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Abstract

Process mining is becoming a widely adopted practice. However, when the
underlying process contains multi-instantiation of sub-processes, classical pro-
cess mining techniques that assume a flat process are not directly applicable.
Their application can cause one of two problems: either the mined model is
overly general, allowing arbitrary order and execution frequency of activities
in the sub-process, or it lacks fitness by capturing only single instantiation of
sub-processes. For conformance checking, this results in a too high rate of ei-
ther false positives or false negatives, respectively. In this report, we propose
an extension to well-known process mining techniques, adding the capability of
handling multi-instantiated sub-processes to discovery and conformance check-
ing. We evaluate the approach with two independent data sets taken from
real-world applications.



1 Introduction

Process mining, the act of mining event logs and deriving process artifacts from
them or comparing them with process artifacts, is a very active area of research
and is becoming a widely adopted practice [24]. However, when the underlying
process contains multi-instantiation (MI) in sub-processes, it is not possible to
directly apply classical process mining techniques. Multi-instantiation of sub-
processes refers to several instances of a sub-process being executed concurrently.
The well-known workflow patterns for control flow distinguish several types of
MI, depending on whether the number of concurrent sub-processes is known at
design time, at runtime when entering the MI sub-process part, or completely
unknown a priori [25], emphasizing their importance for process models.

Multi-instantiation can be present for various reasons. For instance, a re-
quest for quotations (RFQ) may be sent to a list of potential suppliers con-
currently. Alternatively, as observed in our own work [28], cloud management
processes may touch on a number of cloud resources in parallel – for example,
when upgrading application software on a large number of virtual machines.
Conceptually, this problem relates to n:m relationships between resources, which
is recently discussed in the context of artifact-centric process mining [4, 19]. In
general, mining such processes entails one of two problems for MI: either the
mined model is overly general, allowing arbitrary order and execution frequency
of activities in the sub-process, or it lacks fitness by capturing only a single in-
stantiation of the sub-process. For conformance checking, this results in a too
high rate of either false positives or false negatives, respectively.

In this report, we propose an extension to well-known process mining tech-
niques, adding the capability of handling multi-instantiated sub-processes to dis-
covery and conformance checking, respectively. To this end, we define strategies
for extracting sub-process identifiers (IDs) and making those explicit in a pre-
processing step to the actual process mining techniques. Having sub-process IDs
allows us to hierarchically discover process models with multi-instantiation of
sub-processes. Similarly, conformance checking can be done on this basis. How-
ever, the extraction of sub-process IDs requires domain expertise, and so does
the encoding of extraction rules; thus, at present, they remain semi-automated
steps. We have evaluated the approach with two independent data sets taken
from real-world applications, namely cloud resource management and student
examination logs. The evaluation reveals the benefits in terms of precision and
fitness against the baseline of standard process mining algorithms.

The remainder of this report is organized as follows. The problem is show-
cased in Section 2. An approach and a formal model are given in Section 3. The
implementation and evaluation are discussed in Section 4. Section 5 contrasts
the work against related work, and Section 6 summarizes the main contributions
and provides an outlook on future work.

2 Motivating Example

In separate work [27, 28], we have analyzed cloud management operations. Here,
we considered the “rolling upgrade” procedure as implemented by the open-
source tool Netflix Asgard, a management tool for cloud resources on Amazon
Web Services (AWS). A rolling upgrade replaces virtual machines (VMs) on
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Figure 2.1: Mined models from rolling upgrade (RU). Left: 4 VMs, 1 at a time,
referred to as RU Simple model from here on. Right: 50 VMs, 5 at a time,
without treatment of multi-instantiated sub-processes, called RU Chaos model
from here on.

AWS, x at a time. Let us assume that an application is running on a total of
n = 20 VMs, and that these VMs were created from an Amazon Machine Image
(AMI), a template that contains all application logic at version k. Adding a
new VM to the application’s cluster can then be done by starting a new VM
from said AMI. This approach is referred to as using heavily-baked images, that
is, for any change – no matter how small – a new AMI is “baked”. Finally this
new AMI, referred to as version k + 1, is rolled out by replacing all running
VMs.

