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Abstract

More often than not, a multimedia data described by multipégures, such as color
and shape features, can be naturally decomposed of meiltisvi Since multi-views
provide complementary information to each other, greaeaudrs have been dedicated
by leveraging multiple views instead of a single view to awkithe better clustering
performance. Toféectively exploit data correlation consensus among migtivg, in
this paper we study subspace clustering for multi-view dédtde keeping individual
views well encapsulated. For characterizing data cofoglat we generate a similar-
ity matrix in a way that high finity values are assigned to data objects within the
same subspace across views, while the correlations amaagbgects from distinct
subspaces are minimized. Before generating this matrixetaer, we should consider
that multi-view data in practice might be corrupted by noisbe corrupted data will
significantly downgrade clustering results.

We firstly present a novel objective function coupled withaagular based regu-
larizer. By minimizing this function, multiple sparse vers are obtained for each data
object as its multiple representations. In fact, thesesgpagctors result from reaching
data correlation consensus on all views. For tackling no@seuption, we present a
sparsity based approach that refines the angular basedatedtation. By using this
approach, a more ideal data similarity matrix is generatediulti-view data. Spectral
clustering is then applied to the similarity matrix to obt#e final subspace cluster-
ing. Extensive experiments have been conducted to valiletefectiveness of our
proposed approach.



1 Introduction

It is widely known that many high dimensional data can be seen set of samples
drawn from aunion of multiple low-dimensional subspaces. Subspace clugeefers
to clustering the data into their original subspaces so amtwver their underlying
structures. Subspace clustering has attracted consldextibntions in computer vi-
sion and machine learning communities, with numerous egfidins including motion
segmentation [1], and face clustering [2, 3]. Recent worksparse representation
(SSC) [4, 5, 6], low rank representation (LRR) [3, 7, 2], lestpuare regression (LSR)
[8], and their extensions have attracted much attentiontdubeir dfectiveness in
clustering and robustness to noise. The essence of theseagpps lies in construct-
ing an dfinity matrix, which is close to a block diagonal matrix withnezro entries
corresponding to the pairs of data points from the same sules hey dier in the ob-
jective functions with dierent regularization, i.e., eithér-minimization (SSC), rank
minimization (LRR) orf,-regularization (LSR). The success of SSC, LRR, and LSR
supports the fact that if data arefBciently sampled from independent subspaces, a
block diagonal solution can be achieved provided that thigjective functions satisfy
the Enforced Block Diagonal (EBD) conditions [8].

However, the above methods either encourage sparsity arloiata selection but
lack of grouping &ect (SSC), or exhibit strong groupingect but are short in subset
selection (LRR and LSR). It has been observed that bothisparsd grouping &ect
are important to subspace segmentation. A method of ctimeladaptive subspace
segmentation by using trace lasso is presented [9], whigblésto simultaneously per-
form data selection and correlated data grouping. Moredlerauthors theoretically
prove that trace lasso can also lead to a block sparse golfitiee objective function
satisfies the conditions of Enforced Block Sparse (EBS).

The nature of visual data in practice is multi-vieag., an image can be described
by a color view or a shape view. These multiple views ofteroeieccompatible and
complementary information [10, 11]. This fact naturallytimates one to either lever-
age all views or simply concatenate them into a monolithie,dn order to improve
the performance achieved by a single view. Given data abjeith high dimensions
that lie in a mixture of subspaces and viewed by multiple gieme attempt to segment
data into proper clusters that are consistent among allsvieytaking advantage of
complementary properties offtBrent views. As pointed out by existing multi-view
based research [12, 13, 10, 11, 14, 15, 16, 17], the criticitpo well leverage the
complementary information from flierent views is to exploit the consensus informa-
tion among all views, which motivates us to achieve the dati@ consensus over
subspace clustering for multi-view data objects.

Numerous approaches [17, 18, 19, 20, 21, 22] of multi-vielasspace clustering
are already available. However, they may either fail to paedthe similarity matrix
that can characterize the data objects within the same aobgf7, 18], or rely on a
rigid data initialization such as Gaussian distributiofl][Ior even requires the dimen-
sions of projected subspace to be highly parameterizewkrautomatically learned.
They may not &ectively explore the complementary information from murigws,
as they simply follow one-combo-fits-all fashiomg., [20, 21], by concatenating all
features into one long feature vector, to perform subsplstering. This, neverthe-
less, will disregard the local (neighborhood) structureath view, downgrading the
performance of subspace clustering for multi-view data.

To overcome the above-mentioned limitations, we aim toeehihe correlation or
similarity consensus among all views, while the data objadthin the same subspace



should encode a large similarity and small similarity fotedabjects within the distinct

subspaces for each view. Our approach is based on the faorthaata point for each
view in a union of subspaces has a sparse representatiomesjibct to a set of basis
vectors formed by all other data points. This inspires usotostruct a data similarity

matrix for multi-views, from which the subspace clusterfagmulti-view data objects

can be obtained through spectral clustering.

Towards these ends, we propose a novel technique basedterasao norm [23]
as shown in Eq. 3.1 for each viesy., ith view, which learns the sparse ¢heients
vectore.g., q< of each data obje@g., X« over the entire data set. One nice property
found in [9] regardingg is:

Lemma 1 [9] Trace lasso has the grouping effect, i.e., the sparse coefficients of a
group of correlated data objects within the same subspace are approximately equal.
Meanwhile, the sparse coefficients of non-correlated data objects are very small.

After learning the sparse representation vector for eath adldject featured with
the property indicated by lemma 1 against any individualyige can trivially get the
similarity between any pair-wise data objects via theiresponding sparse represen-
tation values for each view. The remaining challenge is hmachieve the consensus
of the similarities from all views so as to perform the sultepealustering for multi-
view data. To resolve this, we propose a novel angular siityilbased regularizer to
regularize the sparse codes for the same data from all vieessitieve the consensus.

One may wonder why proposing angular based similarity ratien Euclidean
distance to coordinate the sparse vectors from all views $0 achieve consensus?

