
Personal Process Description Graph for

Describing and Querying Personal Processes

Jing Xu1 Hye-young Paik1 Anne H. H. Ngu2

1The University of New South Wales, Australia
{jxux494, hpaik}@cse.unsw.edu.au

2 Texas State University, Austin, Texas, USA
angu@txstate.edu

Technical Report
UNSW-CSE-TR-201501

February 2015

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Unlike business processes which are template driven, personal processes are ad-
hoc to the point where each personal process may have a unique structure and
is certainly not as strictly defined as a business process. In order to describe,
share and analyze personal processes more effectively, in this paper, we propose
Personal Process Description Graph (PPDG) for describing personal processes.
Based on the proposed model, a personal process query approach is developed to
support different types of graph queries in a personal process graph repository.
The approach follows a filtering and refinement framework to speed up the query
computation. We conduct some experiments on real and synthetic datasets to
demonstrate the efficiency of our techniques.

1 Introduction

People are often confronted with tasks that are infrequent (even one-off) and not
well-described. Examples are applying for jobs, buying a house, or filing a tax
return. We refer to such tasks as “personal processes” in which an individual
performs a set of logically related tasks to accomplish some personal goals [9, 20].
Unlike business processes which are structured or template driven, personal
processes are ad-hoc to the point where each personal process may have a unique
structure and is certainly not as strictly defined as a business process.

To overcome their lack of familiarity, people typically seek out other people’s
experiences with the task. We realize that it is difficult and time-consuming to
capture and share personal processes, although we have many kinds of channels
to share variety of information such as photos or video. Furthermore, searching
and understanding already shared processes are limited to a simple keyword
search via search engines. We see the following problems in existing publicly
available personal process repositories such as how-to sites or Q/A forums.

• With regards to capturing a personal process, the current model of de-
scribing processes, which is based on free texts and bullet points, makes
it difficult to (1) understand the process especially if there are many steps
involved; (2) compare and contrast different paths/ways to accomplish the
goal; and (3) understand the dependencies between data and actions.

• For searching and analyzing a personal process, the current model of key-
word search over the textual descriptions is limited and is not able to
provide exploratory answers to query. That is, the search always returns
a set of Web pages containing the descriptions of the whole processes even
if the user just requires a fragment of the process or a specific task in the
process.

In order to describe, share and analyze personal processes more effectively,
we propose a novel framework for personal process management named Pro-
cessVidere. Our ultimate aim is to provide a space for users to share their
experiences, capture the process knowledge from people, analyze them effec-
tively, and support users to re-use the whole or part of the processes for their
own purposes. In this paper, as a concrete step towards building ProcessVidere,
we present the following elements as the fundamental components of the system:

• Personal Process Description Graph (PPDG), a graph-based description
language to present both control flow and data flow of a personal process.

• A template-based approach to perform structured queries over PPDG, as
well as an implementation of the key template queries and preliminary
performance evaluation results.

The paper is organized as follows: Section 2 introduces the PPDG lan-
guage. Section 3 presents the basic design of PPDG query templates. Section 4
describes methods and algorithms for an efficient processing of the query tem-
plates. Then we present the experiment results in Section 5. The related work
is discussed in Section 6 followed by a conclusion in Section 7.

1

2 Personal Process Description Graph (PPDG)

In this section, we introduce the syntax and formal definition of PPDG as well
as motivation behind it. Let us consider “attending a graduation ceremony at
UNSW”. We interviewed six UNSW graduates and asked them to describe the
process. A collective summary of the process is as follows:

Before the graduation day, a graduand may book a graduation gown
online. The booking can be paid for by card (in which case a receipt
is issued), or by cash when collected. On the day, the graduand
may collect the dress, take a photo and register for the ceremony to
obtain a seat number. After a briefing session, the graduand attends
the ceremony. The dress is returned after the ceremony.

Not every step is strictly followed, in fact, six different variations of this per-
sonal processes are obtained. A typical process modelling approach (as discussed
in Section 6) would attempt to create a single reference model that describes
the above process as complete as possible. However, building such a model for
a flexible and ad-hoc process is difficult and often makes the model convoluted.

In ProcessVidere, instead of a single model, we consider a personal process
as process steps experienced and described by a single person. Each description
of the process becomes a feasible process, the so-called “model”, that leads to
the intended goal. For this reason, we intentionally do not use the word ‘model’
in our approach. PPDG described below is designed to capture the description
of an individual experience of a process. Later in the paper, we will explain how
queries are written over these descriptions to give a flexible view of the process.

2.1 PPDG Syntax Overview

Here we will briefly explain the syntax and visual notations before presenting
formal definitions. PPDG represents a personal process P as a labelled directed

V1:

collect

dress

V2:

take photos

V3:

register

V4:

attend

briefing

V5:

attend

ceremony
V6:

return dress

Start

 Vertex

End

Vertex

D1:

booking

receipt

D2:

dress

D3:

photos

D4:

 seat No.

