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Abstract

Airborne relaying has great potential to extend the coverage of wireless sensor
network (WSN), relaying sensed data from remote, human-unfriendly terrains.
However, the challenges of lossy airborne relaying channels and short lifetime
arise, due to the high mobility and limited battery capacity of unmanned aerial
vehicles (UAVs). We propose an energy-efficient relaying scheme which is able
to overcome the lossy channels and extend the lifetime of cooperative UAVs
substantially. The key idea is to employ a swarm of UAVs to listen to a remote
sensor from distributed locations, thereby improving packet reception over lossy
channels. UAVs report their reception qualities to the base station, which then
schedules UAVs’ forwarding with guaranteed success rates and balanced energy
consumption. Such scheduling is a NP-hard binary integer programming prob-
lem and intractable in WSNs where there can be a large number of packets. We
develop a practical suboptimal solution by decoupling the processes of energy
balancing and modulation selection. The decoupled processes are carried out in
an alternating manner, achieving fast convergence. Simulation results confirm
that our method is indistinguishably close to the NP-hard optimal solution in
terms of network yield (throughput). Meanwhile, the complexity of our method
is significantly lower by orders of magnitude. Simulations also reveal that our
scheme can save energy by 50%, increase network yield by 15%, and extend
network lifetime by 33%, compared to existing greedy algorithms.



1 Introduction

Airborne relaying has great potential to extend the coverage of wireless sensor
networks (WSN) to remote, human-unfriendly terrains, such as battlefields and
bushfires [21]. It also has important applications to monitoring chemical clouds
[27], precision agriculture [25], disaster management [20], as well as rescue op-
erations [5]. The widespread availability of unmanned aerial vehicles (UAVs)
such as Aerosonde, Quadrocopter, etc. has also contributed to their popularity
as mobile relays and data sinks [15, 14].

Figure 1.1 illustrates a typical application scenario of airborne relaying,
where a number of sensor nodes are deployed in remote areas to collect critical
environmental data, for example, temperature changes for bushfire monitoring
purpose. However, the radio path between the source node, i.e., the remote
sensor, and the data processing center, i.e., the data collecting base station
(BS), is obstructed; hence the radio signal is too weak to be detected at the
data processing center. In this case, a swarm of UAVs can be employed to fly
over the source and the destination, establishing a multi-hop wireless relaying
transmission link.

Figure 1.1: Airborne relaying networks using cooperative UAVs. The source
node can be deployed to sense the environment as a sensor or collecting data
from neighbor nodes as a cluster head in WSN.

Several critical challenges arise in such a UAV-assisted relaying network.
First, the wireless channels between the ground nodes (i.e., sensors and BS)
and the aerial relays are highly dynamic and prone to packet loss [4]. The
impact of this is especially severe over the first hop from the sensor to the
UAVs, as the sensor typically does not have capabilities of foreknowing the
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variation of channel conditions to adapt its transmissions. At one moment, a
UAV may receive excellent signals from the sensor because they are close. At
the next instance, the quality of this link may deteriorate significantly as the
UAV flies away from the sensor. Another critical challenge arises from the fact
that a UAV has limited battery capacity. Data collection would be frequently
interrupted, because the UAV needs to be recharged. The use of multiple UAVs,
each of which takes responsibility of forwarding part of the sensed data, can
relieve this problem to some extent [22]. However, in this case, the problem of
distributing the packet load amongst the relay nodes while ensuring a balanced
energy drain amongst the UAVs is non-trivial, particularly, given the uncertain
channel dynamics. To the best of our knowledge, no existing work has proposed
a solution that addresses this critical issue.

In this paper, we propose an energy-efficient cooperative relaying scheme,
which is able to overcome the lossy channels, and substantially extend the life-
time of cooperative UAVs. The key idea is to employ a swarm of UAVs to serve
as relay network for collecting data from a remote sensor, thereby improving
packet recovery over lossy channels. In our scheme, the UAVs report their recep-
tion qualities to the base station, which then schedules UAVs’ forwarding with
a high chance of success and balanced energy consumption among the UAVs.
We note that calculating such an optimal schedule is a NP-hard binary integer
programming problem, which makes it intractable in our context setting, since
typically a large number of packets are transmitted by the sensor nodes over
their lifetime [13, 18]. We develop a practical suboptimal solution by decoupling
the processes of energy balancing and modulation selection. The decoupled pro-
cesses are carried out in an alternating manner. Moreover, our proposed scheme
achieves fast convergence.

