
Identification of Transition-Based Models of

Biological Systems using Logic Programming

Ashwin Srinivasan1 Michael Bain2

1Department of Computer Science, IIIT, New Delhi, India
2 School of Computer Science & Engineering, UNSW, Sydney, Australia

Technical Report
UNSW-CSE-TR-201425

December 2014

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Transition systems like Petri nets have been widely used to model networks and
to capture the dynamics of system behaviour. To date, these models have mostly
been specified using specialised languages and associated simulators. In this pa-
per we adopt the representation of first-order logic to specify a very general
class of transition systems. Logical Guarded Transition Systems (or LGTSs)
are characterised by the use of transitions that combine the usual linear numer-
ical constraints associated with Petri nets with logical constraints (the “guard”)
expressed as a first-order formula. Our interest here is that this class of transi-
tion systems allows a very flexible way of specifying complex systems, such as
large-scale biological networks. Using LGTSs we define the system-identification
task in terms of logical consequence-finding, given domain-specific background
knowledge and data on the system’s behaviour. Consequence-finding by a logic-
programming system is used to determine if there exists a finite-state automaton
(FSA) that accepts a sequence of observational data S, given the background
knowledge B. The output symbols of the FSA specify an LGTS consistent with
the data. This basic approach is adequate to handle a number of situations like
the hierarchical construction of large networks, the use of domain-knowledge to
constrain answers, and the hypothesis of missing states. We also describe how
the deductive machinery can be augmented using abduction and induction to
deal with deficiencies in the data and background knowledge. Using a number
of classical networks from the literature, we demonstrate the identification of:
pure Petri nets; extended Petri nets; networks that re-use sub-nets; network
from data with missing values; and networks requiring new transitions. The
results suggest that LGTSs and the logical formulation of system-identification
can be used to obtain qualitative network models for a wide variety of biological
systems, and is sufficiently general to apply to areas other than biology.

1 Introduction

Networks are ubiquitous in Biology. They are used to represent biological re-
lationships ranging across all levels of organisation: for example, relationships
between organisms, and between an organism and its environment; the flow of
energy and matter in an ecosystem; the pathway of carbon atoms through an
ecosystem from producers of organic compounds to consumers that release car-
bon by respiration; the nitrogen cycle that links the environment to proteins and
compounds that form the bodies of living things; the stimulus-response mecha-
nisms in constituting nervous pathways; the regulation and control of endocrine
glands; the events related to the division and replication of cells; and intra- and
inter-cellular interactions between chemicals.

Computationally, substantial research effort has been, and continues to be
invested in developing models of biological networks (Junker and Schreiber,
2008). While much of this research has been directed at representation and
reasoning, the field of Systems Biology (Ideker et al., 2001) has highlighted the
need to extract automatically models of networks from experimental data. The
requirement is for mathematical models that not only determine the underlying
relationships amongst entities, but are also capable of simulating the dynamics
of the system. The choice of models that naturally comes to mind first is that
of differential equations (both ordinary, or ODEs, and partial, or PDEs). There
is a tradition stretching back to Alan Turing that has attempted to understand
biological systems by the use of PDEs, but not much has been done to extract
such models automatically from data (however see, for example, Perkins et al.
(2006)). Using a logical abstraction of differential equations, Inductive Logic
Programming (ILP) systems have managed to identify qualitative differential
equations, or QDEs (Srinivasan and King, 2008). The representation of QDEs
provides a direct and simple abstraction of quantitative ODEs. However the
representation does have limitations. First, simulation can produce spurious
behaviour, arising from the ambiguities inherent in the qualitative approach.
Second, issues of concurrency, which are prevalent in biological systems, are
not well handled. Third, there appears to be no straightforward mechanism of
introducing any form of quantitative information. Fourth, there is little room
for accounting for stochastic aspects inherent in the system.

Most of these issues are largely absent in the long-established qualitative
representation of Petri nets. Starting from a simple bipartite graph represen-
tation that is ideally suited for metabolic networks, Petri nets have been ex-
tended in a number of ways that are of interest for biological networks. This
incorporates timing (timed Petri nets), concentrations (continuous Petri nets),
stochasticity (stochastic Petri nets), multiple levels of organisation (hierarchical
Petri nets), activation and inhibition relations needed for signalling networks
(Petri nets with “read” and “inhibitor” arcs), and so on. For reasons of space,
we do not elaborate on these here, but refer the reader to (David and Alla,
2010). Mathematically, the power of Petri nets ranges from simple qualitative
producer-consumer models to that of quantitative ODEs. Computationally, the
range is from above regular languages to Turing machines (Peterson, 1981).
We note here that the basic Petri net structure and its extensions have found
widespread use in representing networks in Biology: (Koch et al., 2011) provides
an excellent summary of their use in representing metabolic, signalling and ge-
netic networks. Most of this work has been concerned with hand-crafted Petri

1

net models, specified using a specialised representation language and associated
simulators.

The work in this paper takes a different route. Using the language of logic
programs, we describe a form of transition system called a Logical Guarded
Transition System (LGTS) (Srinivasan and Bain, 2012). Both pure and ex-
tended Petri nets are special kinds of LGTSs. We formulate identification of
such systems from data using the logical consequence relation. By adopting
the language of logic programs, we are able to employ the standard computa-
tional machinery of refutation-based theorem proving to find solutions to the
system-identification task. This provides a clear semantics to the enumerative
techniques employed in the Petri net literature. Second, we are able to use well-
established network models as background knowledge to identify structured net-
work models representing complex biological systems. Third, the use of logical
constraints enables us to go beyond learning pure and extended Petri nets, with
tests on activation or inhibition states, but also to specify, for example, domain-
dependent properties that should be true for any identified system. This allows
us to identify not only metabolic networks but signalling networks also. Fourth,
we are able to draw on work done in extending logic programs with abduction
and induction to extend system-identification to model construction when there
are significant deficiencies in background knowledge and the data. We demon-
strate each of these advantages using some well-known biological networks. The
principal contributions of this paper are as follows:

• To the literature on system identification we provide a logical formulation
for identifying pure and extended Petri nets, along with even more general
forms of transitions than activator and inhibitor arcs.

• To the logic-programming literature we present the use of Logic Program-
ming and its extensions to the task of identifying large dynamic models of
systems, using a combination of logic-programs, abduction and induction.

• To the biological literature we provide a mechanism of learning efficiently
using a representation that is a reasonable mixture of qualitative and
quantitative aspects, and which can be extended in either direction quite
easily. We also provide a principled manner in which learning can scale
with the size of the system being studied (that is, networks constructed
previously become new transitions at the next level of abstraction).

The rest of the paper is organised as follows. In Section 2 we introduce LGTSs by
way of some simple examples. Section 3 formulates LGTSs as a logic program.
The system identification task is presented in Section 4, and extended to handle
identification with incomplete information in Section 5. Section 6 discusses
related work and Section 7 concludes the paper. Appendix A contains details
on data used and networks identified, and Appendix B gives a formal description
of Petri nets and their representation as Logical Guarded Transition Systems.

2 Transition Systems: An Example

Transition systems are a general formalism for representing the dynamic be-
haviour of a system. They are used to represent both sequential and concurrent

2

(a) (b) (c)

Figure 2.1: (a) A simple Petri net representing the reaction 2H2 +O2 → 2H2O;
(b) An “initial marking”, in which molecules of hydrogen and oxygen are shown
by tokens (small solid circles); (c) A “final marking”, which results in two
molecules of water, from the molecules of hydrogen and oxygen in (b).

events in areas ranging from programming language semantics, to business pro-
cess models and network models in biology. Petri nets are a widely used type
of transition system1. Fig. 2.1 shows a simple Petri net. Petri nets have two
kinds of nodes. Conventionally, the circular nodes are called places and the
rectangular nodes are called transitions. Edges can only exist between a place
and a transition or vice versa (but never from one place to another, or from
one transition to another: the structure is thus a bipartite graph), and each
edge has a weight (or label: by convention, if a label is absent, then the weight
is taken to be 1). A transition thus has a finite number of input places and a
finite number of output places. Places can contain 0 or more tokens (usually
shown as small black circles, as in Fig. 2.1(b)), and the dynamics of the system
are described by the firing of transitions and the movement of tokens from one
place to another. A transition is enabled if the number of tokens at each in-
put place for the transition is at least equal to the weight of the arc from the
place to the transition (a transition with no input places is always enabled). An
enabled transition can fire, resulting in consuming tokens from an input place
and depositing tokens in an output place: the numbers of tokens consumed and
deposited being determined by the arc weights. The state of the Petri net at
any point in time is the number of tokens at each place, and is called a marking .

The structure of a Petri net can be described using a matrix called its “in-
cidence matrix”. The column vectors of the incidence matrix of a Petri net
represent the transitions. An entry (i, j) in the matrix denotes the net transfer
of tokens at place pi when transition tj fires: see Fig. 2.2(a) for the simple Petri
net we have just shown. Since we focus on systems biology in this paper we will
often refer to the column vectors as reaction vectors.2

A change in state due to the firing of a single transition t can be written as a
vector equation involving the vectors representing the marking before and after
the transition fires, along with the reaction vector for the transition. In general,
a change from one state to another may be due to the firing of a sequence of
transitions. This can still be represented as a vector equation involving the
state and reaction vectors involved: see Fig. 2.2(a)–(c). This expression does
not uniquely determine the incidence matrix: it is possible for several incidence

1Formalisation of Petri nets, and their relation to LGTSs, is in Appendix B.
2In systems biology the incidence matrix represents the stoichiometry of the system, i.e.,

the relative quantities of all molecular species in each of the reactions in the system (Palsson,
2006). In this case tokens might represent concentration levels of a molecular species in a
reaction, discretized in a suitable manner.

3

matrices (and hence, pure Petri nets) to express a difference in this manner (see
Fig. 2.2(d). This makes the problem of identifying Petri nets from observed
data an under-constrained one.

It is evident from Fig. 2.1 that this “token game” is ideally suited for chemical
reactions in which reactants are consumed and products are produced. However
not all reactions are that simple. In many cases, due to energy constraints, the
reactants will not combine to produce the products. However the presence of a
catalyst can greatly lower the energy requirements of a reaction, and allow it to
proceed. For example, energy requirements prevent the spontaneous splitting
of water into hydrogen and oxygen (as is evident from the world around us).
However in the presence of a catalyst, and some additional energy, the reaction
can happen. Fig. 2.3(a) shows this as an “extended” Petri net, in which the
catalyst enables the reaction, without being used up itself (surface catalysis is
intended here). That is, as long as a token in present at the place representing
the catalyst, and adequate tokens exist at the input places, the transition will
fire. That the catalyst is not used up is captured by the token at the catalyst-
place not being consumed by the firing of the transition. The bi-directional arc
is an example of the “read” arc mentioned earlier). Unfortunately, the presence
of bidirectional arcs means that that incidence matrix representation is no longer
possible, since entries in the matrix have to be either positive or negative but
not both at once3.

Suppose now that we want to enforce some additional constraints on the
firing of the transition. For example, the catalyst for splitting water into hy-
drogen and oxygen may only function at some environmental conditions. With
effort, this could be represented in some cases by a combination of read-arcs,
and input places, but the representation becomes cumbersome. It is more nat-
ural to associate instead of transitions with logical constraints that can always
be evaluated to be true or false. A transition that fails to satisfy its constraints
does not fire: see Fig. 2.3(b). In this paper, we introduce transition-systems
in which each transition has 3 kinds of constraints, representing pre- and post-
conditions, and invariants of the transition. Such transition systems are called
here Logical Guarded Transition Systems, or LGTSs.

It can be seen without too much effort that both pure and extended Petri
nets are special kinds of LGTSs (this is formalised in Appendix B). For example:

• A pure Petri net is an LGTS in which pre- and post-conditions and in-
variants are all trivially TRUE .

• An extended Petri net with an input-place that has a read arc is an LGTS
in which the pre-conditions ensure that the input place has some tokens;
and the invariant ensures that the number of tokens remains constant.

