
Method for Providing Secure and Private

Fine-grained Access to Outsourced Data

Mosarrat Jahan1,2 Mohsen Rezvani1 Aruna Seneviratne1,2 Sanjay Jha1,2

1University of New South Wales, Australia
{mjahan,mrezvani,sanjay}@cse.unsw.edu.au

2National ICTA (NICTA), Australia
Aruna.Seneviratne@nicta.com.au

Technical Report
UNSW-CSE-TR-201505

May 2015

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

Outsourcing data to the cloud for computation and storage has been on rise
in recent years. In this paper we investigate the problem of supporting write
operation on the outsourced data for clients using mobile devices. Due to se-
curity concerns, data in the cloud is expected to be stored in encrypted form
and associated with access control mechanism. In this work, we consider the
Attribute based Encryption (ABE) scheme as it is well suited to support access
control in outsourced cloud environment. Currently there is a gap in the lit-
erature on providing write access on the data encrypted with ABE. Moreover,
since ABE is computationally expensive, it imposes processing burden on re-
source constrained mobile devices. Our work has two fold advantages. Firstly,
we extend the single authority Ciphertext Policy Attribute based Encryption
(CP-ABE) scheme to support write operations. We define a group among the
set of authorized users for a ciphertext that can perform the write operation,
while the remaining users can perform only read operation. Secondly in achiev-
ing this goal, we move some of the expensive computations to a manager and
remote cloud server by exploiting their high-end computational power. Our
security analysis demonstrates that the security properties of system are not
compromised.



Keywords: Security; fine-grained access control; attribute based encryption
(ABE); write operation.

1 Introduction

With the advent of cloud technology, users and enterprises are able to use in-
frastructure, storage and application services from third parties, namely Cloud
Service Providers (CSPs). CSPs minimise the cost users get access to an infras-
tructure as required without having to build and maintain the infrastructure
themselves. Moreover, cloud computing provides a number of advantages like
higher availability and protection of data in case of disaster that can affect in-
house computing system. However, cloud services suffer from many security and
privacy issues[8][14]. For example, data cannot be stored in the cloud in clear
text as may be subject to the unauthorised or malicioius access. Efficient mech-
anisms are needed to read and write the outsourced data. There is an extensive
study in literature to provide efficient access mechanisms and most of them
only support read operations [1][8]. This becomes even a greater problem when
information access needs to be provided to users with different privileges. For
example, assume that a document needs to be shared between a doctor, nurse,
physiotherapist and a social worker where the doctor has complete read-write
access to the whole document, the nurse and the physiotherapist have access to
different parts of the document, and the social worker only has read access.

Data encryption and access control mechanisms are closely related as encryp-
tion should be done by keeping in mind who will get the access of data. Access
control on encrypted data is difficult due to the generation and management
of keys and ciphertexts. In this scenario, Attribute based Encryption (ABE)
is a promising solution to provide access control on outsourced data. It is an
efficient cryptographic tool to establish secured communication among a group
of users and ensure privacy of the participants. Compared to traditional Public
Key Encryption (PKE) schemes, ABE stores a single copy of the ciphertext.
Moreover, keys can be generated and managed by a single or multiple attribute
authorities. In ABE, a user is represented as having a set of properties or at-
tributes that ensures user privacy by hiding user identity. A user will be able
to decrypt a ciphertext if and only if he can satisfy the access requirement of
the ciphertext with the attributes he owns. Many work utilized ABE to provide
fine-grained access control to outsourced data. However, most of them only
support read operations[1][8].

Moreover with the rise of mobile devices, most of the users are accessing
data using smart phones, tablets, etc that are constrained in terms of storage,
processing and battery power. Thus there is an urgent need to design light
weight applications that can be executed in the mobile devices and can access
and process outsourced data from mobile devices.

In this paper, we present an efficient mechanism for performing fine-grained
read and write operations on outsourced data that will enable a number of
users access and manipulate the shared data. This paper makes the following
contributions:

• Shows that its is possible for the owner to retain control over the data by
prohibiting writers to modify any access policy;

1



• Provides a method to delegate expensive bilinear pairing operation to the
cloud and manager servers without compromising security of the system
thus enabling the use of ABE in mobile environments;

• Present a security analysis that shows the security of the system is main-
tained.

