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Abstract

In a diffusion-based molecular communication network, transmitters and receivers communicate by
using signalling molecules (or ligands) in a fluid medium. This paper assumes that the transmitter
uses different chemical reactions to generate different emission patterns of signalling molecules
to represent different transmission symbols, and the receiver consists of receptors. When the
signalling molecules arrive at the receiver, they may react with the receptors to form ligand-
receptor complexes. Our goal is to study the demodulation in this setup assuming that the
transmitter and receiver are synchronised. We derive an optimal demodulator using the continuous
history of the number of complexes at the receiver as the input to the demodulator. We do that
by first deriving a communication model which includes the chemical reactions in the transmitter,
diffusion in the transmission medium and the ligand-receptor process in the receiver. This model,
which takes the form of a continuous-time Markov process, captures the noise in the receiver signal
due to the stochastic nature of chemical reactions and diffusion. We then adopt a maximum
a posterior framework and use Bayesian filtering to derive the optimal demodulator. We use
numerical examples to illustrate the properties of this optimal demodulator.



Keywords: Molecular communication networks; modulation; demodulation; maximum a poste-
riori; optimal detection; stochastic models; Bayesian filtering; molecular receivers.

1 Introduction

Molecular communication is a promising approach to realise communications among nano-scale
devices [1, 2, 3, 4]. There are many possible applications with these networks of nano-devices, for
example, in-body sensor networks for health monitoring and therapy [5, 3]. This paper considers
diffusion-based molecular communication networks.

In a diffusion-based molecular communication network, transmitters and receivers communi-
cate by using signalling molecules or ligands. The transmitter uses different time-varying functions
of concentration of signalling molecules (or emission patterns) to represent different transmission
symbols. The signalling molecules diffuse freely in the medium. When signalling molecules reach
the receiver, they react with chemical species in the receiver to produce output molecules. The
counts of output molecules over time is the receiver output signal which the receiver uses to decode
the transmitted symbols.

Two components in diffusion-based molecular communication system are modulation and de-
modulation. A number of different modulation schemes have been considered in the literature.
For example, [6, 7] consider Concentration Shift Keying (CSK) where different concentrations
of signalling molecules are used by the transmitter to represent different transmission symbols.
Other modulation techniques that have been proposed include Molecule Shift Keying (MSK) [8, 9],
Pulse Position Modulation (PPM) [10] and Frequency Shift Keying (FSK) [11]. This paper as-
sumes that the transmitter uses different chemical reactions to generate the emission patterns of
different transmission symbols. The motivation to use this type of modulation mechanism is that
chemical reactions are a natural way to produce signalling molecules, e.g. the papers [12, 13] study
a number of molecular circuits (which are sets of chemical reactions) that can produce oscillating
signals, and the paper [14] discusses a number of signalling mechanisms in living cells.

We assume the receiver consists of receptors. When the signalling molecules (ligands) reach
the receiver, they can react with the receptors to form ligand-receptor complexes (which are the
output molecules in this paper). We consider the problem of using the continuous-time history
of the number of complexes for demodulation assuming that the transmitter and receiver are
synchronised. The ligand-receptor complex signal is a stochastic process with three sources of
noise because the chemical reactions at the transmitter, the diffusion of signalling molecules and
the ligand-receptor binding process are all stochastic. We derive a continuous-time Markov process
(CTMP) which models the chemical reactions at the transmitter, the diffusion in the medium and
the ligand-receptor binding process. By using this model and the theory of Bayesian filtering, we
derive the maximum a posteriori (MAP) demodulator using the continuous-time history of the
number of complexes as the input.

This paper makes two key contributions: (1) We propose to use a CTMP to model a molecular
communication network with chemical reactions at the transmitter, a diffusive propagation propa-
gation medium and receptors at the receiver. The CTMP captures all three sources of noise in the
communication network. (2) We derive a closed-form expression for the MAP demodulation filter
using the proposed CTMP. The closed-form expression gives insight into the important elements
needed for optimal demodulation, these are the timings at which the receptor bindings occur,
the number of unbound receptors and the mean concentration of signalling molecules around the
receptors.

The rest of the paper is organised as follows. Section 2 discusses related work. Section 3
presents the system assumptions, as well as a mathematical model from the transmitter to the
ligand-receptor complex signal based on CTMP. We derive the MAP demodulator in Section 4
and illustrate its numerical properties in Section 5. Finally, Section 6 concludes the paper.
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2 Related work

There is a growing interest to understand molecular communication from the communication
engineering point of view. For recent surveys of the field, see [1, 2, 3, 4]. We divide the discussion
under these headings: transmitters, receivers, models and others.

Transmitters. A number of different types of transmission signals have been considered in the
molecular communication literature. The papers [15, 7] assume that the transmitter releases the
signalling molecules in a burst which can be modelled as either an impulse or a pulse with a finite
duration. A recent work in [16] assumes that the transmitter releases the molecules according to
a Poisson process. In this paper, we instead assume that the transmitter uses different sets of
chemical reactions to generate different transmission symbols and we use CTMP to model these
transmission symbols. Since a Poisson process can also be modelled by a CTMP, the transmission
process in this paper is more general than that of [16]. Our CTMP model can also deal with an
impulsive input by using an appropriate initial condition for the CTMP. The use of CTMP as
an end-to-end model — which includes the transmitter, the medium and the receiver — does not
appear to have been used before.

Receivers. Demodulation methods for diffusion-based molecular communication have been
studied in [17, 18]. Both papers also use the MAP framework with discrete-time samples of the
number of output molecules as the input to the demodulator. Instead, in this paper, we consider
demodulation using continuous-time history of the number of complexes.

The demodulation from ligand-receptor signal has also been considered in [15]. The key dif-
ference is that [15] uses a linear approximation of the ligand-receptor process while we use a
non-linear reaction rate.

The capacity of molecular communications based on ligand-receptor binding has been studied
in [19, 20] assuming discrete samples of the number of complexes are available. A recent work [21]
considers the capacity of such systems in the continuous-time limit. Instead of focusing on the
capacity, our work focuses on demodulation.

Receiver design is an important topic in molecular communication and has been studied in
many papers, some examples are [22, 17, 23, 18, 24]. These papers either use one sample or
a number of discrete samples on the count of a specific molecule to compute the likelihood of
observing a certain input symbols. This paper takes a different approach and uses continuous-
time signals.

Another approach of receiver design for molecular communication is to derive molecular circuits
that can be used for decoding. An attempt is made in [11] to design a molecular circuit that can
decode frequency-modulated signals. However, the work does not take diffusion and reaction noise
into consideration. A recent work in [25] analyses end-to-end molecular communication biological
circuits from linear time-invariant system point of view. The work in [26] compares the information
theoretic capacity of a number of different types of linear molecular circuits. This paper differs
from the previous work in that it uses a non-linear ligand-receptor binding model.

The noise property of ligand-receptor for molecular communication has been characterised
in [27]. The case for non-linear ligand-receptor binding does not appear to have an analytical
solution and [27] derives an approximate characterisation using a linear reaction rate assuming
that the number of signalling molecules around the receptor is large. This paper uses a non-linear
ligand-receptor binding model and no approximation is used in solving the filtering problem.

Models. This paper uses the Reaction Diffusion Master Equation (RDME) [28] framework to
model the reactions and diffusion in the molecular communication networks. RDME assumes that
time is continuous while the diffusion medium is discretised into voxels. This results in a CTMP
with finite number of (discrete) states. RDME has been used to model stochastic dynamics of
cells in the biology literature [29]. An attraction of RDME is that it has the Markov property
which means that one can leverage the rich theory behind Markov process.

The author of this paper has previously used an extension of the RDME model, called the
RDME with exogenous input (RDMEX) model, to study molecular communication networks in
[30, 31, 32]. The RDMEX assumes that the times at which the transmitter emits signalling
molecules are deterministic. This results in a stochastic process which is piecewise Markov or
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the Markov property only holds in between two consecutive emissions by the transmitter. In this
paper, we assume the transmitter uses chemical reactions to generate the signalling molecules.
Therefore, the emission timings are not deterministic but are governed by a stochastic process.

In this paper, we assume that the propagation medium is discretised in the voxels. An alter-
native modelling paradigm that has been used in a number of molecular communication network
papers [7, 15, 16] is that the transmitter or receiver has a non-zero spatial dimension (commonly
modelled by a sphere) while the propagation medium is assumed to be continuous. (Note that
though [16] does not explicitly state the dimension of the receiver, one can infer from the fact that
the receiver must have a non-zero dimension because it has a non-zero probability of receiving the
signalling molecules.) We believe the technique in this paper can be adapted to this alternative
modelling paradigm and we do not expect this alternative modelling paradigm will change the
results in this paper; we will explain this in Section 4.4.