It is convenient to think of an LGTS as a pure Petri net, augmented with
logical constraints. With an LGTS, there are now two kinds of constraints to
be satisfied: the linear constraints associated with incidence matrix of the pure
Petri net component, and the logical constraints associated with each transition.

3It may be possible in some cases to introduce intermediate places and transitions to rewrite
the bi-directional arc. For example, with surface catalysis, we can think of the combined
structure of the reactants and the catalyst as an intermediate entity. Transitions can be
introduced to represent the formation and dis-association of this intermediate.

4

(a)

(b)

m′ −m =
∑
r∈M λrr

(c)

(d)

Figure 2.2: (a) Incidence matrix representing a Petri net; (b) The tokens (mark-
ings) at each place at times Tk and T0. The difference in markings Dk can be
represented as a vector equation involving the marking and reaction vectors; (c)
In general, the (vector) difference between two markings m′ and m can be rep-
resented a linear combination of reaction vectors in the incidence matrix; (d) A
difference between two markings may be represented as the linear combination
of reaction vectors of more than one Petri net (the incidence matrices of either
net shown will satisfy this requirement).

5

(a)

(b)

Figure 2.3: (a) An extended Petri net representing the reaction 2H2O+Energy
→ 2H2 + O2. The diagram on the left shows the initial marking—each token
associated with Energy represents some minimum amount of energy needed
for the catalysed reaction to proceed. The diagram on the right shows the
final marking, which results in two molecules of hydrogen, and one of oxygen.
(b) An LGTS representing the same reaction, with some logical constraints
associated with the transition. If the formula in the “constraint box” evaluates
to true, then the transition fires and tokens are transferred as usual. In general,
the constraint box for a transition t will contain a formula Guardt(si, sf) ≡
PreConditiont(si) ∧ PostConditiont(sf) ∧ Invariantt(si, sf). Here si and sf
are states of the system before and after the transition fires. In this paper, we
will show LGTS transitions as coloured rectangles.

6

Of course, we are not interested simply in syntactic sugar. The value of an
LGTS is that allows the specification of more elaborate kinds of constraints.
For example:

• A water-splitting catalysis reaction must use catalysts that are capable of
working with pH neutral water, atmospheric oxygen, and room tempera-
ture.

• Reactions that break 3 or more chemical bonds require too much energy.

• All reactions must have no more than 1 or 2 reactants and 1 or 2 products.

These kinds of constraints, amongst others, can be encoded quite simply in an
LGTS.

3 Transition Systems as Predicates

3.1 Specification

A pure Petri net is completely defined by the set of reaction vectors in its
incidence matrix.

Definition 1. (Transition function) Given the set of states S and reaction
vectors R, we can represent a transition in a pure Petri net as the function
t : S × S ×R→ {TRUE ,FALSE}, defined as:

t(s1, s2, r) =

{
TRUE if(s2− s1 = r)

FALSE otherwise

We can define a pure Petri net as a function, as follows.

Definition 2. (Pure Petri net) We can represent a pure Petri net as the
function pn : S × S × 2R → {TRUE ,FALSE}, defined as:

pn(s1, s2,m) =

TRUE if (m = {r1, r2, . . . , rn}) and

∃m0,m1, . . . ,mn ∈ S s.t.

((m0 = s1) ∧ (mn = s2)∧n
1 (t(mi−1,mi, ri) = TRUE))

FALSE otherwise

While there is no immediate way of representing extended Petri nets with
the incidence matrix representation, the definition of their transitions in the
logical setting is a natural extension to the function of Definition 1.

Definition 3. (Extended transition function) Given the set of states S and
reaction vectors R, we can represent a transition in an extended Petri net as a
transition t with an associated Boolean function ft on states, defined as:

t(s1, s2, r) =

{
TRUE if (ft(s1, s2) = TRUE) ∧ (s2− s1 = r)

FALSE otherwise

7

If t is a transition that contains a read arc from place p, then ft(s1, s2) is TRUE
iff p has non-zero, identical values in states s1 and s2, and if t is a transition
that contains an inhibitor arc from place p, then ft(s1, s2) is TRUE iff p has
value zero in states s1 and s2. Otherwise ft(s1, s2) is TRUE.

The logical definition of a Petri net remains unchanged with these extensions.
However, the change to a logical representation allows us to go much further
than transitions with activator and inhibitor functions. We are, in fact, able
to represent pure and extended Petri nets as special forms of logical guarded
transition systems.

We now generalise the transition function of Definition 3 to a logical guarded
transition function. First we define guards.

Definition 4. (Guard function) Given the set of states S, the set of possible
transitions T and predicates on pre-conditions, post-conditions and invariants
of transitions, we can represent the guard on a transition as a function g :
T × S × S → {TRUE ,FALSE}, defined as:

g(t, s1, s2) =

{
TRUE iff ((pret(s1) ∧ invt(s1, s2) ∧ postt(s2)) = TRUE)

FALSE otherwise

where pret represents the pre-condition for transition t, postt the post-condition
for t, and invt the invariant.

With the concept of logical guards, or simply guards, we can now further gen-
eralize Definitions 1 and 3 for transition functions.

Definition 5. (Guarded transition function) Given the set of states S, the
set of reaction vectors R and the set of possible transitions T , we can represent
a guarded transition as a function gt : S × S × T × R → {TRUE ,FALSE},
defined as:

gt(s1, s2, t, r) =

{
TRUE if(g(t, s1, s2) = TRUE) and (s2− s1 = r)

FALSE otherwise

Analogous to Definition 2 of Petri nets as a function, we can now define
logical guarded transition systems.

Definition 6. (Logical guarded transition systems) Given the set of states
S, the set of reaction vectors R and the set of subsets of tuples of possible
transitions T and reaction vectors R, we can represent a guarded transition
system as the function lgts : 2S×S × 2T×R → {TRUE ,FALSE} defined as:

lgts(s, t) =

TRUE if (∀(si, sj) ∈ s gts(si, sj , ti,j) = TRUE) and

t =
⋃
ti,j)

FALSE otherwise

8

where:

gts(s1, s2,m) =

TRUE if (m = {(t1, r1), (t2, r2), . . . , (tn, rn)}) and

∃m0,m1, . . . ,mn ∈ S s.t.

((m0 = s1) ∧ (mn = s2)∧n
1 (gt(mi−1,mi, ti, ri) = TRUE))

FALSE otherwise

Note that we will treat sets of transitions interchangeably with sequences of
transitions in the remainder of the paper, for example in the definition of LGTSs
as logic programs.

Transition-Reaction Pairs as Graphs

Suppose the system has places p1, p2, . . . , pk. In this paper, each transition t in a
(t, r) pair is a (logical) term. Any transition t transforms the system from state
si to state sj only if g(t, si, sj) = pret(t, si) ∧ postt(sj) ∧ invt(si, sj) is TRUE .
A special term anonymous will be taken to denote a transition whose guard is
trivially TRUE . Each reaction r in a (t, r) pair will be a k-dimensional vector of
integers. With some abuse of notation, let Input(r)) = {pi : xi ∈ r s.t. xi < 0}
and Output(r) = {pi : xi ∈ r s.t. xi > 0}. Further, let h = hash((t, r)) be an
injective hash function that returns a (unique) non-negative natural number for
each distinct (t, r) pair.

Now, with each transition-reaction pair (ti, ri) we are able associate a bi-
partite digraph Gi = (Ui, Vi, Ei), consisting of vertices Ui = Input(ri) ∪
Output(ri) and Vi = {hash((ti, ri))}. Let the set of ordered pairs Ei = {(vi, ti) :
vi ∈ Input(ri)} ∪ {(ti, vi) : vi ∈ Output(ri)} denote the edges of the digraph.
It is straightforward to extend this to digraphs with weighted edges, but we do
not do so here.

A set T = {(t1, r1), (t2, r2), . . . , (tn, rn)} is then associated with the graph
Graph(T) = G1 ∪G2 ∪ · · ·Gn, where the union of graphs is defined in the usual
manner (that is, union of vertices and edges).

Drawing Conventions

For a bipartite digraph G = (U, V,E) we will show each vertex in U diagram-
matically as a circular node labelled by the vertex. For each vertex v ∈ V let
(t, r) = hash−1(v). The following conventions are are adopted when drawing
the vertex v:

– If t = anonymous then the vertex v is shown diagrammatically as an
unfilled rectangular node, denoting that the guard for v is trivially TRUE ;

– Otherwise, if t represents a transition activated by some place p, usually
denoted in this paper by read(p), the vertex v is shown as a rectangular
node connected by a doubly-directed edge to a circular node representing
the place p;

– Otherwise, if t represents a transition inhibited by some place p, usually
denoted in this paper by inhibit(p), the vertex v is shown as a rectangular
node connected by a hammer-head edge to a circular node representing
the place p;

9

– Otherwise, the vertex v is shown by a filled rectangle, denoting that there
are some logical conditions that need to be satisfied.

We emphasise that these are just drawing conventions—all transitions are treated
the same way in practice, requiring their guards to be TRUE before they can
“fire”.

3.2 Implementation

In this section we present an implementation of the specification of LGTSs, using
the syntax of logic programs. It is useful to implement the gts function as a finite
state automaton fsm(start state,final state, transition sequence), that denotes
that a finite-state automaton (FSM) starting in initial state will terminate in
final state having generated transition sequence as output. An acceptor variant
is simply an automaton that answers “yes” for all triples in the relation and “no”
otherwise. An equivalence between FSMs and Petri nets has been established
in (Takahashi and Takahara, 1995).

We will see below that transition sequence is a sequence of (t, r) pairs,
where t denotes a transition and r a vector denoting a difference between a pair
of states. In the final answer computed for the lgts function, the ordering of
transition-reaction pairs is unimportant.

An example of system behaviour will be provided by a sequence of states
(in Petri net terminology, each state is a “marking”). Thus observations of a
system’s behaviour will be of the form:

Place States

0 1 2 n

p1 s1,0 s1,1 s1,2 s1,n

p2 s2,0 s2,1 s2,2 s2,n

. .

. .

pl sl,0 sl,1 sl,2 sl,n

Any pair of adjacent states in the sequence have to be distinct, and the
states need not necessarily be observed at equidistant time instants. An LGTS
will be defined as a relation that holds over a pair of sets S and T . S is a a set
of elements (si, si+1) where si+1 is a successor state of si in the observations
of system behaviour. T is a set of transition-reaction pairs, Definitions of the
FSM and and an LGTS in a Prolog-like language4 are as follows:

fsm(Si, Sf , [Ts]) : −
Si 6= Sf ,
reachable(Si, Sf , Ts).

fsm(Si, Sf , [Ts|TRs]) : −
Si 6= Sf ,
reachable(Si, Sj , Ts),
fsm(Sj , Sf , TRs).

lgts([], []).

lgts([(S1, S2)|States], T) : −
fsm(S1, S2, TR1),
lgts(States, TR2),
conc(TR1, TR2, T).

where [] denotes the empty list, and conc denotes the usual concatenation func-
tion over lists (we will henceforth use a list, set and sequence notation inter-
changeably unless explicitly stated otherwise). reachable is a relation that is

4Capitalised letters and words denote variables; predicates and function symbols are in
lower-case; : − denotes the ← connective; and [. . .] denotes a list (sequence) of elements.

10

true for all state-pairs Si,j and a transition-reaction Ts such that it is possible
to reach state Sj from state Si using exactly the transition and reaction Ts:

reachable(Si, Sj , Ts) : −
trans((T,R), Si, Sj),
Si 6= Sj ,
Ts = (T,R).

where trans is true for all transition-reaction tuples (t, r), that hold for a state
pair (Si, Sj). In the tuple (t, r), t is a term representing the transition and r is
a (difference) vector. The transition-reaction tuples thus encode a combination
of logical and arithmetic constraints on state-pairs:

trans((T,R), Si, Sj) : −
transition(T),
place vector(R),
guard(T, Si, Sj),
diff (Sj , Si, R).

guard(T, Si, Sj) : −
pre(T, Si),
post(T, Sj),
inv(T, Si, Sj).

