 (s j

3) can correctly indicates the similarity betweenx3 and{x j} j,3 in the i-th ( j)
view. Thus, minimizingπ(s3) is equivalent to making sparse codes across views reach
consensus in terms of their similarities.

view. Another observation is that sparse codes for different views have the same di-
mension. The two observations motivate us to quantify theangular based similarity
over sparse codes of multi-view data objects. This is equivalent to quantifying the data
correlations regarding data object setX under various views. As a result, we propose a
novel regularizer term,π(sk), to encode the cosine similarity amongsi

k regardingxi
k in

thei-th view.
Mathematically,π(sk) can be defined as

π(sk) = −
V

∑

i, j,i

(si
k)

T · s j
k

‖si
k‖2‖s

j
k‖2
. (3.4)

The objective function in Eq. (3.7) needs to be minimized. Thus, we add minus sign

“−” in Eq. (3.4) to encourage the large value of
∑V

i, j,i
(si

k)T ·s j
k

‖si
k‖2‖s

j
k‖2

, as well as the small

angle among various vectors of view-specific sparse representation forsk.
Intuition of angular similarity to achieving consensus. Minimization of π(sk) can
yield the correlation consensus on data objects across views. An intuitive example is
shown in Fig.3.2 where we have a set of five data objects{xk}

5
k=1 with two views. For

each data object such asx3, we calculate its sparse representationsi
3 (s j

3) under thei-th
view by Eq.(3.1) based on the dictionary composed of all five data objects. Owing to its
grouping effect, trace lasso can well capture the correlations among data objects. The
(nearly) equal positive coefficientsci (c j) in si

3 (s j
3) are generated to encode the strong

correlation betweenx1 andx2, and 0 betweenx4 andx5 under bothi-th and j-th views.
It is straightforward thatsi

3 and s j
3 have a large cosine similarity value. This value

in turn measures the relations between two views by capturing the data correlation
consensus between multi-view sparse codes.

The above observations are based on the assumption that input data objects are
noise-free. However, such an ideal case is almost impossible in practice where either
data objects may be noisy, or feature values are corrupted. This may result in inaccurate
coefficients of sparse vectors. In what follows, we will tackle theproblem of the noise
of subspace clustering for multi-view data by recovering a latent sparse representation.
Such a representation reflects the true data correlations shared by all views.
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To this end, we recover a common sparse representation of each data, which is
consistent across views by effectively decomposing noise in each view. As suggested
in [4, 26], one can fill in missing entries or correct errors using sparse decomposition
since visual features contain sufficient clustering information, whilst features in each
view might have a small portion of information corrupted by noise. In what follows, we
show that our method can also cluster data points with corrupted entries in multi-view
data objects by recovering and modeling the error matrix by sparse decomposition.
Formally, letsi

k be the sparse code forxi
k regarding thei-th view that may be corrupted

. Then, we decomposesi
k into a shared latent sparse vectorsk, andei

k encoding a
noise corruption for feature representation and specific sparse representations for the
i-th view; then, we have:

∀i,∀k, si
k = sk + ei

k. (3.5)

Eq.(3.5) is based on the basic assumption that the sparse representation in each indi-
vidual view is robust enough to contain most of the clustering information, although
noise might lead to the small number of data points assigned to wrong clusters. Con-
sequently,sk is the consensus correlation of a data point with respect to other points
across all views. We illustrate this intuition in Fig.3.1.

Now we are ready to present how to extend the learning technique from a single
view to multiple views.

π(sk) = −
V

∑

i

(si
k)

T · sk

‖si
k‖2‖sk‖2

, s.t. si
k = sk + ei

k. (3.6)

Intuitively, Eq.(3.6) recovers a shared latent sparse representation for multiple views,
which is regularized by the angular based similarity.

Considering Eq.(3.5) and Eq.(3.6), we formulate the problem of learning robust
sparse representation for multi-view data objects as follows:

min
sk ,e

i
k

V
∑

i

βi

(

1
2
‖xi

k − X i
k si

k‖
2
2 + λ‖X

i
k Diag(si

k)‖∗ + η||E
i ||1

)

+ γπ(sk),

s.t. si
k = sk + ei

k ,E
i = [ei

1, . . . , e
i
n], sk > 0,

(3.7)

whereβi balances the contribution from thei-th view,
∑V

i=1 βi = 1, andγ is a weight pa-
rameter onπ(sk) to regulate the correlation consensus over multi-views.Ei represents
the difference collection betweensi

k andsk for the i-th view, wherek = 1, . . . , n andη
is a non-negative balance parameter.