There is a rich literature in the modelling of biological systems discussing the difference be-
tween: (1) The particle approach which has a continuous state space because the state of a particle
is its position; and (2) The mesoscopic approach (the approach in this paper) which discretises the
medium into discrete voxels and consider the number of molecules in the voxels as the state. The
first approach is more accurate but the computation burden can be high [33], while the second
approach is accurate for appropriate discretisation [34, 28]. There are also hybrid approaches too.
An overview of various modelling and simulation approaches can be found in [33].

Others: The results of this paper may also be of interest to biologists who are interested to
understand how living cells can distinguish between different concentration levels. The result of
this paper can be viewed as a generalisation of [35] which studies how cells can distinguish between
two constant levels of ligand concentration.

3 End-to-end communication models

This paper considers diffusion-based molecular communication with one transmitter and one re-
ceiver in a fluid medium. Figure C.1 gives an overview of the setup considered in this paper.
The transmitter uses different chemical reactions to generate the emission patterns of different
transmission symbols. The transmitter acts as the source and emitter of signalling molecules.
The signalling molecules diffuses in the fluid medium. The front-end of the receiver consists of a
ligand-receptor binding process and the back-end consists of the demodulator with the number of
complexes as its input.

In this section, we first describe the system assumptions in Section 3.1. We then present, in
Section 3.2, an end-to-end model which includes the transmitter, the transmission medium and the
ligand-receptor binding process in the receiver, see the dashed box in Figure C.1. The end-to-end
model is a CTMP which includes chemical reactions in the transmitter, diffusion in the medium
and the ligand-receptor binding process in the receiver.

3.1 Model assumptions

We assume that the medium (or space) is discretised into voxels while time is continuous. This
modelling framework results in a RDME [28, 36, 37], which is a CTMP commonly used to model
systems with both diffusion and reactions. In addition, we assume the communication uses only
one type of signalling molecule (or ligand) denoted by S. We divide the description of our model
into three parts: transmission medium, transmitter and receiver. We begin with the transmission
medium. Table 3.1 summaries the frequently used notation and chemical symbols.

Transmission medium

We model the transmission medium as a three dimensional (3-D) space and partition the space
into cubic voxels of volume W 3. Figure C.2 shows an example of a medium which has a dimension
of 4 voxels along both the x and y-directions, and 1 voxel in the z-direction. (Note that Figure
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Symbol Meaning
W Dimension of one side of a voxel
D Diffusion constant
d Diffusion rate between neighbouring voxels
Nv Total number of voxels
M Total number of receptors

λ̃ Reaction rate constant for the binding reaction

λ λ “ λ̃
W 3

µ Reaction rate constant for the unbinding reaction
s A transmission symbol
bptq Number of complexes at time t
niptq Number of signalling molecules in voxel i at time t
Nptq Equation (3.4). A vector containing the number of signalling molecules in each voxel,

the counts of intermediate chemical species in the transmitter and the cumulative
count of the number of molecules that have left the system

σsptq The mean number of signalling molecules in the receiver voxel at time t if the trans-
mitter sends symbol s

Uptq The cumulative number of times the receptors have switched from the unbound to
bound state at time t

E An unbound receptor
S A signalling molecule
C A complex

Table 3.1: Notation and chemical symbols

C.2 should be viewed as a projection onto the x´ y plane.) In general, we assume the medium to
have Nx, Ny and Nz voxels in the x, y and z directions where Nx, Ny and Nz are positive integers.
In Figure C.2, Nx “ Ny “ 4 and Nz “ 1. We also use Nv “ NxNyNz to denote the total number
of voxels.

We refer to a voxel by a triple px, y, zq where x, y and z are integers or by a single index
ξ P r1, Nvs. Figure C.2 shows the triples for some of the voxels. The single index ξ is calculated
from the triple px, y, zq by using ξpx, y, zq “ x`Nxpy ´ 1q `NxNypz ´ 1q. The single indices for
voxels are shown in the top right-hand corner of the voxels in Figure C.2.

Diffusion is modelled by molecules moving from one voxel to a neighbouring voxel. For exam-
ples, in Figure C.2, molecules can diffuse from Voxel 1 to Voxels 2 or 5, from Voxel 2 to Voxels
1, 3 and 6, and so on. The diffusion of molecules between neighbouring voxels is indicated by the
two-way arrows in Figure C.2.

We assume that the signalling molecule S is the only diffusible chemical species in our model
and the diffusion coefficient for S is D. This means the signalling molecules diffuse from one voxel
to a neighbouring voxel at a mean rate of d where d “ D

W 2 . In other words, within an infinitesimal
time ∆t, the probability that a signalling molecule diffuses to a neighbouring voxel is d ∆t. Note
that the expression for d can be derived from spatially discretising the diffusion equation into
regular cubic voxels of volume W 3, see [36, p.341] or [38, Section 3].

The dashed lines in Figure C.2 indicate the boundary of our transmission medium. Many
different boundary conditions are used by engineers and physicists to model what happens when
a molecule reaches the boundary of a medium. Two typical boundary conditions are absorbing
and reflecting boundaries [36]. An absorbing boundary means that a molecule can leave the
transmission medium and once the molecule has left, it will not return to the medium. For
example, in Figure C.2, we allow molecules to leave the medium via one surface of Voxel 16 as
indicated by the one-way arrow. Mathematically, this is modelled by a rate of leaving the medium,
similar to that of modelling the diffusion between the voxels. A reflecting boundary means that a
molecule cannot leave the medium, i.e. a molecule hitting a reflecting boundary will stay in the
voxel. Our model can capture these boundary conditions.
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It has been shown in [34, 28] that in order for RDME to produce physically meaningful results,
the voxel dimension W must be within a certain range. In this paper, we assume that W comes
from a valid range. The choice of W is beyond the scope of the paper and the reader can refer to
[34, 28] for further discussion.

For simplicity, we assume that the medium is homogeneous with a constant diffusion coefficient
D. It is straightforward to extend the framework to cover inhomogeneous medium [32]. It is also
possible to use non-cubic voxels, see [39, 40].

Transmitter

We assume the transmitter occupies one voxel. However, it is straightforward to generalise to
the case where a transmitter occupies multiple voxels. We limit our consideration to one symbol
interval without inter-symbol interference (ISI) at this moment. We will discuss the multiple
symbol interval case with ISI in Section 4.5.

We assume that the transmitter can send K different symbols s “ 0, 1, ..,K ´ 1 where each
symbol s is characterised by an emission pattern usptq. The role of emission pattern in molecular
communication is the same as that of transmitted signal in electromagnetic communication. If
a transmitter uses a deterministic emission pattern usptq to represent symbol s, it means the
transmitter emits usptq signalling molecules into the transmitter voxel at time t. We use an
example to illustrate the meaning of emission pattern. Consider an emission pattern u1ptq for
Symbol 1 where u1ptq “ δt,1.2`δt,5.6`2δt,8.1 where δi,j denotes the Kronecker delta, which means
δi,j “ 1 if and only if i “ j. The emission pattern u1ptq means that, for Symbol 1, the transmitter
emits one signalling molecule at times 1.2 and 5.6, two signalling molecules at time 8.1 and does
not emit any molecules at any other times.

In this paper, we assume that the emission pattern for each symbol is produced by a set of
chemical reactions located in the transmitter voxel. Given K symbols, the transmitter uses K
different reactions to generate these symbols, see Figure C.1. As an example, a class of chemical
reactions inside living cells [41] is

RNA
κ
ÝÑ RNA`A (3.1)

where ribonucleic acid (RNA, which is a molecule commonly found in living cells) produces the
chemical species A. This class of chemical reactions can be modelled by a Poisson process where
molecules of A are produced at a mean rate of κ [42]. Note that the emission patterns produced
by chemical reactions are not deterministic, but stochastic. The mean emission pattern of this
chemical reaction is Eruptqs “ κ.

Following on from the above example, one can realise Amplitude Shift Keying (ASK) in molec-
ular communication by using different chemical reactions that can produce signalling molecules at
different mean rates. For example, if there are four different reactions that can produce signalling
molecules at four different mean rates of κ0, κ1, κ2 and κ3, then one can use these four different
reactions to produce 4 different symbols. Note that it is possible for the four chemical reactions
to produce the same emission pattern (or realisation), though with different probabilities.

A standard result in physical chemistry shows that the dynamics of a set of chemical reactions
can be modelled by a CTMP [43]. Therefore, we will model the transmitter by a CTMP. Note
that, in this paper, we will not specify the sets of chemical reactions used by the transmitter except
for simulation because the MAP demodulator does not explicitly depend on the sets of chemical
reactions that the transmitter uses.

Receiver

We assume the receiver occupies one voxel and we use R to denote the index of the voxel at which
the receiver is located. In Figure C.2, we assume the receiver is at Voxel 7 (light grey) and hence
R “ 7 for this example. In addition, we assume that the transmitter and receiver voxels are
distinct.
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We assume that the receiver has M non-interacting receptors and we use E as the chemical
name for an unbound receptor. These receptors are fixed in space and do not diffuse, and they
are only found in the receiver voxel. Furthermore, these receptors are assumed to be uniformly
distributed in the receiver voxel.

