
TEXUS: A Task-based Approach for Table

Extraction and Understanding

Roya Rastan1 Hye-Young Paik1 John Shepherd1

1University of New South Wales, Australia
{rrastan,hpaik,jas}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201504

May 2015

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

In this paper, we propose a precise, comprehensive model of table processing
which aims to remedy some of the problems in the discussion of table processing
in the literature. The model targets application-independent, end-to-end table
processing, and thus encompasses a large subset of the work in the area. The
model can be used to aid the design of table processing systems (and we provide
an example of such a system), can be considered as a reference framework
for evaluating the performance of table processing systems, and can assist in
clarifying terminological differences in the table processing literature.

1 Introduction

Tables are a widely-used structure for data presentation and summarisation in
documents from many different domains. Tables use layout to arrange infor-
mation and convey meaning, and are capable of presenting and communicating
complex information to human readers. Human readers, in turn, are capable
of using layout features as clues for interpreting the logical meaning of the in-
formation in tables. Because tables are a rich and widely-available source of
inter-related data, it would be useful if their contents could be automatically
extracted and manipulated by computers. However, the diversity of layouts
and variety of encodings (e.g. HTML, PDF, plain text) of tabular information
makes extraction and understanding a challenging problem.

Various research communities, such as machine learning and information
retrieval, have worked on the problem of table processing and many approaches
have been proposed. However, existing approaches almost always tackle only
a subset of the problem (e.g. tables in a specific domain or with particular
layout), or focus on sub-tasks of the complete table processing problem (e.g.
locating tables). Importantly, most systems are designed as monolithic black-
boxes, which makes it difficult to investigate their structure and performance,
or to re-use/replace components to advance the state of the art.

There has been some work towards building a coherent, systematic view of
the table processing problem. Hurst [12] provided multiple table models, to
define tables from different abstraction levels. Silva [5] defined end-to-end table
processing as a set of tasks, thus reducing the monolithic, black-box view of the
problem. Long [20] proposed an agent-based architecture in which table pro-
cessing systems are implemented by composing different agents, showing that
reusability is relevant to table processing. Taken together, these works almost
provide a complete framework for discussion of table processing. However, they
were developed independently and do not dovetail well enough nor provide suf-
ficient detail to support the development and evaluation of full end-to-end table
processing systems.

In this paper, we propose a task-based approach to table processing (called
TEXUS) and provide detailed data and task models that encompass the essential
aspects of the above work, and extends it to the point where it can be used as a
basis for implementation and evaluation of complete end-to-end table processing
systems. We make the following contributions: (1) we define table-processing
as a set of well-defined tasks with an aim to build a system that produces
application-independent table descriptions. (2) we define precise data models
to provide standard task interfaces. (3) we show how the models can be used
in implementing an end-to-end table processing system.

2 Related Work

In this section, we discuss previous work on table processing techniques and
systems, and summarise how we make use of it in developing our models and
systems. Before considering the work of others, we need to define precisely
what we mean by “end-to-end table processing” (i.e. what are the end points).
The starting point for our work is documents in PDF format. We can do
this without loss of generality, since PDFs make up a large proportion of the

1

documents we typically encounter, and all other major document formats (e.g.
ASCII text, HTML) can be readily converted to PDF. The ending point is an
application-independent representation of the table, which could be used for
further tasks such as information extraction. The representation we choose is
based on Wang’s notation [30].

There have been a number of surveys on table processing, although each sur-
vey has dealt with just some aspects of the problem. Zanibbi et al. [33] reported
on table models, observations and transformations in the table processing liter-
ature. Lopresti et al. [22] focused on the definition of “tabularity” and tabular
browsing. Embley et al. [6] explored table transformations in semi-automated
table processing systems. We just focus on the work that has attempted to deal
with the design and development of an end-to-end table processing solution.

The pioneering work in end-to-end table processing is Hurst’s PhD thesis
[12] which gives a general table model with different abstraction levels (Physi-
cal, Functional, Structural, Semantic) to facilitate the interpretation of tables.
Although Hurst provided a comprehensive table model, his focus is on the model
rather than on the details of the process of table extraction and understand-
ing. Additionally, his discussion of process deals only with determining the
internal structure of an identified table, and not with locating the table in the
document.

Silva [5, 2] was the first to identify the tasks involved in end-to-end table
processing. She proposed a design for table processing as a sequence of steps,
with feedback loops between the steps to reduce the possibility of errors. Silva’s
work is important in identifying a set of basic tasks for table processing. How-
ever, no formal definition of these tasks and their inputs/outputs was given and
only some components of the proposed design were implemented.

As noted above, our end goal for table processing is based on the abstract
table model defined by Wang in her PhD thesis [30]. While the thesis focuses
on table composition problems, it also provides a table abstraction model which
neatly separates a table’s logical structure from its layout structure and has been
widely cited in the literature [12, 14, 29, 26]. Wang formally defined the notion
of an abstract table to describe the logical relationships among table items, and
proposed a set of logical operations to manipulate tables based on these logical
relationships. Because the model describes tables in a layout-independent way,
it has been used as an intermediate model for many table processing systems
which aim towards information extraction, such as [14]. While Wang’s model is
popular, it is still a challenge to develop systems which can automatically derive
a Wang-representation from a table in a document.

Long [20] was the first to implement a table processing architecture that
encourages collaboration and component re-use. Long defined a multi-agent
blackboard architecture, along with guidelines for table boundary identification
and table interpretation. Individual agents tackle different partial solutions like
processing input characters and processing input lines. Although the system
design is sound, and suggests that components from other table processing sys-
tems might be incorporated, it is not specified how to achieve this, and the issue
of conflict resolution over heterogeneous agents is noted as an open problem.