D5:

 instruction

for ceremony
D6:

testamur

D7:

acknowledgem

ent of return

Cons(V1) Cons(V3)

Cons(V4)

Cons(V5)

Cons(V6)

Cons(V3, V4)

Cons(V5, V6)

Cons(V4, V5)

Figure 2.1: PPDG1: UNSW graduation ceremony process by Graduand A

graph. It describes the whole process of performing a personal process placing
equal emphasis on both actions and input/output data related to each action

2

in the process. Figure 2.1 depicts a PPDG of the graduation ceremony process
experienced by Graduand A. An action is noted by a circular node in the graph.
Actions can be divided into two categories: a simple action and composite action
which contains another process. A simple action can be one-off action, repeated
action, or duration action. In order to make the visualization of the graph
simple, all types of actions are represented using the same notation. The details
are stored in the schema associated with the process graph.

Data elements in a process P are represented by hexagonal nodes. A data
element can be either basic or composite (i.e., composition of basic data). In
PPDG, data could be any artifacts that is available somewhere: physical items
such as paper documents, academic dress, or digital items such as digital photos,
text messages and so on. A data element can be external (i.e., it is not produced
by any action) or processed (i.e., there is at least one action produced it).

The data elements and actions are connected to represent ‘action flow’ or
‘data flow’. Action flows, represented by solid lines, describe temporal sequence
of the actions. For example, in Figure 2.1, ‘V1: collect dress’ takes places
before ‘V2: take photos’. Data flows, represented by dotted lines, keep track of
data sources and denotes the relationships between the data and actions. For
example, ‘V4:attending briefing’ takes two data inputs ‘D2: dress’ and ‘D4: seat
no.’ and produces one data output ‘D5: instructions for ceremony ’.

PPDG also stores constraints/conditions relating to action, data and the
flows. If the constraints concern an action (referred to as ‘action constraints’),
it may include conditions such as the location or the time the action takes
place. If the constraints are on the connecting edges of two actions (referred to
as ‘transition constraints’, it may specify the conditions that should be met for
the flow to take place. It can also be used to enforce the sequence of the two
actions. We define PPDG more formally as follows.

Definition 1 A personal process description graph PPDG is a tuple PPDG :=
(A,D,EA, ED, C, ϕ, λ) where:

• A is a finite set of nodes a0, a1, a2,... representing the starting action
node (a0) and actions (a1, a2, ...).

• D is a finite set of nodes d0, d1, d2,... representing the data input and
output of an action.

• EA is a finite set of directed action-flow edges ea1, ea2,..., where eai =
(aj , ak) leading from aj to ak (aj ̸= ak) is an action-flow dependency. It
reads as aj takes place before ak. Each node can only be the source / target
of at most one action-flow edge : ea = (ai, aj) ∈ EA : ea′ = (ak, al) ∈ EA

\ ea : ai ̸= ak and aj ̸= al.

• ED is a finite set of directed data-flow edges ed1, ed2,..., where edi =
(aj , dk) leading from aj to dk is a data-flow dependency. It reads as aj
produces dk. edl = (dm, an) leading from dm to an is also a data-flow
dependency. It reads an takes dm.

• C is a finite set of conditions c1, c2,... with ci = (< name, descr >, xj)
being associated to xj ∈ {A,D,EA, ED} and having name and description
of the condition.

• ϕ: a function that maps Label L(Ai) to action nodes.

3

• λ: a function that maps Label L(Di) to data nodes.

2.2 Constructing PPDG

The PPDGs presented here are manually transcribed from the textual descrip-
tion data we have gathered from students who experienced the process. Cur-
rently, we are developing a graphical tool, PPDG Editor, which will help con-
struct a PPDG from textual “how-to” descriptions semi-automatically. In a
similar fashion described in [16], a part-of-speech (POS) tagger can be utilized
to recognize potential pairs of (action and data) (e.g., (book, academic dress),
(pay, cash)). The editor provides graphical notations for the syntax elements in
PPDG. Although we do not assume that the PPDG construction process can
be totally automated, having an editor with smart natural language processing
ability highly customized for PPDG syntax will help reduce the manual labour.

3 Querying in PPDG

A repository of PPDG is organized by categories and domains. The idea in Pro-
cessVidere is that this repository can be simply keyword searched or browsed,
but it can also be used to perform more structured queries for sophisticated
analysis. Such queries can be issued over a single PPDG or a set of PPDGs
relating to the same category.

3.1 Types of Query and Query Processing in PPDG

Taking the graduation ceremony as an example, the types of queries fall into
two categories:

The Complete Picture Queries

This category of queries aims to return all the whole processes (i.e., a set of
PPDGs) matching the query criteria. The main intention here is to gain an
overall understanding about the process. An example complete picture query is
“How to attend a graduation ceremony at UNSW?”

In answering this category of queries, we expect three possible cases: single
match, similarity match and aggregation match. In the single match case, the
above query will return a set containing all PPDGs that exactly match the query
criteria. In the similarity match, the above query will return a ranked set of
PPDGs that are considered ‘similar’ to the given query. The similarity measure
may be determined by considering semantics of the text labels in the nodes
and/or structure of the graphs. In the aggregation match case, the above query
will return “the best” PPDG, possibly combining features from multiple PPDGs.
The criteria for determining the best PPDG could depend on many factors such
as shortest time taken to complete the process, or situational context of the
person issuing the query.