However, in order to maintain full availability of services to users, not all
VMs are replaced at once. Instead, the n VMs running version k are replaced
gradually. This is done by taking x of the n VMs running version k out of
service, replacing them with x VMs running version k+1. Once the x new VMs
with version k+ 1 are ready to accept requests, the procedure is repeated. This
is done until all n VMs have been replaced.

In our previous work [27, 28], we examined the logs produced by Asgard’s
rolling upgrade procedure, (i) to understand the how the process is implemented,
and (ii) to detect deviations from the desired process at runtime, for the purpose
of early error detection.

The left-hand side of Fig. 2.1 shows a mined process model using the Fuzzy
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Figure 3.1: Overview of the multi-instantiation approach

Miner as implemented in Fluxicon Disco.1 The first four activities prepare the
upgrade. The next four activities form a loop, upgrading 4 VMs (n = 4), one at
a time (k = 1). After the 4th iteration, the process completes. The individual
steps to pre-process the log of Asgard so that it can be fed to Disco are described
in detail in [27]. The right-hand side of Fig. 2.1 shows an analogously mined
model, however, in this case from logs where 50 VMs have been upgraded, 5
at a time. As can be seen, the mined process on the right hardly captures the
sequencing at the level of individual instances, but creates a highly-connected
model instead.

Our work on cloud resource management includes online conformance check-
ing [28]. The model on the left-hand side of Fig. 2.1 can be used to that end,
in cases where k = 1. If k > 1, the false positive rate is high and many events
will be deemed unfit. Thus, the fitness of this model is low. In contrast, the
model on the right-hand side will cover almost arbitrary execution traces. It
is thus underfitting the log, and lacks precision. Such trade-offs have been ac-
knowledged before for process mining [24]. The aim of this report is to find a
better balance in case of multiple instances.

3 Handling Multi-Instantiation in Process Min-
ing

In this section we define an approach for handling multiple instances in pro-
cess mining. Section 3.1 gives an overview and Section 3.2 provides formal
definitions. Sections 3.3 to 3.6 define the individual steps of our approach,
i.e., sub-process ID extraction, trace splitting, model merging, and conformance
checking.

3.1 Approach Overview

Fig. 3.1 shows the steps taken to discover hierarchical processes, where low-level
processes are subject to multi-instantiation. For simplicity, we first describe
how to handle the case of one sub-process and one high-level process. Then we
discuss how to generalize from that solution.

The approach assumes as input one or more event traces with annotated
process instance IDs (PI-IDs). The first step is the extraction and annotation
of sub-process instance IDs (SPI-IDs). This is domain-specific, requires expert

1https://fluxicon.com/disco/. Note that all figures from Disco in this report we obtained
by setting the levers for “activities” and “paths” to 100%.
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knowledge, and can generally not be fully automated. The transformation from
the input log or event trace to one that contains SPI-IDs needs to be encoded,
such that it can be applied to all traces with the same input format.

Once the SPI-IDs have been annotated, the event trace can be split into one
trace for the high-level process and traces for the sub-process. Each sub-process
trace contains all events with one SPI-ID. In the high-level trace, each event
with a subprocess instance ID gets replaced with an event whose activity field
is set to a generic term, for example, “sub-process”, while all other attributes
like time stamp and the process instance ID are retained.

Then, standard process mining discovery algorithms can be applied to these
traces, such as the heuristic miner [26] or the fuzzy miner [10]. The results
are two process models: one for the high-level process and one for the sub-
process. The high-level process contains an activity labeled “sub-process”. In
the final merge step of the approach, the respective sub-process model replaces
said activity, as an expanded sub-process with multi-instantiation.

This approach can be generalized into two directions: multiple sub-processes
on the same level, and multiple levels of nesting. In the latter case, it suf-
fices to recursively apply the procedure to the split sub-process trace instead of
standard discovery. In the former case, multiple kinds of sub-processes can be
distinguished, for example, SPI-ID1, SPI-ID2, etc. One assumption is that the
membership in a particular kind of sub-process is exclusive, that is, no event
belongs to multiple sub-processes. The activity name replacement for the high-
level trace during the split step needs to reflect the different kinds, that is, the
activity label becomes “sub-process-1”, “sub-process-2”, etc. Discovery is then
done once per kind of sub-process and once for the high-level process, and the
merge step merges the results by including all sub-process models at the appro-
priate point in the high-level model. In the following, we formally define the
required concepts.