We show an example below to penetrate the illustration:

Example 1 Suppose X = {X1, X2, X3, X4}, and we have learned the sparse representa-
tionsfor x4 fromthreeviewse.g., i, j"™ and m" views as: s, = [1,1,0], s, = [3,3,0]
and sj' = [0, 0, 1] via Eq. (3.1)for each view, the same cogfficient is formed by using
tracelasso asper Lemma 1.

The above example indicates§ characterize the same correlations V\H;h sincexy
has the similar correlations with other three data objestsbbthi™ and j" views.
Specifically, X4 has the large correlations with and x,, but no(small) correlations
with xs. If we evaluate the similarity according to Euclidean distes, then the simi-
larity betweers, ands) is smaller thars;, implied by large Euclidean distances. That
apparently violates the fact. Therefore, to address sustlejsve propose the angular
similarity metric, leading to the small angular betweigrand s/, meanwhile lead to
large angular fos}'.

In practice, there may be disturbing noises, missing vadunekcorruptions avail-
able for view-specific feature representations. To achibeerobustness and corre-
lations consensus, we propose to decompose the sparsearjaten vector of each
data object into two parts for all views.

e The first part is the latent consensus sparse represensdi@oad by all views.
We propose to learn such latent consensus sparse reptaseifda each data
object by minimizing the angular similarity between eacbwsdspecific sparse
representations learned via Eq.(3.1) and it, so as to aeliv/data correlation
consensus encoded in sparse representations among al view

e The second part describes the possible noise corruptiorsafd view-specific
feature representations and the view-specific sparsesemaions for each indi-
vidual view, leading to non-precise and non-consisters datrelations encoded



in sparse representations. As observed, such noise sggmEsentations are
sparsely distributed, therefore, we propose to model itvizorm.

For our method, a novel objective function is proposed bgilaging our angular simi-
larity based regularizer artd norm sparse representation to address the possible noise
corruptions for each view-specific feature representatidme final consensus sparse
representations and noise term are yielded by minimiziagtioposed objective func-
tion. The consensus sparse representations are furtheedfior subspace clustering
over multi-view data. For simplicity, we illustrate our oadl framework in Fig.1.1
from two views, which can be naturally extended to multiwigscenario as our pro-
posed technique later.
Please note that the above decomposition model must be bhpdoltowing critical

claim: two distinct sparse codes for the same data objeosaariews encode similar
values in their entries, motivated by common assumptiothfemulti-view clustering

[22]: the same data object set undeffelient views should reveal the similar correla-
tions.
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Figure 1.1: Overview of our framework. For each datén a given set of data objects
with two viewsX = {xk}Z:1 that might be corrupted by noise, we learn its robust sparse
representation with respect to other data points in the sarspace a%. This is
achieved by using trace lasso as a sparsity promoter, whichaatomatically seek
sparse co@icients, regularized by an angular-based regularizer ichreansensus on

all views. By modeling noise via sparse decomposite, e‘k we can recover latent

shared sparse vectoiZ) from which the #inity matrix is constructed for subsequent
subspace clustering.

Our major contributions are summarized as follows.

e To the best of our knowledge, this is the first work on applytiege lasso into
multi-view data for subspace clustering.

e To exploit the data correlation consensus on views, we [E®@onovel angu-
lar based regularizer over the data sparse codes in maitisvi The objective
function is minimized under the regularization of this negularizer.



This paper is an extension of [11] with additionally constrictive contribu-
tions below.

e To cope with input data that might be corrupted by noise, weldg an approach
that can &ectively recover a shared latent sparse representatiom rinaltiple
views, which well reflects the true clustering information.

e More extensive experiments have been conducted on redd-imoage datasets,

which demonstrate thdfectiveness of exploiting the correlation consensus among

sparse codes of data objects across views for multi-viewpade clustering.

2 Related Work

In this section, we briefly review existing typical work redd to multi-view subspace
clustering.

Using a co-training based method[24, 10], Kureial. [17] constructs a compati-
ble multi-view similarity matrix in eigen-subspaces spetiby Laplacian matrix, such
that the similarity matrix in one view idkected by that in another view. However, they
simply calculate the similarity matrix in a K-nearest ndighs manner. This degrades
the performance if data points are nearby the intersectidw® distinct subspaces.
That is, the neighborhoods of a data point may cover datag&iom diferent sub-
spaces. The same problem exists in [18] as well. In [19], thdtiriew data are
projected into one common subspace, then the clusterirgyitdm, e.g., K-means,
is applied to yield the subspace clustering results. Suctethad, however, is sen-
sitive to data initialization. Specifically, it requiresaththe data initialization should
strictly follow the Gaussian distribution while keepingtdrent groups of data objects
separated. Besides, the number of dimensions for the pedjstbspace needs to be
known in advance. Matrix factorization is also utilized &®rform subspace clustering
for multi-view data, such as [20, 21]. Its essential idedét the features of heteroge-
neous views are first concatenated into a single-long featiaen non-negative matrix
factorization is applied to obtain subspace clusteringltes One limitation of such
a one-combo-fits-all strategy is that the data correlatidormation in each of origi-
nal view-specific feature space is not well exploited. Torowene this limitation, [22]
proposes a joint non-negative matrix factorization on eadlvidual view to compute
distinct codficient matrices, which are then regularized towards a comrnasensus
that represents the clustering structure shared by allsridis method, however, suf-
fers from the drawback that the dimension number of latediiced subspace needs to
be manually parameterized, rather than automaticallyrohéted.

3 Proposed Technique

In this section, we first formalize the problem of subspaesstelring on multi-view

data, then model data correlations in a single view, follbwg a non-trivial exten-

sion towards correlation consensus on multiple views. rAfiat, we present a novel
technique for noise decomposition in multi-view data.