The Fragments Queries

This category of queries aims to return all the partial processes matching the
query criteria. The main intention is to obtain information about particular

4

aspects of the process. Some example fragment queries are: “What happens
after attending the briefing session?”, “How do I get a seat no.?”, “I have
collected the dress, what can I do with it?”.

The complete picture queries can give you all the details of a process. How-
ever, typically a user will deal with many PPDGs returned as an answer, and
manually examining PPDG individually is time consuming. Moreover, this may
not be a suitable option if the user’s query is more specific than the overall pic-
ture. Working out the specific details might be trivial in a simple process, but in
many of the personal processes we examined, the flexible nature of the process
can create quite complicated descriptions. More structured and fine-grained
queries (which we refer to as fragments queries) will allow the users to obtain
relevant information quicker and analyze the given processes in-depth.

Let us consider one example query: ‘What do I need to do to attend the
briefing’. In answering this, we expect three possible cases: single match, sim-
ilarity match and aggregation match. In single match, the above query will
return a set containing all fragments matching the query criteria. In each frag-
ment, we will see a data node (∈ D) (e.g., D2:dress), an action node (∈ A) (i.e.,
V8:attend briefing) and the data-flow edge (∈ ED) between them. From Fig-
ure 2.1, the data items required for attending the briefing are ‘dress’ and ‘seat
no.’. Considering the fact that each PPDG describes a specific person’s expe-
rience, the result of this query performed over the repository will give the user
all data items known to have been associated with the action in question. That
is, if another PPDG had ‘student card ’ linked with the action ‘attend briefing ’,
this query will reveal it.

In the similarity match, the above query will return a ranked set of fragments
containing all fragments that are considered ‘similar’ to the given query. In
this ranked approach, if the ‘student card ’ is infrequently used, the fragment
containing ‘student card ’ will have a lower score. In the aggregation match,
the above query will return “the best” fragment, possibly combining features
from multiple fragments. The criteria for determining the best fragment could
depend on many factors such as frequency of a fragment, or situational context
of the person issuing the query.

We believe in both categories, all three type of matches are necessary and
will complement each other. In Section 3.2, as the first step, we propose a
technique for the single match approach. We envisage that this basic set of
query constructs will allow us to build more complex query approaches in our
immediate future work to implement the similarity (e.g., the semantic mismatch
issues in the text labels) or aggregation match. For simplicity, we remove C
(conditions) from PPDG here on.

3.2 Query Templates and Their Basic Constructs

In this section, we present the basic design of the single match approach. We
propose a template-based approach in which three types of query template
constructs are defined: atomic, path and complex query templates. We also
assume that the user can enter one of the query templates directly through
ProcessVidere, using an editor not dissimilar to BPMN-Q query editor [13].

Figure 3.1 introduces another PPDG on graduation ceremony. Although it
looks similar to Graduand A process (Figure 2.1), there are a few differences.
For example, ‘V1: collect dress’ takes ‘D1: cash’ and produces ‘D3: deposit’.

5

V1:

collect

dress

V2:

register

V3:

attend

briefing
V4:

attend

ceremony

V6:

return

dress

Start

Vertex

End

Vertex

D1:

cash

D2:

dress

D3:

deposit

D4: seat No.

D5:

instruction

for ceremony

D6:

testamur

D8:

refund

V5:

take

photosD7:

photos

Cons(V1)

Cons(V2)

Cons(V3)

Cons(V4)

Cons(V6)

Cons(V2, V3)

Cons(V3, V4)

Cons(V4, V6)

PPF2

V

PPF1

Figure 3.1: PPDG2: UNSW graduation ceremony process by Graduand B

‘V6: return dress’ takes ‘D3: deposit’ as well as the dress. Also, ‘take photo’
appears after ‘attend ceremony’ (rather than before ‘register’).

Atomic Query Template

Atomic query templates are designed to match an action-flow edge (∈ EA) or a
data-flow edge (∈ ED) and the nodes (∈ A,D) that are directly connected by
it. Q1 to Q6 in Figure 3.2 represent atomic query templates. The text label

V @D @V DD @V

@V VV @V

@D V

(1) What is the output

data of action V?

(1) What is the output

data of action V?
(2) What is the input

data of action V?

(2) What is the input

data of action V?

(3) What is the action

that data D inputs to?

(3) What is the action

that data D inputs to?
(4) What is the action that

produces data D as output?

(4) What is the action that

produces data D as output?

(5) What action

directly follows V?

(5) What action

directly follows V?
(6) What is the action

followed by V directly?

(6) What is the action

followed by V directly?
(7) What happens between

Vn and Vm?

(7) What happens between

Vn and Vm?

(8) What is the direct successor of V1 and what

happens between this successor and Vm?

(9) What is the input data of V2 and

what happens between V2 and Vm?