3.2 Formal Definition of Event Traces

We provide compact formal definitions of events and traces, based to a degree
on the definitions in [24, Chapter 4].

Definition 1 Let E be the event universe, that is, the set of all possible event
identifiers, PI be the process instance universe, that is, the set of all possible
process instance identifiers, and A be the set of activity names. We require
equality and inequality to be defined for these sets.

Events are characterized by various attributes. Let AN be a set of attribute
names for events. For an event e ∈ E and attribute name n ∈ AN , #n(e)
denotes the value of attribute name n for event e. If the event e does not have
an attribute named n, then #n(e) = ⊥ (where ⊥ denotes the null value).

For the purpose of our analysis, an event e must have the following attributes:
a timestamp, denoted by #time(e), correspondence to an activity, denoted by
#activity(e) ∈ A, and a pointer to a process instance, denoted by #pi−id(e) ∈
PI. We use the operator ’<’ to compare timestamps, that is, for events e1, e2 ∈
E , #time(e1) < #time(e2) indicates that event e1 happened before event e2.

In contrast to the original definition that groups events into cases [24], we
consider the case or process instance as a mandatory attribute. This allows us
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1. [2014-03-22 16:01:34,557] [Task:Pushing ami-d8b429e8 into group

bpm--ASG for app bpm] com.netflix.asgard.Task 2014-03-22_16:01:34 22:

{Ticket: null} {User: null} {Client: localhost 127.0.0.1}

{Region: us-west-2} [Pushing ami-d8b429e8 into group bpm--ASG for

app bpm] Disabling bpm / i-58ed9d51 in 1 ELBs.

2. [2014-03-22 ... app bpm] Terminate 1 instance [i-58ed9d51]

3. [2014-03-22 ... app bpm] It took 2m 38s for instance i-58ed9d51 to

terminate and be replaced by i-4ed2a247

4. [2014-03-22 ... app bpm] It took 35s for instance i-4ed2a247 to go

from Pending to InService

Figure 3.2: Sample log lines from rolling VM upgrade.

to flexibly re-assign events to cases. Further, the original log entry attribute
#log−entry(e) refers to whatever constitutes the originally logged event. Exam-
ples are a log lines in case of systems producing text-based log files, a database
entry if the system stores its event logs there, or a message sent over a network.

Definition 2 A trace, denoted by σ = [e1, e2, . . . , en], is a finite, non-empty
sequence of events from the event universe E such that σ does not contain an
event e ∈ E more than once, that is ∀ ei, ej ∈ E , i, j ∈ [1, n], i 6= j : ei 6= ej. The
set of all traces for an event universe E is denoted by ΣE .

In the following, we use the abbreviation ei ∈ σ to indicate that the event
ei is part of the trace σ, that is, ∃ ej , j ∈ [1, n] : ei = ej .

3.3 Sub-Process ID Extraction

As mentioned above, the extraction of sub-process IDs is highly application-
-specific. While we rely on a manual definition of the SPI-ID in this report,
automatic techniques such as described in [2, 3] can be used for the subprocess
identification. The result it either way an SPI-ID extraction function φ : E ×
ΣE 7→ SPI ∪ {⊥}, where SPI is the sub-process instance universe, that is, the
set of all possible sub-process instance identifiers. φ requires that the event e is
an event of the trace σ (i.e. e ∈ σ) and is defined as follows:

φ(e, σ) =

{
⊥ if e is not part of the sub-process
spi id otherwise

Please note that if for two events e1, e2 ∈ σ the corresponding sub-process IDs
are equal and not null, that is φ(e1, σ) = φ(e2, σ) 6= ⊥, then the corresponding
process IDs need to be equal as well – i.e. #pi−id(e1) = #pi−id(e2).