Our goal is to integrate aspects of the above related work to produce a frame-
work for end-to-end table processing which: (a) identifies the sub-tasks involved
(a la [2]), (b) gives precisely defined models to describe the input and output of

2

Locating Segmenting

<<Locating Output>><<Doc Model>>

Functional
Analysis

<<Segmenting Output>>

Structural
Analysis

<<Functional Output>> <<Abstract Table>>

Document
Converting

<<Input PDF>>

Figure 3.1: Task-based End-to-end Table Processing Pipeline

each sub-task (a la [12]), and (c) packages this as a collection of modules (a la
[20]), with well-defined interfaces, to provide a “workbench” for developing tools
and techniques to further the state-of-the-art in table processing. The input of
a system built using this framework is a PDF document and the output is a
set of abstract table models (a la [30]) describing each of the identified tables
in the document. Our original contribution is the integration of these ideas,
the development of the models for each sub-task, and extensions to some of the
methods/models outlined above.

3 Task-based Table Processing

As just described, we view end-to-end table processing as a coherent sequence of
tasks that takes a document as input and produces an abstract representation
of the tables in the document as the final output. We define a series of data
models to describe the inputs and outputs of the tasks. The input PDF docu-
ment is initially partitioned into a sequence of text chunks, and these form the
atomic elements of further processing. The final output of the table processing
is represented by an extension of Wang’s abstract table model [30]).

Our core table processing tasks are as follows: (1) Document Converting :
convert the PDF input document to our proposed document model, (2) Locat-
ing : find the tables in the document (their outer boundaries), (3) Segmenting :
recognise the inner boundaries of each table (cells, rows and columns), (4) Func-
tional Analysis: identify the role of each cell in each table (data or access), and
(5) Structural Analysis: detect the logical relationships between table cells and
provide the result as an abstract table. The last four tasks correspond to the
first four tasks in Silva [2]. We omit Silva’s fifth task (Interpretation), since it is
inherently application-dependent, and our end-point is intended to be applica-
tion agnostic. The tasks would typically be connected in a simple pipeline, but
more complex controls such as looping and nested composition can also be con-
sidered (although not in this paper). Figure 3.1 shows a pipeline of these tasks
implementing an end-to-end table processing system. In order to discuss table
structures, we use Wang’s table terminology [30]. According to Wang, tables
are divided into four main regions, delineated by means of a stub separator and
a boxhead separator which are frequently, but not always, shown as physical
lines. The lower-right region of the table (the body) contains the data. The
upper-right region (the boxhead) contains column headings and sub-headings.
The lower-left region (the stub) contains labels which provide access to the data
rows. The upper-left region (stub head) contains the headings for the columns
in the stub. Figure 3.2 shows an example table with these regions marked.

Recall that the output of our system is a set of abstract table instances, one
for each located table. Wang [30] defines an abstract table by an ordered pair
(C, δ) where C is a finite set of labelled domains and δ is a mapping from C
to the universe of possible data values. The categories appear in the table as

3

Stub Head
Stub Separation Column Box Head Box Head

Separation

Cell

Row

Stub Body

Figure 3.2: Wang Table Terminology

headings. The δ mapping relates the categories to the data values in the table
body.

We illustrate the various concepts in Wang’s notation via the example table
in Figure 3.2. This table has two dimensions and therefore, two top-level cat-
egories. The first category is Faculty Cluster, with five subcategories (Sciences,
Social Sciences, ... Total). Female Students is the next category with Sample
and Population as its subcategories. The following gives examples of the kind of
abstract table output obtained by processing this table:

Category set (hierarchy):
C = { (Faculty cluster, {(Sciences,Φ), (Social Sciences,Φ), (Humanities,Φ),

(Civil Sciences,Φ), (Total,Φ)}), (Female students, {(Sample,Φ), (Population,Φ)}) }

Two examples from the δ mapping:
δ(Faculty cluster.Sciences, Female students.Sample) = “63 (18.5)%”

δ(Faculty cluster.Sciences, Female students.Population) = “597 (16.4)%”

Note that tables typically appear in documents adorned by a title, caption,
notes etc. These are not considered as part of the table, and hence do not
appear in the abstract table model, but are included in the final output as table
metadata.

Our goal is to describe end-to-end table processing via a task-based approach
where the inputs and outputs of each task are precisely defined. We believe that
this approach provides the following benefits: (1) a well-defined decompostion
of the task into generally agreed components (2) a consistent vocabulary for
describing system scope and goals, (3) reusablity and repeatability in system
design and development (4) the opportunity for interoperability of different
implementation techniques and approaches. Our end-point is an application-
independent model of the tables in the document (a mapping from headings to
data cells, in Zanibbi et al’s [33] terms). We believe this provides a suitable
starting point for semantic analysis and other kinds of domain-dependent anal-
ysis, and so we adopt the well-known Wang abstract table model [30], extended
to handle tables with no obvious stub.

4

4 The Building Blocks of TEXUS

In this section, we give more details on the tasks in the end-to-end table pro-
cessing framework, and the data models that connect them. We first discuss our
data model for input documents. We then consider the four table processing
tasks, partitioned into two groups (Table Extraction and Table Understanding),
and give details of their data models. Finally, we briefly discuss table metadata.