Since we assume that sparse representation in each view is robust and has enough
information to identify most of the clustering structure, it is reasonable to hypothesize
that there is only a small fraction of elements insi

k being apparently different from the
corresponding ones insk. Thus, the deviation error matrix and view-specific sparse
representationEi tends to be sparse. In summary, we aim to learn sparse codessk

of xi
k for each view, by optimizing Eq. (3.7) for subspace clustering on noisy multi-

view data. Specifically, for each data object, we attempt to recover a shared latent
sparse representation that reflects the underlying true data correlation with other data
objects. These shared sparse codes are regarded as a crucialinput to compute a more
accurate affinity matrix on data objects, which can be subsequently combined with
some clustering strategies,e.g., spectral clustering, to disclose clusters.
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4 Optimization Strategy

The difficulty of optimizing Eq. (3.7) lies in its non-joint-convex for Mi
k = Xi

kDiag(si
k)

and si
k, along with non-smoothness for trace lasso. We alternatively optimize each

variable by fixing others. Eachsi
k is initialized by optimizing Eq. (3.7) via Alternative

Direction Method (ADM) [9] with the parameterλ of 0.15. We derive an equivalent
variational formulation of the trace norm [27]. AssumeM ∈ Rn×m, the trace norm of
M equals

‖M‖∗ =
1
2

inf
S�0

tr(MT S −1M) + tr(S ), (4.1)

where the infimum is achieved when we haveS = (MMT )1/2. Then we recast Eq. (3.7)
as

min
sk ,e

i
k

inf
Mi

k�0

V
∑

i

βi

2
‖xi

k − Xi
k si

k‖
2
2

+
λβi

2

(

tr
(

(S i
k)

2(Xi
k)

T (Mi
k)
−1Xi

k

)

+ tr(Mi
k)
)

+ βiη||Ei ||1 + γπ(sk),

s.t. si
k = sk + ei

k , E
i = [ei

1, . . . , e
i
n], sk > 0,

(4.2)

whereS i
k = Diag(si

k).

4.1 SolvingMi
k

With other variables fixed, the optimization problem in Eq. (4.2) is convex with respect
to Mi

k. We conduct a coordinate descent procedure to optimizeMi
k for eachxi

k. Given
si

k, we enjoy the closed form solution ofMi
k as

Mi
k = (Xi

k(S
i
k)

2(Xi
k)

T )1/2. (4.3)

4.2 Solvingsk and ei
k

To optimizesk andei
k, we introduce an optimization procedure to solve this problem via

the Augmented Lagrangian Multiplier (ALM ) scheme [28]. For ease of the representa-
tion, we defineA(i) = inf βi2 ‖x

i
k − Xi

k si
k‖

2
2 +

λβi
2

(

tr
(

(S i
k)2(Xi

k)T (Mi
k)−1Xi

k

)

+ tr(Mi
k)
)

. By introducing
an auxiliary variablepk, we convert problem (3.7) into the following form:

min
pk ,e

i
k ,sk

γπ(pk) +
V

∑

i=1

(A(i) + βiη||E
i ||1) (4.4)

The corresponding augmented Lagrange function is:

L(sk, pk , e
i
k) = γπ(pk) +

V
∑

i=1

(A(i) + 〈yi
k , sk + ei

k − si
k〉

+
µ

2
||sk + ei

k − si
k ||

2
F) + 〈zk, sk − pk〉 +

µ

2
||sk − pk ||

2
F .

s.t. sk > 0,

(4.5)

wherezk andyi
k are Lagrange multipliers,〈·, ·〉 denotes the inner product of matrices,

andµ > 0 is an adaptive penalty parameter. Next, we will present theupdate rules for
eachpk, sk, andei

k, by minimizingL in Eq.(4.5) with other variables being fixed.
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Solving pk. When other variables are fixed, the subproblem w.r.t.pk is

min
pk

γπ(pk) +
µ

2
||sk − pk +

zk

µ
||2F , (4.6)

Considering thatpk encodes the latent structure of each sparse code across all views, we
thus havepk = [si

k−ei
k, . . . , s

V
k −eV

k ]. Thereafter, we obtain a matrixP = [p1, p2, . . . , pn],
then Eq. (4.6) can be rewritten as

min
P
γ||P||∗ +

µ

2
||S − P +

Z
µ
||2F , (4.7)

whereS = [s1, s2, . . . , sn] andZ = [z1, z2, . . . , zn]. Eq. (4.7) can be solved by Singular
Value Threshold method [29]. More specifically, letUΣVT be the SVD form of (S + Z

µ
).