Given a sub-process extraction function φ, we can iterate through an event
trace σ and annotate the SPI-ID for each event ei ∈ σ as #spi−id(ei) := φ(ei, σ).
In the running example, rolling upgrade, each sub-process instance deregisters
and terminates exactly one virtual machine. Some sample log lines for one
sub-process instance are given in Fig 3.2. These cover a timespan of around 4
minutes, and many lines in between have been omitted. Also, except for the
timestamps, the first 269 characters are identical for each log line. In order to
improve readability of Fig 2.1, we have only included the full information for
the first line.
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In Line 1, Asgard disables VM i-58ed9d51 in the load balancer. In Line 2,
this VM is terminated (i.e., switched off and removed from the resource pool).
Line 3 informs us that VM i-58ed9d51 has been replaced by VM i-4ed2a247.
Finally, Line 4 tracks the status of VM i-4ed2a247 as it is booting up.

As can be seen, the SPI-ID can initially be set to the name of the VM it con-
cerns, that is, i-58ed9d51. However, once it has been replaced by i-4ed2a247,
each line mentioning VM i-4ed2a247 actually belongs to the sub-process in-
stance of i-58ed9d51 – but i-58ed9d51 is not listed any further. Note that
sub-process instance identification can be quite application-specific and requires
expert knowledge. It also shows why the sub-process instance ID extraction
function φ requires the trace σ as argument: from the event derived from Line
4 alone, the right SPI-ID cannot be derived without that context.

In order to generalize from the case of a single sub-process, it suffices to have
multiple extraction functions, φ1, φ2, . . . , φn with mutual exclusion:

∀ e ∈ E , i ∈ [1, n] : [φi(e, σ) 6= ⊥]⇒ [∀ j ∈ [1, n], i 6= j : φj(e, σ) = ⊥].

The results of these functions are annotated as separate attributes, that is,
#spi−idi

(e) := φi(e, σ). SPI-ID extraction over multiple nested levels of pro-
cesses can be isolated, and hence does not pose additional complexity.

3.4 Trace Splitting

As indicated in Section 3.1, we need to split an event trace into two traces: one
for the high-level process, denoted by σH , and one for the sub-process, denoted
by σS . Furthermore, for each event that belongs to the sub-process, we replace
this event with one labeled “sub-process” in the event trace for the high-level
process, and redefine the set of activity names as A := A ∪ {‘sub-process’}.
This procedure is defined as follows:

For each event ei ∈ σ:

• if #spi−id(ei) = ⊥, add ei to σH ;

• if #spi−id(ei) 6= ⊥:

– generate a new event e′i;

– for all n ∈ AN : #n(e′i) := #n(ei).

– set #pi−id(e′i) := #spi−id(ei);

– set #spi−id(e′i) := ⊥;

– set #activity(ei) :=‘sub-process’;

– add ei to σH and e′i to σS .

The trace σH then contains the events pertaining to the high-level process,
and σS those for the sub-process. The generalization to n different sub-processes
is achieved by generating additional traces σS1 , ..., σSn , similar to σS .

3.5 Discovery and Merging

On the split traces, we perform standard process discovery separately for each
trace. The usual trade-offs in discovery apply here, for example, between preci-
sion, fitness, and generalization. We do not discuss these trade-offs separately
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here, but rather point to standard ways of dealing with them in process min-
ing [24].

Sub-process: Stop and replace instances

Figure 3.3: Discovered process: high-level process (left), sub-process (right),
with association shown by dotted lines. We refer to the combined model as RU
MI model.

For the running example, Fig. 3.3 shows the results of process discovery, for
the high-level process (left) and for the sub-process (right). In the high-level
process, the sub-process shows up as a regular activity. We added the box
around the sub-process, along with the symbol for parallel multi-instantiation
and the lines showing the connection between the two discovered processes.
Merging the process models (not shown) is done by replacing the collapsed
“sub-process” activity in the high-level process with an expanded sub-process,
containing the process model for the sub-process.

3.6 Conformance Checking

Conformance checking tests if a set of event traces fit a given process model, or
vice versa. Say, a conformance checking function γpm : E ×ΣE 7→ {fit,unfit}
is available, where pm refers to a process model without multi-instantiation.
Then conformance checking for process models with sub-processes with multi-
instantiation can be achieved by viewing a sub-process model spm as a regular
activity aspm in the higher-level process model pm.