4.1 Document Converting

Since our table processing starts with documents, we need a suitable model for
documents. Both layout and content are important in analysing tables [17], so
our model needs to consider both aspects. Our input documents are PDFs, and
there are a range of tools and techniques for extracting layout and text features
[11] from PDF documents. We use the pdftohtml tool for our initial processing,
followed by pre-processing as described below.

Finding the proper atomic unit of document content for table processing is
an important first step. For our purposes, and following from the discussion
in [9], individual characters are not a useful atomic unit. Since our primary
concern is with the contents of table cells, which typically contain one or more
words or numbers, possibly on several lines, we start from the notion of a text
chunk, which intuitively corresponds to a group of words with a bounding box.
In order to identify text chunks, we assume that we can extract properties such
as Left, Right, Top, Bottom for each element in the document. Fig. 4.1 shows
a document page with some elements of the document model identified (text
chunks are indexed as chi).

While we do not consider individual characters in table processing, they
do occur in the document converting step which takes the raw PDF document
and produces a tagged document with text chunks as the basic unit. The pre-
processor builds text chunks according to the following:

Character: Each Character Ci is defined as a tuple of attributes Ci = (Top, Left,
Height,Width, Font, CHAR) which describe its position in the document page
as well as the actual character. Characters include both visible characters as
well as whitespace characters such as space, tab, carriage return, and linefeed.

Word: A WordWj is a sequence of horizontally consecutive Visible Characters

〈C1, C2, ..., Cn〉 not containing any whitespace characters. Whitespace charac-
ters are also called Word delimiters.

Text Chunk: A Text Chunk Chj is a sequence of horizontally consecutive
Words 〈W1,W2, ...,Wn〉 with a bounding box, where the distance between con-
secutive Text Chunks is greater than the size of the smallest Word delimiter.
The bounding box is determined by the Left of the leftmost character, the
minimum Top value of all characters, the maximum Bottom value of all char-
acters, and the Right of the rightmost character. Text chunks do not over-
lap. Line: A Line Lj is a sequence of horizontally consecutive Text Chunk(s)

Lj = 〈Ch1, Ch2, ..., Chn〉 with a bounding box based on Ch1 and Chn which
ends with an End-of-Line delimiter.

Text Region: A Text Region TxRj is a sequence of Lines TxRj = 〈L1, L2, ..., Lm〉
with a bounding box based on L1 and Lm. A Text Region ends when a

5

ch2ch1

Non-Text
Region

ch6ch7 Line

Figure 4.1: Sample of a document page

Non-Text Region or End-of-page is encountered. The most common type of
Text Region is a column of text on a single page.

Non-text Region: Any element, such as an image, that is not composed of
text is treated as part of a Non-Text Region. Such elements can be identified
by pdftohtml. Consecutive Non-Text Regions are merged into a single region.

Page: A Page is a sequence of Text Regions and Non-Text Regions. Page
boundaries can be detected by noting the resetting of the Top values of subse-
quent document elements.

Document: A Document Doc is a sequence of Pages, Doc = 〈P1, P2, ..., Pq〉.
In above definition, we assume that each table is contained within a Text

Region (and could be the entire Text Region). We also assume that tables do
not span multiple pages (although work is currently underway to handle this
case).

6

4.2 Table Extraction

In this section, we detail the Table Extraction part of TEXUS. Table extraction
goes beyond simply detecting where tables are in a document; it separates tables
from the rest of the document and represents each of them in the form of a
Physical abstraction model. Table extraction consists of two main processes:
Locating and Segmenting and they are mostly described based on the layout
attributes of the document and table.

Locating

The aim of locating is to find the starting line and ending line of each table in
the document. The location of each table is identified by its boundaries. Lines
in the input document are either table lines or text lines.

Table Region Table Header Line Table Body Line

Figure 4.2: Table Location model

Tables contain two distinct types of Table Line:

Table Body Line: A potential Table body Line TBLi is a Line containing
two or more Text Chunks and located in the Table Body Region.

Table Header Line: A Table Header Line THLi is a Line containing one
or more Text Chunk(s) and is placed in Table BoxHead.

The Table location model is then defined in terms of Table Lines:

Physical Table Location (TPhy
Loc): The model for the ith table TPhy

Loc i is con-
tained in a Text Region and spans a sequence of lines 〈Lj , Lj+1, ..., Lk〉, where
zero or more Table Header Lines are followed by one or more Table Body

Lines. TPhy
Loc i is defined by a Table Region TRi whose bounding box is deter-

mined by (Left(Lj), T op(Lj)) as Upper Boundary UB and (Bottom(Lk), Right(Lk))
as Lower Boundary LB.

Segmenting

The aim of segmenting is to recognise and detect the inner boundaries of the
table (i.e. the rows, columns and individual table cells). Each table cell can
be identified by at least a (row,column) position. Table segmentation (e.g.
Figure 4.3) is defined via a Physical Table Segments model.

7

CellRowColumn

Figure 4.3: Table Segment model

Physical Table Segments (TPhy
Seg): A Cell is a Text Chunk which is lo-

cated in a TPhy
Loc . A Row is a sequence of horizontally aligned cells, and a Col is

a sequence of vertically-aligned cells. TPhy
Seg is a triple (Cells,Rows,Cols) where

Cells is set of two or more Cells, Rows is a set of one or more Rows, Cols
is a set of one or more Cols. One cell may span multiple cells in a different
row/column either horizontally or vertically.

Celli and Cellj are horizontally aligned if either ((|Top(Celli)−Top(Cellj)|
∼ 0) ∧ (|Bottom(Celli)−Bottom(Cellj)| ∼ 0)) or spanned vertically.