The solution to Eq.(4.7) isP = US1/µ(Σ)VT , whereSδ(X) = max(X − δ, 0)+min(X +
δ, 0) is the shrinkage operator [28].
Solving ei

k. The subproblem w.r.t.ei
k can be simplified as:

min
ei

k

βi||e
i
k||1 +

µ

2
||ei

k − (si
k − sk −

yi
k

µ
)||2F , (4.8)

which has a closed form solutionei
k = Sβi/µ(si

k − sk −
yi

k
µ

). Sθ(X) = max(X − θ, 0) +
min(X + θ, 0) is the shrinkage operator [28].
Solving sk. With other variables being fixed, we updatesk by solving

sk = arg min
sk

µ

2

V
∑

i=1

||sk + ei
k − si

k +
yi

k

µ
||2F

+
µ

2
||sk − pk +

zk

µ
||2F .s.t. sk > 0.

(4.9)

For convenience of the representation, we definec = 1
V+1

(

pk −
zk
µ
+

∑V
i=1(si

k − ei
k −

yi
k

µ
)
)

.

With simple algebraic manipulation, the problem (4.9) can be rewritten as

sk = arg min
sk

1
2
||sk − c||2F , s.t. sk > 0. (4.10)

The Lagrangian of the problem in Eq.(4.10) is

L(sk, ζ) =
1
2
‖sk − c‖22 − ζ · sk,

whereζ ∈ Rn−1
+ is a vector of non-negative Lagrange multipliers. Differentiating with

respect tosk[i] and comparing to zero gives the optimality condition,∂L
∂sk[i] = sk[i] −

c[i] − ζ[i] = 0. The complementary slackness KKT condition implies that whenever
sk[i] > 0, we must haveζ[i] = 0. Thus, ifsk[i] > 0, we have

sk[i] = c[i].

All the non-negative elements of the vectorsk are tied via a single variable, thus,
identifying the indices of these elements yields a much simpler problem.

Lemma 2 [30]. Let sk be the optimal solution to Eq.(4.10), i and j be two indices
such thatc[i] > c[ j], if sk[i] = 0 then sk[ j] must be zero as well.
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Algorithm 1: Algorithm for solving problem (4.10).

Input : A vectorc ∈ Rn−1.
Output : sk.
Sortc into b: b[1] > b[2] > . . . > b[n − 1];
Find ĵ = max{ j ∈ [n − 1] : b[ j] > 0};
for i = 1, . . . , ĵ do

sk[i] = b[i];

for i = ĵ + 1, . . . , n − 1 do
sk[i] = 0;

return sk

Denote byI the set of indices of non-zero components of the sorted optimal solu-
tion, the Lemma 2 implies thatI = [̺] for some 16 ̺ 6 n−1. We can find the optimal
̺ by the following lemma once we sortc in descending order.

Lemma 3 Let sk be the optimal solution to the minimization problem in Eq.(4.10).
Let b denote the vector obtained by sorting c in a descending order. Then, the
number of strictly positive elements insk is ̺(b) = max{ j ∈ [n − 1] : b[ j] > 0}.

The pseudo-code describing the procedure for solving problem (4.10) is given in
Algorithm 1. Overall, we summarize the process of recovering the sparse representa-
tion of multi-view data from corruption in Algorithm 2. The Algorithm 2 is repeatedly
performed until it meets the stopping criteria. This stopping criteria works by the fol-
low: For any data pointxk within any view i, if the minimum value of the maximum
entry of the difference between its latent sparse vectorsk and auxiliary variablepk is
less than the thresholdǫ or the minimum value of maximum entries of the difference
of each point’s latent sparse vectorsk, together withei

k and original sparse vectorsi
k is

less than the thresholdǫ.