The receptor E can bind to a signalling molecule S to form a ligand-receptor complex (or
complex for short) C, which is a molecule formed by combining E and S. This is known as ligand-
receptor binding in molecular biology literature [44]. The binding reaction can be written as the
chemical equation:

S` E
λ̃
ÝÑ C (3.2)

where λ̃ is the reaction rate constant. Since the receptors are only found in the receiver voxel, the
binding reaction occurs in a volume of W 3, which is the volume of a voxel. This rate at which the
complexes C is formed is given by the product of λ

W 3 , the number of signalling molecules in the

receiver voxel and the number of unbound receptors1. We define λ “ λ̃
W 3 and will use λ in the

CTMP. Note that this is equivalent to ligand-receptor binding model used in [27, Section V-B].
A ligand-receptor complex C can dissociate into an unbound receptor E and a signalling

molecule S. This can be represented by the chemical equation

C
µ
ÝÑ E` S (3.3)

where µ is the reaction rate constant. The rate at which the complexes are dissociating is given
by the product of µ and the number of complexes2.

Since a receptor can either be in an unbound state E or in a complex C, we have the following
conservation relation: the number of unbound receptors plus the number of complexes is equal to
the total number of receptors M .

3.2 General end-to-end model

In order to derive the MAP demodulator, we need an end-to-end model which includes the trans-
mitter, the medium and the ligand-binding process, see Figure C.1. Since chemical reactions
(which includes the chemical reactions in the transmitter as well as the ligand-receptor binding
process in the receiver) and diffusion can be modelled by CTMP, it is possible to use a CTMP
as an end-to-end model. In this section we present a general end-to-end model that includes the
transmitter, diffusion and the ligand-receptor process in the receiver. An excellent tutorial intro-
duction to the modelling of chemical reactions and diffusion by using CTMP can be found in [38].
We have also included an example in C.

The aim of the end-to-end model is to determine the properties of the receiver signal from
the transmitter signal. The receiver signal in our case is the number of complexes over time.
Since the transmitter uses K symbols, the transmitter signal is generated by one of the K sets of
chemical reactions. This means that we need K end-to-end models with a model for each of the K
symbols or sets of chemical reactions. The principle behind building these K models are identical

1 This footnote explains how λ
W3 comes about. Consider a chemical reaction where reactants S and E react

to form product C. We assume the reactions are taking place within a volume of W 3. Let cS, cE and cC be,

respectively, the concentration of S, E and C in the volume. The law of mass action says that dcC
dt

“ λ̃ cE cS.
In the case of the CTMP or RDME in this paper, we want to keep track of the number of molecules in a volume
(the voxel) instead. Let nS, nE and nC be, respectively, the number of S, E and C molecules in the volume. Since
concentration and molecule counts are related by cCW

3 “ nC etc, we will, in a mathematically loose way, write
dnC
dt

“ λ̃
W3 nS nE. Since nC is a discrete quantity, the derivative dnC

dt
is not defined but we can interpret it as

the production rate of molecules C. This explains how to convert the law of mass action, which is in terms of
concentration, to the rate law used in RDME which is in terms molecular counts. This conversion is also discussed
in [45, 38].

2The law of mass action for the dissociation reaction is dcC
dt

“ ´µ cC where cC is the concentration of the
complexes. We can use the same argument in Footnote 1 to show that the dissociation rate of C is µ nC where nC

is the number of complexes. In particular, note that no scaling by volume W 3 of the voxel is required.
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so without loss of generality, we will assume that the model here is for Symbol 0. We begin with
a few definitions.

Let niptq (where 1 ď i ď Nv) be the number of signalling molecules S in Voxel i at time t. In
particular, since we have defined R to be the index of the receiver voxel, nRptq is the number of
signalling molecules in the receiver voxel. We assume the transmitter is a set of chemical reactions
which uses H intermediate chemical species Q1, Q2, ... and QH and these intermediate species
remain the transmitter voxel. Let nQiptq be the number of chemical species Qi in the transmitter
voxel at time t. Molecules may also be degraded or leave the system forever if absorbing boundary
condition is used. We use nAptq to denote the cumulative number of molecules that have left the
system. Note that since niptq, nQi

ptq and nAptq are molecular counts, they must belong to the set

of non-negative integers Zě0. We define the vector Nptq P ZNv`H`1
ě0 to be:

Nptq “
“

n1ptq ... nNv ptq nQ1ptq ... nQH
ptq nAptq

‰T
(3.4)

where T denotes matrix transpose.
Let bptq denote the number of complexes or bound receptors at time t and Zr0,Ms denote the

set of integers between 0 and M inclusively. We require that a valid bptq must be an element of
Zr0,Ms.

The state of the end-to-end model is the tuple pNptq, bptqq where bptq is the number of complexes
and Nptq contains all the other molecular counts. Since a receptor can either be unbound or in a
complex, the number of unbound receptors at time t is M´bptq; therefore, the mathematical model
only has to keep track of either the number of unbound receptors or the number of complexes,
and we have chosen to keep track of the latter.

We will now specify the transition probabilities from state pNptq, bptqq to state pNpt`∆tq, bpt`
∆tqq. State transitions can be caused by and of these events: a chemical reaction in the transmitter,
the diffusion of a signalling molecule from a voxel to neighbouring voxel, and the binding or
unbinding of a receptor in the receiver. We know from the theory of CTMP that the probability
of two events taking place in an infinitesimal duration of ∆t is of the order of op∆t2q. Intuitively,
this means only one event can occur within ∆t. We can divide the transition probabilities from
pNptq, bptqq to pNpt`∆tq, bpt`∆tqq into 2 groups depending on whether the number of complexes
has changed or not in the time interval pt, t`∆tq. If the number of complexes has changed from
time t to t `∆t, i.e. bpt `∆tq ‰ bptq, this means either a binding reaction (3.2) or a unbinding
reaction (3.3) has occurred.

If a binding reaction (3.2) has occurred, then the number of signalling molecules in the receiver
voxel is decreased by 1 and the number of complexes bptq is increased by 1. This reaction occurs
at a mean rate of λ nRptq pM ´ bptqq. We use 1i to denote the standard basis vector with a ‘1’ at
the i-th position. We can write the state transition probability of the receptor binding reaction
(3.2) as:

PrNpt`∆tq “ Nptq ´ 1R, bpt`∆tq “ bptq ` 1|Nptq, bptqs “ λ nRptq pM ´ bptqq ∆t (3.5)

Recalling that R is the index of the receiver voxel and nRptq is the R-th element of Nptq in
(3.4), the expression Npt ` ∆tq “ Nptq ´ 1R is equivalent to nRpt ` ∆tq “ nRptq ´ 1, which
means the number of signalling molecules in the receiver voxel has decreased by 1. Similarly, the
expression bpt`∆tq “ bptq ` 1 says the number of complexes has increased by 1. The right-hand
side (RHS) of (3.5) is the transition probability and is given by the product of mean reaction rate
and ∆t.

Similarly, the transition probability of the unbinding reaction is given by:

PrNpt`∆tq “ Nptq ` 1R, bpt`∆tq “ bptq ´ 1|Nptq, bptqs “ µ bptq ∆t (3.6)

where RHS of (3.6) is the transition probability.
We now specify the second group of transition probabilities with bpt ` ∆tq “ bptq. These

transitions are caused by either a reaction in the transmitter or diffusion of signalling molecules
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between neighbouring voxels. Let ηi, ηj P ZNv`H`1
ě0 be two valid Nptq vectors; let also β P Zr0,Ms.

For ηi ‰ ηj , we write

PrNpt`∆tq “ ηi, bpt`∆tq “ β|Nptq “ ηj , bptq “ βs “ dij ∆t (3.7)

where dij is the transition rate from state pηj , βq to state pηi, βq. Since this transition is due to
either a reaction in the transmitter or diffusion, dij is independent of the number of complexes β.
Depending on the type of transition, the value of dij can depend on the reaction constants in the
transmitter, diffusion rate and some states of ηj . For example, if the transition from ηj to ηi is
caused by the diffusion of a signalling molecule from Voxel 1 to Voxel 2, we have ηi “ ηj ´11`12

at a rate of dηj,1 where ηj,1 is the first element in ηj or equivalently the number of signalling
molecules in Voxel 1 in state ηj ; so, for this example, dij “ dηj,1. The main advantage of using
Equation (3.7) is that it allows us a cleaner abstraction to solve the Bayesian filtering problem
when deriving the MAP demodulator. We also remark that we will not specify the exact expression
of dij because dij ’s do not appear explicitly in the demodulator.