The rest of the paper is organized as follows. Section II lists the related work.
Section III presents the system model and assumptions we make. Section IV
describes the proposed algorithm in detail, while discussion and the security
analysis are given in Section V and Section VI, respectively. Finally some con-
clusions and future directions are presented in Section VII.

2 Related Work

ABE is extensively studied in literature. Dan Boneh et al. proposed the notation
of fully functional identity-based encryption (IBE) in 2001 [2]. Sahai and Waters
developed the concept of Fuzzy-IBE in 2005 where the identity of a user is
represented as a set of strings known as attributes [15]. They proposed an access
control mechanism where a recipient can decrypt a ciphertext if there is match of
dk attributes between the ciphertext and the recipient where dk is a predefined
value. The idea of ABE emerged from the concept of Fuzzy IBE. Goyal et al.
[7] proposed the concept of Key Policy Attribute Based Encryption (KP-ABE)
where an access structure is included in the decryption key of a user while the
ciphertext is associated with a set of attributes. A user can decrypt a ciphertext
if and only if the attributes of the ciphertext can satisfy the access policy of the
decryption key. In KP-ABE, the key generator will determine the types of data
a user can access. Ciphertext Policy Attribute Based Encrytion (CP-ABE)
is proposed by Bethencourt’s et al. in 2007 [1]. CP-ABE is a complementary
concept of KP-ABE as the access structure is associated with ciphertext and set
of attributes are inscribed into the decryption key. In CP-ABE the data owner
is solely responsible for determining who will access the data. Bethencourt’s
CP-ABE is secure in generic group model. Many works were done to make CP-
ABE secure in standard model but with cost of expressiveness of access structure
[5]. Among all the work, B. Water’s CP-ABE is prominent as he proposed an
expressive CP-ABE in standard complexity model [17]. In all of the above
schemes, a user has to go to a single trusted authority to prove his identity
to obtain the decryption key. This approach is not secured as the compromise
of the single authority will make all the ciphertexts belonging to the system
easily decryptable because the central authority contains the master secret key
used to generate all the decryption keys. Thus research is conducted to divide
the responsibility of key generations into a number of attribute authorities.
Chase et al. first proposed the concept of Multi-Authority Attribute Based
Encryption (MA-ABE) by extending the single authority Fuzzy IBE to handle
multiple Attribute Authorities (AA) [3]. This scheme does not ensure user
privacy as user identity GID is used to authenticate and corrupted AAs can
link the related attribute keys issued by different AAs for a single user using the
GID. Chase and Chow addressed the problem of [3] by distributing the operation
of CA among a number of AAs and by generating different pseudonyms for
a single user when he contacts with different AAs [4]. The shortcoming of

2



the scheme is the communication and computational overhead during setup
and key generation phase due to co-operations among the AAs. Han et al.
[9] proposed a privacy preserving multi-authority KP-ABE scheme. Each AA
works independently and can generate secret key for a user without co-operation
with other AAs and each authority has no information about user identity.
Hur et al.[10] proposed a multi-authority CP-ABE (MA-CPABE) scheme for
Disruption Tolerant Networks (DTN). In this scheme a number of AAs and
users contribute to generate the decryption key under the control of a CA. This
involves communication overhead among the CA, AAs and users. Lewko et
al. [11] proposed a decentralized CP-ABE scheme without any CA and their
scheme is applicable for expressive access policy.