Celli and Cellj are vertically aligned if either ((|Left(Celli)−Left(Cellj)|
∼ 0) ∧ (|Right(Celli)−Right(Cellj)| ∼ 0)) or spanned horizontally.

Celli spans horizontally Cellj if ((Left(Celli)−Left(Cellj) < 0)∧(Right(Celli)
− Right(Cellj) ≥ 0)) ∨ ((Left(Celli) − Left(Cellj) ≤ 0) ∧ (Right(Celli) −
Right(Cellj) > 0)).

Celli spans Vertically Cellj if ((Top(Celli)−Top(Cellj) < 0)∧(Bottom(Celli)−
Bottom(Cellj) ≥ 0)) ∨ ((Top(Celli) − Top(Cellj) ≤ 0) ∧ (Bottom(Celli) −
Bottom(Cellj) > 0)).

4.3 Table Understanding

We now consider the Table Understanding part of TEXUS. Understanding a ta-
ble means going beyond layout features to determine the relationships between
the data items. Table understanding consists of two sub-tasks: Functional Anal-
ysis and Structural Analysis.

Functional Analysis

Functional Analysis identifies the role that each cell plays in the table. Cells
either contain data or contain indexes for accessing the data (i.e. table headers).
In our model, there are two kinds of headers: attribute cells which are normally
placed in the table Boxhead, as the top-level headers, and access cells placed in
the stub in the role of indexes. Data cells are contained in the table body and
are the target information in the table. Figure 4.4 gives examples of these.

The functional aspects of cells in a table is described using a Logical Table

Function model.

8

Header Cells Data CellsAccess Cells

Figure 4.4: Table Function model

Logical Table Function (TLog
Func): TLog

Func specifies the role of each cell in a
table, and identifies the four functional regions: BoxHead, Stub, StubHead
and TableBody. Roles are represented by a set of pairs (Celli, Funci), where
Celli is an identifier for a cell and Funci ∈ {Data,Access,Attribute}. Each
region is defined by the set of cells contained in it.

The following conditions hold on cells in the table:
if Celli ∈ BoxHead, Func(Celli) = Attribute,
if Celli ∈ {stub, stubHead}, Func(Celli) = Access
otherwise Func(Celli) = Data.

A cell can not have more than one Functional role.

Structural Analysis

Structural Analysis defines the logical relationships between cells, which de-
termines access paths to the data. Tables are essentially multi-dimensional
structures which are presented in two dimensions. Reaching a data value in this
multi-dimensional space requires following two paths which intersect at the data
cell. One path begins from the top-level Attribute (top row in BoxHead), the
other path begins from the StubHead (topmost/leftmost cell of table). This
is essentially the Wang abstract table model [30]. In Wang terminology, the
top-level header and StubHead are Categories. This final output from our
end-to-end processing is represented using a Logical Table Structure model
(or Wang abstract table model). Figure reffig:structural shows examples of the
components in such a model.

Logical Table Structure (TLog
Struct): A TLog

Struct is a pair (TStruct
Access , F

Struct
Map).

A TStruct
Access is a non-empty set of Access Path values, where each AccessPath is

a hierarchical relationship between an Attribute or Access cell and their sub-
ordinate cells. An AccessPath Accessi contains an Attribute cell AttrCell
or AccCell cell as Category and an associated non-empty list of SubCategory
values 〈SC1...SCn〉. A SubCategory SCi contains an AttrCell or AccCell cell
(and a possibly empty set of SubCategory values 〈SCi,1..SCi,n〉. A LeafPathCell

is any AccCell or AttrCell in a SubCategory which has an empty set of
SubCategory values. FStruct

Map is a function that takes a set of access paths
and determines the DataCell corresponding to those access paths. (Note that
examples of access paths were given in Section 3).

9

CategoryCategory Sub-CategorySub-Category

delta(Faculty Cluster. Social Sciences, Female Students. Sample)= 189 (55.6%)

Unique Path

Figure 4.5: Table Structure model

Logical Table Structure models satisfy the following properties: the table
must have two or more categories; each category must have a single root header;
a category tree cannot contain identical root-to-leaf paths; if a table has n
categories, then data cells are accessed via a tuple of n access paths, one through
each category tree,

Note that the Wang model does not handle tables where the top row in
the HeadBox contains more than one cell. We consider a virtual header above
the top row as a starting point for the access path from the header. Similarly,
if a table has an empty StubHead, we add a virtual access cell to act as the
root for the access path from the stub. The names of the virtual cells could
either be simple unique identifiers or could be derived based on the names in
the header/stub respectively.

Note also that the final data model for our end-to-end processing consists of
a set of TLog

Struct models, one for each table, along with a set of table metadata
entries (discussed in the next section).
In many applications, the logical abstraction obtained from the Function and
Structure views is sufficient to provide effective access to the data. However,
other applications may wish to consider domain- and application-specific knowl-
edge. A Semantic level allows users to model the meaning of the data contained
in the table and to find semantic relationships between table components. This
abstraction level is often linked to a domain-specific knowledge base or ontology.

4.4 Table Metadata

The above models are built using the information in the tables. One other kind
of information, Table Metadata, derived from the document context, can also
be potentially useful. In particular, the text regions near the table region often
contain useful information about the table. There are three major kinds of table
metadata:

Descriptive Metadata consists of table attributes based on layout, presenta-
tion and location, and is intended primarily for indexing the table. Examples
of such data include Document Type, Page Number, Caption, etc.