Equations (3.5), (3.6) and (3.7) specify all the possible state transitions. The probability of no
state transition is therefore:

PrNpt`∆tq “ ηj , bpt`∆tq “ bptq|Nptq “ ηj , bptqs

“ 1´ djj ∆t´ λ nRptq pM ´ bptqq ∆t´ µ bptq ∆t (3.8)

where

djj “
ÿ

j‰i

dij (3.9)

We have now specified all the state transition probabilities for Symbol 0. If a different symbol
is used, the value of H, the dimension of Nptq and the dij parameters can change. However, the
state transition probabilities still can be summarised by Equations of the form (3.5), (3.6) and
(3.7). In any case, the derivation of the MAP demodulator only requires us to work with one
symbol at a time. Hence, we will use Equations (3.5)-(3.9) for any transmission symbol.

3.3 Discussion

Note that the CTMP includes all the three sources of noise in our system, due to chemical reactions
in the transmitter, random diffusive movements in the medium and the ligand-receptor binding
process at the receiver. Some of the these noise components have also been characterised in earlier
literature. For example, [47] discusses sampling noise at the transmitter and counting noise at the
receiver. One can also study these noises using the derived CTMP and let us take sampling noise
as an example. For the moment, let us isolate the transmitter voxel from the propagation medium,
i.e. we do not allow the signalling molecules to leave or enter the transmitter voxel. In this case,
the number of signalling molecules in the transmitter voxel is due entirely to chemical reactions
and we use nisolatedptq to denote the number of signalling molecules in the isolated transmitter
voxel at time t. Now, let us consider the transmitter voxel again but we allow signalling molecules
to diffuse in and out of the voxel; we use nconnectedptq to denote the number of signalling molecules
in the transmitter voxel in this case. It is natural to consider nconnectedptq as the transmitter
signal because this is the number of signalling molecules in the transmitter voxel. However,
nconnectedptq can be different from nisolatedptq because signalling molecules can diffuse in and out
of the transmitter voxel, which is the cause of sampling noise.

Equations (3.5) to (3.8) hold for any valid state pNptq, bptqq. If we collect all the transition
probability equations for all valid states, then we can form the infinitesimal generator of the CTMP.
For a given initial probability distribution of the initial state pNp0q, bp0qq, one can in principle solve
the first order ordinary differential equation (ODE) associated with the infinitesimal generator to
compute the probability of the number of complexes bptq, or the property of the receiver signal.
However, in practice, this ODE is of a very high dimension and it is an active area of research to
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derive algorithms to solve this ODE efficiently and accurately [48]. We remark that this ODE is
commonly known as the reaction-diffusion Master equation [38, 37, 36] because it describes the
dynamics of chemical reactions and diffusion. For this paper, it suffices for us to use the equations
of the form in (3.5) to (3.8), therefore, we will not present the Master equation.

4 The MAP demodulator

This section aims to derive the optimal demodulator using the CTMP derived in the previous
section. We assume the input to the demodulator is the continuous-time signal bptq which is the
number of complexes at time t. There are a number of reasons why we choose to work with the
continuous-time signal bptq, rather than its sampled version. First, the signal bptq may not be
strictly band limited in the frequency domain. Second, our results show that the optimal demodu-
lator needs to know the time instances at which a receptor is switching from the unbound to bound
state. This timing information, which is essentially an impulse, is unfortunately lost by sampling
bptq. Third, the solution of the proposed decoding problem can be used to benchmark molecular
circuit [26] based decoders. Since molecular circuits use chemical reactions for computation, they
are fundamentally analogue circuits. Fourth, there is an increasing interest in the circuit design
community to design low-power analogue signal processing circuits [49].

An intermediate step to derive the MAP demodulator is to solve a continuous-time filtering
problem. In a filtering problem, one uses all the observations available up till time t to predict
the system state at time t. For our case, the observations are the number of complexes bptq in
the continuous interval r0, ts. (This means the number of observations is infinite because we are
considering the continuous-time signal bptq in a non-zero time interval r0, ts.) We use Bptq “
tbpτq; 0 ď τ ď tu to denote the section of the signal bptq in the time interval r0, ts. (Note that
the tu is not a set notation. Here Bptq is a realisation of the number of complexes in r0, ts of the
CTMP. This notation is used in some non-linear filtering literature, e.g. [50].) We can think of
Bptq as the history of the number of complexes up till time t. The demodulation problem is to use
the history Bptq to determine which symbol the transmitter has sent.

In Sections 4.1 to 4.3, we consider only one symbol interval and do not consider ISI. We consider
the ISI case in Section 4.5.

4.1 The MAP framework

We adopt a MAP framework for detection. Let Prs|Bptqs denote the posteriori probability that
symbol s has been sent given the history Bptq. If the demodulation decision is to be done at time
t, then the demodulator decides that symbol ŝ has been sent if

ŝ “ arg maxs“0,...,K´1Prs|Bptqs (4.1)

Instead of working with Prs|Bptqs, we will work with its logarithm. Let

Lsptq “ logpPrs|Bptqsq (4.2)

The first step is to determine Lspt `∆tq from Lsptq. Given Bptq is the section of bptq in the
time interval r0, ts, one can consider Bpt ` ∆tq as the concatenation of Bptq and the section of
bptq in the time interval pt, t ` ∆ts. Over an infinitesimal ∆t, we can consider the signal bptq is
a constant in the time interval pt, t ` ∆ts; we therefore abuse the notation and use bpt ` ∆tq to
denote section of bptq in the time interval r0, ts. By using Bayes’ rule, it can be shown that

Lspt`∆tq “Lsptq ` logpPrbpt`∆tq|s,Bptqsq ´ logpPrbpt`∆tq|Bptqsq (4.3)

where Prbpt ` ∆tq|s,Bptqs is the probability that there are bpt ` ∆tq complexes given that the
transmitter has sent the symbol s and the previous history Bptq. The last term on the RHS of
(4.3), i.e. Prbpt `∆tq|Bptqs, is independent of the transmission symbol so we do not need it for
the purpose of detection. We will focus on determining Prbpt`∆tq|s,Bptqs.
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4.2 Computing Prbpt`∆tq|s,Bptqs
The problem of determining the probability Prbpt`∆tq|s,Bptqs is essentially a Bayesian filtering
or hidden Markov model problem. Recall that the complete state of the system is pNptq, bptqq and
the receiver can only observe bptq, therefore the task of the receiver is to use the history Bptq and
the system model to do prediction. Standard method can be used to derive Prbpt `∆tq|s,Bptqs
but the derivation is long, especially because of the diffusion terms; the derivation can be found
in Appendix A. The result is

Prbpt`∆tq|s,Bptqs
“δbpt`∆tq,bptq`1 λpM ´ bptqq ∆t ErnRptq|s,Bptqs ` δbpt`∆tq,bptq´1 µbptq ∆t `

δbpt`∆tq,bptq p1´ λpM ´ bptqqErnRptq|s,Bptqs ∆t´ µbptq ∆tq (4.4)

Note that only one of the three terms on the RHS of Equation (4.4) is non-zero depending on
whether the observed bpt `∆tq is one more, one less or equal to that of bptq; or, in other words,
whether the number of complexes has increased by one, decreased by one or stayed the same. The
term ErnRptq|s,Bptqs is the expected number of signalling molecules in the receiver voxel given
the history and the symbol s. The meaning of this term is that the receiver uses the history
to predict what the expected number of signalling molecules in the receiver voxel is. Note that
only the chemical kinetic parameters λ and µ of the receptor appear explicitly in Equation (4.4).
Other parameters, such as the set of chemical reaction that generate Symbol s and the diffusion
coefficient, do not appear explicitly in Equation (4.4) but influence the system behaviour via the
term ErnRptq|s,Bptqs.

4.3 The demodulation filter

By substituting Equation (4.4) into Equation (4.3) and let ∆t go to zero, we show in Appendix B
that

dLsptq

dt
“
dUptq

dt
logpErnRptq|s,Bptqsq ´ λpM ´ bptqqErnRptq|s,Bptqs ` L̃ptq (4.5)

with Lsp0q initialised to the logarithm of the prior probability that Symbol s is sent. The term
Uptq is the cumulative number of times that the receptors have turned from the unbound to bound
state. The meaning of Uptq is illustrated in Figure C.3 assuming that there are two receptors.
The top two pictures in Figure C.3 show the state transitions for the two receptors. The third
picture shows the function Uptq which is increased by one every time a receptor switches from the

unbound to bound state. The bottom picture shows dUptq
dt which is the derivative of Uptq. Note

that dUptq
dt consists of a train of impulses (or Dirac deltas) where the timings of the impulses are

the times at which a receptor binding event occurs. Loosely speaking, one may also view dUptq
dt as

maxpdbptqdt , 0q.

The function L̃ptq, which is the last term on the RHS of (4.5), contains all the terms that are
independent of Symbol s. Since Lsptq does not appear on the RHS of (4.5), this means that L̃ptq
adds the same contribution to all Lsptq for all s “ 0, ...,K ´ 1. We can therefore ignore L̃ptq for
the purpose of demodulation.