3.1 Notations and Problem Definition

Let X = {xJ_, be a set of data points withdata instances. Suppose that each data
object hasd/ views. Without loss of generality, for theth view, we haveX' = {xk}E .
(i=1..V), wherexk is the feature representation gf under thei-th view. We
denote% as the sparse representation vectoxkobased orX'. The trace lasso [23]
is defined agX'Diag(s))ll., whereDiag(s,) is the diagonal matrix with it&-th diag-
onal element corresponding to théh entry ofs'k and||Al|. is the nuclear norm (the
summation of all the singular value) of a matAx The norms of|al|1, ||all. and||al|e
denote the’; (sum of absolute value of each entr§y norm of a vectoa and?,,, (max-
imum value of entry). Considering that multi-view data altgeare possibly corrupted
by noise.e.g., possible corrupted or missing values for any feature regmtasions, we
model the view-specific noise by a sparse decomposé!'g(ﬁor eachq;.

With the notations defined above, we aim to learn the latdnisbsparse represen-
tationss, for eacth (i =1,...,V) shared by all views of possible noisy multi-view
data objects. The representations are then utilized taonis compatible similarity
matrix W for multi-view data objects. The subspace clustering tasuchieved by
applying spectral clustering upa.

3.2 Modeling Data Correlations in single view

The challenge of modeling data correlations in each indizidiiew is to ensure high
correlations for data points within the same subspace endlilninating connections
among data objects from distinct subspaces. To achievgadlis we employ the trace
lasso norm to learn the sparse representations for eacblojetz.

As shown in [9], trace lasso is more adaptive tliaor £, norm, and it is equal to
{1-norm oré;-norm if data points are uncorrelated (orthogonal) or higtdrrelated.
Thereby, we havﬁs‘kuz IXi Dlag(%)u* < ||s‘1<||1 The sparse representaquof X
can well reflect the correlation betwegfand other data points under théh view.

In particular, if we normalize each column Xfto one, the problem of learning sparse
code vectors of each data point in tlktl view can be formulated below:

r@in SlX - XS5 + AlIX, Diag(s)ll., (3.1)

Wherexj( represents the data set excludk{lgThe parametet controls the fect of the
trace lasso term. Through trace lasspis composed of the approximately equal yet
large codficients on a few data objects, implying their strong corretet with respect
to xL Meanwhile, the coficients of data having no (weak) correlationxLoare setto
0. This conclusion also holds for th€j # i)-th view.

The convex optimization problem (3.1) can be solved by utiegAlternating Di-
rection Method (ADM) [9], which can converge globally. Thenk in [23] indeed
introduces an iteratively reweighted least squares alyarfor estimating the vector
q;, however, the solution is not necessarily globally optichaé to an additional term
to avoid non-invertible. To apply the ADM method, we first gert the problem (3.1)
into its equivalent formulation as follows,

in 3104 X+ M. St = X Diag(s). (32)
Tk

Then, problem (3.2) can be solved by ADM, which works on tHeWing augmented
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Figure 3.1: For any data objext, (k=1,...,n), its sparse codsL associated with an
individual viewi (i = 1,...,V) can be naturally decomposed into two parts: a shared
latent sparse codsg that reflects the true clustering information, a&{;dencoding a
view-specific deviation error vector that encodes the nioisparse codes in each view,
together with a view-specific sparse representation fon gw.

Lagrangian function:

o 1 . o )
L(Mi 89 = 51X = XS I3 + AIML.

' ' ' ' ' ' ' (3.3)
+Tr((Y)" (M, - X,Diag(s)) + %IIML ~ X Diag(s)IIz,

whereYli( € R™" s the Lagrange multiplier, and > 0 is the penalty parameter for the

violation of linear constraintL(M,, ) is separable to two subproblems with regard

to M, ands,, respectively. Hences can be updated with a closed form solution,

that is, for iteratiort, 5 = Al ((X)T X, + diag((X)T((Y)! + '(M)*1))) whereA) =
((X)TX. + o' Diag(diag((X)TX1)) -

3.3 Exploiting Correlation Consensus in Multiple Views

It is non-trivial to learn sparse representations thatattarize the correlation consen-
sus on all views by considering the subspaces from which¢beye. This is because
many multi-view learning methodgg., [25], rely on common label spaces across
views. Without label information, it thus becomes more Eraling to exploit their
consensus property shared by views.

The principle of multi-view clustering [22] is that the trumderlying clustering
would assign corresponding data objects across views tsaime cluster. According
to this principle, we propose to exploit the data corretationsensus among all views,
which further determines the subspace clustering on migtir data objects.

Basic idea: Angular based similarity. We attempt to fectively exploit the corre-
lation consensus on multi-views while keeping their indirality well-encapsulated.
One natural question is how to quantify the similarities amthe sparse representa-
tions of the same data object withigirent views. One may consider a distance metric,
e.g., Euclidean distance. However, as aforementioned, a smelidean distance can-
not indicate a similar data correlation shared by two spaageesentations, illustrated
by Example 1in Section 1. Fortunately, the sparse code oflaty objecte.g., s‘k

for x, can well reflect the correlation betwegpand other data points under théh
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Figure 3.2: An example of illustrating the angular basedilaiity. The same shape
indicates that data objects are in the same cluster, andathe §lled pattern means
that data objects come from the same view space. The spaiseot®; yielded by
trace lasso i§§3 (sé) under thei-th (j) view. In the case of noise free, the ¢eents

in §3 (sé) can correctly indicates the similarity betwernand{x;} ;.3 in thei-th (j)

view. Thus, minimizingr(s3) is equivalent to making sparse codes across views reach
consensus in terms of their similarities.

view. Another observation is that sparse codes feiedent views have the same di-
mension. The two observations motivate us to quantifyatigular based similarity
over sparse codes of multi-view data objects. This is edgimtdo quantifying the data
correlations regarding data object ¥etinder various views. As a result, we propose a
novel regularizer terny(sc), to encode the cosine similarity amoqgregardin@(L in
thei-th view.

Mathematicallys(sc) can be defined as

\Y T . o
(S)" -
n(s)=-) (8 -8 ? . (3.4)
77 s ll2llsll2
The objective function in Eq. (3.7) needs to be minimizedug;hwe add minus sign

“

i\T.ol
-"in Eq. (3.4) to encourage the large vaIueE}’j;ti H;jl—);szj_ as well as the small
’ 2 2

angle among various vectors of view-specific sparse reptatsen fors;.