Algorithm 2: Robust subspace clustering on multi-view data.

Input : X = {xk}
n
k=1, V views, initialize{si

k}(k = 1, . . . , n; i = 1, . . . ,V) by optimizing
Eq.(3.1),λ, η, βi, γ.

Output : sk, ei
k, (k = 1, . . . , n; i = 1, . . . ,V).

Initialize : sk=0, pk=0, zk=0, yi
k=0, ei

k=0, µ = 10−6, ρ = 1.9, maxµ = 1010, ǫ = 10−3.
repeat

c = 1
V+1

(

pk −
zk
µ
+

∑V
i=1(si

k − ei
k −

yi
k
µ

)
)

;

for k = 1, . . . , n do
FormXk by eliminatingxk;
Run Algorithm 1 usingc as input to updatesk;
for i = 1, . . . ,V do

Updateei
k via Eq.(4.8);

Updatepk via Eq.(4.6);
zk ← zk + µ(sk − pk);
for i = 1, . . . ,V do

yi
k ← yi

k + µ(sk + ei
k − si

k);

µ← min(µρ,maxµ);

until min
(

mink,i ||sk + ei
k − si

k ||∞,mink ||sk − pk ||∞
)

≤ ǫ;
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4.3 Subspace Clustering for Multi-view Data

The convergence for optimizing Eq. (3.7) is determined by optimizing sk, asMi
k enjoys

a closed form at each step. On the other hand, the convergencestudy on updating
sk is demonstrated in experimental part indicating that our algorithm is fast to reach
convergence.

So far, we have presented how to use the latent sparse representation for clustering
multi-view data objects from multiple subspaces. The optimal solution to Eq.(3.7),
sk ∈ R

n−1, is a vector whose nonzero entries correspond to points inXk with the same
subspace asxk. Thus, by inserting a zero entry at thei-th entry of sk, we derive an
n-dimensional vector, ˆsk ∈ R

n, whose nonzero entries correspond to points inX that lie
in the same subspace asxk. After solving Eq.(3.7) at each pointxk, (k = 1, . . . , n), we
obtain a matrix of coefficientsC = [ ŝ1, ŝ2, . . . , ŝn] ∈ Rn×n. The similarity between data
objectsi and j is then calculated asW(i, j) = Ci j+C ji

2 . The final affinity matrix regarding
all views is obtained asW. It is ready to perform subspace clustering.

5 Experimental Results

In this section, we comprehensively evaluate the performance of our approach by com-
paring with state-of-the-art baselines.

Table 5.1: Clustering performance on three real-world image datasets.
Method

Accuracy(%) Normalized Mutual Information(%)
UCI CMU PIE PASCAL UCI CMU PIE PASCAL

BSV-SSC 69.028±0.010 70.255±0.013 62.381±0.009 52.622±0.010 51.457±0.009 56.403±0.009
ConcatSSC 70.832±0.007 65.735±0.011 60.228±0.006 54.055±0.011 48.829±0.008 51.520±0.009

CCA 76.114±0.004 77.482±0.006 70.010±0.006 61.671±0.007 60.227±0.006 58.731±0.008
Co-train-SC 84.642±0.002 83.070±0.007 76.125±0.004 77.011±0.005 71.420±0.004 66.592±0.006
MultiNMF 88.014±0.003 86.807±0.004 80.227±0.007 80.257±0.010 77.561±0.011 69.882±0.011
SSC-Con 93.149±0.001 90.006±0.003 87.540±0.004 86.553±0.009 82.716±0.010 74.660±0.010

Ours 95.203±0.003 91.120±0.006 89.720±0.011 89.153±0.012 86.026±0.013 79.333±0.012

5.1 Datasets and Competitors

Datasets.Three real-world image datasets are used in our experiments.
• UCI Handwritten Digit Dataset 1: This handwritten digits (0-9) database con-

sists of 2,000 examples. There are 10 subspace clustering intotal and for each digit we
select its first 50 samples. All algorithms are performed on each digit, and the mean
and standard deviation of errors are reported. We constructtwo views, with the first
view being 76 Fourier coefficients and the second view being 240 pixel averages in 2×3
windows.
• CMU PIE Face Database2: This database contains 68 subjects with 41,368

face images. We construct four subspace clustering tasks based on randomly selecting
5, 8, 10, 15 subjects face images of this database. These images are first projected
into 6-dimensional subspace by PCA, respectively. Each image is 32×32, and we use
three kinds of features as three views: LBP (256-dim), HOG (100-dim), and grey levels
(128-dim).
• PASCAL VOC 2010 Database: This dataset contains 10,103 images from 20

classes, and thus there are 20 clustering problems in total.We first use PCA to project
the data into a 12-dimensional subspaces, and then all algorithms are performed on
each class to calculate mean and standard deviation errors.We adopt four types of