Both forms of the ABE schemes proposed only support read operations
[1][7][8]. Recently, Zhao et al. [18] proposed the design of flexible read/write
framework for outsourced data utilizing the concept of CP-ABE[1] and an At-
tribute Based Signature (ABS) scheme[13]. In the proposed scheme, the data
owner encrypts the file using an access policy Tdecrypt and then signs the file by
using signature access policy Tsign. An authorized reader verifies the signature
and decrypts the ciphertext. A writer can encrypt the modified file with a new
access policy Tdecrypt1 and sign the file with Tsign. The CSP will verify the new
sign SG1 with Tsign and the verification key. However this is based on a sin-
gle authority CP-ABE and ABS and they allow any writer to change the access
policy for the data. Ruj et al. [14] extended this work to provide a decentralized
version by combining Lewko’s decentralized ABE scheme [11] with multiple au-
thority ABS proposed by Maji et al.[13]. This enables users of the data to both
modify the Tsign and Tdecrypt, as a result will ultimately reduce data owner’s
control over the data. More recently Dong et al. [6] utilized hierarchical Identity
Based Encryption (IBE) to provide secure, efficient and scalable data sharing
mechanism where once again any writer can specify the access policy. In this
scheme, a root-PKG generates system parameters, a secret key and private keys
for the lower levels L-PKGs and D-PKGs. Each L-PKGs selects a secret key for
itself and private keys for the L-PKGs and D-PKGs under its control. D-PKG
is responsible for generating private keys for users in the same domain. Data
owner encrypts data using IBE scheme and the public keys of the recipients
that can also modify the data. A user with the decryption key can decrypt
and update the data if it’s public key belongs to the encrypted data. Liu et al.
[12] proposed a privacy preserving data access control mechanism by combin-
ing CP-ABE [1] with the hierarchical structure of multiple authorities. Their
scheme supports write operation using the concept of Attribute Based Signa-
ture (ABS) [13] scheme. In this mechanism, a certificate authority (CA) will
perform system setup and generates system public key and master key. When
a new Attribute Authority (AAi) with identity aa joins the system, CA selects
the secret key for AAi using key generation rule of the single authority CPABE
[1]. Top level AAi will generate keys for the users or the underlying AAs by
using the concept of key delegation of the single authority CPABE [1]. Data
encryption and decryption is performed using the same rule of single authority
CPABE [1]. A user who wants to perform write operation re-encrypts M to
M ′ and sign the key to generate a signature σ. The cloud server will check
this σ with respect to Tsign and it verifies successfully, the cloud will accept
the ciphertext. In all of these schemes, the data owner’s control is not fully
maintained as writers can modify the access policy and they are not suitable for

3



(7) Upload CT 
and verification 

key

(6) Generate 
decryption keys

(8) Download 
and decrypt CT

(3) Distribute 
group secret key 

Data Owner Manager

Reader

Writer

(1) Generate 
keys

(4) Distribute 
verification 

key

(5) Distribute 
sign and 

verification keys

Public 
Directory

(2) Generate 
manager key and 

upload public 
key

(9) Decrypt 
and upload

modified CT

Figure 3.1: Our system model.

processing data in mobile devices because of the high computational overheads
associated with the building blocks. We address these issues in our proposed
work.

3 System Architecture

In this section, we describe the system architecture and define the security
model.

3.1 System Description and Assumptions

Figure 3.1 shows the system architecture for collaborative data sharing among a
group of users within a company. Our scheme extend Bethencourt’s CP-ABE[1]
to support this operation. The notations used in the description are summarized
in Table 3.1. The system model consists of the following entities:

1. Data Owner, who is responsible for originating an outsourced data that
is shared with a number of users, each allowed to either read, write or
do both operations. The data owner generates owner secret key, OSK
and owner public key, OPK. The data owner also generates group
secret key, GSK and group public key, GPK, what will indicate who is
authorized to write on the outsourced data. The OPK and GPK will
become part of a public key, PK. For each outsourced data the data

4



Table 3.1: List of notations

Symbol Description

OSK Owner secret key

OPK Owner public key

GSK Group secret key

GPK Group public key

Sk Signing key

V k Verification key

MSK Manager secret key

CK Cloud key

CSP Cloud service provider

CT Ciphertext

owner also generates a signing key Sk and a verification key V k. Either
data owner can share GSK with the group users or delegate a managing
entity to do this. The data owner shares V k with CSP as well as with
all authorized users whereas shares Sk only with the writers. We assume
that all communications among the data owner, where appropriate the
manager and users will be done using a secure channel, for example SSH
and the authorized users will not collude.

2. Manager is an internal trusted server running within the owner’s net-
work and generates decryption keys on behalf of the data owner[16]. The
proposed system, exploits the capabilities of the manager to reduce com-
putational burden on user side.

3. Cloud Server stores encrypted data and provides access to the cipher-
text, CT to the users with valid V k. It is assumed that cloud server is
honest-but-curious, namely it may try to gather information on the en-
crypted data but will not tamper it [16]. In the proposed system, the
processing power of the cloud server is used to securely perform compu-
tationally expensive bilinear mapping operations.