Intuition of angular similarity to achieving consensus Minimization of 7(s) can

yield the correlation consensus on data objects acrossyvi@w intuitive example is
shown in Fig.3.2 where we have a set of five data objbq:1}§=1 with two views. For

each data object such &g we calculate its sparse representaﬁg(sé) under thd-th
view by Eq.(3.1) based on the dictionary composed of all fatadbjects. Owing to its
grouping éfect, trace lasso can well capture the correlations amoregatgécts. The
(nearly) equal positive cdicientsc; (c;) in §3 (sé) are generated to encode the strong
correlation betweer; andx,, and 0 betweemr, andxs under both-th andj-th views.

It is straightforward thal§3 and %’ have a large cosine similarity value. This value
in turn measures the relations between two views by cagfutie data correlation
consensus between multi-view sparse codes.

The above observations are based on the assumption thatdafauobjects are
noise-free. However, such an ideal case is almost impessilpractice where either
data objects may be noisy, or feature values are corruptad nfay result in inaccurate
codficients of sparse vectors. In what follows, we will tackle piieblem of the noise
of subspace clustering for multi-view data by recoveringtarnt sparse representation.
Such a representation reflects the true data correlati@nedliby all views.



To this end, we recover a common sparse representation bfdsga, which is
consistent across views byfectively decomposing noise in each view. As suggested
in [4, 26], one can fill in missing entries or correct errorfgssparse decomposition
since visual features containflaient clustering information, whilst features in each
view might have a small portion of information corrupted lojse. In what follows, we
show that our method can also cluster data points with ceetb@ntries in multi-view
data objects by recovering and modeling the error matrix fgrse decomposition.
Formally, Ietq; be the sparse code fu{g regarding the-th view that may be corrupted

Then, we decomposs, into a shared latent sparse vec®y ande€, encoding a
noise corruption for feature representation and specificssprepresentations for the
i-th view; then, we have:

Vi, VK S = S + €. (3.5)

Eq.(3.5) is based on the basic assumption that the sparsssegpation in each indi-
vidual view is robust enough to contain most of the clustgrifformation, although
noise might lead to the small number of data points assigm@&ddng clusters. Con-
sequentlys is the consensus correlation of a data point with respecttter goints
across all views. We illustrate this intuition in Fig.3.1.

Now we are ready to present how to extend the learning teakrfigm a single
view to multiple views.

Voo(d\T .=
(8)" - & i ;
1(&)=-) ——,st. § =5 +€. (3.6)
Z lISl2l1Skll2 S &

Intuitively, Eq.(3.6) recovers a shared latent sparseesgprtation for multiple views,
which is regularized by the angular based similarity.

Considering Eq.(3.5) and Eq.(3.6), we formulate the pnobt# learning robust
sparse representation for multi-view data objects asvigio

\
H 3 } i yid 2 M i i
22'5: Zﬁ. (2||><k XisI3 + AlIX Diag(s)l. + nllE Hl) R EN) o)

st S =5%+6.E =[e,....d],%>0,

whereg; balances the contribution from ti¢h view, Z}’zlﬁi =1, andy is a weight pa-
rameter ont(S) to regulate the correlation consensus over multi-vieigepresents
the diference collection betwee{j ands, for thei-th view, wherek = 1,...,nandn
is a hon-negative balance parameter.

Since we assume that sparse representation in each vielustrand has enough
information to identify most of the clustering structurieisireasonable to hypothesize
that there is only a small fraction of eIementss'Lrbeing apparently dlierent from the
corresponding ones ig. Thus, the deviation error matrix and view-specific sparse
representatiorE' tends to be sparse. In summary, we aim to learn sparse &des
of xL for each view, by optimizing Eq. (3.7) for subspace clusigmn noisy multi-
view data. Specifically, for each data object, we attemptetover a shared latent
sparse representation that reflects the underlying trieeatatelation with other data
objects. These shared sparse codes are regarded as aioutiab compute a more
accurate flinity matrix on data objects, which can be subsequently coatbivith
some clustering strategiesg., spectral clustering, to disclose clusters.



4 Optimization Strategy

The dificulty of optimizing Eq. (3.7) lies in its non-joint-convearfM, = X, Diag(s,)
and s, along with non-smoothness for trace lasso. We alterrgtivetimize each
variable by fixing others. Eac¥j is initialized by optimizing Eq. (3.7) via Alternative
Direction Method (ADM) [9] with the parameter of 0.15. We derive an equivalent
variational formulation of the trace norm [27]. Assuiiee R™™, the trace norm of
M equals

M, = %isnlz)tr(MTS’lM) +1r(S), 4.1)

where the infimum is achieved when we h&e (MMT)Y2, Then we recast Eq. (3.7)
as

A\ ﬁ
. .
min inf > %1~ XS
* % (tr ((SW2RT(MYTIX) + tr(My)) @.2)
+BmllE [l + yr(3),

st Sl'.t<275',<+ei<,Ei =[€‘i,...,qi,|],§,(>0,

whereS, = Diag(s,)-

4.1 SolvingM,

With other variables fixed, the optimization problem in E§2( is convex with respect
to M,. We conduct a coordinate descent procedure to optiiizéor eachx,. Given
S we enjoy the closed form solution of, as

L= (XL(S2X TV, (4.3)

4.2 Solving and €,

To optimizes, andeL, we introduce an optimization procedure to solve this problia

the Augmented Lagrangian MultiplieALM ) scheme [28]. For ease of the representa-
tion, we definea® = inf 41X, - X512 + %L (tr ((S2(4)T (MY71XL) + tr(M})). By introducing

an auxiliary variablgy, we convert problem (3.7) into the following form:

Vv
p[."ei% yr(py) + ;(A“ +BllE'|l) (4.4)

The corresponding augmented Lagrange function is:

\%
L£(50 Pod) = ya(p) + ) (AY + (. S+ € - 8
i=1
- (4.5)
+ ’gns +e - SI2) + (2o 3 - po + %‘nék - p2.
st. & =0,

wherez andy{( are Lagrange multipliers;, -y denotes the inner product of matrices,
andu > 0 is an adaptive penalty parameter. Next, we will presentfieate rules for
eachpy, &, ande}, by minimizing L in Eq.(4.5) with other variables being fixed.