Structural Metadata is based primarily on the Function and Structure log-
ical views of the table, and could have potential applications in determining

10

table similarity. Examples of such data include labels and headers on rows and
columns, and the semantic categories behind such labels.

Semantic Metadata provides the background semantic structures which are
used in interpreting table contents. Examples include knowledge about the
domains of data cells and the underlying schema that the table represents.

5 Implementation

Through TEXUS, we intend to facilitate a systematic development and reuse
of the concepts and their implementation defined within it. The tasks defined
in TEXUS can be implemented and utilised as a set of components. Since the
models in TEXUS only specify the expected output of each task, the exact
details of how the outcome is achieved are left to the developers. They can eas-
ily choose compatible table processing standards, leverage existing component
implementations and integrate them to build their own solutions, develop new
components, or provide alternative implementation of the same components.

Document
Converting
Wrapper
Service

Locating
Wrapper
Service

Segmenting
Wrapper
Service

Apache Tomcat Application Server

Locating
Component

(Groovy Script)

Input.data

Input.properties

Output.data

Output.properties

TEXUS RESTful Services

AWS
Data Store

Functional
Analysis
Wrapper
Service

Structural
Analysis
Wrapper
Service

Visualisation
Wrapper
Service

Figure 5.1: Implementing TEXUS Tasks as Web-based Service Component

5.1 Overall Design

Figure 5.1 shows our own implementation based on the models in TEXUS. We
have implemented each task as a Web-enabled service component. The figure
also illustrates that the ‘body’ part of each component (i.e., implementation of
the task) takes two sources of data: an input data model instance and a set of
configuration parameters. The outputs are an output data model instance and
a set of properties (e.g., header type or error codes if any). To store data model
instances, we have chosen to use XML, because (i) it is suitable for describing
structured textual information, (ii) it is a platform-independent open standard,
and (iii) it is easily transformable into different formats when necessary. For
example, we can visualise the output of any components using a simple XSLT1

script.
Providing the components as services allows the client applications to be

built in a flexible manner. For example, a client application can choose to
use one component from the available pool, or use a well-known Web service
composition technique to wire the multiple components together.

1XSLT, http://www.w3.org/TR/xslt

11

5.2 Implementation of the Components

We have implemented six components: document converting, locating, segment-
ing, functional analysis, structural analysis and finally a visualisation component
that renders the output of any given component.
Document Converting. The purpose of this component is to create an in-
stance of our document model. We first convert a PDF document to an XML
document using a well-known conversion utility named ‘pdftohtml2’ . This
utility partitions the document into a sequence of <page>s, where each page
is a sequence of <textChunk>s, and each <textChunk> is an XML TEXT ele-
ment with the following attributes: top (vertical distance from top of page);
left (horizontal distance from left edge of page); width (width of text chunk);
height (height of text chunk); font (size, family, and color of text chunk).

We then perform further optimisation on the XML before producing output.
First, we tag possible table cells containing multi-lines. Second, recognising
multiple page columns (to be distinguished from table columns later). Third,
tag text lines, properly recognising lines in each page column.
Locating Component. Taking an instance of TEXUS document model as
input, Loc first attempts to separate table lines from normal text lines. It looks
for lines with more than one text chunk as a potential table line. Loc then
uses the transitions from text lines to (potential) table lines, and vice versa, to
determine table boundaries. For potential table lines, our implementation also
looks for type patterns (numeric, alphabetic, date, etc.). When a sequence of
text chunk categories forms a pattern for that line. A sequence of lines that
follows the same, or a similar, type pattern, is a strong candidate for containing
the data cells of a table. We also look for spatial patterns. The aim is to
determine the left and right boundaries of each table column. Since the text
chunks in a column are unlikely to have identical left and right attributes,
we form column extents by considering the left boundaries of chunks in column
i and the right boundaries of chunks in column i + 1. The sequence of chunk
extents determined in this way forms a spatial pattern for the data in the table.
The Locating component outputs XML file which encloses table lines in <table>

elements, and adds pattern attributes to existing <line> elements.
Segmenting Component. In this component, the main aim is to detect the
inner boundaries of the table as cells, rows and columns. First, we look for
dominant table line pattern to determine table rows, and then recognise lines
that deviate from the pattern. These lines could be considered potential header
lines or uncertain table lines (e.g., summary lines like ‘Total’). Using the spatial
pattern from Locating, starting from the table’s dominant spatial pattern, we
build a list of column horizontal boundaries, then scans the table and checks
cell boundaries against these, allowing it to both detect spanned cells and, by
consider each cell’s top and bottom, to determine the vertical extent of the
column. Finally, we determine table cells. In a table row, each text chunk has
boundaries and content data type. Most table cells are clearly delimited from
surrounding cells, but we handle two special cases: (i) span cells: if the extent of
a single text chunk extends across multiple columns, it is labelled as a span cell,
(ii) blank cells: once rows and columns are determined, the boundaries of cells
are known. we detect whether and expected cell location has no corresponding