4. Users access encrypted data using their mobile devices and can decrypt
if authorized. Moreover, only a subset of the authorized users will be able
to perform write operations.

3.2 Threat Model and Security Requirements

• Data Confidentiality: Unauthorized users who do not satisfy the access
policy should not be able to decrypt the ciphertexts. Data should be
protected against CSP and manager server.

• Collusion Resistant: Collusion attacks are possible only when two or
more unauthorized users can combine their attributes to satisfy the access

5



policy and get the access of data. Our scheme should be protected against
such type of attacks.

• Replay Attack: Replay attack is performed when a malicious user having
the access of old copy of CT replaces the valid CT with the obsolete one.
As our scheme supports write operation, the old CT in the cloud should be
replaced by the valid CT written by an authorized writer and this scheme
should be protected against replay attack.

• Prevent Unauthorized Write Operation: The system should be se-
cured against write operation by unauthorized users, CSP and manager.

• Resistant against Compromising GSK: In our scheme GSK is used
to define the group of writers among the set of authorized users. Thus
compromise of GSK creates provision for revoked writers to perform write
operations and such situations should be avoided.

4 Proposed Scheme

In this section we describe the construction to accomplish the data sharing
operation in the scenario depicted in Figure 3.1. Data owner forms a group by
selecting users among the authorized users using the group formation technique
described in [16]. This includes a subset of authorized users able to perform
write operations.

4.1 Scheme Construction

Let G0 be a bilinear group of prime order p with generator g and e : G0×G0 →
G1 be a bilinear map. We also utilize a one way hash funcion H that maps an
attribute to a random group element in G0. Our construction consists of eight
steps following the execution sequence depicted in Figure 3.1.

Data Owner Setup(): The data owner generates owner secret key, OSK =
{β} and owner public key, OPK = {gβ , g1/β}, where β ∈ Zp. The data owner
also selects a group of users for write operation and generates group secret key,
GSK = u0 and group public key, GPK = gu0 that will become part of Public
Key, PK, where u0 ∈ Zp. For each outsourced data the data owner selects Sk
and V k (Step 1 in Figure 3.1).

Manager Setup(): The manager creates manager secret key, MSK =
(α, gα, α1, α2) and calculates e(g, g)α, where α = α1 + α2 and α, α1, α2 ∈ Zp.
The manager also generates a cloud key, CK = (gα2/β , Vno) (Step 2 in Fig-
ure 3.1). Finally the public key, PK is generated using both a group public
key, GPK, supplied by the data owner, and a cloud key, CK, provided by the
manager as:

PK = {G0, g, h = gβ , f = g1/β , e(g, g)α, GPK,CK, Vno},

where G0 is a bilinear group of prime order p with generator g and Vno is the
version number of PK.

KeyDistribution(): The data owner or manager can distribute GSK to
every member of the group using a secure communication channel (Step 3). The

6



data owner transmits V k to the cloud and every authorized user (Step 4) and
Sk to the group members (Step 5) again using a secure communication channel.

KeyGen(PK,MSK,A)→ DSK: The manager generates data secret key,
DSK on behalf of the data owner by selecting a random r ∈ Zp for a particular
user and rj ∈ Zp for each attribute j ∈ A (Step 6). DSK is generated as follows:

DSK = (D = g(α1+r)/β ,∀j ∈ A : Dj = gr.H(j)rj , D′
j = grj ),

where H is hash function that maps an attribute to a random group element in
G0.

Encrypt(PK,GPK,M, T )→ CT : The data owner determines an access
tree T representing the access policy following the method described in [1]. A
polynomial qx is generated for each node x ∈ T . A randomly selected secret
value s ∈ Zp is associated with the root R of T by setting qR(0) = s. The data
owner also attaches a time stamp τ to prevent replay attacks[14]. Then the
ciphertext, CT is generated as follows:

CT ={v = 0, τ, T, C = M.e(g, g)αs, C0grp = gu0s, C ′′ = gβs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(atty(y))qy(0)}.

where Y is the set of leaf nodes of T and v is the version number of CT .
The manager shares α with the group members by encrypting it with GPK.

The CSP also computes e(g, g)u0s using C0grp and g and generates C ′=
M.e(g, g)αs.e(g, g)u0s.The final CT generated by the data owner is,

CT ={v = 0, τ, T, C ′ = M.e(g, g)αs.e(g, g)u0s,

C = M.e(g, g)αs, C0grp = gu0s, C ′′ = gβs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0)}.