Solving px. When other variables are fixed, the subproblem wp.is
. = Z
minya(pa + 518 - pe+ 2, (4.6)
Pk 2 M

Considering thap, encodes the latent structure of each sparse code acrosal| we
thus havep, = [§,—€., ..., s —€/]. Thereafter, we obtain a matri= [ps, p2... ., pnl,
then Eq. (4.6) can be rewritten as

. = z
minylIPl. + 515 - P+ 2|2, (4.7)
)i

whereS = [$1, S, ..., S andZ = [z1, 2, ..., Z)]. Eq. (4.7) can be solved by_SinguIar
Value Threshold method [29]. More specifically, BEVT be the SVD form of §+ %).

The solution to EqQ.(4.7) iB = US1,(Z)VT, whereSs(X) = maxX — 6, 0) + min(X +
6,0) is the shrinkage operator [28].
Solving €,. The subproblem w.r.§ can be simplified as:

e

2
u g (4.8)

mdinﬂind(ul +5ld— (8- %

which has a closed form solutia) = Sg,/,.(S, — S - %). Sy(X) = maxX - 6,0) +
min(X + 6, 0) is the shrinkage operator [28].
Solving . With other variables being fixed, we upda&tey solving

V .
5 in” s Y2
S=argming » [[S+e& -5+l
: 2; H (4.9)
) 2 ]
+ LIS ot X5t 8> 0.
u

For convenience of the representation, we define 1 (pk ~ &t >a(s - - %))
With simple algebraic manipulation, the problem (4.9) candwritten as

5 = arg n_win%ﬂék —cJ|2,st. 5 =0. (4.10)
&
The Lagrangian of the problem in Eq.(4.10) is
_ 1_ _
L(368) = SlI5-clb - ¢S
wheref € R is a vector of non-negative Lagrange multipliersffBientiating with
respect ta§[i] and comparing to zero gives the optimality conditig;% = §[i] -
c[i] — Z[i] = 0. The complementary slackness KKT condition implies thaémever
&[i] > 0, we must havé(i] = 0. Thus, if]i] > 0, we have
S(i] = c[i].

All the non-negative elements of the vec&rare tied via a single variable, thus,
identifying the indices of these elements yields a much Emmoblem.

Lemma 2 [30]. Let & be the optimal solution to Eq(4.10) i and j be two indices
such thatc[i] > c[]], if &[i] = 0theng]j] must be zero as well.
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Algorithm 1: Algorithm for solving problem (4.10).

Input: A vectorc e R™1,
Output: 5.

Sortcintob: b[1] > b[2] > ... > b[n—1];
Findj = maxj € [n—1]: b[j] > O};
fori=1,...,jdo

L S[i] = bli];
fori=j+1,...,n-1do

L &[] =0;

return S

Denote byl the set of indices of non-zero components of the sorted @psimiu-
tion, the Lemma 2 implies that= [o] for some 1< o < n—1. We can find the optimal
o by the following lemma once we sartin descending order.

Lemma 3 LetS be the optimal solution to the minimization problem in Eq.(4.10)
Let b denote the vector obtained by sorting c in a descendingrder. Then, the
number of strictly positive elements inS is o(b) = maxj € [n— 1] : b[j] > 0}.

The pseudo-code describing the procedure for solving protg#.10) is given in
Algorithm 1. Overall, we summarize the process of recoygtire sparse representa-
tion of multi-view data from corruption in Algorithm 2. Theldorithm 2 is repeatedly
performed until it meets the stopping criteria. This stoygpcriteria works by the fol-
low: For any data poinkg within any view i, if the minimum value of the maximum
entry of the diference between its latent sparse vegoand auxiliary variablegy is
less than the thresholdor the minimum value of maximum entries of thétdrence
of each point’s latent sparse vec®&r together witI’eL and original sparse vectst is
less than the threshold

Algorithm 2: Robust subspace clustering on multi-view data.

Input: X = {XJp_;, V views, initialize{s }(k=1,...,n;i = 1,...,V) by optimizing
Eq(gl)vlv nvﬁiv Y-
Output: 5§, ¢, k=1,...,ni=1,...,V).
Initialize : §=0, p=0, z=0, y}=0, €=0, u = 105, p = 1.9, max, = 10'%, e = 10°3.
repeat
c= gt (- 2+ 2Va(d -6 - D)
+ H H
fork=1,...,ndo
Form X, by eliminatingx;
Run Algorithm 1 using as input to updatg;
fori=1,...,Vdo
| Updateg, via Eq.(4.8);
Updatepy via Eq.(4.6);
Z — Zo+ p(Sc— Po);
fori = 1,..‘.,Vdo ‘ '
|_ Vi < Y t (S + € — 8);
| # < min(up, max,);
until min (min; (S + € = Slle, Mink 1S — Pilles) < €;

11



4.3 Subspace Clustering for Multi-view Data

The convergence for optimizing Eq. (3.7) is determined hiynoiging S, asML enjoys

a closed form at each step. On the other hand, the convergéamtye on updating
% is demonstrated in experimental part indicating that ogodthm is fast to reach
convergence.

So far, we have presented how to use the latent sparse refaése for clustering
multi-view data objects from multiple subspaces. The ogtisolution to Eq.(3.7),
% € R™1, is a vector whose nonzero entries correspond to pointg imith the same
subspace ag¢. Thus, by inserting a zero entry at théh entry of 5, we derive an
n-dimensional vectorg e R", whose nonzero entries correspond to point% that lie
in the same subspace gs After solving Eq.(3.7) at each poirg, (k = 1,...,n), we
obtain a matrix of coficientsC =[5, &, ..., &] € R™". The similarity between data
objectsi andj is then calculated a#/(i, j) = @ The final dfinity matrix regarding
all views is obtained a¥V. It is ready to perform subspace clustering.

5 Experimental Results

In this section, we comprehensively evaluate the perfoomafour approach by com-
paring with state-of-the-art baselines.

Table 5.1: Clustering performance on three real-world iendatasets.