2pdftohtml, sourceforge.net/projects/pdftohtml/

12

text chunk and labels it as a blank cell. Segmenting produces an XML file which
encloses detected cells in <td>...</td> and places the text chunks from each
table row in <tr>..</tr>.
Functional Analysis Component. In this component, the goal is to detect
each cell function as data, header or access. A bottom-up and a top-down
classification algorithm is used at the same time to detect the boundary of table
body containing data cells and the table box head enclosing the header cells. We
consider the bottom right most cell in the table boundary as a data cell. Then
neighbour cells are compared considering spatial and type pattern to find cells
with the same functionality. At the same time, the top most row is assumed as
a potential header line and hierarchical structure along with spatial and type
pattern help to detect the similarity of neighbour cells. The reaching point of the
two algorithms is considered as the boxhead separation. The left most column
is always considered as the access column. If we encounter a vertical spanned
cell in the left most column, we consider the following column for the access
functionality class as well. The functional analysis component adds function

attribute to each <td> element of a table row <tr>.
Structural Analysis Component. Having detected the function of cells in
the table, the structural analysis component provides two paths for each data cell
encompassing one unique Header Path and one unique Access Path. The root
of header rows in the boxhead and the root of access columns in the stubhead
(either they exist or we add virtual ones) are considered as the starting point.
The path is then constructed for each data cell based on the following rules:
(i) For header path, it starts from the root and follow the header cells in the
top-down fashion to reach the last header cell in the same column with the
related data cell, (ii) For access path, it starts from the stubhead and follow all
access cell from left-to-right to reach the last access cell in the same row with
the related data cell, (iii) The content of the spanning cells are copied to their
underlying contained cells, (iv) The empty cells in the path are replaced with
a unique identifier, and (v) Header or access cells with the same content are
distinguished by adding unique indices. The component adds HeadePath and
AccessPath attributes to each data cell in the output. Also the table metadata
in three different categories are added to the table presentation.
Visualisation Component. Currently, the primary purpose of this compo-
nent is for debugging. It shows the output data models in a convenient format.
It parses the XML output of a component and provides an HTML representa-
tion of the content. We used color coding to present different functional regions
in the table and also a tree representation of the access and header paths for
structural analysis.

5.3 Evaluation

To evaluate our implemented system, we used the known available dataset in
the community introduced in ‘ICDAR 2013 Table Competition3’. The dataset
consists of 67 documents with 156 tables, and it is ground-truthed for locat-
ing and segmenting tasks. The tables are in different styles and from various
domains.

The performance comparison of seven academic systems and four commercial

3http://www.tamirhassan.com/dataset.html

13

products (FineReader, Acrobat, OmniPage, Nitro) are presented in the compe-
tition. We follow the same evaluation strategy and metrics for reporting our
results against the published results of the competition.

The measures Completeness and Purity are used over the whole dataset. The
measures Recall and Precision are calculated for the unsuccessful cases, counting
individual characters for locating, and considering the adjacency relations for
segmenting task.

The ICDAR competition reported that in general, the commercial systems
performed better than academic ones. Since the details of the algorithms used
by commercial systems are not publicly available, it can not be said whether
their advantage originates from a better approach to the problem or from having
access to a large amount of data which allow them to fine-tune the heuristics in
their system overtime.

Overall, TEXUS performed better than most of academic system (except the
Nurminen) in all three different evaluations, and even better than Acrobat and
Nitro in the commercial system in table extraction. Our performance seems
acceptable in locating, however we have difficulties in segmenting especially
when the header hierarchy structures are very complex. In the following, we
discuss the results of locating and segmentig separately.

Table 5.1 shows the results of locating task. Our system has a problem
in locating ‘small tables’ (tables with less than four rows), and tables with
summary lines in the middle of the table. However, it is worth pointing out
that we performed well in unruled table. It is mentioned that most of the
currently available systems do not perform well with unruled tables. Locating
floating tables are another category that TEXUS handles well.

Table 5.1: Result of the Locating task

Per-document Table Found
System average Total=156

Recall Precision F-
meas.

Complete Pure

FineReader 0.9971 0.9729 0.9848 142 148
OmniPage 0.9644 0.9569 0.9606 141 130
Silva 0.9831 0.9292 0.9554 149 137
Nitro 0.9323 0.9397 0.936 124 144
Nurminen 0.9077 0.921 0.9143 114 151
Acrobat 0.8738 0.9365 0.904 110 141
TEXUS 0.9023 0.8832 0.8926 114 138
Yildiz 0.853 0.6399 0.7313 100 94
Stoffel 0.6991 0.7536 0.7253 79 66
Liu et
al.2

0.3355 0.8836 0.4864 0 29

Hsu et al. 0.4601 0.3666 0.408 39 95
Fang et
al.

0.2697 0.7496 0.3967 28 41

Liu et
al.1

0.2207 0.8885 0.3536 0 25

14

Table 5.2 shows the results of segmenting task based the correct results of
locating as input. We performed well in segmenting the vertical spanned cells
and multi-line cell boundary detection. However, in some cases when tables
have very irregular alignments in cells content, we ended up adding extra blank
column in segmenting.

Table 5.2: Result of the Segmenting task

Per-document average
System Recall Precision F-meas.
Nurminen 0.9409 0.9515 0.9460
TEXUS 0.8423 0.8102 0.8259
Silva 0.6401 0.6144 0.6270
Hsu et al. 0.4811 0.5704 0.5220

Finally, Table 5.3 shows the results of table extraction as a sequence of table
locating and segmenting (i.e., segmenting component directly taking input from
locating without corrections). Our performance is acceptable compared with
other academic systems.

The task-based design of our system provides the opportunity to evaluate
and refine the components separately and then try a new composition to im-
prove the performance. It should be mentioned that participants in the ICDAR
competition had the opportunity to test their systems beforehand on a practice
dataset for bug fixing or training. We did not have access to that dataset and
did not use the test dataset before the performance evaluation.