We will assume that both transition and place vector are able to act as genera-
tors of suitable ground terms for transitions and vectors, and that diff (Sj , Si, R)
denotes the relation R = Sj − Si, which can be solved, given any two legal ar-
guments, to obtain the third legal argument (a linear constraint solver would
do this automatically). With this generative machinery in place, there is no
requirement for the observed sequence of states to be complete. For example,
if instead of the sequence S = (s1, s2, . . . , si−1, si, si+1, . . . , sk), we are given
instead S′ = (s1, s2, . . . , si−1, si+1, . . . , sk). This follows from the definition of
the FSM that checks to see if there is a path from a pair of states si−1, si+1

through some intermediate state si
It will be useful to encode some domain-independent constraints relevant to

system identification within the trans predicate. Specifically, following (Durzin-
sky et al., 2008), we will introduce the notion of terminal (sink) states, and that
of a maximal set Rmaxi,j of vectors consistent with Sj − Si. Both these can be
incorporated by rewriting the trans definition:

trans((T,R), Si, Sj) : −
transition(T),
diff (Sj , Si, D),
in box(D,R),
transition ok((T,R), Si, Sj).

transition ok((T,R), Si, Sj) : −
not(changes terminal state((T,R)),
guard(T, Si, Sj).

changes terminalstate((T,R)) : −
terminal state(S),
diff (S′, S,R),
guard(T, S, S′).

Legal transitions therefore satisfy their guards, and also do not change any
known terminal state of the system. in box enumerates elements of the maximal
set of feasible difference vectors given the observed difference between a pair of
states Si,j (the maximal set is termed a “box” in (Durzinsky et al., 2008)). In
effect, the trans predicate enumerates elements of the cross-product of the set
of legal transitions and the maximal set of difference vectors.

Example 7. For the water-splitting network suppose states are integer-valued
vectors denoting the tokens corresponding to H2, O2, H2O, Energy, and Co3O4

11

as before. Suppose we observe a pair of states: (s0, s1) = ([0, 0, 4, 4, 1], [2, 1, 2, 3, 1]).
The difference vector d0,1 = s1−s0 between this pair of states is [+2,+1,−2,−1, 0].
The algorithm in (Durzinsky et al., 2008) returns the set Rmax0,1 = {[+2,+1,−2,−1, 0],
[+1,+1,−1,−1, 0], [+1,+1,−1, 0, 0], [+2, 0,−2,−1, 0], [0,+1,−2,−1, 0], ...} that
contains all vectors such that d0,1 =

∑
i λiri (ri ∈ Rmax0,1 (some constraints are

needed to ensure that this set is finite). Suppose we are allowed the set of tran-
sitions T = {t1, t2, t3} defined as follows: t1 is a simple transition without con-
straints; t2 requires the presence of the catalyst Co3O4; and t3 requires the pres-
ence of the catalyst and environmnentally favourable conditions). Let us assume
further that the guard functions for all 3 transitions are TRUE in both states
[0, 0, 4, 4, 1], [2, 1, 2, 3, 1]. This denotes the set of legal transitions T0,1 for the
states s0,1. Then acceptable transition-reaction pairs are elements of the cross-
product T0,1×Rmax0,1 = M0,1 = {(t1, [+2,+1,−2,−1, 0]), (t2, [+2,+1,−2,−1, 0]),
(t3, [+2,+1,−2,−1, 0]), (t1, [+1,+1,−1,−1, 0]), (t2, [+1,+1,−1,−1, 0]), . . .}.

Both pure and extended Petri nets can be expressed using these definitions.
For pure Petri nets, pre- and post-conditions and invariants are trivially true
for all transitions. Extended Petri nets follow from appropriate definitions of
these predicates:

transition(read(P)) : −
place(P).

pre(read(P), S) : −
(P = X) ∈ S,
X > 0.

post(read(P), S) : −
(P = X) ∈ S,
X > 0.

inv(read(P), Si, Sj) : −
(P = X) ∈ Si,
(P = X) ∈ Sj .

transition(inhibit(P)) : −
place(P).

pre(inhibit(P), S) : −
(P = X) ∈ S,
X = 0.

post(inhibit(P), S) : −
(P = X) ∈ S,
X = 0.

(A slightly more compact definition is possible just using inv). Other, more
elaborate transitions will usually involve domain-knowledge. For example, here
is a definition of a transition dealing with the addition of a phosphate group:

transition(pp(A,B,C)) : −
place(A),
place(B),
place(C),
can phosphorylate(A,B),
phosphorylated form(B,C).

pre(pp(P,Reactant, Product), S) : −
(P = X) ∈ S,
X > 0,
(Reactant = R) ∈ S
R > 0.

post(pp(P,Reactant, Product), S) : −
(P = X) ∈ S,
X > 0,
(Product = P) ∈ S,
P > 0.

inv(pp(P,Reactant, Product), Si, Sj) : −
(Reactant = Ri) ∈ Si,
(Reactant = Rj) ∈ Sj ,
Ri > Rj ,
(Product = Pi) ∈ Si,
(Product = Pj) ∈ Sj ,
Pj > Pi.

12

which requires domain-knowledge for appropriate definitions of can phosphorylate
and phosphorylated form. We are now able to state more clearly the basic
system-identification problem we wish to address.

4 The System Identification Task

System Identification Task SI1:

Given: (a) The observed behaviour of a system in the form of a state-sequence
consisting of a set of state-pairs S = {(s1, s2), (s2, s3), . . . , (sn−1, sn)}; and
(b) Background-knowledge B in the form of definitions of guard, guarded-
transition function and any other relevant predicates; and (c) The defini-
tion of lgts (Definition 6)

Find: A set T of (t, r) pairs such that B |= ∃ T lgts(S, T)

As long as B can be encoded as a logic program, the T ’s can be computed as
answer-substitutions obtained using the usual refutation-based theorem proving
machinery used by logic programming systems. The computational adequacy
of the logic-programming formalism, and proofs of soundness and completeness
of the proof strategy employed by logic programming systems have been estab-
lished elsewhere (see Lloyd (1987)). Our interest here is to see if this can be
used meaningfully in the identification of biological networks from data. We will
call each T found as a solution an explanation for S, and consider the system-
identification task as successful if the biologically correct network is amongst
the explanations found. It is also desirable of course that there aren’t too many
spurious explanations into the bargain.5

We will use the following translation mechanism between transition-reaction
tuples and a network representation.

4.1 SI1 for Biological Systems

In this section we demonstrate that if the definition of B is complete,then
refutation-based theorem proving can be used to identify an LGTS representa-
tions of reasonably complex biological networks. We concentrate on two kinds of
networks, metabolic and signal transduction, and use as targets networks that
demonstrate several features:

5Readers familiar with the data-mining literature will recognise these requirements as as-
sociating a higher cost with false negatives than with false positives. This is more a statement
of what is desirable: the deductive engine has no knowledge of such costs.

13

Network Type Biological Feature(s)

Glycolysis Metabolic Long chain of reactions, in which a substrate

is modified step-by-step into a product

Fructolysis Metabolic Substrate-product transformation achieved by

sharing parts of the glycolysis pathway

MAPK Signalling (a) Chain of phosphorylation reactions, each triggered

cascade by the presence of a protein earlier in the sequence;

(b) Sequential signalling results in a cascade

Yeast Signalling (a) Signalling cycle involving transmembrane receptors

pheromone activating a MAPK cascade; (b) Cycle shut down using

a negative feedback loop; and (c) Concurrent reactions

In turn, these networks impose several requirements on a program for identifi-
cation of models from data:

Network PN Type Modelling Requirements

Glycolysis Pure Models with lots of transitions and places (10 or more of each)

Fructolysis Pure, Re-use of known models, or parts of known models

hierarchical

MAPK Extended (a) Models with activators for signalling (“read” arcs);

cascade (b) Models with specific ordering of signals

Yeast Extended, (a) Re-use of multiple models; (b) Models with feedback

pheromone hierarchical and (c) Deterministic behaviour from models

with concurrent transitions

Problems

Glycolysis. The glycolysis pathway was the first metabolic pathway to be dis-
covered. It is a classic case of a series of metabolic reactions in which prod-
ucts of one reaction form the substrates (reactants) for the next reaction.
The glycolysis pathway is comprised of 10 such reactions. The reactions
breakdown (metabolize) each molecule of glucose into two molecules of
pyruvate. The sequence proceeds in three stages: primary (3 reactions),
splitting (2 reactions) and phosphorylation (5 reactions). Altogether, 15
metabolites are involved. The pathway is one of the central metabolic
pathways in living organisms: it provides an essential part of the energy
required for the functioning of a cell, and is used in several metabolic
processes.

Fructolysis. Fructose (fruit sugar) metabolism uses many of the same en-
zymes as glycolysis. Unlike glucose, which can be metabolized in many
places in the human body, fructose is primarily broken down in the liver,
mainly for replenishing the energy-storage molecule glycogen in that or-
gan. Metabolism of fructose occurs in two parts. The first, consisting
of 5 principal reactions, results in the breakdown of fructose into glycer-
aldehyde. This then enters the phosphorylation stage of glycolysis, which,
with a further 5 reactions results in pyruvate. Here, we examine the re-use
of the phosphorylation stage of glycolysis.

14

MAPK. The MAPK pathway is a protein-based sequence of events that trans-
late a signal at the cell-surface to the nucleus. The pathway commences
when a protein or a hormone binds to a receptor protein that is usually
bound to the cell-membrane. This triggers a sequence of events that stops
with the DNA expressing one or more genes that alter cell function. At
any one step of the cascade, phosphor groups are attached to proteins.
This phosphorylated form of the protein then forms a “switch” for com-
mencing the next step. MAPK is a central signalling pathway that is used
in all cell-tissues to communicate extra-cellular events to the cell nucleus.
It is used to regulate a variety of responses, like hormone action, cell-cycle
progression and cell-differentiation. It is also of immense clinical value,
since a defect in the pathway often leads to uncontrolled growth. Proteins
in the pathway are thus natural targets for anti-cancer drugs.

Yeast Pheromone. Receptors at the cell-surface receive an extra-cellular sig-
nal and transmit this signal, by use of a series of proteins and enzymes to
the nucleus, in turn triggering the expression of a gene or a set of genes
that cause the cell to respond to the external signal. The intra-cellular
mechanisms by which yeast (S. cerevisiae) responds to an external mat-
ing signal (a pheromone) is one of the best understood signal transmission
mechanisms in eukaryotes. Using a combination of genetics, biochemistry,
and theoretical biology, the following are now known either completely,
or substantially: the proteins, and enzymes involved; the order in which
events take place; the protein-protein interactions, enzyme-catalyzed re-
actions and feedback links; and the rates at which many of the reactions
occur. The resulting network is complex, but is one that nevertheless re-
uses a number of components that are found in signalling pathways of all
eukaryotes. Specifically, many of the proteins found in the pathway have
homologs in humans, and the G protein cycle and MAPK pathways are
conserved in both yeast and humans.

Background knowledge

In addition to the predicates already described, for each problem, we provide
the following information related to the system structure: (a) the places in the
network; (b) a specification of each place as “input” (it has no incoming arcs),
“output” (it has no outgoing arcs), or “free” (it could have zero or more in-
coming or outgoing arcs). This terminology follows (Wagler, 2011); (c) The
labels allowed on arcs between nodes. These are the numbers of tokens that are
transferred from place to transitions or vice versa, and are usually +1 or −1;
and (d) A set of known terminal states of the system. The background knowl-
edge specification can also include: (e) whether the data satisfy the monotone
constraint in the sense described in (Durzinsky et al., 2011c). These defini-
tions allow some of the computations (especially obtaining the “box” or the
maximal-set of difference vectors) to be performed efficiently.

In addition, the following problem-specific background knowledge is pro-
vided:

Glycolysis. The only transitions allowed are un-named (“anonymous”) tran-
sitions, with guards that are trivially satisfied. That is, pre and post-

15

Problem Answers Correct

Obtained Structure?