Method Accuracy(%) Normalized Mutual Information(%)
UCI CMU PIE PASCAL UCT CMU PIE PASCAL

BSV-SSC 69.028:0.010 70.255:0.013 62.38%:0.009 52.622:0.010 51.45%0.009 56.403:0.009
ConcatSSC 70.832:0.007 65.735:0.011 60.228:0.006 54.055:0.011 48.829-:0.008 51.52@-0.009
CCA 76.114:0.004 77.482:0.006 70.01a-0.006 61.6710.007 60.227%-0.006 58.731:0.008
Co-train-SC 84.642:0.002 83.07G:0.007 76.125:0.004 77.0110.005 71.420:0.004 66.592:0.006
MultiNMF 88.014:0.003 86.807:0.004 80.227%:0.007 80.25%:0.010 77.5610.011 69.882:0.011
SSC-Con 93.149:0.001 90.006:0.003 87.5406:0.004 86.553:0.009 82.716:0.010 74.660:0.010
Ours 95.203:0.003 91.12G:0.006 89.72G:0.011 89.153:0.012 86.026:0.013 79.333:0.012

5.1 Datasets and Competitors

Datasets.Three real-world image datasets are used in our experiments

o UCI Handwritten Digit Dataset *: This handwritten digits (0-9) database con-
sists of 2,000 examples. There are 10 subspace clusteriotplrand for each digit we
select its first 50 samples. All algorithms are performed achedigit, and the mean
and standard deviation of errors are reported. We congiuactiews, with the first
view being 76 Fourier cdBcients and the second view being 240 pixel averagesi 2
windows.

e CMU PIE Face Database?: This database contains 68 subjects with 41,368
face images. We construct four subspace clustering taslesdtmmn randomly selecting
5, 8, 10, 15 subjects face images of this database. Thesegraag first projected
into 6-dimensional subspace by PCA, respectively. Eacly@is 3232, and we use
three kinds of features as three views: LBP (256-dim), HO@({dim), and grey levels
(128-dim).

e PASCAL VOC 2010 Database This dataset contains 10,103 images from 20
classes, and thus there are 20 clustering problems in Wtafirst use PCA to project
the data into a 12-dimensional subspaces, and then allithiger are performed on
each class to calculate mean and standard deviation eivéesadopt four types of

Lhttpy/archive.ics.uci.edml/datasets.html
httpy/www.ri.cmu.edyprojectgproject 418.html
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Table 5.2: Statistics of the three datasets.

Dataset Instance| # of view | # of cluster
UCI digit 2,000 2 10
CMU PIE face 41,368 3 68
PASCAL VOC 2010| 10,103 4 20

features as four views: color moments (255-dim), colordgsam (64-dim), edge dis-
tribution (73-dim), and wavelet texture (128-dim).

The statistics of the datasets are summarized in Table 5.2.

Competitors. We choose the followings algorithms as competitors in oyeex
ments.

The best single view on Sparse Subspace ClusteB8Y{SSQ: use the individ-
ual view which achieves the best subspace clustering pesdioce with a single
view of data. The sparse representation is obtained foginimization.

Concatenating features of each view on Sparse Subspade@iggConcatSSQ:
stitch features from all views to be a feature vector to penfBq. (3.1), and then
directly perform subspace clustering on the obtained spa@resentations.

Multi-view clustering via Canonical Correlation Analy$GCA) [19]: construct
the projections from high-dimensional data into low-dirsienal subspaces by
using multiple views of the data via the canonical corretatinalysis.

Co-training based multi-view Spectral Clusterir@ptrain-SC) [17]: develop
a multi-view spectral clustering that has a favor of cortirag to reach an agree-
ment on clustering assignment.

Multi-view Nonnegative Matrix FactorizatiodMultiNMF ) [22]: use NMF-based
multi-view clustering to search for a factorization thateg compatible cluster-
ing solutions across multiple views.

Multi-view Sparse Subspace Clustering via correlation sgémsus $SC-Con
[11]: develop a multi-view subspace clustering that adtesadaptive data cor-
relation and reaches consensus across views by angular feggsarizer.

SSG/; [4]: Replace the trace lasso minimization in our objectivedtion to be
£1-minimization.

LSR [8]: Replace the trace lasso term in our objective functiorbé Least
Squares Regression, which works by ustagninimization for subspace clus-
tering.

LRR [7]: Replace the trace lasso term in our objective functiorbé Low-
Rank Representation, which works to group correlated dagather by rank
minimization.

The clustering results are evaluated by comparing the éddabel of each data
point with the label provided by the datasets.

13
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Figure 5.1: The study on paramejeover three image databases.

5.2 Experimental Settings

Evaluation Metrics. Two widely used metrics, clustering accuracy and normdlize
mutual information, are used to measure the clusteringppadnce [17]. The cluster-
ing accuracy discovers the one-to-one relationship batwhesters and classes mea-
sures to which extent each cluster contains data points fhencorresponding class.
Clustering accuracy is defined as follows:

n
Accuracy = w (5.1)
wherer; denotes the cluster label af, andl; denotes the true class labal,s the
total number of imageg(x, y) is the function that equals onexf= y and equals zero
otherwise, andnap(r;) is the permutation mapping function that maps each cluster
labelr; to the equivalent label from the database. The NormalizetiMunformation
(NMI) is used to determine the quality of clusters, which barestimated by

c c - i j
Zi:l Zj:l nI,J |Og rﬁj

NMI = N
JEEiniog B)(zs.; ylog %)

(5.2)

wheren; denotes the number of images contained in the cl@ték < i < ¢), fi; is the
number of images belonging to the clasg1 < j < ¢), andn; ; denotes the number of
images that are in the intersection between cluStemd clasd ;.

The larger the NMI is, the better the clustering results bl

To evaluate the quality of clusterBh}lK:l, we use Davies-Bouldin Index (DBI) to
measure the uniqueness of clusters w.r.t. the unified sityilaeasure.

K . .
DBI({UI,) = % Z max 2 ©1) (5.3)
i=1

j#i O’i+0'j’

wherecy is the centroid ofUy, d(c;, ¢;) is the similarity betweer; andc;j, andoy
denotes the average similarity of verticedpto c. The smaller the DBI is, the better
the quality of clusters will be.