1http://archive.ics.uci.edu/ml/datasets.html
2http://www.ri.cmu.edu/projects/project 418.html
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Table 5.2: Statistics of the three datasets.
Dataset Instance # of view # of cluster

UCI digit 2,000 2 10
CMU PIE face 41,368 3 68

PASCAL VOC 2010 10,103 4 20

features as four views: color moments (255-dim), color histogram (64-dim), edge dis-
tribution (73-dim), and wavelet texture (128-dim).

The statistics of the datasets are summarized in Table 5.2.
Competitors. We choose the followings algorithms as competitors in our experi-

ments.

• The best single view on Sparse Subspace Clustering (BSV-SSC): use the individ-
ual view which achieves the best subspace clustering performance with a single
view of data. The sparse representation is obtained byℓ1-minimization.

• Concatenating features of each view on Sparse Subspace Clustering (ConcatSSC):
stitch features from all views to be a feature vector to perform Eq. (3.1), and then
directly perform subspace clustering on the obtained sparse representations.

• Multi-view clustering via Canonical Correlation Analysis(CCA) [19]: construct
the projections from high-dimensional data into low-dimensional subspaces by
using multiple views of the data via the canonical correlation analysis.

• Co-training based multi-view Spectral Clustering (Co-train-SC) [17]: develop
a multi-view spectral clustering that has a favor of co-training to reach an agree-
ment on clustering assignment.

• Multi-view Nonnegative Matrix Factorization (MultiNMF ) [22]: use NMF-based
multi-view clustering to search for a factorization that gives compatible cluster-
ing solutions across multiple views.

• Multi-view Sparse Subspace Clustering via correlation Consensus (SSC-Con)
[11]: develop a multi-view subspace clustering that advocates adaptive data cor-
relation and reaches consensus across views by angular based regularizer.

• SSC-ℓ1 [4]: Replace the trace lasso minimization in our objective function to be
ℓ1-minimization.

• LSR [8]: Replace the trace lasso term in our objective function to be Least
Squares Regression, which works by usingℓ2-minimization for subspace clus-
tering.

• LRR [7]: Replace the trace lasso term in our objective function to be Low-
Rank Representation, which works to group correlated data together by rank
minimization.

The clustering results are evaluated by comparing the obtained label of each data
point with the label provided by the datasets.
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Figure 5.1: The study on parameterγ over three image databases.

5.2 Experimental Settings

Evaluation Metrics. Two widely used metrics, clustering accuracy and normalized
mutual information, are used to measure the clustering performance [17]. The cluster-
ing accuracy discovers the one-to-one relationship between clusters and classes mea-
sures to which extent each cluster contains data points fromthe corresponding class.
Clustering accuracy is defined as follows:

Accuracy =

∑n
i=1 δ(map(ri), li)

n
, (5.1)

whereri denotes the cluster label ofxi, and li denotes the true class label,n is the
total number of images,δ(x, y) is the function that equals one ifx = y and equals zero
otherwise, andmap(ri) is the permutation mapping function that maps each cluster
labelri to the equivalent label from the database. The Normalized Mutual Information
(NMI) is used to determine the quality of clusters, which canbe estimated by

NMI =

∑c
i=1

∑c
j=1 ni, j log ni, j

ni n̂ j
√

(
∑c

i=1 ni log ni
n )(

∑c
j=1 n̂ j log n̂ j

n )
, (5.2)

whereni denotes the number of images contained in the clusterCi (1 6 i 6 c), n̂ j is the
number of images belonging to the classL j (1 6 j 6 c), andni, j denotes the number of
images that are in the intersection between clusterCi and classL j.