Vn Vm

Figure 3.2: Atomic Query and Path Query Templates over PPDG

shown in each template describes the query contained in it. The prefix symbol
“@” in the node label indicates a variable node (i.e., “@D” for a variable data
node, “@V” for a variable action node).

Example 1 Let us assume that we issue Q2 with v as V1: collect dress. The re-
sults (processed over PPDG1 and PPDG2) will be {PPDG1.ed1 = (D1: booking
receipt, V1: collect dress), PPDG2.ed1 = (D1: cash, V1: collect dress)}. This
indicates that collect dress can either take cash or a booking receipt.

Example 2 Similarly, let us assume that we issue Q5 with v as V1: collect
dress. The results (processed over PPDG1 and PPDG2) will be {PPDG1.ea1

6

= (V1: collect dress, V2: take photos), PPDG2.ea1 = (V1: collect dress, V2:
register)}. This indicates that collect dress can be followed by either taking
photos or registering.

Path Query Template

Intuitively, a path query template is designed to match a fragment of PPDG
contained by two action nodes. Visually, we denote the template as shown in
Figure 3.2 (Q7). The symbol “∥” is used to represent a path query between
action nodes specified by Vn and Vm (where n,m are the action node numbers).
To explain, we first define a path in PPDG.

Definition 2 A path of PPDG is a tuple Path = (A′, D′, E′
A, E

′
D, ϕ, λ) where

• Path ⊆ PPDG.

• x ∈ A′ iff:

– x = source.

– x = destination.

– x lies on a path from source to destination in ppdg ∈ PPDG.

• ∀x, y ∈ A′, e(x, y) ∈ EA → e(x, y) ∈ E′
A

• d ∈ D′ iff:

– d is output data of source action in a path.

– d is input data of destination action in a path.

– d is input/output data of action x which lies on a path from source
to destination in ppdg ∈ PPDG.

• ∀d ∈ D′, e(d, x) ∈ ED → e(d, x) ∈ E′
D and e(x, d) ∈ ED → e(x, d) ∈ E′

D

A path query template will return a single matching path from each PPDG
considered for processing.

Example 3 Let us assume that we set n = 1 and m = 4 in Q7, so that Q7 is a
path query to find personal process fragment between ‘V1: collect dress’ and ‘V4:
attend ceremony’. Therefore, the returned result of Q7 (processed over PPDG2)
is a path shown as PPF1 (dotted box) in Figure 3.1.

Complex Query Template

A complex query template is a composite of atomic and/or path query tem-
plates. Q8 and Q9 in Figure 3.3 are the samples of complex queries that are
composed of Q5 and Q7 and a constant action, Q2 and Q7, respectively. The
complex query of PPDG can consist of Q1 to Q6 or Q1 to Q6 and Q7 or Q1 to
Q7 with constant actions/data.

7

V1 Vm@V

(8) What is the direct successor of V1 and what

happens between this successor and Vm?

(8) What is the direct successor of V1 and what

happens between this successor and Vm?
(9) What is the input data of V2 and

what happens between V2 and Vm?

(9) What is the input data of V2 and

what happens between V2 and Vm?

V1 VmV2

@D

Figure 3.3: Complex Query Templates over PPDG

4 Query Processing

This section formally introduces the definitions of PPDG query and fragment,
and then gives the schema of PPDG with detailed algorithms to perform three
types of query template mentioned in Section 3.

Definition 3 (PPDG Query) A query graph is a tuple
PPDG−Q = (QA,QD,QAF,QADF,QP, T, S) where

• QA is a finite set of action nodes in a query.

• QD is a finite set of data nodes in a query.

• QAF ⊆ QA × QA is the action flow relation between action nodes in a
query.

• QADF ⊆ QA × QD is the data flow relation between action nodes and
data nodes in a query.

• QP is the path relation between action nodes which includes data nodes
and data edges corresponding to each action node in query.

• T : QA → {CONSTANT ACTION,VARIABLE ACTION}

• S: QD → {CONSTANT DATA,VARIABLE DATA}

Definition 4 (PPDG Fragment (PPF)) A connected subgraph (A′, D′, E′
D),

or (A′, E′
A), or (A

′, D′, E′
A, E

′
D) of a personal process description graph (A,D,EA, ED)

, where A′ ⊆ A, D′ ⊆ D, E′
A ⊆ EA, E

′
D ⊆ ED, is a fragment of the personal

process description graph.

A query template can return 0, 1 or more PPDG Fragments. Figure 3.1
shows examples of PPF in PPF1 (dotted box) and PPF2 (dotted box).

PPDG data schema

The database schema for our PPDG has the following tables:

• Graph(ID, Name, Description)

• Action(ActionID, GraphID, ActionLabel, Type1, Type2, SubProcess, De-
scription)

• Data(DataID, GraphID, DataLabel, Type1, Type2, SubProcess, Artifacts)

8

• Edge Action(sActionID, dActionID, GraphID)

• Edge Data(DataID, ActionID, GraphID, Direction)

We store the descriptions of graphs, actions, and data in three tables, respec-
tively. The relationships between actions and data are stored in two tables.
Specially, the Direction item in table Edge Data indicates whether the data is
the input or output of an action.