Glycolysis 1 Yes

Fructolysis 1 Yes

MAPK 1 Yes

Pheromone 1 Yes

Figure 4.1: System identification using a refutation-based theorem prover. For
each problem, the correct network structure is obtained as a logical consequence
of the definitions in B.

conditions and invariants are all TRUE . This ensures that answer-substitions
will only contain anonymous transitions (pure Petri nets).

Fructolysis. In addition to anonymous transitions, we now allow named tran-
sitions corresponding to the three different stages of glycolysis (primary,
splitting, and phosphorylation). This requires providing definitions for
pre- and post-conditions and invariants for these transitions. For exam-
ple, the pre-condition for the primary stage of glycolysis is the following:
there should be at least 2 molecules of ATP and at least 1 molecule of glu-
cose. The post-condition is that the value of fructose biphosphate-1. This
will allow answer-substitutions that may contain a mixture of named and
un-named transitions (thus allowing the re-use of networks constructed
earlier).

MAPK. In addition to anonymous transitions with trivial guards the system
is now allowed to use transitions that can contain any of the(non-output)
places as a potential activator. This allows the construction of extended
Petri nets (that is, transitions with “read” arcs).

Yeast Pheromone. The pheromone response pathway uses some standard sig-
nalling building blocks: a G-protein cycle for transmission from the recep-
tor; a MAPK cascade; G-protein formation from sub-units; and pathways
for the formation of scaffolds that hold proteins in place. We provide
named transitions in the background knowledge for the re-use of some
known sub-nets, along with transitions for allowing read arcs, and anony-
mous transitions. This allows transitions to be unconditional (as in pure
Petri nets), activated (as in extended Petri nets) and re-use known sub-
nets.

4.2 Results

System behaviour provided as input and the transition-reaction sequences ob-
tained as solutions for the system identification SI1 for each of the problems
are in Appendix A, and summarised in Fig. 4.1 below. It is evident that it
is possible to obtain the correct structure of systems using a combination of
background knowledge and the finite-state machine described earlier.

That the correct structure is identified exactly suggests also that both the
background knowledge and the data observed are complete and correct. It is

16

nevertheless encouraging to find that under those conditions, it is possible to
view system-identification as a form of logical consequence-finding. There are
some interesting aspects of using background knowledge, which may not be
immediately apparent from these result

Scale. It is impractical to consider constructing very large-scale networks with-
out some method for decomposing the task into one of constructing sub-
nets, and building larger structures that re-use these smaller ones. This
form of hierarchical network construction requires a mechanism to re-use
all or portions of networks that are already known, or have been identified.
Guarded transitions in the background knowledge provide a natural way
to represent such sub-nets. For example, consider the problem of mod-
elling fructolysis which used guarded transitions that uses some portions
of the glycolysis metabolic pathway, which is traditionally taken to occur
in 3 stages (primary, splitting, and phosphorylation). One possible repre-
sentation of these, using the predicates of the kind we have just seen is as
follows:

transition(anonymous).
transition(glyc_primary).
transition(glyc_splitting).
transition(glyc_phos).

pre(glyc_primary,PreState):-
val(atp,PreState,Atp),
Atp >= 2,
val(glu,PreState,Glucose),
Glucose > 0.

post(glyc_primary,PostState):-
val(f16bp,PostState,F16bp),
F16bp > 0.

inv(glyc_primary,PreState,PostState).

...
(and so on)

Efficiency. Clearly, many different answer-substitutions T may be obtained for
a sequence S of observed data. Each of these is a correct solution to the
logical consequence relation B |= ∃ T lgts(S, T). One way to constrain the
solutions is to enrich B. This can be done in a domain-independent, or
a domain-dependent manner. As an example for the former, (Srinivasan
and King, 2008) describe “feasible” chemical reactions as ones in which
reactants and products are compatible (the usual mass-balance criterion)
and the reaction does not break 3 or more bonds, which requires far more
energy than is usually present. For the chemicals in glycolysis, here is a
tabulation of the only reactions that are possible, once such a restriction
is imposed:

Feasible reactions (break fewer than 3 bonds):

G6P → F6P FBP → DHAP + G3P G3P + NAD → 1, 3BPG + NADH

3PG → 2PG 1, 3BPG + Glu → 3PG + G6P F6P + ATP → FBP + ADP

2PG → PEP 1, 3BPG + ADP → 3PG + ATP G6P + Pv → Glu + PEP

DHAP → G3P 3PG + FBP → 1, 3BPG + F6P FBP + Glu → F6P + G6P

1, 3BPG → 3PG Glu + ATP → G6P + ADP FBP + Glu → F6P + PEP

FBP → F6P PEP + ADP → Pv + ATP FBP + Pv → F6P + PEP

17

These constraints can be incorporated directly into B by only allowing
transitions that involve feasible reactions, thus greatly reducing the space
of possible answers:

transition(reaction(LHS,RHS)):-
feasible_reaction(LHS,RHS).

% reactions that break less than 3 bonds
feasible_reaction([’3pg’],[’2pg]).
feasible_reaction([’2pg’],[pep]).
feasible_reaction([adp,pep],[atp,pv]).

...

...
(and so on)

4.3 Identification from Multiple System Behaviours

So far a single experiment has provided all the data needed to identify a system.
Since system behaviour is simply taken as sets of (consecutive) state-pairs, there
is no difficulty in principle in using the same implementation to obtain a solution
for observations from multiple experiments. We demonstrate this by taking
another look at the MAPK pathway.

Consider the MAPK cascade, in which data are available across three differ-
ent experiments:

Data S1:

Place States

0 1

map4k 1 1

map3k 1 0

map3kp 0 1

map2k 0

map2kp 0 0

map2kpp 0 0

mapk 0 0

mapkp 0 0

mapkpp 0 0

Data S2:

Place States

0 1 2

map4k 0 0 0

map3k 0 0 0

map3kp 1 1 1

map2k 1 0 0

map2kp 0 1 0

map2kpp 0 0 1

mapk 0 0 0

mapkp 0 0 0

mapkpp 0 0 0

Data S3:

Place States

0 1 2

map4k 0 0 0

map3k 0 0 0

map3kp 0 0 0

map2k 0 0 0

map2kp 0 0 0

map2kpp 1 1 1

mapk 1 0 0

mapkp 0 1 0

mapkpp 0 0 1

For simplicity, we have shown all experiments having data for all places (with
0-values for places that are not part of the experiment). We note that initial
and final states of the complete system may not be present in all of the data.
For example, S1 is missing the final state of the MAPK cascade, S2 is missing
both initial and final states, and S3 is missing the initial state. Assuming the
same background as was used with the single-experiment dataset results in the
following answer-substitutions (the entries of the reaction-vectors are to be read
in order of the places shown in the data above):

18

T1 [(read(map4k), [0,−1,+1, 0, 0, 0, 0, 0, 0])]

T2 [(read(map3kp), [0, 0, 0,−1,+1, 0, 0, 0, 0]), (read(map3kp), [0, 0, 0, 0,−1,+1, 0, 0, 0])]

T3 [read(map2kpp), [0, 0, 0, 0, 0,−1,+1, 0, 0]), (read(map2kpp), [0, 0, 0, 0, 0, 0, 0,−1,+1])]

The graphs associated with each transition-reaction are:

G1 ({map3k,map3kp}, {t1}, {e(map3k, t1), e(t1,map3kp)})
G2 ({map2k,map2kp,map2kpp}, {t2, t3}, {e(map2k, t2), e(t2,map2kp), e(map2kp, t3), e(t3,map2kpp)})
G3 ({mapk,mapkp,mapkpp}, {t4, t5}, {e(mapk, t4), e(t4,mapkp), e(mapkp, t5), e(t5,mapkpp)})

where:
t1 = hash((read(map4k), [0,−1,+1, 0, 0, 0, 0, 0, 0])),
t2 = hash((read(map3kp), [0, 0, 0,−1,+1, 0, 0, 0, 0])),
t3 = hash((read(map3kp), [0, 0, 0, 0,−1,+1, 0, 0, 0]))
and e(x, y) denotes a directed edge from vertex x to y. The graph of the con-
junction of the Ti is the union of the Gi.

5 Identification with Incomplete System Infor-
mation

First we discuss the case of missing data, then the situation of transitions missing
from background knowledge.

5.1 Incomplete Data: Abduction

In the networks identified so far, we have assumed that data are available for
all the relevant places in a state. The specification, in background knowledge
of transitions representing sub-networks allows one way around this, since data
on places in the sub-network are not required. But this may not always be
possible. What is to be done when data on places are missing, something can
still be done using a combination of guarded transitions and the logical notion
of abducibles. Specifically, we can determine if there is a sequence of transitions
that can be used to build a complete model, if a set of places—a subset of the
set of “abducible” places—were assumed to have a sufficient number of tokens.
In keeping with this kind of analysis, the set of abducibles (that is, the places
whose values can be assumed) is pre-specified by the user (see Fig. 5.1) as part
of the background knowledge. The introduction of abducibles can result in
many possible hypothesized networks. In turn, these may suggest additional
experiments that may need to be conducted to focus on the best model.

In implementation terms, abduction is enabled by a simple alteration to the
definition of the pre-condition of a transition from:

pre(reaction(LHS,RHS),PreState):-
present(LHS,PreState).

present([X|Rest],State):-

19

Figure 5.1: Enabling transitions when data are missing. On the left, the
(guarded) transition is not enabled, since there is no token at B. If B is specified
as an “abducible” place, then at least one token is assumed to be present (shown
in a lighter shade on the right), which enables the transition (that is, satisfies
the pre-condition of the transition). Experimental data would be needed to
confirm (or refute) the reality of such a transition.

tokens(X,State,N),
N > 0,
present(Rest,State).

...
(and so on)

to a definition like:

pre(reaction(LHS,RHS),PreState):-
present_or_abducible(LHS,PreState).

present_or_abducible([X|Rest],State):-
present([X],State), !,
present_or_abducible(Rest,State).

present_or_abducible([X|Rest],State):-
abducible(X),
present_or_abducible(Rest,State).

...
(and so on)

(Similarly, the post-condition is either each output place value is non-zero, or
that it is abducible.)

As a specific case, consider the fructolysis problem, this time leaving out any
background knowledge about the different stages of the glycolysis pathway and
no data are available on metabolites involved in glycolysis. The data available
for system-identification are thus:

20

Place States

0 1 2 3 4 5

fruc 1 0 0 0 0 0

atp 2 1 1 0 2 4

adp 4 5 5 6 4 2

f1p 0 1 0 0 0 0

ga 0 0 1 0 0 0

dhap 0 0 1 0 0 0

g3p 0 0 0 2 1 0

nad 2 2 2 2 1 0

nadh 0 0 0 0 1 2

pv 0 0 0 0 1 2

glu ? ? ? ? ? ?

f6p ? ? ? ? ? ?

f16bp ? ? ? ? ? ?

13bpg ? ? ? ? ? ?

3pg ? ? ? ? ? ?

2pg ? ? ? ? ? ?

pep ? ? ? ? ? ?

Even with background knowledge defining feasible chemical reactions in gly-
colysis, it is not possible to obtain an answer-substitition for the state-sequence
shown above. However, allowing places in glycolysis to be abducible, and re-
laxing pre- and post-conditions in the manner just described, we are able to
hypothesize the missing portion of the glycolysis sub-net corresponding to the
phosphorylation stage (see Fig. A.5 in Appendix A).

Each of the features we have described so far (scaling-up, constraining an-
swers, hypothesising values in a state) are all made feasible by definitions in
the background knowledge B. In the next section we investigate extensions to
the specification for system-identification that allow us address certain kinds of
deficiencies in the background knowledge and in the data.