Simulation results confirm that our suboptimal scheduling method is able
to perform indistinguishably close to the NP-hard optimal solution in terms
of network yield (throughput). Meanwhile, the complexity of our suboptimal
method is dramatically lower, e.g., by three orders of magnitude in the case of
five cooperative UAVs. Moreover, our suboptimal method is able to instantly
schedule tens of cooperative UAVs. In contrast, the optimal solution can barely
support five UAVs in real time. Simulations also reveal that the proposed co-
operative UAV relaying scheme can save energy of the relaying nodes by 50%
on average and extend network lifetime by 33%, compared to existing greedy
algorithms. Our scheme is also 15% better in terms of network yield.

Extensive simulations have been carried out to investigate several practical
issues that are relevant to the design of airborne relaying networks. They reveal
that the cooperation of UAVs (to be specific, the number of cooperative UAVs)
and the flight trajectory are important to the network lifetime. Specifically, the
lifetime grows linearly with the number of UAVs but at a slower pace. This
is because the improved network yield that stems from the increased number
of UAVs incurs additional energy costs. The lifetime can also be extended by
carefully designing the trajectory of UAVs. A flying range of 1

3 between the
sensor and the BS can leverage the packet loss over the first hop and the energy
consumption over the second hop, achieving the longest network lifetime.

This paper makes the following contributions:

• For an airborne relaying network, we model a novel energy-balancing
packet load allocation problem by using Min-Max optimization to pro-
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long the network lifetime.

• A novel Energy-balancing Packet Load Allocation (EPLA) algorithm that
we propose balances the energy consumption among the UAV swarm. It
approximates the performance of the optimal packet load solution with a
significantly reduced complexity.

• We conduct extensive simulations to analyze the performance of the EPLA.
Furthermore, by utilizing different UAVs flight trajectory, we evaluate how
the number of UAVs and the variance of flight path affect the performance
of packet load schedules.

The rest of the paper is organized as follows. Section 2 covers related work
on UAV-based relaying and the issue of energy efficient scheduling in particu-
lar. Section 3 introduces the system model that is used in the rest of the paper.
In Section 4, we propose a communication protocol and formulate the energy
balancing packet load scheduling optimization problem. Furthermore, the sub-
optimal solution, EPLA algorithm is presented. The simulation and evaluation
are shown in Section 5. Finally, we conclude the paper and present the future
work in Section 6.

2 Related Work

In this section, existing cooperative relaying techniques are reviewed with a
particular emphasis on energy saving.

Many existing works focus on a delay-tolerant scenario where mobile sinks
patrol a number of static sensor nodes and collect data [23, 16]. Patrol paths of
the sinks were designed to improve the energy efficiency and lifetime of the WSN.
However, these works assume that the sinks have unlimited battery. These
schemes can not be directly applied to many real-time applications, such as
disaster management and rescue operations.

In [1], Abdulla et al. formulated a potential game between a number of
on-ground sensor nodes and a single UAV to maximize the energy efficiency of
the sensors’ transmissions. Unfortunately, the uniqueness of Nash Equilibrium
(NE) is not evaluated in the formulated potential game. The authors point out
that the game may converge to and stay at a local optimum NE. As a result,
the energy efficiency degrades.

In [26] and [6], the authors focus on placement of cooperative UAV relays for
ensuring connectivity and high throughput in mobile ad hoc networks. How-
ever, the proposed algorithms assume that the UAVs have unlimited battery
capacities, which is unrealistic.