For each event ei of a trace σ, we do the following. Say ei corresponds to an
activity a. If a belongs to pm directly, conformance is determined as γpm(ei, σ).
If, in contrast, a belongs to the sub-process model spm, then we first construct e′i
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from ei by setting ∀n ∈ AN \{activity} : #n(e′i) := #n(ei) and #activity(e′i) :=
aspm. Then we check γpm(e′i, σ). If that returns fit, we construct e′′i from
ei as ∀ n ∈ AN \ {pi − id} : #n(e′′i ) := #n(ei) and #pi−id(e′′i ) := φ(ei, σ)
(i.e., replace the PI-ID with the SPI-ID). We then check γspm(e′′i , σ), that is,
the conformance on the sub-process level. The multi-instantiation in the sub-
process is thus handled by conformance checking in the same way as multiple
instances of a high-level process are handled: the right instance is identified by
the PI-ID, or in the case of sub-processes by the SPI-ID which has been copied
to #pi−id(e′′i ).

Using this method, nesting of sub-processes can be of arbitrary depth, and
recursive conformance checking on sub-processes can cope with it. However, the
core assumption is that the instance of the respective next-level sub-process can
be derived from the combination of the trace σ and the event ei.

4 Implementation & Evaluation

For our evaluation, we first describe the data sets and the implementation.
Then, we discuss results of discovery and conformance checking.

4.1 Data Sets

The two data sets used for the evaluation are (i) Asgard’s rolling upgrade logs,
and (ii) examination data from a university. Rolling upgrade has been used as
a running example throughout the report, and Fig. 3.2 shows some sample log
lines. What is noteworthy here is the fact that each event corresponds to one
log line. Some log lines may be considered noise for our purposes, and can be
easily filtered out. In this sense, the quality of the logs produced by Asgard is
relatively high: process type and PI-ID can be derived from parts of each log
line, for example, [Task:Pushing ami-d8b429e8 into group bpm--ASG for

app bpm] (corresponding to Line 1 of Fig. 3.2). Details about the abstraction
from individual log lines to the process activities shown in Figs. 2.1 and 3.3 is
described in [27].

The second data set corresponds to anonymized event logs from a university,
and were given in XES (eXtensible Event Stream) format, an XML-based open
standard for storing and tracing event logs.1 The university events record when
students take exams for specific courses. In the second half of the studies, stu-
dents need to select two specializations (SBWLs). Each of the SBWLs consists
of five courses. Exams for these courses can be taken individually (“Kurs” I-V)
or for multiple of the five at once (“Fachprüfung”). Examination rules dictate
that the exam of first course of each SBWL has to be passed before a student
can take any further exams in that SBWL. In contrast to the rolling upgrade
data set, neither noise filtration nor pattern matching were required as XES
provides the traces in a structured format.

4.2 Implementation

We implemented both, SPI-ID extraction and trace splitting, as stand-alone
Java applications. As such, they can be easily integrated into pre-processing

1http://www.xes-standard.org/xesstandarddefinition/
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pipelines to prepare data for process mining, e.g., as described in [27]. For the
university data set, we used OpenXES,2 the reference implementation of the
XES standard.

The SPI-ID extraction is domain-specific, and thus required domain expert
knowledge. This domain knowledge is encoded in Java functions for the re-
spective log types. For the rolling upgrade data, activities belonging to the
sub-process are identified using regular expressions. We also use regular ex-
pressions to identify the IDs of the virtual machines, for example, i-58ed9d51.
Similarly, we extracted the sub-process identifier in the university data set from
the XES field concept:name.

Conformance checking is implemented as a RESTful service, based on the
Restlet framework,3 and forms part of a set of online error detection and diag-
nosis services as described in [28]. The current implementation requires approx.
2,800 lines of Java code and is based on the existing conformance checking
implementation [28]. The extension incorporates the sub-process conformance
checking described in Section 3.6, and adds the capability to accept XES as
input. Making a call to the service from localhost takes on average about 9ms,
hence does not introduce a significant performance overhead.

4.3 Process Discovery Evaluation

Comparison with classical approaches.

In order to assess the suitability of other mining approaches for multi-instantiated
sub-processes, we tried to discover a meaningful model from the rolling upgrade
data using several classical discovery algorithms. Table 4.1 shows that neither
of the classical approaches was able to discover a satisfactory model on the orig-
inal event traces. However, on the traces split by our approach, all of these
algorithms provided perfectly acceptable results (with the exception of Uma,
which was not tested for this case since no simplification of the split models was
needed).

Discussion of discovery results.