The term ErnRptq|s,Bptqs in Equation (4.5) is the prediction of the mean number of signalling
molecules in the receiver voxel using the history of receptor state. This is a filtering problem
which requires extensive computation. Instead, we assume that the receiver has prior knowledge
that if Symbol s is transmitted, then the mean number of signalling molecules in the receiver
voxel is σsptq and the receiver uses σsptq for demodulation. We can view σsptq as internal models
that the demodulator uses. The use of internal models is fairly common in signal processing and
communication, e.g. a matched filter correlates the measured data with an expected response.

After making the modifications described in the last two paragraphs, we are now ready to de-
scribe the demodulator. Using bptq as the input, the demodulator runs the following K continuous-
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time filters in parallel:

dZsptq

dt
“
dUptq

dt
logpσsptqq ´ λpM ´ bptqqσsptq (4.6)

where Zsp0q is initialised to the logarithm of the prior probability that the transmitter sends
Symbol s. If the demodulator makes the decision at time t, then the demodulator decides that
Symbol ŝ has been transmitted if

ŝ “ arg maxs“0,...,K´1Zsptq (4.7)

The demodulator structure is illustrated in Figure C.4. By comparing Equations (4.5) and (4.6),
it can be shown that Ls1ptq ´ Ls2ptq “ Zs1ptq ´ Zs2ptq for any two symbols s1 and s2. An
interpretation of the demodulation filter output Zsptq is that exppZsptqq is proportional to the
posteriori probability Prs|Bptqs.

We see from Equation (4.6) that the calculation of the demodulator output requires a number
of pieces of information. For the calculation of the first term on the RHS of Equation (4.6), it
needs to know the time instances at which the receptor bindings occur and this timing is used to
determine a contribution from the weighting function logpσsptqq. The second term on the RHS
of Equation (4.6) requires the number of unbound receptors at time t as well as the weighting
function σsptq.

In order to understand Equation (4.6), we consider the situation where Symbol 1 generates a
lot more signalling molecules than Symbol 0 such that it results in more signalling molecules in the
receiver voxel, or σ1ptq ą σ0ptq for all t. If the transmitter sends Symbol 1, then more signalling
molecules are expected to reach the receiver voxel. The consequence is that there are more receptor
binding events and the number of unbound receptors pM´bptqq is smaller. Therefore, in Equation
(4.6), we expect a big positive contribution from the first term on the RHS and a small negative
contribution from the second term. The net effect is a big Z1ptq. On the other hand, if the
transmitter sends Symbol 0, the number of receptor binding events is smaller and pM ´ bptqq is
big. This results in a smaller Z0ptq. Therefore, Z1ptq is likely to be bigger than Z0ptq, which means
correct detection.

4.4 Discussions

Implementation issues

The implementation of the demodulator is an open research problem. The demodulation filter (4.6)
is an analogue filter and it requires the internal model σiptq. The design of analogue circuits using
molecules and chemical reactions for calculations is an active research area, see [51] for a recent
overview. The demodulation filter requires logarithm, multiplication, subtraction, integration and
counting the number of times the receptors have switched from the unbound to bound state. An
analogue molecular circuit for calculating logarithm is presented in [52]. There are also circuits
that can perform multiplication and subtraction [51]. Living cells are known to use integration [53].
It may be possible to implement the counting using a chemical reaction [35]. It may be possible
to approximate the internal models by using some lower order chemical reactions. This discussion
shows that some components to implement the demodulator exist but the exact implementation
remains an open problem.

In order to bypass the difficulty of computing ErnRptq|s,Bptqs, we have proposed to use internal
models σsptq. An open research problem is to study sub-optimal estimation of ErnRptq|s,Bptqs.

Note that [51] shows that analogue computation is more efficient than digital computation if
high precision is not required. An interesting problem is to study the impact of low precision
analogue calculations on the demodulation performance.

Continuous transmission medium versus voxels

We mention in Section 2 that some papers in molecular communications assume a continuous
medium (rather than discretising the medium into voxels) and a non-zero receiver size. If a
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continuous medium is assumed, the state of a signalling molecule in the transmission medium
is its position. Let pp~x, tq be the probability that a molecule is at position ~x at time t. The
time evolution of pp~x, tq can again be modelled by a CTMP, which is continuous in both time and
space. The time evolution of pp~x, tq is described by the differential Chapman-Kolmogorov Equation
(CKE) [36]. It is possible to derive an alternative CTMP by replacing the diffusion of signalling
molecules in Equation (3.7) by differential CKE as well as by adding equations to describe how
the signalling molecules enter or leave the receiver voxel. We can then apply Bayesian filtering to
this alternative CTMP. We expect this alternative CTMP will give the same demodulator filter
because in our derivation based on discrete voxels, the MAP demodulator depends only on the
number of the signalling molecules in the receiver voxel and the diffusion parameters do not appear
explicitly in the demodulation filter. Further support of this argument is given in the derivation
in Appendix B where we show that the dij parameters in (3.7) are cancelled out in deriving the
Bayesian filter.

4.5 ISI

It is in principle possible to use the demodulation filters (4.6) to deal with the case with ISI. We
use Tx to denote one symbol duration and we assume that ISI only lasts for a finite amount of
time. Specifically, consider a symbol sent in rkTx, pk ` 1qTxs, we assume that the effect of this
transmission can be neglected after the time pk ` nqTx. This can be realised by appropriately
choosing the transmitter and receiver parameters, Tx and n.

In order to make the explanation here a bit more concrete, we assume that the transmitter
uses K “ 2 symbols and n “ 3. Over a duration of n “ 3 symbols, the possible sequences sent
by the transmitter are 000, 001, 010, 011, ... , 111. Let σ0,0,0ptq denote the mean number of
signalling molecules at the receiver voxel if the sequence 000 is sent. We can similarly define
σ0,0,1ptq, ..., σ1,1,1ptq. Consider the transmission of three consecutive symbols sk´2, sk´1 and sk.
Assuming that we have an estimation of the first two symbols ŝk´2 and ŝk´1, then the decoding
of sk can be done by using the demodulation filter (4.6) by replacing σsptq by σŝk´2,ŝk´1,s. For
example, if sk´2 “ 1 and sk´1 “ 0, then one can decode what sk is by using the demodulator filters
σ1,0,1ptq and σ1,0,1ptq. Although the decision feedback based method can solve the ISI problem,
the number of internal models increases exponentially with the memory length parameter n.

The reason why we need to consider all 2n possible transmission sequences is that the ligand-
receptor binding process has a non-linear reaction rate. A method to reduce the number of internal
models is to design the system so that σ0,0,0ptq etc. can be decomposed into a sum. Let σsptq
(s “ 0, 1) be the mean number of signalling molecules at the receiver voxel if the symbol s is sent
for one symbol duration and in the absence of ISI. If

σs1,s2,s3ptq « σs1pt´ 2Txq ` σs2pt´ Txq ` σs3ptq (4.8)

holds for all s1, s2 and s3, then one can again make use of decision feedback to decode the ISI
signal. However, this time, only K internal models are needed. Equation (4.8) can be made to
hold approximately if the number of receptors is large. This can be explained as follows. First
of all, if ligand-receptor binding is absent, this means there is only free diffusion then Equations
(4.8) holds because the mean number of signalling molecules obeys the diffusion equation which
is linear. This means that we need to create an environment that “looks like” free diffusion even
when ligand-receptor binding is present. This can be realised if the number of signalling molecules
that are bound to the receptors is small compared to those that are free. A method to achieve
this is to increase the number of receptors. We will demonstrate this with a numerical example in
Section 5. However, it is still an open problem to solve the ISI in the general case.

5 Properties of the demodulator

The aim of this section is to study the properties of the MAP demodulator numerically. We begin
with the methodology.
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5.1 Methodology

We consider a medium of 2µm ˆ 2µm ˆ 1 µm. We assume a voxel size of ( 1
3µm)3 (i.e. W “ 1

3 µm),
creating an array of 6ˆ 6ˆ 3 voxels. The transmitter and receiver are located at (0.5,0.8,0.5) and
(1.5,0.8,0.5) (in µm) in the medium. The voxel co-ordinates are (2,3,2) and (5,3,2) respectively.

We assume the diffusion coefficient D of the medium is 1 µm2s´1. The receptor parameters

are λ̃ = 0.005 µm3 s´1, λ “ λ̃
W 3 , and µ “ 1 s´1. These values are similar to those used in [45]

and [27] 1. We assume an absorbing boundary for the medium and the signalling molecules escape
from a boundary voxel surface at a rate of d

50 . The above parameter values will be used for all the
numerical experiments.

For each experiment, the transmitter uses either K “ 2 or K “ 3 symbols. Each symbol is
generated by a different sets of chemical reactions. Different experiments may use different sets of
chemical reactions and will be described later. The number of receptors also varies between the
experiments.