In [11, 9], a Hive-Drone model was developed in airborne relaying networks,
where a centralized charging station, hive, is placed in the sensing field to
recharge the UAVs (i.e., drones). The UAVs collect and carry data from the
sensing field to the hive. Flying paths of the UAVs were designed to reduce
information gathering latency. Unfortunately, the Hive-Drone model is inappli-
cable to human-unfriendly environments, such as battlefield and bushfire, where
the cables required to feed energy to the hive cannot be deployed. In addition,
the latency resulting from the data gathering process may be intolerable in
real-time applications.
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In our previous work [18], we proposed a scheduling optimization to maxi-
mize data harvesting in a bats monitoring sensor network with energy and link
quality constraints. However, the scenario under consideration is very different,
since the mobile nodes are responsible for sensing and not relaying. Moreover,
the transmit power of the mobile nodes is not adjustable due to the application
limitations. In this work, the transmit power of the UAV relays can be adjusted
according to variations in the channel conditions. Further, we maximize the
energy-efficiency of the cooperative UAVs so as to extend the network lifetime.

3 System Model

In this paper, we consider a network which has one source node, NR number
of UAVs and one BS (see Figure 1.1). Without generality, we focus on a sin-
gle sensor node. However, our model and proposed algorithm can be readily
extended to general scenarios where multiple sensors are involved. The swarm
of NR UAVs serve as airborne relays for forwarding packets from the source to
the BS. The UAVs fly along a pre-determined trajectory between the source
node and the BS such that each UAV is always in the communication range of
the source node and the BS. In our previous work [2], we characterized the link
behavior of air-to-ground and ground-to-air links with UAVs hovering at a fixed
location using empirical measurements. While these results are insightful they
cannot be directly applied in this work as the UAVs are mobile which in turn
significantly impacts the channel conditions.

Let MR denote the total number of data packets transmitted by the source
node. Let Si denote the number of packets successfully received by UAV i.
Note that Si ≤MR depending on the channel condition of the link between the
source node and UAV i. The path loss of the source-UAV channel at time t can
be approximated as free-space path loss [10] and is given by,

L(dsrc,i(t)) = K1d
K2
src,i(t), (3.1)

where K2 indicates the path loss component. dsrc,i(t) is the distance between
the source node and UAV i at time t. K1 is denoted by

K1 =
(4π)2

GtxGrxλ20
, (3.2)

where Gtx and Grx are the antenna gains of the transmitter and receiver, re-
spectively. λ0 = c/f0, which is a ratio of speed of light c and carrier frequency
f0. We define Signal-to-Noise ratio (SNR) between the source node and UAV i
at time t as γ′i(t). Given an additive white Gaussian noise (AWGN) with power
N0,

γ′i(t) =
|}|2P txsrc

N0L(dsrc,i(t))
, (3.3)

where P txsrc denotes the transmit power of the source node. The small-scale
fading is indicated by }. Then, the average SNR for UAV i is calculated by

γ′i(t) =
P txsrc

K1N0d
K2
src,i(t)

. (3.4)
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In this paper, we derive the packet error probability of the first hop channel
(i.e. the source node-UAV link) based on its outage probability, which provides
the lower bound of the packet error probability under an assumption of ideal
coding and modulation. For illustration purpose, Rayleigh Block fading is con-
sidered [24]. The channel coefficient remains constant within each block, and
varies between blocks. At time t, the outage probability at UAV i is given by

Pr(γ′i(t) < γ0) =

∫ γ0

0

p(γ′i(t))d(γ′i(t)) = 1− exp(
γ0
γ′i(t)

), (3.5)

where γ0 is the SNR threshold required for successful reception at the UAV.
Substitute Equation 3.4 into Equation 3.5. The packet error probability at

UAV i can be given by

Prsrc,i(t) = 1− exp(−Ksrc · dK2
src,i(t)), (3.6)

Ksrc =
K1N0γ0
P txsrc

. (3.7)

It is worth mentioning that other fading channels or specific modulation
and coding methods can also be considered for the first hop. The cooperative
relaying scheme that we propose in this paper is general, and it is applicable to
any channels, or modulation and coding methods.