The data owner signs CT using Sk and uploads the CT to the cloud (Step
7 in Figure 3.1). To further improve security, the data owner doesn’t provide
the manager any access to CT .

UploadCTCloud(): Cloud first verifies τ and then proceeds to check the
validity of the signature on CT using V k before storing CT .

Decrypt(CT,DSK,PK,GSK)→M : A user requiring access to CT presents
V k to the cloud, and if it matches with the V k present in the cloud, then he
gets to download CT . The user verifies the signature on CT . If it is a valid,
the user will try to match it’s attributes with the leaf nodes of T by evaluating
the following equation for each leaf node x:

DecryptNode(CT,DSK, x) =e(Di, Cx)/e(D′
i, C

′
x)

= e(grH(i)ri , gqx(0))/e(gri , H(i)qx(0))

= e(g, g)rqx(0),

where i = att(x). The values obtained from the leaf nodes are then used recur-
sively to evaluate the value of non-leaf nodes as described in [1]. Finally if the
user attributes are able to satisfy the access policy, the value of the root node
is determined as follows:

A = DecryptNode(CT,DSK,R) = e(g, g)rs

7



The decryption operation proceeds as follows:
1)Read Operation by the Authorized Users (Step 8 in Figure 3.1) (If the user

does not have Sk from the data owner): User evaluates the following equation:

M = C.A/e(C ′′, D)e(C ′′, CK)

= M.e(g, g)αs.e(g, g)rs/e(gβs, g(α1+r)/β)e(gβs, gα2/β)

= M.e(g, g)(αs+rs)/e(g, g)(α1+r)se(g, g)α2s

= M.e(g, g)(αs+rs)/e(g, g)(α1s+rs+α2s)

= M.e(g, g)(αs+rs)/e(g, g)(αs+rs).

The computation of e(C ′′, D) is done by the manager and user computes
e(C ′′, CK) and e(C ′′, D)e(C ′′, CK).

2) Read and Write Operation by the Authorized Group of Users (Step 9 in
Figure 3.1) (If the user has Sk from the data owner): Message is decrypted as
follows:

M = C ′.A/e(C ′′, D).e(C ′′, gu0/β).e(C ′′, CK)

= M.e(g, g)αs.e(g, g)u0s.e(g, g)rs/e(gβs, g(α1+r)/β).e(gβs, gu0/β).e(gβs, gα2/β)

= M.e(g, g)(αs+rs+u0s)/Me(g, g)(α1+r)s.e(g, g)u0s.e(g, g)α2s

= M.e(g, g)(αs+rs+u0s)/e(g, g)(αs+rs+u0s)

The computations of e(C ′′, D) and e(C ′′, CK) are done by the manager, the
computation of e(C ′′, gu0/β) and e(C ′′, D)e(C ′′, CK)e(C ′′, gu0/β) are performed
by the user.

Suppose M is modified as M ′ and to re-encrypt M ′ we need to generate
C ′ = M ′.e(g, g)αse(g, g)u0s. The user performs the following operations:

1. User calculates pairing of C ′′ (contained in CT ) and g1/β(contained in
PK) and this generates e(gβs, g1/β) = e(g, g)s.

2. User computes (e(g, g)s)α = e(g, g)αs

3. CSP calculates e(g, g)u0s from C0grp = gu0s

4. User calculates e(g, g)αse(g, g)u0s.

5. User generates C ′ = M ′.e(g, g)αse(g, g)u0s and C = M ′.e(g, g)αs

6. User selects a time stamp τ .

7. To generate new CT user extracts T,C ′′, C0grp ,∀y ∈ Y : Cy, C
′
y from the

CT received, thus preventing the user from generating a new access tree
T . The version number of CT will be increased by 1.