The larger the NMI is, the better the clustering results willbe.
To evaluate the quality of clusters{Ul}

K
l=1, we use Davies-Bouldin Index (DBI) to

measure the uniqueness of clusters w.r.t. the unified similarity measure.

DBI({Ul}
K
l=1) =

1
K

K
∑

i=1

max
j,i

d(ci, c j)

σi + σ j
, (5.3)

wherecx is the centroid ofUx, d(ci, c j) is the similarity betweenci andc j, andσx

denotes the average similarity of vertices inUx to cx. The smaller the DBI is, the better
the quality of clusters will be.

Parameters. In our algorithm, the sparsity parameterλ is set to 0.15 in all exper-
iments by cross-validation, andβi for each modality is equally set as1V . Parameterη
that controls the error sparsity is set by the grid search in{0.1, . . . , 0.9}. Finally, we
study the parameterγ, the controller of the angular based regularization term, to exam-
ine its impact on the performance of our approach. The analysis on the impact ofγ is
presented in Section 5.3.
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In accordance withCCA, the lower dimensionality is set to 40. Each cluster results
from 5 runs of K-means with the lowest scores reported as the final cluster assignment.
In MultiNMF , the parameterλv that tunes the relative weight among different views is
empirically set to 0.1 for all views and datasets.Co-train-SC requires the number of
clusters specified in advance to obtain eigenvectors. Thus,we set the same value as the
category number in each dataset.

Noise Setting. We use Gaussian noise with the zero mean and unit variance to
corrupt the data. The noise can be modified by varying magnitudes and we provide
results for each magnitude of noise. We report the noise using Peak Signal-to-Noise
Ratio (PSNR), which is commonly to measure the quality of image reconstruction.
Given a noise-freem × n imageS and its noisy approximationB, the PSNR is defined
as

PS NR = 10 log10















b2

1
mn

∑m
i
∑n

j (S i j − Bi j)2















, s.t. ||S − B||1 = ξ, (5.4)

whereb is the maximum possible pixel value of the imageS . For color images with
three RGB values per pixel, the definition of PSNR is the same except the denominator
( 1

mn

∑m
i
∑n

j(S i j − Bi j)2) is the sum over all squared value differences divided by image
size and by three. Decreasing values of PSNR means the increasing amount of noise.
||S −B||1 = ξ is used to ensure the sparsity of noise. Note that the denominator of PSNR
is 0 in a case of noise-free. The PSNR values are reported as rounded averages in our
experiments.

5.3 Parameter Study

The regularization parameterγ in the angular based difference is critical to our algo-
rithm. It manages the extent to which each modality makes consensus. A largerγ
focuses on reaching agreement across views. Whenγ is 0, the problem reduces to do
subspace clustering for each modality separately; whenγ goes to infinity, sparse codes
from different views share the same value. Fig.5.1 shows how the accuracy of our ap-
proach on the three datasets varies with changes in parameter γ. As we can see, our
algorithm performs relatively stable on our dataset whenγ is around 0.015, which is the
default value in our experiments. Moreover, our method in most time still outperforms
baselines whenγ takes various values.

5.4 Evaluation on Clustering Performance
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Figure 5.2: The evaluation on cluster qualities of different methods over three real-
world benchmarks.

Table 5.1 reports the clustering performances of different algorithms on the three
datasets. We use PSNR= 48 as the noise setting to corrupt each pixel of an image.
Without other specified, PSNR= 48 is used by default. It can be observed that our
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Table 5.3: The clustering accuracy (%) without/with angular based regularizer.

UCI CMU-PIE PASCAL
Averaged affinity 74.286 69.365 64.287

Angular regularizer 94.255 90.267 88.092

algorithm without noise term, referred to beSSC-Con, outperforms the second best
counterpartMultiNMF by a margin of 5.8%(7.8%) on UCI, 3.7%(6.6%) on CMU PIE
face, and 9.1%(6.8%) on PASCAL, in terms of accuracy(NMI). One reason for this
is thatSSC-Concan automatically learn a good similarity matrix by aggregating con-
sensus data correlations across views, rather than manually set the dimension number
of reduced subspaces. Moreover, the improved gains are significantly high between
SSC-Conand other alternatives ofCCA, Co-train-SC, ConcatSSC, andBSV-SSC.
Meanwhile, our approach with explicit noise model is able toachieve better clustering
results thanSSC-Condoes, in terms of three benchmarks. This is mainly attributed to
the noise term which helps to recover latent sparse representation shared by multiple
views.