The RU MI model as given in Fig. 3.3 was extracted from the first of the 10
rolling upgrade traces. We subsequently ran the sub-process model extraction
on the remaining traces and got the identical model every single time (modulo
some changes in transition frequencies). We performed the same extraction
process without considering multi-instantiated sub-processes in order to get the
RU Chaos model as given in Fig 2.1 (right). Unlike the RU MI model, the
resulting models were not 100% identical, but differed only marginally (e.g.,
edges with only one occurrence were missing in some of the models).

We then ran the model discovery on the SBWL data set. For presentation
purposes, we omit the overall process map in which the sub-process is embedded,
and only show the corresponding SBWL-related models in Fig. 4.1. First, we
filtered the data to obtain SBWL events only. This resulted in 10,590 events
from 1,326 cases (i.e., students). When applying the fuzzy mining in Disco to
this data set, we obtained a very large model – see Fig. 4.1 (a), referred to as

2http://www.xes-standard.org/openxes/start/
3http://restlet.org/
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Discovery algorithm Tool Outcome
α-algorithm ProM 6.3 8 unconnected Petri net parts due

to self-loops. After removing repe-
tition in events, a Petri Net similar
to RU Chaos resulted (9 transitions,
16 places, 35 edges), called α model
below.

Heuristics Miner ProM 6.3 Straight sequence of the 9 activities,
5 with self-loops

Fuzzy Miner Disco 1.6.5 RU Chaos model, Fig. 2.1, right
Simplification with
Uma [5]

ProM 6.3 (Based on the α model, as it re-
quires a Petri Net as input.) Re-
sults vary with parameter settings for
Uma, and range from removing a few
places and edges, to splitting off a
loop of 2 transitions, to removing ev-
erything but the start place.

Table 4.1: Results of classical approaches for discovering models from rolling
upgrade logs.

SBWL full– with 107 different activities. In order to obtain a fairer comparison
with our MI approach, we then abstracted from the specialization of each exam.
Furthermore, for purposes of conformance checking (see next section), we split
the events for SBWL course I into passed and failed ones. Discovery on this
transformed log resulted in a much more compact model, with only 7 activities
(SBWL course I passed or failed, SBWL courses II - V and SBWL combined
exam) – refer to Fig. 4.1 (b), called SBWL abstracted from here on. Finally, we
took the filtered data set, split SBWL course I into pass/fail again, and applied
our MI approach of SPI-ID extraction and trace splitting, which resulted in
Fig. 4.1 (c), SBWL MI.

Rolling Upgrade SBWL
Metric Simple Chaos MI Full Abstracted MI
Number of nodes 11 11 14 109 9 9
Number of edges 15 24 17 2818 62 50

Table 4.2: Graph metrics for the different models.

Table 4.2 quantifies the discovery results in terms of numbers of nodes and
edges. In comparison with SBWL abstracted, the SBWL MI model has less
edges. This is due to the fact that only transitions for the same specialization
are shown, whereas SBWL abstracted also contains transitions across different
specializations. Further, close inspection of the numbers reveal that in SBWL
MI transitions from the start node to SBWL course I (passed or failed) are
more common than in SBWL abstracted – which means that adherence to the
rule of passing that course before proceeding to other exams in an SBWL is
likely easier to observe in the SBWL MI model. Conformance checking will
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Figure 4.1: Discovered process from the SBWL data set: (a) only SBWL events,
without further treatment; (b) SBWL events abstracted, without MI treatment;
(c) SBWL events with MI treatment.
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shed more light on this distinction.

4.4 Conformance Checking Evaluation

Analyzing the conformance of logs against discovered models has two purposes:
to validate if the approach to conformance checking in MI models works, and
to assess the quality of the discovered models.

Rolling upgrade.

In order to validate the conformance checking with MI treatment, we conducted
two experiments on the rolling upgrade data set. Our hypothesis is that, by not
considering MI, either the mined model is overly general, allowing arbitrary
order and execution frequency of activities in the sub-process, or it lacks fitness
by capturing only single instantiation of sub-processes.