Atomic Queries (Q1 ∼ Q6)

Using the label of an action (data), we can get the ActionID (DataID) by
matching the label in table Action (Data). Then the IDs of related actions
and data can be derived from table Edge Action and Edge Data. After that,
the label of the related actions and data can be found in table Action and
Data. Each atomic query can be implemented by a single SQL statement. For
instance, the results of Q1 are obtained by the following SQL statement when
giving Q1(ActionLabel,Direction = output).

SELECT d.DataID, d.GraphID, d.DataLabel

FROM query q, Action a, Data d, Edge Data e

WHERE q.ActionLabel=a.ActionLabel and q.Direction=e.Direction

and e.ActionID=a.ActionID and e.GraphID=a.GraphID

and e.DataID=d.DataID and e.GraphID=a.GraphID;

The results of Q5 are obtained by the following SQL statement when giving
Q5(ActionLabel).

SELECT da.ActionID, da.GraphID, da.ActionLabel

FROM query q, Action sa, Action da, Edge Action e

WHERE q.ActionLabel=sa.ActionLabel

and e.sActionID=sa.ActionID and e.GraphID=sa.GraphID

and e.dActionID=da.ActionID and e.GraphID=da.GraphID;

The other four atomic query templates are straightforwardly implemented
with minor modifications of the SQL statements above.

Path Query (Q7)

For the implementation of the path query template, intuitively, we can use the
six atomic queries (Q1 ∼ Q6) above to get the path step by step: (1) First,
launch atomic query Q5 from the first action node sA, and get a set S of
action nodes that are direct successors of sA from different processes. (2) Then
we perform the same atomic query for each action node in S. (3) The same
procedure is executed iteratively until we reach the dA or end of the process.
The results are a set A of action paths. (4) For each action path in A, we launch
Q1 and Q2 to find the data nodes related to every action nodes. After that, the
final results are obtained.

The cost of this initial algorithm is very high due to querying redundant
processes which do not contain the end action node dA of the path. Therefore,
we filter all the processes using the following SQL statement in order to obtain
a small set G of processes which contain both sA and dA nodes before the above
steps (1 to 4) are performed.

SELECT sA.GraphID

FROM query q, Action sA, Action dA

WHERE q.sActionLabel=sA.ActionLabel and q.dActionLabel=dA.ActionLabel

and sA.GraphID=dA.GraphID

9

Algorithm 1: Path Query(sA, dA)

Input : sA, dA: The start and end actions of the path
Output: R: The result set of Path

1 G ← all the processes contain both sA and dA;
2 T = ϕ; T ′ = ϕ;
3 for each graph ∈ G do
4 T.graph=graph; T.queue.push(sA);
5 T ← T ;

6 while T ̸= ∅ do
7 for each T ∈ T do
8 r=Q5(T.queue.back()) on T.graphID;
9 if r ̸=NULL then

10 T.queue.push(r);
11 if r==dA then
12 R← T ;

13 else
14 T ′ ← T ;

15 T =T ′; T ′ = ∅;
16 for each T ∈ R do
17 Find related data nodes of all action nodes in T by Q1 and Q2 → T.data;

18 return R;

The Algorithm 1 illustrates the details of path query processing. To enable
computing the path in an iterative fashion, we use a tuple T to process the
path query. T is employed to maintain the nodes information used for the path
computation of a set of action and data nodes in a graph. Particularly, T.graph
indicates which graph the path locates in, T.queue is a queue of action nodes on
the path, and T.data is a set of data nodes on the path. First, we filter the graph
by the start and end actions of the path in Line 1. Then, Line 3-5 initialize T
for each related graph and store them in a set T . From Line 6 to Line 15, we
find the actions on the path using the iterative method. Particularly, Line 8
launches Q5 to find the next action node r of current action node in the tail of
T.queue. If there is no result from Q5, the T is pruned. Otherwise, we push
r into T.queue (Line 10). If r is dA, we get one exact result and put it into
result set R (Line 12). If r is not dA, we continue to search for the next action
(Line 14, 15). Finally, Line 16-17 launch Q1 and Q2 for each actions in T ∈ R
to fill the data nodes for each path.