We use the Stochastic Simulation Algorithm (SSA) [54] to obtain realisations of bptq which is
the number of complexes over time. SSA is a standard algorithm in chemistry to simulate diffusion
and reactions; it is essentially an algorithm to simulate a CTMP.

In order to use Equation (4.6), we require the mean number of signalling molecules σsptq in
the receiver voxel when Symbol s is sent. Unfortunately, it is not possible to analytically compute
σsptq from the CTMP because of moment closure problem which arises when the transition rate is
a non-linear function of the state [55]. We therefore resort to simulation to estimate σsptq. Each
time when we need an σsptq, we run SSA simulation 500 times and average the results to obtain
σsptq. Note that these simulations are different from those that we use to generate bptq for the
performance study. In other words, the simulations for estimating σsptq and for performance study
are completely independent.

Once bptq and σsptq are obtained, we use numerical integration to calculate Zsptq using Equation
(4.6). We assume that all symbols appear with equal probability, so we initialise Zsp0q “ 0 for all
s.

5.2 Properties of the demodulator output

For this experiment, we use K “ 2 symbols and M “ 50 receptors. Both Symbols 0 and 1 use a
reaction of the form:

RNA
κ
ÝÑ RNA` S (5.1)

where the κ’s for Symbols 0 and 1 causes, respectively, 40 and 80 molecules to be generated per
second on average by the transmitter. The simulation time is about 3 seconds.

Figure C.5 shows the demodulation filter outputs Z0ptq and Z1ptq if the transmitter sends a
Symbol 0. It can be seen that Z0ptq ą Z1ptq most of the time after t “ 1.2, which means the
detection is likely to be correct after this time. The sawtooth like appearance of Z0ptq and Z1ptq
is due to the fact that every time when a receptor is bound, there is a jump in the filter output
according to Equation (4.6). Figure C.6 shows the filter outputs Z0ptq and Z1ptq if the transmitter
sends a Symbol 1; the behaviour is similar.

Figure C.7 shows the mean filter outputs Z0ptq and Z1ptq if the transmitter sends a Symbol 0.
The mean is computed over 200 realisations of bptq. It can be seen that the mean filter output of
Z0ptq is greater than that of Z1ptq. Similarly, if Symbol 1 is sent, then we expect of the mean of
Z1ptq to be bigger. The figure is not shown for brevity.

Figure C.8 shows the mean symbol error rates (SERs) for Symbols 0 and 1 if the detection is
done at time t. The SER for Symbol 1 is high initially but as more information is processed over
time, the SER drops to a low value. This experiment shows that it is possible to use the analogue

1The paper [27] considers ligand-receptor binding in the chemical master equation setting. In our notation, the
parameter values in [27] are D = 100 µm2s´1, λ̃ = 0.2 µm3 s´1 and µ “ 10 s´1. These parameters are 10–100 times
faster than ours and can be considered as a time-scaling. Note that [27] uses k` and k´ instead of, respectively, λ̃
and µ.
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demodulation filter (4.6) to compute a quantity that allows us to distinguish between two emission
patterns at the receiver.

5.3 Impact of number of receptors

We continue with the setting of 5.2 but we vary the number of receptors between 1 and 20. We
assume the demodulator makes the decision at t “ 2.5 and calculate the mean SER for both
symbols at t “ 2.5. Figure C.9 plots the SERs versus the number of receptors. It can be seen that
the SER drops with increasing number of receptors.

We have used K “ 2 symbols so far. We retain the current Symbols 0 and 1, and add a Symbol
2 which is also of the form of Reaction (5.1) but its mean rate of production of signalling molecules
is 3 times that of Symbol 0. The number of receptors M used are: 1, 10, 20, ..., 150. We compute
the average SER at t “ 2.5 assuming each symbol is transmitted with equal probability. We plot
the logarithm of the average SER against logpMq in Figure C.10. It can be seen that the SER
drops with increasing number of receptors M . The plot in Figure C.10 suggests that, when the
number of receptors M is large, the relationship between logarithm of SER and logpMq is linear.
We perform a least-squares fit for M between 50 and 150. The fitted straight line is shown in
Figure C.10 and it has a slope of ´1.13. A possible explanation is that, because the receptors
are non-interacting, each receptor provides an independent observation. The empirical evidence
suggests that the average SER scales according to 1

M asymptotically.

5.4 Distinguishability of different chemical reactions

Equation (4.6) suggests that if the transmitter uses two sets of reactions which have almost the
same mean number of signalling molecules in the receiver voxel, then it may be difficult to distin-
guish between these two symbols. In this study, Symbol 0 is generated by Reaction (5.1) with a
rate of κ while Symbol 1 is generated by:

rRNAsON ÐÝÑ rRNAsOFF (5.2)

rRNAsON
2κ
ÝÑ rRNAsON ` S (5.3)

where we assume that RNA can be in an ON or OFF state, and signalling molecules S are only
produced when the RNA is in the ON-state. We assume that the there is an equal probability for
the RNA to be in the two states and the reaction rate constant for the production of signalling
molecule S from rRNAsON is 2κ. This means that the mean rate of production of signalling
molecules S by Symbols 0 and 1 are the same. This gives rise to very similar σ0ptq and σ1ptq.
Figure C.11 shows the demodulation filter outputs Z0ptq and Z1ptq for one simulation. It can be
seen that the two outputs are almost indistinguishable. Consequently, the SER is pretty high.
This shows that symbols generated by reactions which have similar mean number of signalling
molecules at the receiver voxel can be hard to distinguish.

5.5 ISI

The aim of this experiment is to study the performance of the demodulator in the presence of ISI.
We use the decision feedback method described in Section 4.5 together with the approximation
decomposition in (4.8). We vary the number of receptors from 25 to 150. We use two different
memory lengths ` of 4 and 5. If the memory length is n, we express the mean number of output
molecules at the current symbol interval as a sum of ` terms, i.e. a generalisation of (4.8) to `
terms. We carry out the simulation for a duration of 20 symbol lengths and compute the average
SER over 20 symbols. Figure C.12 shows the average SER versus the number of receptors. It can
be seen that an increasing number of receptors can also be used to deal with ISI.
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6 Conclusions and future work

This paper studies a diffusion-based molecular communication network that uses different sets of
chemical reactions to represent different transmission symbols. We focus on the demodulation
problem. We assume the receiver uses a ligand-receptor binding process and uses the continuous
history of the number of ligand-receptor complexes over time as the input signal to the demodu-
lator. We derive the maximum a posteriori demodulator by solving a Bayesian filtering problem.

A Proof of Equation (4.4)

Let s denote the transmitted symbol, our aim is to determine Prbpt`∆tq|s,Bptqs in terms of the
quantity at time t. Recalling that pNptq, bptqq is the state of the CTMP and since only Bptq is
observed, the problem of predicting bpt`∆tq from Bptq is a Bayesian filtering or hidden Markov
model problem. The first step is to condition on the state of the system, as follows:

Prbpt`∆tq|s,Bptqs (A.1)

“
ÿ

i

PrNpt`∆tq “ ηi, bpt`∆tq|s,Bptqs (A.2)

“
ÿ

i

ÿ

j

PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj ,BptqsPrNptq “ ηj |s,Bptqs (A.3)

“
ÿ

i

ÿ

j

PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj , bptqsPrNptq “ ηj |s,Bptqs (A.4)

where we have used the Markov property PrNpt ` ∆tq “ ηi, bpt ` ∆tq|s,Nptq “ ηj ,Bptqs “
PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj , bptqs to arrive at Equation (A.4).