Actual
c n

Classified as
c TP FP
n FN TN

Model
Log Metric Simple Chaos MI
Correct log TPR 44.8% 100% 100%

FNR 55.2% 0% 0%
Erroneous log TPR 7.57%% 24.8% 24.8%

TNR 75.2% 0% 75.2%
FPR 0% 75.2% 0%
FNR 17.2% 0% 0%

Table 4.3: Top: result classification (c: conforming; n: non-conforming). Bot-
tom: conformance checking results for two logs and three models (false classifi-
cation in bold, rows containing only “0%” values omitted).

Table 4.3 provides an overview of the results. The left part serves as an
explanation of how the results on the right were calculated – e.g., if an event
is actually conforming (left column) and classified as conforming (top row) it
is considered to be a true positive (TP). Similarly, if an event is actually non-
conforming but classified as conforming, this is a false positive (FP). The table
on the right uses rates of these measures, e.g., TPR is the true-positives rate
(number of TP events divided by total number of events in the log).

First, we compared conformance of a correct MI log (Table 4.3 right, “Cor-
rect log”) when checked against the three rolling upgrade models. The data
used was the rolling upgrade of 50 VMs, 5 at a time, from 10 runs. As to be
expected, the 6033 events in this data set conform 100% to the RU MI model
(Fig. 3.3). This demonstrates that the approach to conformance checking in
MI models works in principle. The log also conforms perfectly with the RU
Chaos model (Fig. 2.1, right). In contrast, when checking the conformance of
this log against the RU Simple model (Fig. 2.1, left), an average fitness of 44.8%
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resulted. The log only contains conforming events, the remaining 55.2% thus
are false negatives.

To test the case where the model is overly general, we modified the rolling
upgrade data set with some degree of randomness (Table 4.3 right, “Erroneous
log”), so that it still perfectly conforms with the RU Chaos model. In particular,
in the RU Chaos model the four activities of the sub-process (“Remove and
deregister...”, “Terminate old instance”, “Wait for ASG...”, and “New instance
ready...”) are fully connected. With respect to these four activities, this model
has only two constraints on a trace of corresponding events: the trace has to start
the sub-process with “Remove and deregister...”, and has to end it with “New
instance ready...”. We modified the 10 traces to adhere to these constraints,
but reordered all events in between arbitrarily (using Microsoft Excel’s random
number generator). Note that the timestamps of the reordered events were kept
in the original order. By construction, the conformance of this modified log with
RU Chaos model is 100%. We then checked the conformance of the modified
log against the RU Simple model and the RU MI model. The average fitness
of the erroneous log against the RU MI model is 24.8%, that is, the introduced
random reshuffling resulted in 75.2% of the events being non-conforming. Since
the RU Chaos model classifies these 75.2% as conforming, they are actually
FP. The RU Simple model detected the non-conforming events correctly, but
classified an additional 17.2% as non-conforming – these are false negatives.

This demonstrates that our approach to MI treatment in both discovery
and conformance checking can overcome the weaknesses of both baseline alter-
natives, that is, assuming single instantiation or assuming arbitrary order. As
hypothesized, single instantiation can result in many false negatives, whereas
arbitrary order can result in many false positives.

University data.

The process of studying to obtain a degree at most universities is highly flex-
ible, human-driven, and many of its constraints cannot be expressed as flow
constraints in the models. Examples for such constraints involve combinations
of grades, times, and groups of exams passed (not taken). These constraints are
strictly enforced by the information system of the university, but do not lend
themselves naturally to conformance checking.

One exception for the SBWLs in the university data set is the aforementioned
rule that Course I must be successfully passed before other exams in that SBWL
can be taken. As can be seen from Fig. 4.1 (c), this rule is not always followed.
The reasons are two-fold: in some cases the rule is simply not enforced; in others,
students obtain an exemption from that rule from the responsible lecturer.

In order to perform conformance checking, we needed to have a normative
model, i.e., a process model that shows the permitted process. Conformance of
each event trace can then be checked against that model. For simplicity, we
designed the model shown in Fig. 4.2. This model implements the mentioned
rule, but is overly general otherwise, such that e.g., the same exam can be taken
infinitely often.