Complex Query

We decompose the complex query first, and then utilize methods of atomic
and path queries mentioned above to find matched fragments/processes. The
filtering and verification methods are used to improve the performance of the
algorithm. To begin with, we split the complex query into one node set and
four pair sets: Constant node set Sn, Constant pair set Pcon, Variable pair set
Pv, Path pair set Ppath and Preprocessing pair set Ppre. Sn contains all constant
nodes appearing in the query. In any of the four pair sets, a pair is described
as {n, n′} - n and n′ are nodes linked by one edge or path in a graph. n or n′

10

Algorithm 2: Complex Query(Q)

Input : Q: The complex query
Output: R: The result set of the complex query

1 Decompose Q into nodes set Sn and pair sets Pcon, Pv, Ppath, Ppre;
2 G ← all the processes containing the nodes in Sn and matching the pairs in

Pcon;
3 C = ϕ; C′ = ϕ;
4 for each graph ∈ G do
5 T.graph=graph; T.R← all nodes in Sn;
6 C ← T ;

7 for each pair {n, n′} ∈ Pv do
8 U ← results of query Q(n, n′) on G;
9 Join U and C on graph attribute; update G;

10 for each (U, T) ∈ U × C do
11 T.R← U.r;
12 if variable v ∈ Ppre is identified by U.r then
13 T.Pair ← {u,v′} or {v′,u};
14 C′ ← T ;

15 C=C′; C′=ϕ;

16 for each pair {n, n′} ∈ Ppath do
17 V ← results of path query Q(n, n′) on G;
18 Join V and C on graph attribute; update G;
19 for each (V, T) ∈ V × C do
20 T.R← V.R;
21 C′ ← T ;

22 C=C′; C′=ϕ;

23 for each T ∈ C do
24 Process queries on all pairs in T.Pair;
25 R← T if all queries have results on T ;

26 return R;

could be either a constant node or a variable node. We store the pairs with two
constant action/data nodes linked by an edge in Pcon. The pairs which can be
processed directly by using atomic queries stored in Pv and those that can be
processed by path query stored in Ppath, respectively. And the pairs which need
to be preprocessed before using the methods mentioned above are put into Ppre.
That is, all the pairs in Ppre depend on the results from Pv to identify one node
of each pair before using the methods of atomic queries or path query directly.
We use Sn and Pcon to find a candidate set C of graphs, and then prune and
verify C by Pv, Ppath and Ppre.

The details of the complex query processing is illustrated in Algorithm 2.
Similar to Algorithm 1, we also use a tuple T to store the intermediate result.
Particularly, T.graph indicates which graph the path locates in, T.R stores the
known action/data nodes, and T.Pair stores the pairs that exist in T.graph.
Line 1 splits query Q into one nodes set and four pair sets. Then, we use Sn

and Pcon to filter all the processes to get a set G of processes in Line 2. Based
on G and Sn, we get a candidate set C containing intermediate results T in
Line 4-6. From Line 7 to 15, we process atomic queries on each pair in Pv, and

11

then use the results to prune and verify the candidate set. Then, we get the
result set U(Line 8) for each query. For each result U ∈ U , U.r is a result node
on graph U.graph for atomic query. Next, U and C are joined on their graph
attribute(Line 9), so that the unjoined tuples in C can be pruned safely. If one
variable node v of any pair in Ppre is identified by U.r, we replace the variable
node v with U.r, and store the corresponding pair in T.Pair, because the pair
only appears in T.graph(Line 10-13). From Line 16 to 22, we process path query
on each pair in Ppath, which can be used for further pruning. Finally, we process
atomic query or path query on each pair in T.Pair to obtain the complex query
result set R(Line 23-25).

Example 4 To process query Q8 in Figure 3.3 (set m=5), we split the query
as Sn={V1, V5}, Pcon={ϕ}, Pv={{V1, @V }}, Ppath={ϕ}, and Ppre={{@V ,
V5}}. Filtering by Sn and Pcon, suppose we get the process in Figure 3.1, then
we process the query on Pv by using Q5(V1, @V) to get the result {V1, V2}.
Note that V2 matches the node in pair {@V , V5} ∈ Ppre, so the new pair {V2,
V5} is stored in T.pair. Ppath is empty and no further processing is necessary.
Finally, we process the query on the pair ∈ T.pair and assemble all results to
get the fragment of graph.

5 Performance Evaluations

In this section, we present results of a performance study to evaluate the effi-
ciency and scalability of the proposed techniques in the paper.

Datasets We have evaluated our query processing techniques on both real
and synthetic datasets. We invited 14 volunteers to describe the procedures
they went through at Graduation Research School of UNSW, and generated 30
different processes with 295 action nodes and 441 data nodes. The synthetic
datasets were generated by randomization techniques. By giving 30 action labels
and 30 data labels, we randomly choose n action labels with n + 2 data labels
to assemble p processes. The number p varies from 100 to 1000 (default value
= 300). The number n of action nodes in each process varies from 10 to 25
(default value = 10). By the default setting, the total number of action nodes
and data nodes were 3000 and 3600 respectively in our experiment. We had a
total of 10 queries in the experiment. Each query was generated randomly. The
average response time and I/O cost of the 10 queries on each dataset represent
the performance of our query processing mechanism.

All algorithms have been implemented in Java and compiled with JRE 1.6.
We used PostgreSQL to store the data. The experiments were run on a PC with
Intel Xeon 2.40GHz dual CPU and 6G memory on Debian Linux.

We have measured the I/O performance of the algorithms by measuring the
number of database access. Query response times were recorded to evaluate the
efficiency of the algorithms, which contained the CPU time and the I/O latency.

Impact of the number of processes (p).