5.2 Incomplete Background Knowledge: Induction

We have assumed so far that the background knowledge B is sufficient, given
an observed sequence of states S to identify all the T s.t. B |= ∃ T lgts(S, T).
Suppose we find that no such T is possible. Ignoring, for the moment, any
incompleteness in the proof procedure used, we consider adding definitions H
automatically to B, i.e., learning new transitions. The revised system identifi-
cation task we consider is thus:

System Identification Task SI2:

Given: (a) The observed behaviour of a system in the form of a set of of consec-
utive state-pairs S = {(s1, s2), (s2, s3), . . . , (sn−1, sn)}; and (b) Background-
knowledge B in the form of definitions of guard, guarded-transition func-
tion and any other relevant predicates; and (c) The definition of lgts
(Definition 6); and (d) B 6|= ∃ T lgts(S, T)

Find: A set of clauses H and a set T of (t, r) pairs such that B ∧ H |=
∃ T lgts(S, T)

A natural way to address the problem of automatically augmenting the defi-
nitions of a logic program B is to use the approach of Inductive Logic Program-
ming (ILP: (Raedt, 2008)). Given a logic program B and a non-empty set E+

21

(“positive” examples) and a set (possibly empty) E− (“negative” examples),
and ILP engine attempts to find a set of clauses H s.t. B ∧ H |= E+ and
B ∧H ∧ E− 6|= 2. That is, given B, H “explains” E+; and is consistent with
E−. We refer the reader to (Muggleton, 1995) for details of how acceptable H’s
are found to satisfy this requirement.

We consider here how an ILP engine could be used to find an H as required
by SI2. Suppose the observed set of state-pairs S = {(s1, s2), . . . , (sn−1), sn)}.
Recall that if B |= ∃ T lgts(S, T) then for every (si, si+1) ∈ S) there exists a
tri ⊆ T such that gts(si, si+1, tri) is TRUE . So, if B 6|= ∃ T lgts(S, T), then
there is at least one (si, si+1) for which this does not hold. It is not hard to see
that a sufficient condition for this is that for some pair of states sa,b there is no
single-step transition-reaction possible given the background B.6

Assuming that it is always possible to obtain a reaction vector r between a
pair of states, this means the background knowledge is missing the appropriate
definition of the transition t, along with its guard. Since the invariant of the
guard has all the information available to the pre- and post-conditions, we focus
on just the definition of invariants. That is, the problem of constructing and
H in SI2 translates to learning transition invariants for new transitions new(t)
between pairs of states sa,b for which no existing transition is applicable. These
will be used in B as follows:

% allowed to use anonymous transitions
transition(anonymous)
% allowed to learn new transitions if anonymous ones do not work
transition(new(_)).

pre(anonymous,PreState).
post(anonymous,PostState).
inv(anonymous,PreState,PostState).

pre(new(_),PreState).
post(new(_),PostState).

% re-use a transition invariant that has been learnt
inv(new(T),PreState,PostState):-

transition_invariant(new(T),PreState,PostState), !.
% otherwise learn a new transition invariant
inv(new(T),PreState,PostState):-

learn_transition(new(T),PreState,PostState).

learn_transition(new(T),PreState,PostState):-
new_symbol(T),
create_positive_examples(PreState,PostState),
create_negative_examples(PreState,PostState),
<call ILP engine>
<add new definitions for transition_invariant>

...
(and so on)

We still have to clarify the step creating positive and negative examples.
The ILP engine is required to learn a definition for transition invariant/3.
For a transition new(t) between states sa,b the ILP engine is given the single
positive example transition invariant(new(t), sa, sb). Negative examples are
less obvious. Suppose ra,b is any element of the maximal set Rmaxa,b consistent
with da,b = sb − sa. That is ra,b denotes a feasible reaction vector given sa,b.
They consist of statements of the form ¬transition invariant(new(t), st, sx)
where st is any terminal state of the system and sx is any legal state of the
system s.t. ra,b = sx − st. That is, negative examples are all legal states is

6sa,b need not be the same as si,i+1, but could be some intermediate states between them.

22

reachable from a terminal state with a feasible reaction vector. The ILP engine
is thus forced to search for invariant definitions that do not hold for such pairs
(ensuring automatically that the transition will not violate the terminal-state
specification of the system).

We demonstrate this approach with the MAPK cascade, using the same data
as before:

Place States

0 1 2 3 4 5

map4k 1 1 1 1 1 1

map3k 1 0 0 0 0 0

map3kp 0 1 1 1 1 1

map2k 1 1 0 0 0 0

map2kp 0 0 1 0 0 0

map2kpp 0 0 0 1 1 1

mapk 1 1 1 1 0 0

mapkp 0 0 0 0 1 0

mapkpp 0 0 0 0 0 1

With only un-named (anonymous) transitions allowed in B, it is not possible to
obtain a transition-reaction sequence for this data (all anonymous transitions
fire on one or more terminal states). That is, B 6|= ∃ T lgts(S, T). We now
consider using an ILP engine to construct an H s.t. B ∧H |= ∃ T lgts(S, T). 7

We allow the ILP engine to use the following predicates when constructing H:

read(Place,Pre,Pos):-
place(Place),
val(Place,Pre,X),
val(Place,Post,X),
X > 0.

inhibit(Place,Pre,Post):-
place(Place),
val(Place,Pre,X),
val(Place,Post,X),
X = 0.

This allows the construction of new transitions that include combinations of
“read” and “inhibit” arcs from more than one place (these combinations can
occur in a single transition). The ILP engine constructs the following definition
H:

transition_invariant(new(1),Pre,Post):-
read(map4k,Pre,Post).

transition_invariant(new(2),Pre,Post):-
read(map3kp,Pre,Post).

transition_invariant(new(3),Pre,Post):-
read(map2kpp,Pre,Post).

The definition is constructed when the theorem-prover attempts to execute the
definition of the invariant predicate for a new transition. In conjunction with
the background knowledge B and sequence of states S above, we are now able
to get the following answer T to the relation B ∧H |= ∃ T lgts(S, T):

T = [(new(1), [0,−1,+1, 0, 0, 0, 0, 0, 0]),

(new(2), [0, 0, 0,−1,+1, 0, 0, 0, 0]), (new(2), [0, 0, 0, 0,−1,+1, 0, 0, 0]),

(new(3), [0, 0, 0, 0, 0,−1,+1, 0, 0]), (new(3), [0, 0, 0, 0, 0, 0, 0,−1,+1])]

7We use the Aleph ILP system (Srinivasan, 2007).

23

which is the correct definition of the MAPK cascade.

6 Related Work

Knowledge discovery in natural science is increasingly being seen as a process of
combinatorial optimisation, in which computational approaches are of central
importance (Kell, 2012). On one hand this may be addressed by using “big
data” to reduce the space of possible solutions (Hey et al., 2009). On the other
hand, data alone may be insufficient, but we may have access to considerable
relevant domain knowledge. The latter is the situation addressed in this work.

Since the introduction of Petri nets (Petri, 1962) they have been used ex-
tensively in many areas, for example, in modelling concurrency (Nielsen et al.,
1981). As noted above, Petri nets have also been quite widely used for mod-
elling in systems biology (Koch et al., 2011). Typically though such models are
hand-crafted from biological knowledge.

The problem of identification, or reverse engineering, in systems biology has
been the subject of many studies; a recent review is in (Villaverde and Banga,
2014). However, the work of Durzinsky et al. (2008) appears to be the first
published method for the reconstruction of Petri net models from time series
data. In a number of papers this group developed a mathematical framework
and algorithms for the problem they term automatic network reconstruction,
i.e., to generate the set of all pure Petri nets from experimental discrete time-
series data. Their method was subsequently broadened to handle extended Petri
nets, with read and inhibitory arcs (Durzinsky et al., 2011b). For pure Petri
nets their approach is a combinatorial method to generate all sets of reaction
vectors such that each set is consistent with the data, by determining that it is
conic integer combination of the difference vectors.

Answer Set Programming (ASP – see Baral (2003) for an overview) is an
approach to logic programming that has a number of useful features for systems
biology modelling. These include: true negation (as well as default negation or
negation as failure (Gelfond, 2008)); efficient solvers; and a number of declara-
tive built-in language constructs for choice and optimization. Durzinsky et al.
(2011a) reformulated their Petri net reconstruction algorithm using ASP. They
note some advantages of ASP for this work: that it allows a declarative reformu-
lation of their previous implementation; the possibility of addition of declarative
biological knowledge as constraints; and, since the ASP system used is based on
a constraint solvers, the approach is as efficient as a previous special-purpose
implementation. Essentially, the method searches for models that conform to
a graph of system states, termed the experiment graph, where models are con-
strained by clauses specifying the network reconstruction algorithm. A version
was also developed that allows the addition of a fixed number of molecular
species to enable recovery of a network if no valid experimental graph can be
constructed from the original data.

Inoue (2011) formulated the computation of the next state from the current
state in a dynamic system in terms of the immediate consequence operator TP of
logic program P (Lloyd, 1987). Based on this, and using the simpler formalism
of Boolean networks, Videla et al. (2014) give a method to identify models using
ASP. This method requires as input a signed directed graph of genes showing
causal dependencies of molecular species, together with a discretised dataset.

24

The identified system is restricted to only modelling the so-called immediate-
early response, i.e., the Boolean functions determined for a directed hypergraph
that model the resulting phosphorylation state of proteins, given a set of pertur-
bations of the system. System identification is then an optimization problem,
namely to minimize the model error with respect to the dataset. Importantly,
the modelling approach is restricted to acyclic dependencies of genes represented
by propositional formulas, meaning that feedback and hence complex dynamic
behaviours are not captured.

Clearly, these are purely (constrained) deductive approaches. This accords
with our present approach, which, as we said in our introduction, makes sense
when there is relatively little data, and a reasonably large amount of background
knowledge. An early example of this was a logical formulation of pathways
and reactions for metabolism (Reiser et al., 2001) that enabled the deductive
computation of the reachability of a system state; this became the foundation
of the Robot Scientist project (King et al., 2004).

On the other hand, it is sometimes necessary to deal with missing data, or
background knowledge; as in our approach above, this has been addressed in
the logical setting using abductive or inductive algorithms (Tamaddoni-Nezhad
et al., 2004), typically using ILP. Applications of ILP on learning in systems
biology have ranged from addressing the incompleteness of rich background
knowledge, such as (King et al., 2004) for network completion, to those focused
on classification, such as (Fröhler and Kramer, 2008) for predicting phenotypic
state. An important topic in ILP has been learning models of dynamical sys-
tems. Much of this work has essentially been based on some form of temporal
logic, often motivated by robotics (e.g., (Moyle, 2002)). This has typically re-
quired an explicit handling of time in a physical sense, rather than within an
event-based formalism. However, systems biology data usually has insufficient
temporal resolution for this to be applicable.

As mentioned above, Inoue (2011) formulated Boolean networks as (normal)
logic programs, and Inoue et al. (Inoue et al., 2014) showed how this semantics
enabled a method of learning from state transition pairs, where each state is an
interpretation. Interestingly, this in some sense is the inverse of our method; in
both methods simulation is by logical consequence (computation of the succes-
sor states) but in the method of Inoue et al. (2014) identification is by a form
of generalisation. More specifically, pairs of a state and its successor form the
predicate for a target gene, and the learning proceeds by constructing positive
and negative examples from which rules are generalised to define how the suc-
cessor (Boolean) state of the target gene can be computed, given the current
state of all genes that may regulate it. In contrast, in our framework, by treat-
ing state transitions as first-class objects we are able to find logical guards for
transitions by deduction. Of course, as outlined above, our method can also
abduce or induce missing state values or transitions if required.

We note that, contrary to what is claimed in (Inoue et al., 2014), in our
method feedback loops are modelled (for example, in the yeast pheromone path-
way reconstruction experiment – see Appendix A). This misconception may be
due to the problem of learning the recursive definitions required for feedback
relations in logic programs defined on states, as in the framework of (Inoue
et al., 2014). However, this problem does not arise with logical definitions
where transitions are treated as a first-class object, as in Petri nets and LGTSs.
In such representations feedback is simply a repeated application of transitions

25

(see Fig. 2.2(c)).
In this paper our formalism (LGTS) is inspired in part by Guarded Horn

Clauses (Ueda, 1988). However, a similarly named approach — Guarded Tran-
sition Systems (GTS) — has appeared in a recent paper by Rauzy (2008). In
this work GTSs are proposed in order to overcome a number of limitations of
modelling formalisms for reliability analyses in systems with loops, such as elec-
trical networks. This kind of loop occurs when the state of a component A
depends on the state of another component B and vice versa. Analysis of such
systems requires, in general, the propagation of states through the model, given
a set of initial states.