We demonstrate the stableness and robustness of our approach by comparing with
CCA, andMultiNMF in terms of self-adaptive data correlation discovery. Bothof
the compared approaches need to manually set the dimension number of reduced sub-
spaces,i.e., number of clusters. Fig.5.2 shows the DBI comparison on three real-world
databases with variousK values. It can be seen that our method has the lowest DBI,
while competitors have higher DBIs. This indicates that ourparameter-free algorithm
can discover true clusters more robustly through adaptively correlating data consen-
sus across views. For comparison, the manually assigned values ofK makeCCA and
MultiNMF sensitive to parameters and less effective in clustering quality.

5.5 Contribution of Angular based Regularizer

In the experiment, we study the contribution of angular based regularizer in terms of
achieving consensus sparse vectors among multi-views. As acomparison, we need to
calculate the averaged affinity matrix on each database by optimizing Eq.(3.1) w.r.t.
individual views, and average the similarity between data objects from different views.
In Table 5.3, we show the clustering accuracy over the averaged affinity matrix as well
as the results obtained by imposing angular based regularizer on sparse representations.
In this experiment, we keep the data uncorrupted, and reportthe averaged clustering
accuracy values over three benchmarks. It can be seen that the angular regularization
across multi-views outperforms average affinity values over individual views on the
three databases. This verifies the necessity of imposing angular base regularization
which is able to achieve consensus in sparse representations while each individual view
only describes one aspect of visual data and their averaged similarities cannot encode
their complementary properly.

5.6 Evaluation on Trace Lasso

To understand the effect of trace lasso in modeling data correlation, we evaluatethe
performance of the best single view with trace lasso as well as another three penalty
norms:SSC-ℓ1, LRR , andLSR. Table 5.4 shows the clustering results on CMU-PIE
face database where there are three subspace clustering problems on the first 5, 10,
and 15 subjects. We can see that the best single view with trace lasso outperforms all
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Table 5.4: The clustering accuracy (%) with different penalty norms on CMU-PIE
database.

Method
Accuracy(%)

5 subjects 10 subjects 15 subjects
SSC-ℓ1 80.315±0.010 54.190±0.017 37.905±0.026
LRR 86.741±0.008 65.526±0.013 51.468±0.018
LSR 91.352±0.009 74.195±0.012 59.370±0.019
Ours 94.333±0.004 84.720±0.010 73.851±0.015

(a)SSC-ℓ1 (b) LRR (c) LSR (d) Trace lasso

Figure 5.3: The affinity matrix derived by (a)SSC-ℓ1 (b) LRR (c) LSR, and (d) best
single view with trace lasso on CMU-PIE face database.

competitors on all these three clustering tasks. BothLRR andLSR perform better than
SSC-ℓ1, which is a result of strong grouping effect of the two methods. However,LRR
andLSR lack the ability of subset selection, and thus may group somedata between
clusters together. By contrast, trace lasso not only preserves the grouping effect of
within cluster but also encourages sparsity between clusters. To illustrate this issue, we
provide an intuitive comparison of the four methods in Fig. 5.3.

5.7 Evaluation on Noise Term

In this experiment, we validate the feature of our approach that is able to recover a latent
sparse representation from multi-view corrupted data objects. We conduct the valida-
tion on three databases. In CMU-PIE face database, for the computational convenience,
we use 20 out of 68 subjects and randomly select 50 images fromeach subject to form
the data collection,X = {X1, . . . , X20}. Three views are used: LBP, HOG, and grey
levels. Our purpose is to correctly segment the data into 20 clusters. After corrupting
the data from CMU PIE face with various levels of Gaussian noise, we evaluate the
clustering performance of our approach against competitors. Likewise, in UCI hand-
written digit database and PASCAL VOC 2010, for each subject, we randomly select
50 samples to form data collection, and we aim to discover 10 and 20 clusters, respec-
tively. Results are shown in Fig.5.4. We observe that at all levels of noise, our method
outperforms every competitor by effectively recovering a latent sparse representation
from corruptions.