Note that the source node maintains its transmit power to be P txsrc at the
first hop so that the operations at the source is kept simple. At the second
hop, UAVs are scheduled to offload their received data packets to the BS (will
be presented in Section 4.1). The transmit power of UAVs is varied according
the adaptive modulation and coding (AMC) rate [19]. This is because the BS is
able to schedule UAVs in real-time based on their reception qualities on the first
hop. AMC rates can be adaptively determined for each UAV to ensure timely
delivery of data packets. Consider Rayleigh fading channels with path loss that
is related to the distance between each UAV and the BS [29]. At time t, the
channels Hi(t) from UAV i to the BS is given by

Hi(t) =
λHi(t− 1) +

√
1− λ2 · ni

(di,bs(t))αi
, (3.8)

where di,bs(t) indicates the distance between UAV i and the BS at time t. ni
is a Gaussian random number generated by AWGN. αi is the path-loss expo-
nent. Due to the movement of UAVs, the channel presented here consists of two
components, namely, an autocorrelated component which relies on the previous
channel condition, and an independent component which is independent of pre-
vious channels. A coefficient λ is considered to adjust the weights of the two
components. Moreover, λ decreases with the growth of the speed of UAVs.

Similar to the first hop, we define the SNR of the second hop as γi(t),

γi(t) = Hi(t)
Γi(t)

N0
, (3.9)

where Γi(t) indicates minimum transmit power of UAV i at time t.
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4 Packet Load Scheduling for UAVs

In this section, we first propose a cooperative relaying protocol which is able
to improve the end-to-end delivery of the sensing data. We then formulate the
optimal scheduling problem, which extends the network lifetime by balancing
the energy consumption of UAVs. Noting the problem is a NP-hard integer pro-
gramming and intractable in real-time applications, we develop a low-complexity
algorithm which can very closely match the optimal strategy in terms of network
throughput. Our algorithm can be operated in real-time, where a large number
of packets need to be scheduled and forwarded in a timely manner.

4.1 Relaying Protocol of Cooperative UAVs

In this paper, we propose a cooperative relaying protocol in which multiple
UAVs relay the sensing data to the remote BS. The number of UAVs involved is
critical to the packet loss and lifetime of the UAVs, as will be shown in Section 5.
Figure 4.1 illustrates the protocol that we propose to enable multiple UAVs to
collaboratively forward packets from the source to the BS. In the protocol, the
source node broadcasts its sensing data to the cooperative UAVs. The number
of packets received by UAV i is denoted by |Si| (i ∈ [1, NR]). Then, UAVs use
their pilot channels to notify BS their reception qualities of the packets. To be
specific, each UAV reports the indices to its successfully decoded packets which
are used for packet load scheduling algorithm (as will be discussed in Section
4.3). Moreover, the BS is able to measure γi(t) for every UAV. Based on the
UAVs’ report and the measurement results, the BS schedules packet load for
every UAV, and also determine the associated AMC rates. After the execution
of packet load scheduling algorithm, the BS sends the scheduling results to the
UAVs. For each UAV, |si| (0 ≤ |si| ≤ |Si|) packets are transmitted to the
BS according to the schedules where si denotes the set of data packets that
UAV i is scheduled to transmit. Since the transmissions of UAVs to the BS
are scheduled, repeated transmission of the same packet from multiple UAVs is
avoided. Namely, si ∩ si−1 = ∅ with s0 = ∅. This ensures the limited energy of
UAVs to be effectively utilized to forward packets.

A small amount of overhead is required in this protocol. For the reception
quality report shown in Figure 4.1, each UAV can use one bit to indicate its re-
ception quality of a packet, “1” for successful reception and “0” for unsuccessful
reception. Consider a case where the source node sends 128 data packets. Each
UAV needs to transmit a report of 16 bytes. For the packet of scheduling results
that the BS broadcasts to the UAVs, shown in Figure 4.1, one selected UAV’s
ID is attached to every data packet. For example, given 8 relaying UAVs and
128 data packets from the source node, the packet of scheduling results has 48
bytes in total.

4.2 Problem Formulation

Based on Equation 3.9, the instantaneous bit error rate (BER) εi for UAV i is
approximated by [8]

εi ≈ κ1 exp

[
−κ2γi(t)Γi(t)

2ρi − κ3

]
, (4.1)
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Figure 4.1: The communication protocol.

where κ1 and κ2 are two constants relating to the channel, and κ3 is a real
constant. ρi denotes a finite set of AMC modes for UAV i and the highest
mode is denoted by ρM . Furthermore, εi is limited by the system requirement
ε, namely, εi ≤ ε, i ∈ [1, NR]. According to [12], to fulfill the BER requirement,
we have

Γi(t) =
κ−12 ln(κ1

ε ) · (2ρi − 1)

γi(t)
. (4.2)

The only variable in Equation 4.2 is ρi since different AMC modes require
different transmit power. So it can be written as

Γi(t) = δi(t) · (2ρi − 1), (4.3)

where δi(t) =
κ−1
2 ln(

κ1
ε )

γi(t)
.