Parameters. In our algorithm, the sparsity parameteis set to 0.15 in all exper-
iments by cross-validation, amgl for each modality is equally set $ Parameter
that controls the error sparsity is set by the grid searctd.ih...,0.9}. Finally, we
study the parameter, the controller of the angular based regularization teonexam-
ine its impact on the performance of our approach. The aisatysthe impact of is
presented in Section 5.3.
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In accordance witlcCA, the lower dimensionality is set to 40. Each cluster results
from 5 runs of K-means with the lowest scores reported astiaédluster assignment.

In MultiNMF , the parametet, that tunes the relative weight amondfdient views is
empirically set to 0.1 for all views and datase@o-train-SC requires the number of
clusters specified in advance to obtain eigenvectors. Mmiset the same value as the
category number in each dataset.

Noise Setting. We use Gaussian noise with the zero mean and unit variance to
corrupt the data. The noise can be modified by varying madegand we provide
results for each magnitude of noise. We report the noiseguRaak Signal-to-Noise
Ratio (PSNR), which is commonly to measure the quality ofgeaeconstruction.
Given a noise-freen x nimageS and its noisy approximatioB, the PSNR is defined

as
b?

whereb is the maximum possible pixel value of the ima§e For color images with
three RGB values per pixel, the definition of PSNR is the saxcep the denominator

% > Z?(Si,— — Bij)?) is the sum over all squared valugtérences divided by image
size and by three. Decreasing values of PSNR means the smgesamount of noise.
IS—-B|l1 = £is used to ensure the sparsity of noise. Note that the dermbaniof PSNR
is 0 in a case of noise-free. The PSNR values are reportediaded averages in our
experiments.

PSNR = 10|ogm( st [IS- Bl = & (5.4)

5.3 Parameter Study

The regularization parametgrin the angular based fiiérence is critical to our algo-
rithm. It manages the extent to which each modality makeseosus. A largey
focuses on reaching agreement across views. Whsi, the problem reduces to do
subspace clustering for each modality separately; whgoes to infinity, sparse codes
from different views share the same value. Fig.5.1 shows how theaaycaf our ap-
proach on the three datasets varies with changes in panagnefes we can see, our
algorithm performs relatively stable on our dataset whenaround 0.015, which is the
default value in our experiments. Moreover, our method isttime still outperforms
baselines whef takes various values.

5.4 Evaluation on Clustering Performance

DBI vs K on UCI Digit database DB vs K on CMU-PIE database

nnnnn
..... 0.0050

0.0040

00030

ooooo Ailatalalil :::;:.||.|I.|I.|wusu|.|m| lmi‘lll‘l
(@) (b) (©)
Figure 5.2: The evaluation on cluster qualities afielient methods over three real-

world benchmarks.

Table 5.1 reports the clustering performances @edént algorithms on the three
datasets. We use PSNR48 as the noise setting to corrupt each pixel of an image.
Without other specified, PSNR 48 is used by default. It can be observed that our
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Table 5.3: The clustering accuracy (%) withavith angular based regularizer.
UClI CMU-PIE | PASCAL

Averaged finity | 74.286| 69.365 64.287
Angular regularizer] 94.255| 90.267 88.092

algorithm without noise term, referred to ¥ C-Con outperforms the second best
counterparMultiNMF by a margin of 5.8%(7.8%) on UCI, 3.7%(6.6%) on CMU PIE
face, and 9.1%(6.8%) on PASCAL, in terms of accuracy(NMIheQ@eason for this
is thatSSC-Concan automatically learn a good similarity matrix by aggtewacon-
sensus data correlations across views, rather than marsealihe dimension number
of reduced subspaces. Moreover, the improved gains ardisantly high between
SSC-Conand other alternatives @CA, Co-train-SC, ConcatSSG andBSV-SSC
Meanwhile, our approach with explicit noise model is ablatbieve better clustering
results tharBSC-Condoes, in terms of three benchmarks. This is mainly attritbte
the noise term which helps to recover latent sparse repgamshared by multiple
views.

We demonstrate the stableness and robustness of our apgmpaomparing with
CCA, andMultiNMF in terms of self-adaptive data correlation discovery. Baoftth
the compared approaches need to manually set the dimensiaioen of reduced sub-
spacesi.e., number of clusters. Fig.5.2 shows the DBI comparison oretheal-world
databases with various values. It can be seen that our method has the lowest DBI,
while competitors have higher DBIs. This indicates that parameter-free algorithm
can discover true clusters more robustly through adaptiweirelating data consen-
sus across views. For comparison, the manually assignadsafK makeCCA and
MultiNMF sensitive to parameters and le§etive in clustering quality.

5.5 Contribution of Angular based Regularizer

In the experiment, we study the contribution of angular Hasgularizer in terms of
achieving consensus sparse vectors among multi-views. cAsngarison, we need to
calculate the averagedhiaity matrix on each database by optimizing Eq.(3.1) w.r.t.
individual views, and average the similarity between d&i@cts from diferent views.

In Table 5.3, we show the clustering accuracy over the aegratjnity matrix as well
as the results obtained by imposing angular based regetanizsparse representations.
In this experiment, we keep the data uncorrupted, and reéperaveraged clustering
accuracy values over three benchmarks. It can be seen ¢hahtjular regularization
across multi-views outperforms averag@iraty values over individual views on the
three databases. This verifies the necessity of imposinglanbase regularization
which is able to achieve consensus in sparse represerstatiole each individual view
only describes one aspect of visual data and their averagudrities cannot encode
their complementary properly.