We now focus on the term PrNpt `∆tq “ ηi, bpt `∆tq|s,Nptq “ ηj , bptqs in Equation (A.4).
This term is the state transition probability. Using the CTMP in Section 3, we have

PrNpt`∆tq “ ηi, bpt`∆tq|s,Nptq “ ηj , bptqs (A.5)

“δpbpt`∆tq “ bptq ` 1qP1 ` δpbpt`∆tq “ bptq ´ 1qP2 ` δpbpt`∆tq “ bptqqP3

where

P1 “ δpηi “ ηj ´ 1Rqληj,RpM ´ bptqq ∆t (A.6)

P2 “ δpηi “ ηj ` 1Rqµbptq ∆t (A.7)

P3 “ ηiÑj (A.8)

where ηj,R is the R-th element of ηj , i.e. there are ηj,R signalling molecules in the receiver voxel,
and

ηiÑj “

"

dij ∆t if i ‰ j
1´ pληj,RpM ´ bptqq ´ µbptq ´ djjq ∆t if i “ j

(A.9)

where

djj “
ÿ

i‰j

dij (A.10)

By substituting Equation (A.6) into Equation (A.4), we have

Prbpt`∆tq|s,Bptqs “ δpbpt`∆tq “ bptq ` 1qQ1 ` δpbpt`∆tq “ bptq ´ 1qQ2 ` δpbpt`∆tq “ bptqqQ3

(A.11)

where

Q` “
ÿ

i

ÿ

j

P`PrNptq “ ηj |s,Bptqs (A.12)
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We will now determine Q1, Q2 and Q3.
For Q1, we have

Q1 “
ÿ

i

ÿ

j

δpηi “ ηj ´ 1Rqληj,RpM ´ bptqq ∆t PrNptq “ ηj |s,Bptqs

“ λpM ´ bptqq ∆t
ÿ

i

ÿ

j

δpηi “ ηj ´ 1Rqηj,RPrNptq “ ηj |s,Bptqs

“ λpM ´ bptqq ∆t
ÿ

j s.t. ηi,Rě1

ηj,RPrNptq “ ηj |s,Bptqs (A.13)

“ λpM ´ bptqq ∆t
ÿ

j

ηj,RPrNptq “ ηj |s,Bptqs (A.14)

“ λpM ´ bptqq ∆t ErnRptq|s,Bptqs (A.15)

Note that in Equation (A.13), the sum is over all states ηi with at least one signalling molecule
in the receiver voxel, i.e. ηj,R ě 1. Since the summand in Equation (A.13) is zero if ηj,R “ 0, we
get the same result if we are to sum over all possible states, that is why Equation (A.14) holds.

For Q2, we have

Q2 “
ÿ

i

ÿ

j

δpηi “ ηj ` 1Rqµbptq ∆t PrNptq “ ηj |s,Bptqs

“ µbptq ∆t
ÿ

i

ÿ

j

δpηi “ ηj ` 1Rq PrNptq “ ηj |s,Bptqs (A.16)

“ µbptq ∆t
ÿ

j

PrNptq “ ηj |s,Bptqs (A.17)

“ µbptq ∆t (A.18)

Note that Equation (A.17) follows from Equation (A.16) because for every ηj , there is a unique
ηi such that ηi “ ηj ` 1R holds.

For Q3, we have

Q3 “
ÿ

i

ÿ

j

ηiÑjPrNptq “ ηj |s,Bptqs

“
ÿ

i

ÿ

j‰i

pdij ∆tqPrNptq “ ηj |s,Bptqs`

ÿ

j

p1´ ληj,RpM ´ bptqq ∆t´ µbptq ∆t´ djj ∆tqPrNptq “ ηj |s,Bptqs

“
ÿ

j

p1´ ληj,RpM ´ bptqq ∆t´ µbptq ∆tqPrNptq “ ηj |s,Bptqs`

p
ÿ

i

ÿ

j‰i

dijPrNptq “ ηj |s,Bptqs ´
ÿ

j

djjPrNptq “ ηj |s,Bptqsq ∆t

“p1´ λpM ´ bptqqErnRptq|s,Bptqs ∆t´ µbptq ∆tq`

p
ÿ

i

ÿ

j‰i

dijPrNptq “ ηj |s,Bptqs ´
ÿ

j

ÿ

i‰j

dijPrNptq “ ηj |s,Bptqsq
looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

“0

∆t

“p1´ λpM ´ bptqqErnRptq|s,Bptqs ∆t´ µbptq ∆tq (A.19)

Having obtained Q1, Q2 and Q3, we arrive at:

Prbpt`∆tq|s,Bptqs “δpbpt`∆tq “ bptq ` 1qλpM ´ bptqq ∆t ErnRptq|s,Bptqs`
δpbpt`∆tq “ bptq ´ 1qµbptq ∆t `

δpbpt`∆tq “ bptqqp1´ λpM ´ bptqqErnRptq|s,Bptqs ∆t´ µbptq ∆tq (A.20)

Note that Equation (A.20) is the same as Equation (4.4) in the main text.
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B Proof of Equation (4.5)

From Equation (4.3), we have:

dLsptq

dt
“ lim

∆tÑ0

logpPrbpt`∆tq|s,Bptqsq
∆t

´ lim
∆tÑ0

logpPrbpt`∆tq|Bptqsq
∆t

(B.1)

Note that the second term on the RHS is independent of transmission symbol s, we will focus on
the first term.

Note that Prbpt ` ∆tq|s,Bptqs, which is given in Equation (A.20), is a sum three terms with
multipliers δpbpt ` ∆tq “ bptq ` 1q, δpbpt ` ∆tq “ bptq ´ 1q and δpbpt ` ∆tq “ bptqq. Since these
multipliers are mutually exclusive, we have:

log pPrbpt`∆tq|s,Bptqsq “δpbpt`∆tq “ bptq ` 1q log pλpM ´ bptqq ∆t ErnRptq|s,Bptqsq`
δpbpt`∆tq “ bptq ´ 1q log pµbptq ∆tq`

δpbpt`∆tq “ bptqq log pp1´ λpM ´ bptqqErnRptq|1,Bptqs ∆t´ µbptq ∆tqq

«δpbpt`∆tq “ bptq ` 1q log pErnRptq|s,Bptqsq´
δpbpt`∆tq “ bptqqλpM ´ bptqqErnRptq|s,Bptqs ∆t`

P̃ ptq (B.2)

where we have used the approximation logp1`αxq « αx and have collected all terms that do not
depend on s in P̃ ptq.

By substituting Equation (B.2) into Equation (B.1), and taking limit ∆tÑ 0, we have

dLsptq

dt
“ lim

∆tÑ0

δpbpt`∆tq “ bptq ` 1q

∆t
log pErnRptq|s,Bptqsq´

δpbpt`∆tq “ bptqqλpM ´ bptqq pErnRptq|s,Bptqssq ` L̃ptq (B.3)

“
dUptq

dt
log pErnRptq|s,Bptqsq ´ λpM ´ bptqq pErnRptq|s,Bptqsq ` L̃ptq (B.4)

where all terms that are independent of s have been collected in L̃ptq. Note that L̃ptq contains
some terms that diverges but this is not an issue because for demodulation it is their relative
difference Ls1ptq ´ Ls2ptq (for any two symbols s1 and s2) that matters.

Note also that we have used the following reasonings to arrive at Equation (B.4) from Equation
(B.3):

1. The term lim∆tÑ0
δpbpt`∆tq“bptq`1q

∆t is an impulse whenever a receptor changes from the

unbound to the bound state. This is precisely dUptq
dt .

2. The term δpbpt`∆tq “ bptqq is only zero when the number of bound receptors changes and
the number of such changes is finite. In other words, δpbpt`∆tq “ bptqq “ 1 with probability
one. This allows us to drop δpbpt`∆tq “ bptqq.

Finally, note that Equation (B.4) is the same as Equation (4.5).

C An example end-to-end model

For this example, we assume the transmission medium consists of 3 voxels as illustrated in Figure
C.13. The transmitter and receiver are assumed to be located in, respectively, Voxels 1 and 3.
We assume reflecting boundary condition which means the signalling molecules cannot leave the
medium.

This Appendix presents an example end-to-end model. For this end-to-end model, the trans-
mitter is assumed to send Symbol 0 which means it uses the set of chemical reactions corresponding
to this symbol. We therefore view a transmitter as a set of chemical reactions located within the
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transmitter voxel. It is still an open problem what chemical reactions are good for communication
performance. The example being used here is not meant to promote the use of a particular set of
chemical reactions but our purpose is to show how a set of chemical reactions can be modelled by
a CTMP.

For this example, we assume that the production of the signalling molecules S requires two
intermediate chemical species F and G, which are produced by RNA1 and RNA2. There are four
reactions and they are assumed to take place within the transmitter voxel only. The four chemical
reactions are:

RNA1
k1
ÝÑ RNA1 ` F (C.1)

RNA2
k2
ÝÑ RNA2 `G (C.2)

F
k3
ÝÑ S (C.3)

S`G
k4
ÝÑ φ (C.4)

Reaction (C.1) says that the molecules of F are produced at a mean rate of k1. Similarly, according
to Reaction (C.2), G is produced at a mean rate of k2. Reaction (C.3) says that F is converted to
S at a mean rate equals to k3 times the number of F molecules in the transmitter voxel. Reaction
(C.4) says that S and G can react to produce a molecule φ that we are not interested to keep
track of in the mathematical model. If an S (or a G) molecule takes part in Reaction (C.4), we
can consider this S (G) molecule has left the system permanently after the reaction. The rate of
Reaction (C.4) is k4 times the number of G molecules and the number of signalling molecules S
in the transmitter voxel.

We assume that the chemical species RNA1, RNA2, F and G are found in the transmitter voxel
only, and they cannot leave the transmitter voxel. This means that we do not need to consider
the diffusion of these chemical species. The only diffusible chemical species in the entire system
is the signalling molecule S. We also assume that there is only one of each RNA1 and RNA2 and
their counts remain constant.