Given the modulation level ρi and the packet size Lsip , the energy that UAV
i is consumed to forward packets si is given by

π(si, ρi, t) = Lsip · δi(t) ·
(2ρi − 1)

ρi
. (4.4)

We consider that all the packets that the source node sends are of the same size
in length. Therefore, we can suppress the superscript of Lsip in the rest of the
paper.

We can formulate the optimization problem of scheduling packets to balance
energy consumption between UAVs. Specifically, the goal of the optimization
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is to minimize the largest energy consumption of all the UAVs, given that the
UAVs may have received different subsets of the packets the source node sent.
The formulation is provided as follows.

min
xi,s,ρi

{
max

i∈[1,NR]

∑
s∈Si

ρM∑
ρi=1

xi,s,ρi · δi(t) ·
2ρi − 1

ρi

}
(4.5)

subject to :

ρM∑
ρi=1

[
xi,s,ρiΓi(t)

]
≤ Pmax, ∀s ∈ Si (4.6)

ρM∑
ρi=1

xi,s,ρi ≤ 1, ∀s ∈ Si (4.7)

∑
i∈{j:s∈Sj}

ρM∑
ρi=1

xi,s,ρi = 1, ∀s ∈
NR⋃
i=1

Si (4.8)

∑
i∈{j:s∈Sj}

∑
s∈Si

ρM∑
ρi=1

xi,s,ρi
ρi

≤ T

Lp
(4.9)

where the binary variables xi,s,ρi that are to be optimized are the indicator that
UAV i is allocated to forward packet s ∈ Si using ρi ∈ [1, ρM ], Pmax is the
maximum transmit power of a UAV, and T is the duration of a timeslot for all
the UAVs to forward packets.

Constraint (4.7) states that any data packet can only be forwarded by one
AMC mode of a UAV. Constraint (4.8) guarantees that each of the packets that
have been correctly received by the UAVs is forwarded by one of the UAVs that
have correctly received the packet. Any two UAVs can not transmit the same
packet. Constraint (4.9) ensures all the UAVs complete forwarding packets in
the scheduled timeslot of T , where

∑
i∈{j:s∈Sj}

∑
s∈Si

∑ρM
ρi=1

xi,s,ρi
ρi

is the time
required for the UAVs to forward their correctly received packets.

To solve this Min-Max optimization problem, we can further reformulate it
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to a set of minimization problems. Specifically, for UAV i, we minimize

min
xi,s,ρi

{∑
s∈Si

ρM∑
ρi=1

xi,s,ρi · δi(t) ·
2ρi − 1

ρi

}
(4.10)

s.t. :

ρM∑
ρi=1

[
xi,s,ρiΓi(t)

]
≤ Pmax, ∀s ∈ Si

ρM∑
ρi=1

xi,s,ρi ≤ 1, ∀s ∈ Si

∑
i∈{j:s∈Sj}

ρM∑
ρi=1

xi,s,ρi = 1, ∀s ∈
NR⋃
i=1

Si

∑
i∈{j:s∈Sj}

∑
s∈Si

ρM∑
ρi=1

xi,s,ρi
ρi

≤ T

Lp∑
s∈Si

ρM∑
ρi=1

(
xi,s,ρi · δi(t) ·

2ρi − 1

ρi

)
≥
∑
s∈Sj

ρM∑
ρj=1

(
xj,s,ρj · δj(t) ·

2ρj − 1

ρj

)
, ∀j 6= i (4.11)

where the maximization of the original Min-Max problem is avoided by includ-
ing (NR − 1) new auxiliary constraints, as given by (4.11). The new minimiza-
tion problem now becomes solvable, using standard optimization tools, e.g., the
MATLAB bintprog function.

Note that the minimization problem needs to be solved with respect to each
of the NR UAVs. Their results are compared, and the one associated with
the least energy consumption is taken. Unfortunately, the problem is a NP-
hard integer programming. Solving NR such problems require prohibitively
high computational complexity. On the other hand, it is typical that a large
number of packets are generated in WSNs. This would lead to an exponentially
increased complexity for solving the NP-hard integer programming. For these
reasons, optimal solutions to balancing energy consumption are intractable in
practice, and cannot meet the real-time requirement of the system.