A GTS is defined similarly to a Petri net, except (1) for additional constraints
on each transition, and (2) a global set of assertions. The relation to LGTS lies
principally in the formalisation of transitions. In GTSs, a transition is defined
as a triple 〈G, e, P 〉, where G is a guard, e is an event (transition) and P a post-
condition. Unlike in LGTS, the guard G is not completely specified in (Rauzy,
2008), but is stated to include arithmetic expressions or Boolean, i.e., proposi-
tional, expressions over variables. Variables are allowed to be of any type, but
this is not given a detailed specification. The post-condition P is an instruction,
meaning that the values of system variables can be updated following the tran-
sition. The key contribution of (Rauzy, 2008) is to add to the post-condition
an assertion with a fixpoint semantics. The assertion is composed of a set of
assignment “rules” for updating variables. Use of a fixpoint semantics enables
repeated application of these rules until the system arrives in a terminal state.
To avoid infinitely looping behaviour a finite bound is placed on the number of
steps allowed to achieve this fixpoint, essentially turning the application of the
assertion into an iterative process. This mechanism thus enables propagation
of states through the model to allow verification of components in circuits with
loops. Note that there is only a single assertion for each GTS; it is a global
property of the model, applied to all transitions in the same way., rather than
being a local property of a particular transition like guards and post-conditions.

It should be noted that, since extended Petri nets are Turing-equivalent,
the GTS formalism does not increase expressive power. For example, the effect
of the fixpoint could be achieved using an extended Petri net, but this could
become very tedious to specify. Rather it enables a useful modelling framework,
particularly where the reliability of components in a looping circuit or similar
iterative system must be validated. The use of a fixpoint assertion method in
the modelling language is something that may be investigated as a potential
addition to our approach as part of future work.

It is notable that in most work on systems biology (Ideker et al., 2001) the
concept of a “system” is not formally defined separately from the particular
representation used (differential equations, Boolean networks, etc.). In this
work we have been partly inspired by the logical approach of Takahashi and
Takahara (1995), where the system modelling task is treated formally by fixing
a representation language and axioms defining the possible structures.

7 Concluding Remarks

Model identification in systems biology is a difficult problem. It is typically
thought that the more complex the model class, the more difficult the iden-

26

tification problem, and consequently considerable effort has been devoted to
methods that build quantitative models (like ODEs), or qualitative network
models using formalisms that capture some domain-features. Some of the diffi-
culties that arise are these: (a) the numerical data available are often of variable
quality, making it difficult to identify good quantitative models; (b) biology is a
knowledge-rich domain, and system identification needs to incorporate as much
of this as possible; (c) there is no clearly specified way of scaling-up the identi-
fication procedure to identify complex systems beyond the level of “decompose
the system into sub-parts”; and (d) the models may not be easily comprehensible
to biologists.

The representation of Logical Guarded Transition Systems we have pro-
posed here allows a qualitative network representation of system structure that
has pure and extended Petri nets as special cases. It has also allowed us to
formulate the system-identification task in terms of the logical entailment rela-
tion. This opens the door to the use of logic-programming as the computational
means of finding system models consistent with domain-specific constraints and
requirements. We have also shown how the setting extends naturally through
the use of Abductive Logic Programming (ALP) and Inductive Logic Program-
ming (ILP).

In terms of the specific application to the identification of biological net-
works, we believe LGTS retain much of the attractiveness of Petri nets: they
are able to model system dynamics, non-determinism and concurrency; and
their graphical representation is appealing to biologists. The specific networks
we have identified this paper show that:

1. Guarded transitions allow the straightforward inclusion of background
knowledge, primarily in the form of transitions that are allowed, and in
the definition of the guards.

2. We are able to identify reasonably large (over 10 transitions and 10 places)
pure Petri nets from data by identifying transitions with trivial guards and
their associated reaction vectors.

3. We are able to construct larger networks with more places straightfor-
wardly by using guarded transitions that abstract over sub-nets.

4. We are able to identify extended Petri nets from data by identifying acti-
vators in guarded transitions along with their associated reaction vectors.

5. We are able to use techniques from ALP to construct models when data
are missing.

6. We are able to augment existing background knowledge by learning new
transitions using an ILP engine.

These results are sufficiently encouraging to believe that the area we have in-
troduced is a promising direction to follow. There are many ways in which this
work could be extended. More can always be done with attempting to learn
other complex networks. We would also like to demonstrate an end-to-end sys-
tem identification approach starting with experimental data, building LGTS
models, converting them to quantitative models and performing simulations.
Of these, the link between experimental data and the discretised data needed

27

for learning Petri net models will be particularly important. The representation
used here is a step into the much larger area of process algebras. It remains to
be seen whether the start made in this paper naturally leads on to the hitherto
unxplored territory of the use of abduction, induction, and probabilities—used
here in their philosophical sense—in pi-calculus representations of biological
systems.

Acknowledgements

A.S. is a Ramanujan Fellow of the Government of India; a Visiting Professor at
the Department of Computer Science, Oxford University; and a Visiting Pro-
fessorial Fellow at the School of CSE, University of New South Wales, Sydney.
M.B. acknowledges the support of the Australia-India Strategic Research Fund.
The authors would like to thank Ross King for providing some of the domain-
specific constraints used in this paper, and Mark Temple for his advice on the
yeast pheromone pathway.

References

Baral, C. (2003). Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press.

Bolouri, H. and Davidson, E. (2002). Modeling transcriptional regulatory net-
works. BioEssays, 24:1118–1129.

David, R. and Alla, H. (2010). Discrete, Continuous, and Hybrid Petri Nets.
Springer, Berlin, Second edition.

Durzinsky, M., Marwan, W., Ostrowski, M., Schaub, T., and Wagler, A. (2011a).
Automatic Network Reconstruction using ASP. Theory and Practice of Logic
Programming, 11(4-5):749–766.

Durzinsky, M., Wagler, A., and Marwan, W. (2011b). Reconstruction of ex-
tended Petri nets from time series data and its application to signal trans-
duction and to gene regulatory networks. BMC Systems Biology, 5:113.

Durzinsky, M., Wagler, A., and Weismantel, R. (2011c). An algorithmic frame-
work for network reconstruction. Theoretical Computer Science, 412:2800–
2815.

Durzinsky, M., Wagler, A., Weismantel, R., and Marwan, W. (2008). Automatic
reconstruction of molecular and genetic networks from discrete time series
data. BioSystems, 93:181–190.

Fröhler, S. and Kramer, S. (2008). Inductive logic programming for gene regu-
lation prediction. Machine Learning, 70:225–240.

Gelfond, M. (2008). Answer Sets. In van Harmelen, F., Lifschitz, V., and Porter,
B., editors, Handbook of Knowledge Representation, pages 285–316. Elsevier,
Amsterdam.

Hey, T., Tansley, S., and Tolle, K. (2009). The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Reasearch.

28

Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life:
systems biology. Ann. Review of Genomics and Human Genetics, 2:343–372.

Inoue, K. (2011). Logic Programming for Boolean Networks. In IJCAI 2011:
Proc. 22nd Intl. Joint Conference on Artificial Intelligence, pages 924–930.

Inoue, K., Ribeiro, T., and Sakama, C. (2014). Learning from interpretation
transition. Machine Learning, 94(1):51–79.

Junker, B. H. and Schreiber, F. (2008). Analysis of Biological Networks. Wiley,
NJ.

Kell, D. (2012). Scientific discovery as a combinatorial optimisation problem:
How best to navigate the landscape of possible experiments? Bioessays,
34:236–244.

King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell,
D., and Oliver, S. (2004). Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427:247–252.

Koch, I., Reisig, W., and Schreiber, F., editors (2011). Modeling in Systems
Biology: the Petri Net Approach. Springer, Berlin.

Lloyd, J. W. (1987). Logic Programming, 2nd Edition. Springer-Verlag, Berlin.

Moyle, S. (2002). Using theory completion to learn robot navigation control pro-
grams. In ILP 2002: Proc. Intl. Conference on Inductive Logic Programming,
volume 2583 of LNAI, pages 182–197, Berlin. Springer.

Muggleton, S. (1995). Inverse Entailment and Progol. New Generation Com-
puting, 13:245–286.

Nielsen, M., Plotkin, G., and Winskel, G. (1981). Petri Nets, Event Structures
and Domains, Part 1. Theoretical Computer Science, 13:85–108.

Palsson, B. (2006). Systems Biology: Properties of Reconstructed Networks.
Cambridge University Press, Cambridge.

Perkins, T., Jaeger, J., Reinetz, J., and Glass, L. (2006). Reverse Engineering
the Gap Gene Network of Drosophila melanogaster . PLoS Computational
Biology, 2(5):e51.

Peterson, J. (1981). Petri Net Theory and the Modeling of Systems. Prentice-
Hall, Englewood Cliffs, NJ.

Petri, C. (1962). Kommunikation mit Automaten. PhD thesis, Technical Uni-
versity Darmstadt, Darmstadt.

Raedt, L. D. (2008). Logical and Relational Learning. Springer, Berlin.

Rauzy, A. (2008). Guarded Transition Systems: a new States/Events Formalism
for Reliability Studies. Journal of Risk and Reliability, 222(4):495–505.

Reiser, P., King, R., Kell, D., Muggleton, S., Bryant, C., and Oliver, S. (2001).
Developing a Logical Model of Yeast Metabolism. Electronic Transactions in
Artificial Intelligence, 5:223–244.

29

Srinivasan, A. (2007). The Aleph manual. University of Oxford, Oxford.

Srinivasan, A. and Bain, M. (2012). Knowledge-Guided Identification of Petri
Net Models of Large Biological Systems. In Muggleton, S., Tamaddoni-
Nezhad, A., and Lisi, F., editors, Proc. 21st Intl. Conference on Inductive
Logic Programming (ILP 2011; Revised Selected Papers), volume 7207 of Lec-
ture Notes in Computer Science, pages 317–331, Berlin. Springer.

Srinivasan, A. and King, R. D. (2008). Incremental Identification of Qualitative
Models of Biological Systems using Inductive Logic Programming. Journal of
Machine Learning Research, 9:1475–1533.

Takahashi, S. and Takahara, Y. (1995). Logical Approach to Systems Theory.
Springer, Berlin.

Tamaddoni-Nezhad, A., Kakas, A., Muggleton, S., and Pazos, F. (2004). Mod-
elling inhibition in metabolic pathways through abduction and induction.
In ILP 2004: Proc. 14th Intl. Conference on Inductive Logic Programming,
Berlin. Springer.

Ueda, K. (1988). Guarded Horn Clauses: A Parallel Logic Programming Lan-
guage with the Concept of a Guard. In Nivat, M. and Fuchi, K., editors, Pro-
gramming of Future Generation Computers, pages 441–456. North-Holland.

Videla, S., Guziolowski, C., Eduati, F., Thiele, S., Gebser, M., Nicolas, J., Saez-
Rodriguez, J. J., Schaub, T., and Siegel, A. (2014). Learning Boolean logic
models of signaling networks with ASP. Theoretical Computer Science, (in
press).

Villaverde, A. and Banga, J. (2014). Reverse engineering and identification in
systems biology: strategies, perspectives and challenges. J. R. Soc. Interface,
11(20130505).

Wagler, A. (2011). Prediction of Network Structure. In Koch, I., Reisig, W., and
Schreiber, F., editors, Modeling in Systems Biology: the Petri Net Approach,
pages 307–336. Springer, Berlin.

30

Figure A.1: Petri net model of the glycolysis pathway identified. The conversion
of DHAP to G3P is taken to be in one-direction only (the reverse is shown by
a dashed line, and not identified).