5.6 Evaluation on Trace Lasso

To understand thefiect of trace lasso in modeling data correlation, we evaltrage
performance of the best single view with trace lasso as veetireother three penalty
norms: SSG/¢;, LRR, andLSR. Table 5.4 shows the clustering results on CMU-PIE
face database where there are three subspace clusterinlgrmpgsoon the first 5, 10,
and 15 subjects. We can see that the best single view witb taaso outperforms all
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Table 5.4: The clustering accuracy (%) withffdrent penalty norms on CMU-PIE

database. = o
ccuracy(%

Method 5 subjects 10 subjects 15 subjects

SSG¢; || 80.315:0.010 | 54.19G:0.017 | 37.905:0.026

LRR 86.7410.008 | 65.526:0.013| 51.468:0.018

LSR 91.352:0.009 | 74.195:0.012| 59.37Q:0.019

Ours 94.333:0.004 | 84.723:0.010| 73.85%0.015

(2) SSG;

(b) LRR (c)LSR

(d) Trace lasso

Figure 5.3: The flinity matrix derived by (a5SG¢; (b) LRR (c) LSR, and (d) best
single view with trace lasso on CMU-PIE face database.

competitors on all these three clustering tasks. B®RR andLSR perform better than
SSG¢1, which is a result of strong groupingfect of the two methods. HowevéiRR
andLSR lack the ability of subset selection, and thus may group sdate between
clusters together. By contrast, trace lasso not only pvesethe groupingféect of
within cluster but also encourages sparsity between chiste illustrate this issue, we
provide an intuitive comparison of the four methods in Fig.5

5.7 Evaluation on Noise Term

In this experiment, we validate the feature of our approhahis able to recover a latent
sparse representation from multi-view corrupted dataaibjeNe conduct the valida-
tion on three databases. In CMU-PIE face database, for thegtational convenience,
we use 20 out of 68 subjects and randomly select 50 imagesdaaim subject to form
the data collectionX = {Xj,..., X30}. Three views are used: LBP, HOG, and grey
levels. Our purpose is to correctly segment the data intd@ers. After corrupting
the data from CMU PIE face with various levels of Gaussiars@owe evaluate the
clustering performance of our approach against compstitoikewise, in UCI hand-
written digit database and PASCAL VOC 2010, for each subjgetrandomly select
50 samples to form data collection, and we aim to discovemti®?® clusters, respec-
tively. Results are shown in Fig.5.4. We observe that atakls of noise, our method
outperforms every competitor byffectively recovering a latent sparse representation
from corruptions.

Another interesting observation is that the gap betweemtbposed method and
SSC-Conis generally maintained with flerent levels of noises in Fig.5.4. This is
mainly because the performance ®6C-Conwill be largely pulled down when the
noise corruptions tend to uniformly distributed for all wiespecific feature represen-
tations. That is, the noise distributions for all views camudtaneously reduce or
increase the correlations between the same data objediervse, the sparse repre-
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Figure 5.4: The robustness study on three real-world da&sha(a)-(c) Examples of
UCI handwritten digits, and performance curve w.r.t. iggiag magnitudes of noises.
(d)-(f) Examples of CMU PIE Face dataset, and performanceecw.r.t. increasing

magnitudes of noises. (g)-(i) Examples of PASCAL-VOC 20&fadet, and perfor-
mance curve w.r.t. increasing magnitudes of noises.

sentations for any heavily noised view may be recovered hgrotiews via the an-
gular regulation minimization. Such case may not be fretjyenet in our random
noise generation for all view specific feature represemathus, lead to maintained
gap between two methods.

Nevertheless, the proposed technique in our paper €actigely tackle the noise
issue by recovering the common consensus sparse repitesenfar all views, there-
fore, it always outperformSSC-Con

5.8 Convergence and Multi-view Consensus Study

The updating rules make the minimization of the objectivection in an essentially
iterative way. In this section, we empirically show that tipdating scheme of our
method leads to the convergence. In Fig.5.5, we plot theargewnce curve, together
with its clustering performance on the three benchmarke.stitid line shows the value
of our objective function at each iteration, while the ddsk indicates the clustering
accuracy accordingly. It can be seen that the algorithmyevieecomes convergent
after around less than 20 iterations.
To show the correlation consensus propertied by angular #€s), we conduct
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Figure 5.5: The study on the convergence and correspondirfgrmance curve on
three real-world benchmarks. (a) UCI digit. (b) CMU PIE fade) PASCAL VOC
2010.

(a) Iteration 10 (b) Iteration 15 (c) Iteration 20

Figure 5.6: The plot of cdicient matrices on CMU PIE face dataset. Without loss
of generality, we put the data points in the same subjectyoaygogether, which form

a block diagonal matrix. The lighter color means the closeretation and higher
codficients.

another experiment on PASCAL VOC 2010 where the trainingXsist composed of

a number of randomly selected images from 50 to 450. The redblen as the test
samples. The consensus threshol@,iwhose value is discretely set from 0.73 to 0.94.
We employ the consensus ratio as the evaluation metric,adkéis the number of test
samples whose values of Eq. (3.4) are larger or equal fthe results are shown in
Fig.5.7. It can be seen that the more number of training sasrmle used, the larger
value of the consensus ratio is obtained. This implies #atled sparse codes are more
consensus. However, the consensus ratios naturally cdecneare when cosine values
become higher, resulting in a more restrict consensus. dyeur method preforms
well even with a relatively small training set and large e ofT.

Overall, experimental studies have demonstrated the guipgrof our approach
over state-of-the-art algorithms in terms of multi-modatalclustering. Moreover,
our method is robust to noise corruption, insensitive t@paater settings, and fast in
convergence.
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Figure 5.7: The values of consensus ratios versus the nushb@ining data X) and
levels of thresholdsT).

6 Conclusions and Future Work

In this paper, we presented a novel approach towards subshatering over multi-
view data. A novel angular based regularizer is proposedhiizae the data correlation
consensus on multi-views. Based on that, we further propos®el sparse decompo-
sition based method to generate the refined data corretadimsensus with the scenario
that the considerable noise is available for each-viewipeepresentations. The ex-
tensive experiments are conducted on real-world datase@litiate the fectiveness
of our technique by exploiting the correlations consensus.

One future direction may consider learning the dictionaoyres for sparse repre-
sentations for multi-view data, while develop novel tecfuds to achieve the similarity
consensus based on such sparse representations for subkpsiering. Another fu-
ture work is to exploit the consensus information among tosssview data€g., the
heterogeneous data sources captured by a day cameraihfeanera and X-Ray sen-
sors) instead of multi-view data objects for subspace etirgd.
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