Table 5.3: Result of Table Extraction

Per-document average
System Recall Precision F-meas.
FineReader 0.8835 0.871 0.8772
OmniPage 0.838 0.846 0.842
Nurminen 0.8078 0.8693 0.8374
TEXUS 0.7823 0.8071 0.7945
Acrobat 0.7262 0.8159 0.7685
Nitro 0.6793 0.8459 0.7535
Silva 0.7052 0.6874 0.6962
Yildiz 0.5951 0.5752 0.585

15

TEXUS Name Synonym Terms

Locating table identification [19], table
detection [7], table area selec-
tion [4], table boundary detec-
tion [18], table spotting [7]

Segmenting table recognition [20], table
decomposition[19], table text
blocks discovery [13], table inter-
nal structure detection[28]

Functional Analysis table header detection [27], ta-
ble format verification [24], table
augmentation[23]

Structural Analysis table factoring [15], table ab-
straction [30], detecting table
read-wise pattern [32]. table ac-
cess structure detection[16]

Table 6.1: TEXUS Tasks and the Synonyms

6 Further Discussions

Besides providing a basis to design and develop a table processing system,
TEXUS may potentially be used as a common ground for evaluating the perfor-
mance of table processing systems. Although detailing this idea further is our
ongoing work, we present a couple of issues in table procesing system evaluation
and the relevant concepts in TEXUS for discussion.

6.1 Appropriate Points for Evaluation

It is difficult to adequately compare the quality of results of different table pro-
cessing system even when they seem to work on the same task [2, 8, 10]. We
discuss this issue from two perspectives. First, different terms are used to de-
scribe systems that perform table extraction tasks belonging in the same scope.
For example, there is much work focused on locating tables in a document.
In these work, there is a wide variation in terminology to describe their goals,
e.g. table identification, table detection, table spotting, etc. In the terms defined
in TEXUS, we can describe all of these as Table Locating. Since TEXUS de-
fines the atomic tasks involved in a table processing system, each system’s goal
can either be mapped to one task or a composition of several tasks. Table 6.1
gives examples of terms that appear in the table processing literature and their
mapping to TEXUS atomic tasks.

Some researchers suggest that the appropriate point to evaluate a table pro-
cessing system is after the final result is produced. For example, if the endpoint
is to extract particular information from tables, evaluation is based on how
closely the extracted information matches what was expected [25]. However,
others claim that, since a table processing system involves many steps, the over-
all performance of the system often relies on how well the intermediate steps
interact, and measuring the performance of intermediate steps is important [20].
In fact, as we have shown above, it would be possible to describe the goals of

16

many table processing systems in terms of logically separated steps. Evaluating
table processing at each “step” can also provide a chance to improve each step
independently [3], which may lead to increased performance overall. We believe
TEXUS, through the well-defined tasks along with concrete data models, can
contribute to providing a useful framework to objectively evaluate the systems.

6.2 Proper Unit of Measurement

The characteristics of the appropriate metrics which satisfy the needs of table
processing tasks is another discussion in the community. One of the considera-
tions is that the granularity level of the elements at input is not the same as
that of output in a table processing task. Different suggestions were made re-
garding this issue. Silva [2] proposed two new metrics: completeness and purity.
Long [21] suggested multi-level evaluation methodology.

However, there is not yet any set unit of measurement in task-based eval-
uation. Take the locating task as an example, Liu et. al [19] evaluated their
system in terms of lines, Wang [31] used cells and Chen [1] considered full ta-
bles. In the ICDAR’13 table competition [9], they defined the measurement unit
for locating at an individual character level. However, the results showed that
it was not a proper choice for some cases. This approach gave more weight to
the parts of tables that have more characters (e.g., there was a system having
a very good precision at the character level, but did not manage to locate even
one table completely). Given that the main aim of the locating task, recognising
table boundaries should be valued more than say, recognising text areas within
a table.

We believe that TEXUS could provide a basis for task-based evaluation
measurement metrics, because the table elements (e.g., table boundaries, rows,
columns and cells) which may be relevant for measuring performance are ex-
plicitly defined in the tasks and their data models. Following the locating task
example, we may consider the “text chunks” as a measuring unit, since cells are
the smallest meaningful unit of data in a table structure.

Bibliography

[1] Hsin-Hsi Chen, Shih-Chung Tsai, and Jin-He Tsai. Mining tables from
large scale html texts. In Proceedings of the 18th conference on Computa-
tional linguistics-Volume 1, pages 166–172. Association for Computational
Linguistics, 2000.

[2] Ana Costa e Silva. Parts that add up to a whole: a framework for the
analysis of tables. PhD thesis, The University of Edinburgh, 2010.

[3] Ana Costa e Silva. Metrics for evaluating performance in document anal-
ysis: application to tables. International Journal on Document Analysis
and Recognition (IJDAR), 14(1):101–109, 2011.

[4] Ana Costa e Silva, Aĺıpio Jorge, and Lúıs Torgo. Automatic selection
of table areas in documents for information extraction. In Progress in
Artificial Intelligence, pages 460–465. Springer, 2003.

17

[5] Ana Costa e Silva, Aĺıpio Jorge, and Lúıs Torgo. Design of an end-to-
end method to extract information from tables. International Journal of
Document Analysis and Recognition, 8(2-3):144–171, 2006.

[6] David W Embley, Daniel Lopresti, and George Nagy. Notes on contempo-
rary table recognition. In Document Analysis Systems VII, pages 164–175.
Springer, 2006.

[7] Jing Fang, Liangcai Gao, Kun Bai, Ruiheng Qiu, Xin Tao, and Zhi Tang. A
table detection method for multipage pdf documents via visual seperators
and tabular structures. In Document Analysis and Recognition (ICDAR),
pages 779–783. IEEE, 2011.