8. User will sign the CT using Sk.

KeyReGen(): When a member in the group is revoked, a new user is added
or a key is compromised, the manager selects α′ ∈ Zp and chooses a new

CK = gα
′
2/β where α′

2 = α′ − α1. The new PK = {G0, g, h = gβ , f =
g1/β , e(g, g)α

′
, GPK,CK, Vno} and MSK = (α′, gα

′
, α1, α

′
2, Vno) where Vno is

increased by 1. We keep α1 fixed and modify α′ and α′
2 to prevent the need

8



Data Owner Manager CSP Reader Writer

(1) Generate 
OSK, OPK, 
GSK, GPK, 

Sk, Vk

OPK, GPK

PK(2) Generate 
MSK and CK

GSK
(3)

(4) Vk

Sk, Vk
(5)

(6)
Decryption Key

(7)
CT, Vk

(8)Download and 
decrypt CT

(9) Decrypt and upload modified CT

Figure 4.1: An illustration of outsourced data sharing among a group of users

to modify all the decryption keys generated so far using α1. α1 and α′
2 will

ultimately produce α′ during the decryption operation.
The data owner updates GSK = ux and GPK = gux . GSK is distributed

among the group members using secure channel. The manager also distributes
encrypted value of α′ using GPK. Data owner modifies C as M.e(g, g)α

′s and
sends C and Cxbase

= guxs to the cloud. To prevent CT from being decrypted
by the revoked users (writer), the CT is re-encrypted by the CSP using the
re-encryption key. The re-encryption key RK0→x can be calculated by the data
owner as well as the holder of GSK as g{ux/u0} and is sent to the cloud. The
cloud re-encrypts C̃x = C.e(C0grp , RK0→x) = M.e(g, g)α

′s.e(gu0s, gux/u0) =

M.e(g, g)α
′s.e(g, g)uxs. The data owner combines the final ciphertext as follows:

CTx = {v = x, T, C̃x, C, C
′′, Cxbase

,∀y ∈ Y : Cy, C
′
y}

Finally data owner changes the Sk and V k whenever there is a change in group
membership.

The cryptographic operations performed in time order is shown in Figure ??

5 Discussion

Traditional CP-ABE[1] uses α as a secret to generate the decryption keys. Any
one having the access of α will be able to generate decryption keys and thus
able to decrypt all ciphertexts. In our case α can be leaked as it is shared with
a number of users. As a safety measure, we divide α into two parts α1 and α2

and utilize α1 to generate the decryption keys. Thus even if α is compromised,

9



decryption keys generated so far using α1 remain safe. Our scheme adopts new
values α′ and α′

2 by keeping α1 fixed. The data owner modifies C and C̃x using
α′, manager computes e(g, g)α

′
and a new CK using α′

2. The decryption keys
will be keep generated using α1 and combined with α′

2 during decryption phase
to generate α′. Thus when α is compromised, our scheme only needs to generate
α′, CK, C, C̃x, Sk and V k, eliminating the need for modifying the decryption
keys that is a huge saving in terms of computational overhead. Any malicious
user having access of α cannot decrypt any CT . Thus secure write operation is
ensured in our system.

6 Security Analysis

Our scheme is secured as a generic group model relying on Bethencourt’s CP-
ABE model[1] and is resistant to the following attacks:
Replay Attack: As τ maintained in CT will prevent replay attack. The cloud
will verify τ with respect to the current time stamp of the existing CT . If τ
has greater value than the existing τ in CT and CT is verified with V k, then
CSP accepts the new CT replacing the previous one. This prevents a reader
trying to replace the existing CT with an old copy of CT signed by previous
writer. The reader cannot attach new τ with CT and sign it as does not have
the access of Sk. When a writer is revoked, Sk and V k gets changed. Thus a
revoked writer cannot use an obsolete copy of CT signed with previous Sk to
replace the existing CT .

Prevent Unauthorized Users, CSP and Manager to perform Write
Operation: For the lack of Sk and α unauthorized users (even reader) as well
as the CSP cannot write data. Although manager has α, it cannot perform
the write operation because the data owner always uploads CT into the cloud
directly without giving it any access. Manager does not have the access of Sk
and V k and thus cannot download CT from the cloud.

Collusion Resistant: Our construction follow Bethencourt’s CPABE scheme
which is resistant to collusion attacks[1]. Thus two users each having insufficient
attributes to decrypt CT cannot combine their attributes to decrypt CT .

CSP and Manager cannot Decrypt CT: Cloud is unable to decrypt CT
as it does not have the access to DSK, s, α. Although manager has DSK it is
not given the access of CT . Even when expensive operations are delegated to
the CSP and manager, it is carefully designed so that no one party get enough
information to decrypt CT .