A Data Provided and Networks Identified

A.1 Pure Petri Nets (Glycolysis)

Place States

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

glu 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

atp 2 1 1 0 0 0 1 1 1 2 2 2 3 3 3 4

adp 4 5 5 6 6 6 5 5 5 4 4 4 3 3 3 2

g6p 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f6p 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

f16bp 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

dhap 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

g3p 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

nad 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0

13bpg 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

nadh 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2

3pg 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

2pg 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

pep 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

pv 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2

31

Figure A.2: Network model identified for fructose metabolism. The shaded
transition is a guarded transition that stands for the sub-net corresponding
to the phosphorylation stage of glycolysis. The pre-condition for using this
transition is that G3P, NAD and ADP have to be present. The post-condition
is that Pv, NADH and ATP are present. No invariants were specified, although
the obvious one is that the values of all other metabolites are unchanged.

A.2 Pure Petri Nets with Sub-Nets (Fructolysis)

Place States

0 1 2 3 4 5

fruc 1 0 0 0 0 0

atp 2 1 1 0 2 4

adp 4 5 5 6 4 2

f1p 0 1 0 0 0 0

ga 0 0 1 0 0 0

dhap 0 0 1 0 0 0

g3p 0 0 0 2 1 0

nad 2 2 2 2 1 0

nadh 0 0 0 0 1 2

pv 0 0 0 0 1 2

A.3 Extended Petri Nets (MAPK cascade)

In the data, MAP4K will stand for the extra-cellular signal; MAP3K, for the
membrane-coupled receptor protein; MAP2K, for the protein involved in the
second step; and MAPK, for the protein involved in the third step. We char-

32

Figure A.3: Network identified from data of the MAPK cascade.

acterise phosphorylated forms by the addition of the letter ’P’, and double
phosphorylated forms by the letters ’PP’.

Place States

0 1 2 3 4 5

map4k 1 1 1 1 1 1

map3k 1 0 0 0 0 0

map3kp 0 1 1 1 1 1

map2k 1 1 0 0 0 0

map2kp 0 0 1 0 0 0

map2kpp 0 0 0 1 1 1

mapk 1 1 1 1 0 0

mapkp 0 0 0 0 1 0

mapkpp 0 0 0 0 0 1

A.4 Extended Petri Nets with Sub-Nets (Yeast Pheromone)

Data are derived from the states shown below. The states simulate the known
sequence of events in the order in which they are traditionally explained and un-
derstood in the biological literature. The external pheromone is α, which is even-
tually degraded by the extra-cellular secretion bar1 into an inactive form (here
represented as α−. The receptor is the G-protein coupled receptor (GPCR)
ste2. A G-protein consists of essentially two sub-units Gα and Gβγ . Other
proteins involved are either kinases that form part of a MAPK cascade or are
used for scaffolding. We have only shown those chemicals involved largely in
the feedback mechanism of the pheromone response: not represented here are
the chemicals involved in the actual mating response. Both the expression of
bar1 and the genes are triggered by the DNA transcription activator ste12.

33

Figure A.4: Network identified for yeast pheromone response. The model uses
a number of generic components of signalling pathways, encoded as guarded
transitions. The pathway re-constituting the G-protein (shown dashed above)
is identified when the state sequence provided is extended by further time steps.

Place States

0 1 2 3 4 5 6 7 8

bar1 0 0 0 0 0 0 0 1 1

α 10 9 9 9 9 9 9 9 8

α− 0 0 0 0 0 0 0 0 1

ste2 10 9 9 9 9 9 9 9 9

α+ste2 0 1 0 0 0 0 0 0 0

Gα +Gβγ 10 10 9 9 9 9 9 9 9

Gα 0 0 1 1 1 1 1 1 1

Gβγ 0 0 1 0 0 1 1 1 1

ste5+ste11+ste7+fus3 10 10 10 9 9 9 9 9 9

ste20 10 10 10 9 9 9 9 9 9

ste20+Gβγ+ste5+ste11+ste7+fus3 0 0 0 1 0 0 0 0 0

fus3(pp) 0 0 0 0 0 1 0 0 0

ste20+Gβγ+ste5+ste11+ste7+fus3(pp) 0 0 0 0 1 0 0 0 0

ste12 0 0 0 0 0 0 1 0 0

A.5 Petri Nets with Missing Information (Fructolysis)

34

Figure A.5: Petri net model for fructolysis without guarded transitions for the
glycolysis stages. The model uses a number of generic components of signalling
pathways, encoded as guarded transitions. The system is able to identify the
missing portion of the glycolysis model, with some help: (1) Places have to be
specified as being “abducible” (that is, their values can be assumed). These are
shown as shaded circles; (2) Guarded transitions have to be provided in back-
ground knowledge that specify feasible chemical reactions. These have been
described elsewhere in the text for glycolysis; and (3) An upper-bound is spec-
ified on the size of the sub-net that should be hypothesized.

35

B Petri Nets and Logical Guarded Transition
Systems

B.1 Formal Description of Petri Nets

Definition 8. (Petri net as a graph) A Petri net (Peterson, 1981; David and
Alla, 2010) is a bipartite directed labelled graph, with its vertex (node) set parti-
tioned into two subsets: the set of places P and the set of transitions T . Directed
edges (arcs) are either from a place to a transition (denoting consumption) or
a transition to a place (denoting production). Both places and transitions may
be labelled. Places are sometimes referred to as conditions and transitions as
events.

A place may be labelled by a non-negative integer number of “tokens” denoting
its state, usually called a “marking” in the Petri net literature. The marking
function is an assignment of tokens to places in the Petri net.

Definition 9. (Petri net marking function) The marking function m : P →
N is a mapping from the set of places P to the set of natural numbers N. We
represent by m(p) the marking of place p ∈ P , that is, the number of tokens
assigned to place p. Additionally, we may represent by m(u, p) the marking at
time u of place p ∈ P .

As noted by Peterson (Peterson, 1981), the marking function is a primitive
of Petri nets. The state of the system modelled by a Petri net is given by its
marking.

Definition 10. (Petri net marking) The value of the marking function for
every place pi ∈ P is called the marking of the net. This is represented as a
k−vector m = (n1, n2, . . . , nk), where ni = m(pi), the marking of place pi, and
k = |P | is the number of places.

By Definition 10 the state space of a Petri net is the set of markings Nk.
Petri net dynamics are based on a “firing” rule that determines state tran-

sitions, defined in terms of changes in the marking of a net, based on its flow
relation.

Definition 11. (Flow relation) The arc set of a Petri net is defined by the
flow relation F ⊆ (P × T) ∪ (T × P).

Definition 12. (Transition pre-set) The set of places p ∈ P on an arc to a
particular transition t ∈ T is the pre-set of t, denoted Pre(t). In the case that
Pre(t) = ∅ then t may be referred to as a source, or input, transition.

Definition 13. (Transition post-set) The set of places p ∈ P on an arc from
a particular transition t ∈ T is the post-set of t, denoted Post(t). In the case
that Post(t) = ∅ then t may be referred to as a sink, or output, transition.

We will sometimes represent the pre-set of transition t by •t, and the post-
set by t•. A self-loop in a Petri net is a pair of directed arcs, (p, t) from a place
p to a transition t, and (t, p) in the reverse direction.

Arcs (p, t), (t, p) may be labelled with a positive integer weight, denoting a
number of tokens, indicating the “multiplicity” or enabling threshold of the arc.

36

Definition 14. (Transition weight) Weights are assigned to arcs by a map-
ping w from the flow relation F to the set of natural numbers N (that is,
w : F → N).

Note that typically in diagrams of Petri nets only arc weights greater than
one are shown.

A transition may become enabled at some time instant, dependent on the
marking of places in its pre-set.

Definition 15. (Transition enabling) A transition t is said to be enabled at
time u if and only if ∀p ∈ Pre(t).m(u, p) ≥ w(p, t).

An enabled transition may fire at some time instant, updating the marking
of the places in its pre- and post-sets.

Definition 16. (Transition firing) Given a transition t enabled at some time
u that fires at some time v, u < v, the marking is updated as follows: ∀ppre ∈
Pre(t).m(v, ppre) = m(u, ppre)−w(ppre, t), and ∀ppost ∈ Post(t).m(v, ppost) =

m(u, ppost) + w(t, ppost).

Definition 17. (Pure Petri net (David and Alla, 2010)) A self-loop exists
in a Petri net if there is a place p and a transition t such that p ∈ Pre(t) and
p ∈ Post(t). A Petri net without self-loops is called pure, otherwise it is called
impure.

It is often useful to represent a pure Petri net by its equivalent matrix rep-
resentation. In this paper we will represent a matrix using box brackets and
write vectors in transposed form using parentheses, e.g., (1, 0,−1) = [1, 0,−1]

T
.

Definition 18. (Pure Petri net as a matrix) Let P be a set of places and
T a set of transitions. Let the number of places k = |P | and the number of
transitions l = |T |. A pure Petri net can be represented as a tuple 〈P, T,M〉.
The k × l matrix M is the incidence matrix of the graph. The column vectors
of M are the transition, or reaction, vectors of the Petri net. Let 1 ≤ i ≤ k,
1 ≤ j ≤ l. The incidence matrix M can be represented as the set of reaction
vectors {r(t1), r(t2), . . . , r(tl)} where each r(tj) is a column vector, representing
transition tj. An entry (i, j) in the matrix M denotes the net transfer of tokens
at place pi when transition tj fires.

Definition 19. (Reaction vector) For a pure Petri net a transition t is de-
noted by the integer vector r(t) ∈ Z|P | with entries:

r(t)
p =

−w(p, t) if(p, t) ∈ F
w(t, p) if(t, p) ∈ F

0 otherwise

A change in state from markingm tom′ due to the firing of a single transition
t is then given by m+ r(t) = m′. In general, a change from m to m′ may be due
to the firing of a sequence of transitions. Then m′ −m =

∑
r∈M λrr, where M

is the incidence matrix of the Petri net and λr are non-negative integers. This
is sometimes called the fundamental equation of Petri nets.

For a given set of states or markings, S, of a Petri net we can represent the
change between any pair of states by a difference vector.

37

Definition 20. (Difference vector) Let k = |P |, the number of places in a
Petri net. Let dv be a k-vector, the difference vector. Each component dvp of dv

denotes, for place p ∈ P , the state, or marking difference that occurs from time
u to time v, u < v, defined as dvp = m(v, p)−m(u, p).

A bound may be placed on the number of tokens in any marking of a Petri net.

Definition 21. (h-boundedness (David and Alla, 2010)) A place p is
bounded for an initial marking m0 if in any marking reachable from m0 the
number of tokens does not exceed a non-negative integer bound h (p is said to
be h-bounded). A Petri net is bounded for an initial marking m0 if all its places
are bounded for m0 (the Petri net is h-bounded if all its places are h-bounded).

It is standard to ensure boundedness for any implementable Petri net.

Definition 22. (Empty Petri net) An empty, or degenerate, Petri net is
a Petri net with a (possibly empty) set of places and a (possibly empty) set
of transitions and an empty set of arcs. Equivalently, it is a Petri net whose
incidence matrix is zero.

B.2 Extended Petri Nets

Interactions in biological networks such as genetic regulatory networks can be
activating or repressing, and can be combined in regulatory functions where the
effect of a number of input elements is integrated as a function of those inputs
on the gene to be regulated (the target gene). For example, the regulatory
function may be essentially Boolean combinational logic using NOT-, AND and
OR- operators, leading to either activation or inhibition of the expression of
the target gene (Bolouri and Davidson, 2002). However, the pure Petri net
formalism is often not well suited to concise representation of such Boolean
regulatory relations. To aid in this type of modelling two additional arc types
are introduced.

An read or activator arc connects a place p to a transition t such that,
although t is enabled by the marking of p in the usual way, the firing of t does
not change the marking of p. Hence the activator arc acts only as a “test” or
“on-switch” for the transition, “reading” the place marking.