In contrast to the rolling upgrade data, where we compared the suitability of
three different models through conformance checking, here we compare confor-
mance checking with two different input filters: abstraction-only (as in SBWL
abstracted, Fig. 4.1 (b)) vs. splitting the traces based on our MI approach (as
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Figure 4.2: Normative process model for SBWL.

in SBWL MI, Fig. 4.1 (c)). Table 4.4 shows the results, where it is important
to note that the percentages are aggregated into traces (not events). On an
individual event basis, the average fitness rates are 92.6% (abstraction-only)
vs. 96.7% (MI). As can be observed from the table, the false negative rate of
abstraction-only is 37.6%, which is prohibitively high for many use cases. In
contrast, the MI approach can separate the different specializations, and clearly
identify where students did not adhere to the rule.

Input filter
Log Metric Abstraction-only MI
University data TPR 45.6% 83.1%

TNR 16.8% 16.8%
FNR 37.6% 0%

Table 4.4: Conformance checking results for the University data set.

5 Related Work

This work relates to the research area that aims to improve the understanding
of process mining results. In general, it can be subdivided into abstraction tech-
niques that work on the logs, techniques that work with dependencies between
artifacts, and techniques that abstract resulting process models.

One of the first approaches towards clustering sets of events has been defined
in [8, 9, 10]. This work builds on the observation that events are often more
fine-granular than activities on a business level, and therefore clusters should be
treated as a whole. This idea is closely related to the concept of a subprocess.
Further approaches for clustering correlated events extend this line of research
in various directions. In this context, various techniques are used for deleting
insignificant behaviour, e.g. in terms of event classes [13] and event relation-
ships [11]. Clustering criteria are extended based on statistics [14], temporal
proximity [23], attribute values [20], and text content [1]. Domain-specific re-
finements for source code are discussed in [15]. Model hierarchies are generated
based on clustering traces of similar behavior by the approach of [7]. However,

14



non of these approaches explicitly deals with multiple instantiation tasks.
The research stream on artifact-centric process mining deals with the ap-

propriate handling of the underlying relationships of artifacts that relate to a
business process. On the other hand, this entails the automatic identification of
potentially n:m relationships between artifacts and related events. This prob-
lem is known in process mining for a while, e.g. [6]. It has been tackled more
generally in database research in [2] and adapted to event logs in [3]. Our work
shares the idea with artifact-centric mining that a decomposition of log data
helps to apply classical techniques on subsets of the log [4, 19]. As our logs do
not stem from autonomous artifacts, we can build on a simpler conceptual model
as compared to the Proclets approach in [4]. Also, we report evaluations with
real-world data, emphasizing the importance of MI decomposition for accurate
conformance checking.

A complementary stream of research investigates opportunities for abstract-
ing process models, which might have resulted from process mining. One promi-
nent approach here is to use structural decomposition and to abstract, for in-
stance, using a slider technique [17, 18]. Also abstractions based on textual
content [12, 21] and behavioral abstractions have been investigated [22]. A dif-
ferent approach in contrast to abstraction is to rework the process model to be
more structured [16]. All these approaches work on process models in general.
A specific technique to post-process overly complex mined models is presented
in [5]. It makes use of unfoldings and filtering. We tested if this or other
approaches could provide meaningful results on our data – see Table 4.1.

Altogether, our research complements prior work on mining processes with
n:m artifact relationships with a specific approach to handle multiple instan-
tiation, and highlights the sensitivity of conformance towards an appropriate
identification of MI subprocesses.

6 Conclusions and Future Work

In this report, we have addressed the problem of dealing with multiple instan-
tiation of sub-process in process mining. Our contribution is an approach for
making use of sub-process instance IDs to hierarchically mine event logs. To
this end, we have defined procedures for annotating and splitting traces, apply-
ing mining on them separately, and integrating the results. Furthermore, we
have described how conformance checking can be adapted to multi-instantiated
sub-processes. The approach has been implemented and evaluated using log
data from cloud management and student examinations. The results from our
evaluation demonstrate that our approach of extracting multiple instantiation
of sub-processes effectively overcomes weaknesses of classical approaches with
regards to process discovery and conformance checking, respectively.

In future research, we aim to investigate opportunities for automating those
steps that are currently semi-automated in our approach. In particular, the
automatic extraction – or at least suggestion – of potential sub-process instance
IDs might benefit from techniques from data mining. Furthermore, we plan to
integrate our prototype into ProM in order to enable its dynamic combination
with different techniques for mining the separated processes.
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