[8] Jing Fang, Xin Tao, Zhi Tang, Ruiheng Qiu, and Ying Liu. Dataset,
ground-truth and performance metrics for table detection evaluation. In
Document Analysis Systems (DAS), 2012 10th IAPR International Work-
shop on, pages 445–449. IEEE, 2012.

[9] Max Gobel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi. ICDAR 2013
table competition. In 12th International Conference on Document Analysis
and Recognition (ICDAR’13), pages 1449–1453. IEEE, 2013.

[10] Jianying Hu, Ramanujan Kashi, Daniel Lopresti, George Nagy, and Gordon
Wilfong. Why table ground-truthing is hard. In Document Analysis and
Recognition, 2001. Proceedings. Sixth International Conference on, pages
129–133. IEEE, 2001.

[11] Jianying Hu and Ying Liu. Analysis of documents born digital. Handbook
of Document Image Processing and Recognition, pages 775–804, 2014.

[12] Matthew Hurst. The interpretation of tables in texts. PhD thesis, The
University of Edinburgh, 2000.

[13] Matthew Hurst. Layout and language: Exploring text block discovery in
tables using linguistic resources. In International Conference on Document
Analysis and Recognition, pages 523–527, 2001.

[14] Piyushee Jha and George Nagy. Wang notation tool: Layout independent
representation of tables. In Pattern Recognition, 2008. ICPR 2008. 19th
International Conference on, pages 1–4. IEEE, 2008.

[15] Dongpu Jin. An algebraic approach to building category parse trees for
web tables. 2012 NCUR, 2013.

[16] Thomas Kieninger and Andreas Dengel. Applying the t-recs table recog-
nition system to the business letter domain. In Document Analysis and
Recognition, 2001. Proceedings. Sixth International Conference on, pages
518–522. IEEE, 2001.

[17] Min-Hyung Lee, Yeon-Seok Kim, and Kyong-Ho Lee. Logical structure
analysis: From html to xml. Computer Standards & Interfaces, 29(1):109–
124, 2007.

18

[18] Ying Liu, Kun Bai, Prasenjit Mitra, and C Lee Giles. Improving the table
boundary detection in pdfs by fixing the sequence error of the sparse lines.
In 10th International Conference on Document Analysis and Recognition
(ICDAR’09), pages 1006–1010. IEEE, 2009.

[19] Ying Liu, Prasenjit Mitra, and C Lee Giles. Identifying table boundaries in
digital documents via sparse line detection. In Proceedings of the 17th ACM
Conference on Information and Knowledge Management, pages 1311–1320.
ACM, 2008.

[20] Vanessa Long. An Agent-Based Approach to Table Recognition and Inter-
pretation. PhD thesis, Macquarie University Sydney, Australia, 2010.

[21] Vanessa Long, Steve Cassidy, and Robert Dale. A multi-level table evalu-
ation method for plain text documents. In Extended Abstracts of the 7th
International Association for Pattern Recognition Workshop on Document
Analysis Systems (DAS 2006), pages 21–24, 2006.

[22] Daniel Lopresti and George Nagy. A tabular survey of automated table pro-
cessing. In Graphics Recognition Recent Advances, pages 93–120. Springer,
2000.

[23] George Nagy, Raghav Padmanabhan, RC Jandhyala, W Silversmith, and
MS Krishnamoorthy. Table metadata: Headers, augmentations and ag-
gregates. In Ninth IAPR International Workshop on Document Analysis
Systems, 2010.

[24] George Nagy and Mangesh Tamhankar. Vericlick: an efficient tool for
table format verification. In IS&T/SPIE Electronic Imaging, pages 1–9.
International Society for Optics and Photonics, 2012.

[25] Ermelinda Oro and Massimo Ruffolo. Xonto: An ontology-based system
for semantic information extraction from pdf documents. In 20th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’08),
volume 1, pages 118–125. IEEE, 2008.

[26] Raghav Krishna Padmanabhan, Ramana Chakradhar Jandhyala, Mukkai
Krishnamoorthy, George Nagy, Sharad Seth, and William Silversmith. In-
teractive conversion of web tables. In Graphics Recognition. Achievements,
Challenges, and Evolution, pages 25–36. Springer, 2010.

[27] Sharad Seth, Ramana Jandhyala, Mukkai Krishnamoorthy, and George
Nagy. Analysis and taxonomy of column header categories for web tables.
In Proceedings of the 9th IAPR International Workshop on Document Anal-
ysis Systems, pages 81–88. ACM, 2010.

[28] Asif Shahab, Faisal Shafait, Thomas Kieninger, and Andreas Dengel. An
open approach towards the benchmarking of table structure recognition
systems. In Proceedings of the 9th IAPR International Workshop on Doc-
ument Analysis Systems, pages 113–120. ACM, 2010.

[29] Cui Tao and David W Embley. Automatic hidden-web table interpretation,
conceptualization, and semantic annotation. Data & Knowledge Engineer-
ing, 68(7):683–703, 2009.

19

[30] Xinxin Wang. Tabular abstraction, editing, and formatting. PhD thesis,
University of Waterloo, 1996.

[31] Yalin Wang and Jianying Hu. Detecting tables in html documents. In
Document Analysis Systems V, pages 249–260. Springer, 2002.

[32] Yingchen Yang. Web table mining and database discovery. PhD thesis,
Simon Fraser University, 2002.

[33] Richard Zanibbi, Dorothea Blostein, and James R Cordy. A survey of table
recognition. Document Analysis and Recognition, 7(1):1–16, 2004.

20