Definition 23. (Transitions with activator arcs) Place p may be connected
to transition t by an activator arc. This is equivalent to a pair of arcs (p, t) and
(t, p) with w(p, t) = w(t, p). Transition t is not enabled unless the marking
m(p) ≥ w(p, t). Since p is in both the pre- and post-sets of t, connected by
arcs with equal weight, when t fires the net effect is to leave the marking of p
unchanged.

Read arcs are in fact syntactic sugar for self-loops, and do not change the
modelling power of Petri nets. However, a Petri net with an inhibitor arc
(p, t), where transition t cannot be enabled unless m(p) < w(p, t), does extend
modelling power, since there is no mechanism in a pure Petri net to check an
unbounded place for zero. Petri nets with inhibitor arcs are called extended
Petri nets (Peterson, 1981).

Definition 24. (Transitions with inhibitor arcs) Place p may be connected
to transition t by an inhibitor arc. Transition t is not enabled unless the marking
m(p) < w(p, t). Firing transition t does not change the marking of p.

38

Definition 25. (Extended Petri net) A Petri net with one or more inhibitor
arcs is called an extended Petri net.

It is typically assumed in extended Petri nets that the weight w(p, t) on
an inhibitor arc is 1 and the transition is enabled only when m(p) = 0, thus
allowing the testing of places for zero tokens. Extended Petri nets are Turing-
equivalent (Peterson, 1981).

B.3 Relation of Logical Guarded Transition Systems to
Petri nets

We now prove some results showing the correspondence of pure and extended
Petri nets to Logical Guarded Transition Systems. The basic idea is to show
that both pure and extended Petri nets can be represented by equivalent Logical
Guarded Transition Systems. By equivalent in these results we mean a form of
extensional or behavioural equivalence, defined below, based on the formalism
of equivalent sets of state transitions. In this sense we will show that: pure Petri
nets are a special case of extended Petri nets; extended Petri nets are a special
case of Logical Guarded Transition Systems; and hence pure Petri nets are also a
special case of Logical Guarded Transition Systems. Although Logical Guarded
Transition Systems cannot have greater expressive power than extended Petri
nets, since the latter are Turing-equivalent, the former may have a more suitable
representation for some modelling tasks.

In the following, let N be a pure Petri net, E be an extended Petri net,
and G be a Logical Guarded Transition System. Without loss of generality, in
this section for all Petri nets and Logical Guarded Transition Systems we fix:
a set of places P , k = |P |, a set of transitions T , l = |T |, and a flow relation
F ⊆ (P × T) ∪ (T × P).

From Definition 10, the state space S is the set of all k-vectors representing
possible place markings. For the comparison of the different formalisms, we
identify three types for places in the pre- and post-sets of each transition.

Definition 26. (Place types) Each place p ∈ P with an arc to a transition
t ∈ T may be assigned a type based on the nature of the arc connecting it to
t. Let P (t) = •t ∪ t•, the set of places connected to t, be represented as a

tuple of disjoint place types, 〈P (t)
P , P

(t)
A , P

(t)
I 〉, as follows: P

(t)
P = {p | (p, t) ∈ F

or (t, p) ∈ F is neither a read nor an inhibitor arc}; P
(t)
A = {p | (p, t) ∈

F is a read arc}; and P
(t)
I = {p | (p, t) ∈ F is an inhibitor arc}. P (t) = P

(t)
P ∪

P
(t)
A ∪ P

(t)
I .

The letters ‘P ’, ‘A’ and ‘I’ indicate ‘pure’, ‘activator’ and ‘inhibitor’. We
now introduce this structure into the state space, distinguishing states of places
representing objects of the system that comprise the pure flow relation from
control elements represented by places with an activatory or inhibitory role.
This is referred to as an extended state space.

Definition 27. (Extended state space) Let the k-vector s ∈ Nk be a state
vector, or Petri net marking (Definition 10). With respect to a transition t,

an extended state s
(t)
X is a tuple 〈s(t)

P , s
(t)
A , s

(t)
I 〉, defined for place p ∈ P (t) as

follows: s
(t)
P = {sp | p ∈ P (t)

P }; s
(t)
A = {sp | p ∈ P (t)

A }; and s
(t)
I = {sp | p ∈ P (t)

I },

39

where sp is the p-th component of s. Let S
(t)
X be the set of all extended states

s
(t)
X for transition t, and the extended state space SX be the union of extended

states S
(t)
X for all transitions t.

Essentially, the extended state space is a restriction to the pre- and post-set
places of a transition of the markings in the system state vector s, partitioned
by place type. Note that this is purely a syntactic construct; it has no effect on
how the model operates, but is useful for comparisons of formalisms in terms of
their behaviours, i.e., their state transitions. Accordingly in the remainder of
this section we will use the terms ‘state’ and ‘extended state’ interchangeably.

From Definitions 15, 16, 23 and 24 it is clear that the change in state due
to the firing of a transition t is dependent only on the change in markings of
the places in the pre- and post-sets of t. From this we obtain the next-state
function, following (Peterson, 1981) but defined in terms of the logical setting
of this section.

Definition 28. (State transition) The next-state function δ : SX × SX →
{TRUE,FALSE } is defined for Petri nets and Logical Guarded Transition Sys-
tems in extended state s1 ∈ SX if there is an enabled transition (Definitions 15,
23 and 24) in s1, otherwise it is undefined. If δ is defined, the transition
fires at some instant (Definitions 16, 23 and 24), the successor extended state
s2 ∈ SX is obtained, and δ(si, sj) = TRUE. In a pure Petri net the transi-
tion is t(s1, s2, r) as in Definition 1. In an extended Petri net the transition
is t(s1, s2, r) as in Definition 3. In a Logical Guarded Transition System the
transition is gt(s1, s2, t, r) as in Definition 5.

It is now straightforward to define the state transition matrix.

Definition 29. (State transition matrix) Let SX be the set of all extended
states. An |SX |× |SX | matrix S can be constructed for any Petri net, or Logical
Guarded Transition System, representing the set of all state transitions δ. Let
si, sj be the i-th and j-th elements, respectively, of SX , 1 ≤ i, j ≤ |SX |. Entry
Si,j is 1 if and only if δ(si, sj) = TRUE, otherwise it is 0.

Without loss of generality, we assume system behaviours can be viewed as se-
quences of transition firings and represented as sequences of states (Peterson,
1981).

Lemma 1. The state transition matrix S is sufficient to represent the set of
behaviours of a system modelled by a Petri net or Logical Guarded Transition
System.
Proof. By induction, it is shown that any state generated as part of a sequence
of states from some initial state by repeated application of the state transition
matrix S will be a reachable state in a Petri net or Logical Guarded Transition
System model. If in any initial state s0 there is an enabled transition then, by
Definitions 28 and 29, there will be an entry S0,1 = 1 in the state transition ma-
trix for any successor state s1 for which the state transition δ(s0, s1) = TRUE.
Hence each such s1 is reachable in the model. Assume that si is a state reachable
from s0 in the model. From si let the set of successor states si+1 be those with
entries Si,i+1 = 1 in the state transition matrix. By Definitions 28 and 29 this
is the set {si+1 | δ(si, si+1) = TRUE}, that is, those in the model for which a
transition enabled in si may fire, and are therefore reachable. This completes
the proof.

40

The next result will be used in each of the main results comparing system models
represented as pure or extended Petri nets and Logical Guarded Transition
Systems.

Theorem 2. (System model equivalence) System models MA and MB are
equivalent if and only if their state transition matrices SA and SB are equivalent.
Proof.
(only-if) MA is equivalent to MB, therefore SA is equivalent to SB. Assume
the opposite, that MA and MB are equivalent but SA is not equivalent to SB.
Therefore, it follows from Definition 29 that there must be some entry SAi,j 6=
SBi,j . That is, either (1) there is a state s that enables a transition in MA that
is not enabled by s in MB, or (2) vice versa, state s enables a transition in MB

that is not enabled by s in MA. In both cases (1) and (2) this contradicts the
assumption, since any transition enabled by state s in MA must be enabled in
MB, and vice versa, since they are equivalent.
(if) SA is equivalent to SB, therefore MA is equivalent to MB. By Lemma 1
the state transition matrix of a system model is a sufficient representation of it,
therefore the claim is proved.
This completes the proof.

We now relate Logical Guarded Transition Systems to pure and extended
Petri nets by applying restrictions to their permitted transitions and showing
that this makes them equivalent. The idea underlying the following results is to
reduce all elements of the extended state space, and hence the state transition
matrix, by eliminating one or more place types, leading to a simpler model class.
It is well-known that extended Petri nets are a generalization of pure Petri nets
— see, for example, (Peterson, 1981). However, for completeness, we first show
that this is also the case in the logical setting.

Theorem 3. For every pure Petri net N there is a corresponding extended Petri
net E such that E is equivalent to N .
Proof. Given a pure Petri net N , construct an extended Petri net E, as fol-
lows. For each transition tN in N , let there be a transition tE in E such that

P
(tE)
P = P

(tN)
P and S

(tE)
P = S

(tN)
P . By construction, since for each transition

tN the associated transition function tN (si, sj , r) = TRUE, si, sj ∈ S
(tN)
P ,

from Definitions 1 and 3 we have that sj − si = r in N and hence also E,

si, sj ∈ S
(tE)
P . A pure Petri net has no activator (Definition 17) or inhibitor

arcs (Definition 25), so we set P
(tE)
A = P

(tN)
A = P

(tE)
I = P

(tN)
I = ∅. By Defini-

tion 3, each transition tE in E has an associated transition function ftE . Since

by construction there are no places in P
(tE)
A or P

(tE)
I for transition tE, the com-

ponent sets s
(tE)
A and s

(tE)
I of each extended state s

(tE)
X are empty. Therefore

by Definition 3 ftE is trivially true. By this method an equivalent transition
function can be constructed in E for every transition function in N . So for
every state si for which a defined state transition δN (si, sj) = TRUE in N , by
the above construction there must be a state transition δE(si, sj) = TRUE in
E. From Definition 29 the corresponding state transition matrix entries SNi,j
(respectively, SEi,j) must be 1, otherwise they are 0. It follows by Theorem 2
that since the state transition matrices are equivalent, E is equivalent to N .

Without loss of generality, we will assume that Logical Guarded Transi-
tion Systems have guard functions (Definition 4) represented only in terms of

41

pre-conditions, invariants and post-conditions defined on extended states (Def-
inition 27).

Theorem 4. For every extended Petri net E there is a corresponding Logical
Guarded Transition System G such that G is equivalent to E.
Proof. Given an extended Petri net E, construct an equivalent Logical Guarded
Transition System G, as follows. For each transition tE in E, let there be a tran-

sition tG in G such that P (tG) = P (tE) and S
(tG)
X = S

(tE)
X . By Definition 6 each

transition constraint (tG, r) in G has an associated guarded transition function
gt. By Definition 5 each gt has an associated guard function g and reaction
vector r. Let the guard function g on transition tG be represented as a set of
pre-conditions, invariants and post-conditions on place types, as follows. For

P
(tG)
P these define the transition enabling and transition firing rules of Defini-

tions 15 and 16, and for P
(tG)
A and P

(tG)
I these define the transition enabling

and transition firing rules of Definitions 23 and 24. Reaction vector r is the

state difference sj − si, si, sj ∈ S(tG)
X . This construction of a guarded transition

function clearly satisfies the requirements for an extended transition function in

Definition 3, and since S
(tG)
X = S

(tE)
X , transition tG in G becomes in this case

equivalent to the corresponding transition tE in E. The remainder of the proof
proceeds as for Theorem 3.

Relating Logical Guarded Transition Systems to pure Petri nets is now straight-
forward.

Corollary 5. For every pure Petri net N there is a corresponding Logical
Guarded Transition System G such that G is equivalent to N .
Proof. For any pure Petri net N , construct an extended Petri net E using the
approach of Theorem 3. Then E is equivalent to N . Now construct a Logical
Guarded Transition System G such that G is equivalent to E using the approach
of Theorem 4. Since G is equivalent to E and E is equivalent to N , G is
equivalent to N .

42