Another interesting observation is that the gap between theproposed method and
SSC-Con is generally maintained with different levels of noises in Fig.5.4. This is
mainly because the performance ofSSC-Conwill be largely pulled down when the
noise corruptions tend to uniformly distributed for all view-specific feature represen-
tations. That is, the noise distributions for all views can simultaneously reduce or
increase the correlations between the same data objects. Otherwise, the sparse repre-
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Figure 5.4: The robustness study on three real-world databases. (a)-(c) Examples of
UCI handwritten digits, and performance curve w.r.t. increasing magnitudes of noises.
(d)-(f) Examples of CMU PIE Face dataset, and performance curve w.r.t. increasing
magnitudes of noises. (g)-(i) Examples of PASCAL-VOC 2010 dataset, and perfor-
mance curve w.r.t. increasing magnitudes of noises.

sentations for any heavily noised view may be recovered by other views via the an-
gular regulation minimization. Such case may not be frequently met in our random
noise generation for all view specific feature representation, thus, lead to maintained
gap between two methods.

Nevertheless, the proposed technique in our paper can effectively tackle the noise
issue by recovering the common consensus sparse representations for all views, there-
fore, it always outperformsSSC-Con.

5.8 Convergence and Multi-view Consensus Study

The updating rules make the minimization of the objective function in an essentially
iterative way. In this section, we empirically show that theupdating scheme of our
method leads to the convergence. In Fig.5.5, we plot the convergence curve, together
with its clustering performance on the three benchmarks. The solid line shows the value
of our objective function at each iteration, while the dash line indicates the clustering
accuracy accordingly. It can be seen that the algorithm always becomes convergent
after around less than 20 iterations.

To show the correlation consensus propertied by angular term π(sk), we conduct
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Figure 5.5: The study on the convergence and corresponding performance curve on
three real-world benchmarks. (a) UCI digit. (b) CMU PIE face. (c) PASCAL VOC
2010.

20 40 60 80 100 120 140

20

40

60

80

100

120

140

C
1

C
2

C
3

20 40 60 80 100 120 140

20

40

60

80

100

120

140

C
1

C
2

C
3

20 40 60 80 100 120 140

20

40

60

80

100

120

140

C
1

C
2

C
3

(a) Iteration 10 (b) Iteration 15 (c) Iteration 20

Figure 5.6: The plot of coefficient matrices on CMU PIE face dataset. Without loss
of generality, we put the data points in the same subject category together, which form
a block diagonal matrix. The lighter color means the closer correlation and higher
coefficients.

another experiment on PASCAL VOC 2010 where the training setX is composed of
a number of randomly selected images from 50 to 450. The rest are taken as the test
samples. The consensus threshold isT, whose value is discretely set from 0.73 to 0.94.
We employ the consensus ratio as the evaluation metric, defined as the number of test
samples whose values of Eq. (3.4) are larger or equal toT. The results are shown in
Fig.5.7. It can be seen that the more number of training samples are used, the larger
value of the consensus ratio is obtained. This implies that learned sparse codes are more
consensus. However, the consensus ratios naturally decrease more when cosine values
become higher, resulting in a more restrict consensus. Overall, our method preforms
well even with a relatively small training set and large values ofT.

Overall, experimental studies have demonstrated the superiority of our approach
over state-of-the-art algorithms in terms of multi-modal data clustering. Moreover,
our method is robust to noise corruption, insensitive to parameter settings, and fast in
convergence.
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Figure 5.7: The values of consensus ratios versus the numberof training data (X) and
levels of thresholds (T ).

6 Conclusions and Future Work

In this paper, we presented a novel approach towards subspace clustering over multi-
view data. A novel angular based regularizer is proposed to achieve the data correlation
consensus on multi-views. Based on that, we further proposea novel sparse decompo-
sition based method to generate the refined data correlationconsensus with the scenario
that the considerable noise is available for each-view specific representations. The ex-
tensive experiments are conducted on real-world datasets to validate the effectiveness
of our technique by exploiting the correlations consensus.

One future direction may consider learning the dictionary atoms for sparse repre-
sentations for multi-view data, while develop novel techniques to achieve the similarity
consensus based on such sparse representations for subspace clustering. Another fu-
ture work is to exploit the consensus information among the cross-view data (e.g., the
heterogeneous data sources captured by a day camera, infrared camera and X-Ray sen-
sors) instead of multi-view data objects for subspace clustering.
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