We varied the value of p and evaluated the performance of our algorithm against
the real datasets where p is 30 and the synthetic datasets where p varies from
100 to 1000 in Figure 5.1. With a larger number of processes, more processes

12

are involved in the computation, thus incurring higher computation cost. From
Figure 5.1(a) and Figure 5.1(b), we found the result of the response time and
number of database access had the same increasing trend as the number of pro-
cesses increased. That means I/O costs is the main contribution to the query
processing cost. Due to the high cost of database access, we can optimize the
technique of PPDG query (denoted PPDG-Q here) proposed in Section 4 by
storing the actions node of graph ∈ G in cache. This optimization is repre-
sented as PPDG-Q* in our experiments. As expected, PPDG-Q* significantly
outperforms PPDG-Q and is less sensitive to the growth of p.

 0.1

 1

 10

 100

30 100 300 600 1000

R
es

po
ns

e
T

im
e(

s) PPDG-Q
PPDG-Q*

(a) Response Time

 1

 10

 100

 1000

 10000

30 100 300 600 1000

D

B
 A

cc
es

s

PPDG-Q
PPDG-Q*

(b) number of DB Access

Figure 5.1: Number of Process (p)

Impact of the number of action nodes in each process (n).

Figure 5.2 investigates the impact of the number of action nodes in each process
on the algorithms where n grows from 10 to 25. With the growth of n, more
action/data nodes are involved in the query computation, thus the response
time and the number of database accesses increase. The results show that the
scalability of PPDG-Q* is better than that of PPDG-Q regarding the growth
of n.

 0.1

 1

 10

 100

10 15 20 25

R
es

po
ns

e
T

im
e(

s) PPDG-Q
PPDG-Q*

(a) Response Time

 1

 10

 100

 1000

 10000

10 15 20 25

D

B
 A

cc
es

s

PPDG-Q
PPDG-Q*

(b) number of DB Access

Figure 5.2: Action Nodes of Process (n)

6 Related Work

We discuss related work broadly in two categories: process modelling languages
and process query approaches.

Modelling Processes. There are many models developed to represent busi-
ness processes, Petri Net [17], YAWL [18] and Pi-Calculus [15] being some of

13

the examples. Recently, Business Process Model and Notation (BPMN) [1] has
emerged as the defacto standard for business process modeling [13]. In all of
these models, however, the main focus is in formalizing action flows (i.e., con-
trol flow dependencies) in a process. They tend to provide highly expressive and
sophisticated constructs which make them a complicated tool to use for busi-
ness process management. In [6] and [20], arguments are made for a modelling
approach that reduces expressive power and simplifying notations for personal
processes. There are some work that takes the simplification view. For exam-
ple, in [10], a personal workflow management system is proposed using a model
called Metagraph. It places the data flow at the center of the process, describing
input/output of each task and the connections between the data. However, the
model becomes very complicated and it is difficult to comprehend the temporal
execution sequence of the actions. The cooking graph, proposed in CookRecipe
[19] system, not only captures individual actions but also the diverse relationship
between the actions. However, it is not suitable for the more generic scenarios
of personal processes. [6] proposes a model that simplifies BPMN constructs to
only include actions and sequential and parallel action flows. This model does
not consider data items in the process.

Our work shares the same view that personal processes do not require com-
plicated expressive power, for example, a parallel execution has no practical
meaning when a process is viewed from a single person (i.e., single executor)
view point. We also argue that describing data items explicitly is just as impor-
tant as describing actions to support a useful set of analysis techniques over the
personal process model. Therefore our work puts equal emphasis on both. This
is a point that is often overlooked in all modelling languages, even the ones that
are designed for personal processes such as the work mentioned above. Another
salient point of our approach is to take the view that, rather than creating a
master model that encompasses all possible scenarios of a process, creating a
repository of individual scenarios and using a suite of query and analysis tech-
niques to understand the process as required will lead to better support of the
flexible nature of personal processes.

Querying Process Models. Graph query processing has been intensively
studied by the database community in recent years and many approaches (e.g.
[8], [12], [7], [21]) have been proposed to deal with different types of graph
queries. Particularly, querying business process models is one of these applica-
tions and has attracted significant attention (e.g. [5], [3], [4], [14]) from academic
researchers.

The Business Process Query Language BPQL in [5] works on an abstract
representation of BPEL [2] files, which cannot be applied to PPDG proposed
in our paper due to the inherent difference of the models. The BPMN-Q query
language is a visual language to query repositories of process models which ex-
tends BPMN notations with very few additional constructs to serve its query
purpose [3]. It is used to query business process models by matching a process
model graph to a query graph [13]. While our PPDG describes personal pro-
cesses from individual’s view and uses a novel query paradigm which takes both
actions and data into consideration. The approach presented in [4] is based on
the notion of partial process models which describe a desired model through a
combination of process model fragments and process model queries. Complex

14

query of PPDG has similar structure as partial process models, but the ap-
proach in [4] can not be used to perform PPDG queries because PPDG queries
need to process both control and data flows. In [11], authors propose the exact
subgraph matching approach of assembling graphs to provide answers to a given
query graph if no single candidate graph is isomorphic with the query. Another
aggregated graph search paper [14] introduces a novel approach for querying
and reusing knowledge contained in business process models repositories, which
presents the solution for the similar subgraph matching. Due to the structure
of PPDG and flexible attribute of personal processes, the above two approaches
are not suitable for applying directly to query PPDG graph repositories.