In order to define the state of the system, we make the following definitions: niptq is the number
of signalling molecules in Voxel i at time t, nF ptq and nGptq are respectively the number of F and G
molecules at time t, nAptq is the cumulative number of molecules that have left the system at time
t and bptq is the number of complexes (or bound receptors) at time t. Since a receptor can either
be unbound or in a complex, the number of unbound receptors at time t is M ´ bptq; therefore,
the mathematical model only has to keep track of either the number of unbound receptors or the
number of complexes, and we have chosen to keep track of the latter. The state of the system
is completely specified by these seven molecular counts: n1ptq, n2ptq, n3ptq, nF ptq, nGptq, nAptq and
bptq. All the molecular counts should be non-negative integers (i.e. belonging to the set Zě0) and
a further restriction is that 0 ď bptq ďM or we write bptq P Zr0,Ms.

We define the vector Nptq as

Nptq “
“

n1ptq n2ptq n3ptq nF ptq nGptq nAptq
‰T

(C.5)

where the superscript T is used to denote matrix transpose.
Based on the definition of Nptq, the state of the system is the tuple pNptq, bptqq and a valid state

must be an element of the set S “ Z6
ě0ˆZr0,Ms. The state of the system changes when a reaction

or diffusion event occurs. Our modelling assumptions mean that reactions can only take place in
the transmitter or the receiver voxels. The reactions in the transmitter voxel are (C.1)´(C.4).
The reactions taking place in the receiver voxel are (3.2) and (3.3). The only diffusible chemical
species in this system is the signalling molecule S. Within an infinitesimal time ∆t, at most one
diffusion or reaction event can occur. Therefore, the dynamics of the system can be specified by
the transition probability from state pNptq, bptqq to pNpt ` ∆tq, bpt ` ∆tqq. We will now specify
these transition probabilities and we begin with the transmitter.

Four possible reaction events (C.1)–(C.4) can take place in the transmitter voxel. An occur-
rence of Reaction (C.1) increases the number of F molecules in the transmitter voxel by 1 and
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this occurs at a mean rate of k1. By defining 1i to be the standard basis vector with a ‘1’ at the
i-th position, we can write the state transition probability due to Reaction (C.1) as:

PrNpt`∆tq “ Nptq ` 14, bpt`∆tq “ bptq|Nptq, bptqs “ k1 ∆t (C.6)

Note that we have used 14 because nF ptq is increased by 1 if Reaction (C.1) occurs and nF ptq
is the fourth element of Nptq in the definition of Nptq in (C.5). The right-hand side (RHS) of
Equation (C.6) is the transition probability that Reaction (C.1) occurs in pt, t ` ∆tq, which is
given by the reaction rate k1 times ∆t.

We can write the transition probabilities due to Reactions (C.2)´(C.4) as:

PrNpt`∆tq “ Nptq ` 15, bpt`∆tq “ bptq|Nptq, bptqs “ k2 ∆t (C.7)

PrNpt`∆tq “ Nptq ´ 14 ` 11, bpt`∆tq “ bptq|Nptq, bptqs “ k3 nF ptq ∆t (C.8)

PrNpt`∆tq “ Nptq ´ 15 ´ 11 ` 216, bpt`∆tq “ bptq|Nptq, bptqs “ k4 nGptq n1ptq∆t (C.9)

The rationale behind Equation (C.7) is similar to that of (C.6). Equation (C.8) models Reaction
(C.3). If Reaction (C.3) occurs, an F molecule is converted to an S molecule, so the number of
F molecules nF ptq (which is the fourth element of Nptq) is decreased by 1 and the number of
signalling molecule in the transmitter voxel n1ptq (which is the first element of Nptq) is increased
by 1; this change in the number of molecules as a result of Reaction (C.3) can be written as
Npt ` ∆tq “ Nptq ´ 14 ` 11 in (C.8). Equation (C.9) models Reaction (C.4). When Reaction
(C.4) occurs, a G and an S molecule in the transmitter are consumed, hence ´15 ´ 11 in (C.9).
We are not interested to keep track of the molecules as a result of this reaction, we consider these
two molecules have left the system permanently and add ‘2’ to nAptq which is at the sixth position
of Nptq. The letter ‘A’ here comes from ’absorbing’ because once a molecule is added to nAptq, it
will not leave. Note that the RHSs of (C.6)–(C.9) show the transition probabilities and they are
of the form of the transition rate times ∆t.

The state of the system can also be changed by signalling molecules diffusing from one voxel
to another. For this example, there are four possible diffusion events, which take place when a
signalling molecule diffuses from a voxel to its neighbouring voxel. The four diffusion events are:
from Voxel 1 to Voxel 2, from Voxel 2 to Voxel 1, from Voxel 2 to Voxel 3, and from Voxel 3 to
Voxel 2. The transition probabilities of these four events are:

PrNpt`∆tq “ Nptq ´ 11 ` 12, bpt`∆tq “ bptq|Nptq, bptqs “ d n1ptq ∆t (C.10)

PrNpt`∆tq “ Nptq ` 11 ´ 12, bpt`∆tq “ bptq|Nptq, bptqs “ d n2ptq ∆t (C.11)

PrNpt`∆tq “ Nptq ´ 12 ` 13, bpt`∆tq “ bptq|Nptq, bptqs “ d n2ptq ∆t (C.12)

PrNpt`∆tq “ Nptq ` 12 ´ 13, bpt`∆tq “ bptq|Nptq, bptqs “ d n3ptq ∆t (C.13)

Equation (C.10) is the probability that a signalling molecules diffuses from Voxel 1 to Voxel 2.
The occurrence of this event means the number of signalling molecules in Voxel 1 (“ n1ptq, which
is the first element of Nptq) is decreased by 1 while the number of signalling molecules in Voxel 2
(“ n2ptq, which is the second element of Nptq) is increased by 1. The probability of this occurring
is d ∆t. The explanation for the other three transition probabilities are similar.

The last category of state transitions occurs when a receptor is bound or unbound according
to chemical reactions (3.2) and (3.3). The state transition probabilities are:

PrNpt`∆tq “ Nptq ´ 13, bpt`∆tq “ bptq ` 1|Nptq, bptqs “ λ n3ptq pM ´ bptqq ∆t (C.14)

PrNpt`∆tq “ Nptq ` 13, bpt`∆tq “ bptq ´ 1|Nptq, bptqs “ µ bptq ∆t (C.15)

Equation (C.14) is the transition probability for receptor binding or the formation of new complex.
This event occurs when a signalling molecule in the receiver voxel reacts with a unbound receptor
to form a complex. As a result of this reaction, the number of signalling molecules in the receiver
voxel (which is Voxel 3 in this example) is decreased by 1 and the number of complexes bptq is
increased by 1. The rate of this event is proportional to the product of the number of signalling
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molecules in the receiver voxel n3ptq and the number of unbound receptors pM ´ bptqq. Equation
(C.15) is the transition probability for a receptor to unbind. The unbinding reaction causes the
number of signalling molecules in the receiver voxel n3ptq to increase by 1 while the number of
complexes bptq to decrease by 1. The rate of this reaction is proportional to number of complexes
bptq.

Equations (C.6) to (C.15) give the transition probabilities of the possible events that can occur
when the state of the system is pNptq, bptqq. It is possible that no transitions occurs in the time
interval pt, t ` ∆tq, the probability of this occurring is given by the complementary to that of
an event occurring, that is, one minus the sum of the RHSs of Equations (C.6) to (C.15). This
completes the model.
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Figure C.1: An overview of the system considered in this paper.
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Figure C.2: A model of molecular communication network. The volume is divided into voxels.
The indices of the voxels are given in the top right hand corner. Unfilled circles are signalling
molecules. Filled circles are receptors. The dashed lines show the boundary of the medium.
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Figure C.3: This figure explains the meaning of the function Uptq, which is the total number of
unbound-to-bound transitions for all receptors.
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Figure C.4: The demodulator structure.
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Figure C.5: The output of the modulators Z0ptq (thin line) and Z1ptq (thick line) for Symbol 0.
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Figure C.6: The output of the modulators Z0ptq (thin line) and Z1ptq (thick line) for Symbol 1.
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Figure C.7: The mean output of the modulators Z0ptq (thin line) and Z1ptq (thick line) for Symbol
0.
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Figure C.8: The SER for Symbols 0 and 1.
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Figure C.9: The SER for Symbols 0 and 1 for varying number of receptors.
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Figure C.10: The SER for Symbols 0, 1 and 2 for varying number of receptors.
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Figure C.11: The output of the modulators Z0ptq (thin line) and Z1ptq (thick line) for Symbol 0.
The mean number of signalling molecules at the receiver voxel for both symbols is similar.
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Figure C.12: The average SER versus number of receptors. The ISI case.
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Figure C.13: An example system consisting of 3 voxels. The indices of the voxels are as indicated.
Unfilled circles are signalling molecules. Filled circles are receptors.

30