Resistant against compromising GSK: If GSK is compromised, two
situations can arise:

1. the data owner will select a new GSK, ux and instruct CSP to re-encrypt
CT using R0→x and prevent revoked users to perform write operation.

2. An unauthorized user will get the access to α. In this case our scheme
adopts a new α′ that will only change α′

2 without changing α1. C, C̃x, Sk
and V k are modified by the data owner.

10



7 Conclusion

This paper extended the single authority CP-ABE scheme[1] to support write
operation. To this end, we full fill security requirements of the proposed system
and explored the capacity of manager and cloud servers to reduce computation
overhead on mobile users. In future we plan to reduce trust level on manager
server and make the sign and verfication keys non-transferrable. Finally we
will try to deploy the proposed scheme using existing CP-ABE[1] libraries in
practical scenarios that involve interactions among cloud, server and mobile
device users and evaluate the performance.

Bibliography

[1] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute based
encryption. In Proc. of IEEE SP’2007, 2007.

[2] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing.
In Proc. Adv. Cryptol.(CRYPTO’01), volume 2139, pages 213–229, 2001.

[3] M. Chase. Multi-authority attribute based encryption. In Proc. of 4th
Conference on Theory of Cryptography(TCC’07), pages 515–534, 2007.

[4] M. Chase and S. S. M. Chow. Improving privacy and security in multi-
authority attribute-based encryption. In Proc. of 16th ACM Conf. Comp.
Commun. Security, pages 121–130, 2009.

[5] L. Cheung and C. Newport. Provably secure ciphertext policy abe. In Proc.
14th ACM Conf. Computer and Comm. Security(CCS’07), pages 456–465,
2007.

[6] Xin Dong, Jiadi Yu, Yanmin Zhu, Yingying Chen, Yuan Luo, and Minglu
Li. Seco: Secure and scalable data collaboration services in cloud comput-
ing. Computers & Security, 50:91–105, 2015.

[7] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Proc. of 13th ACM
CCS’2006, 2006.

[8] Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the
decryption of abe ciphertexts. In USENIX Security Symposium, page 3,
2011.

[9] Jinguang Han, Willy Susilo, Yi Mu, and Jun Yan. Privacy-preserving
decentralized key-policy attribute-based encryption. IEEE Trans. Parallel
and Distributed Systems, 23(11):2150–2162, November 2012.

[10] Junbeom Hur and Kyungtae Kang. Secure data retrieval for decentralized
disruption-tolerant military networks. IEEE/ACM Trans. Netw., 22(1):16–
26, February 2014.

[11] Allison Lewko and Brent Waters. Decentralizing attribute-based encryp-
tion. In Proc. of 30th EUROCRYPT’2011), 2011.

11



[12] Xuejiao Liu, Yingjie Xia, Shasha Jiang, Fubiao Xia, and Yanbo Wang. Hi-
erarchical attribute-based access control with authentication for outsourced
data in cloud computing. In Proc. of 12th IEEE TrustCom’2013, 2013.

[13] Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-
based signatures. In Topics in Cryptology–CT-RSA 2011, pages 376–392.
Springer, 2011.

[14] Sushmita Ruj, Milos Stojmenovic, and Amiya Nayak. Decentralized access
control with anonymous authentication of data stored in clouds. IEEE
Trans. Parallel and Distributed Systems, 25(2):384–394, 2014.

[15] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Proc. 24th
Annual Intl. on Theory and Applications of Cryptographic Techniques (EU-
ROCRYPT’05), volume 3494, pages 457–473, 2005.

[16] Piotr K Tysowski and M Anwarul Hasan. Hybrid attribute-and re-
encryption-based key management for secure and scalable mobile appli-
cations in clouds. IEEE Trans. Cloud Computing, 1(2):172–186, 2013.

[17] B. Waters. Ciphertext-policy attribute-based encryption: An expres-
sive, efficient, and provably secure realization. Public Key Cryptography
(PKC’2011), 6571:53–70, 2011.

[18] Fangming Zhao, Takashi Nishide, and Kouichi Sakurai. Realizing fine-
grained and flexible access control to outsourced data with attribute-based
cryptosystems. In Information Security Practice and Experience, pages
83–97. Springer, 2011.

12