7 Conclusion

In this paper, we present Personal Process Description Graphs (PPDG) for
describing personally experienced processes. A template-based query approach
is proposed to support different types of graph queries in PPDG repository. Our
experiments demonstrate the efficiency of this query approach.

PPDG is the first step towards providing a solution to sharing the process
knowledge through a personal process repository, querying and analyzing per-
sonal processes and reusing the processes (either as a whole or fragments). Our
immediate future work includes improving the query processing algorithms by
introducing more punning rules, and utilizing other types of DBMS, e.g. graph
database, further developing the algorithms to perform similarity and aggre-
gation matches in PPDG repository. This is part of our on-going work for
developing ProcessVidere to evaluate the feasibility and practicality of PPDG
and its query approaches as the foundations of personal process management.

Bibliography

[1] http://www.bpmn.org/.

[2] http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[3] Ahmed Awad. Bpmn-q: A language to query business processes. In EMISA,
pages 115–128, 2007.

[4] Ahmed Awad, Sherif Sakr, Matthias Kunze, and Mathias Weske. Design
by selection: A reuse-based approach for business process modeling. In
Conceptual Modeling - ER 2011, 30th International Conference, ER 2011,
Brussels, Belgium, October 31 - November 3, 2011. Proceedings, pages 332–
345, 2011.

[5] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Querying
business processes. In Proceedings of the 32nd International Conference
on Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages
343–354, 2006.

[6] Marco Brambilla. Application and simplification of bpm techniques for per-
sonal process management. In Business Process Management Workshops,
pages 227–233, 2012.

15

[7] Remco M. Dijkman, Marlon Dumas, Boudewijn F. van Dongen, Reina
Käärik, and Jan Mendling. Similarity of business process models: Metrics
and evaluation. Inf. Syst., 36(2):498–516, 2011.

[8] Rosalba Giugno and Dennis Shasha. Graphgrep: A fast and universal
method for querying graphs. In 16th International Conference on Pattern
Recognition, ICPR 2002, Quebec, Canada, August 11-15, 2002., pages 112–
115, 2002.

[9] Seyed Alireza Hajimirsadeghi, Hye-Young Paik, and John Shepherd. Pro-
cessbook: Towards social network-based personal process management. In
Business Process Management Workshops, pages 268–279, 2012.

[10] San-Yih Hwang and Ya-Fan Chen. Personal workflows: Modeling and
management. In Mobile Data Management, pages 141–152, 2003.

[11] Thanh-Huy Le, Haytham Elghazel, and Mohand-Said Hacid. A relational-
based approach for aggregated search in graph databases. In Database
Systems for Advanced Applications - 17th International Conference, DAS-
FAA 2012, Busan, South Korea, April 15-19, 2012, Proceedings, Part I,
pages 33–47, 2012.

[12] Sherif Sakr and Ghazi Al-Naymat. Efficient relational techniques for pro-
cessing graph queries. J. Comput. Sci. Technol., 25(6):1237–1255, 2010.

[13] Sherif Sakr and Ahmed Awad. A framework for querying graph-based
business process models. In WWW, pages 1297–1300, 2010.

[14] Sherif Sakr, Ahmed Awad, and Matthias Kunze. Querying process mod-
els repositories by aggregated graph search. In Business Process Manage-
ment Workshops - BPM 2012 International Workshops, Tallinn, Estonia,
September 3, 2012. Revised Papers, pages 573–585, 2012.

[15] Howard Smith. Business process management–the third wave: business
process modelling language (bpml) and its pi-calculus foundations. Infor-
mation & Software Technology, 45(15):1065–1069, 2003.

[16] Bipin Upadhyaya, Ying Zou, Shaohua Wang, and Joanna Ng. Automat-
ically composing services by mining process knowledge from the web. In
Service-Oriented Computing - 11th International Conference, ICSOC 2013,
Berlin, Germany, December 2-5, 2013, Proceedings, pages 267–282, 2013.

[17] Wil M. P. van der Aalst. The application of petri nets to workflow man-
agement. Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[18] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: yet another
workflow language. Inf. Syst., 30(4):245–275, 2005.

[19] L. Wang. CookRecipe: towards a versatile and fully-fledged recipe analysis
and learning system. PhD thesis, City University of Hong Kong, 2008.

[20] Ingo Weber, Hye-Young Paik, and Boualem Benatallah. Form-based web
service composition for domain experts. TWEB, 8(1):2, 2013.

16

[21] Xiang Zhao, Chuan Xiao, Xuemin Lin, Wei Wang, and Yoshiharu Ishikawa.
Efficient processing of graph similarity queries with edit distance con-
straints. VLDB J., 22(6):727–752, 2013.

17