4.3 Proposed EPLA Heuristic

We proceed to propose a practical, sub-optimal solution to the energy bal-
ancing packet scheduling problem, since the optimal solutions are intractable
and have limited value in practice, as discussed earlier. Details are provided in
Algorithm 1.

In the proposed EPLA algorithm, we sort the UAVs by their energy con-
sumptions in a descending order. The ith UAV in the ordered sequence is
indexed by `(i) (see Step 12). Next, we reduce the biggest difference of energy
consumption between the UAVs by reassigning some packets from the UAV
that would consume the most energy to the one that would consume the least,
given that these packets have been correctly received by both of the UAVs (as
described in Steps 13 and 14). We repeatedly do this, until the difference of
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Algorithm 1 EPLA Algorithm

1: Initialize ρi = 1.

2: Sort all UAVs by
κ−1
2 ln(

κ1
ε )

γi
in ascending order.

3: while EPLA is not completed do
4: for i = [1, NR] do

5: if
κ−1
2 ln(

κ1
ε )·(2ρ`(i)−1)
γ`(i)(t)

≤ Pmax then

6: Schedule UAV `(i) to transmit the data packets which have not been
allocated.

7: else
8: The γ`(i)(t) is too small, UAV `(i) is not scheduled to transmit.
9: end if

10: end for
11: while |π(s`′(i), ρ`′(i), t)− π(s`′(j), ρ`′(j), t)| is minimized do

12: Sort UAVs by
[
|s`′(i)| · δ`′(i)(t) · (2

ρ
`′(i)−1)
ρ`′(i)

]
in descending order.

13: UAV i has largest π(s`′(i), ρ`′(i), t) and UAV j has smallest one.
14: Allocate packet load from s`′(i) to s`′(j).
15: end while
16: if

∑NR
i=1

|s`′(i)|
ρ`′(i)

≤ T
Lp

then

17: EPLA is completed.
18: break
19: else

20: Sort UAVs by
|s`′(i)|(2

ρ
`′(i)−1)

ρ`′(i)
in descending order, `′(i) has the largest

value.
21: ρ`′(i) ← ρ`′(i) + 1.
22: end if
23: end while

energy consumption stops decreasing; see Step 11. We then assess the time re-
quired for all the UAVs to complete forwarding, i.e., Constraint (4.9); see Step
16. If the time constraint cannot be met, we increase the AMC rate of one
of the UAVs that requires the least energy of all the UAVs, as shown in Steps
20 and 21; and then repeat reducing the difference of energy consumption, as
described above. If the time constraint is satisfied, the algorithm terminates.

Figure 4.2 illustrates the proposed scheduling algorithm, where the two pro-
cesses of energy balancing and modulation adjusting interact with each other.
The convergence of the algorithm is demonstrated. Specifically, in the energy
balancing process, the algorithm recursively reduces the energy consumption
difference between any pair of UAVs, given the modulation of every UAV. As
indicated by the red dash arrows, the largest difference of energy consumption
is reduced by rescheduling some of the packets from the most energy-consuming
UAV to the least energy-consuming UAV. The requirement of transmit time
may increase. This is due to the fact that the energy efficiency is higher un-
der better channel conditions. Our algorithm is designed to maximize energy
efficiency, and therefore the UAVs with better channels are assigned with more
packets whenever possible. The UAVs that consume more energy have better
channels than the other UAVs. UAVs with worse channels utilize lower modu-
lation orders. As a result, the required transmit time grows, and the constraint
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Figure 4.2: Pictorial illustration of the proposed algorithm, where the left box
describes the energy balancing process given the modulation of every UAV; the
right box shows increasing the modulation to fit into the available transmit time.
The area of each grey block indicates the energy consumption of a UAV.

of the totally available transmit time may be violated.
The modulation adjusting process is carried out to address the violation of

the transmit time constraint. As shown in the right-hand side of the figure, we
pick up one of the UAVs and increase its modulation order. The UAV is chosen
to require the least extra energy.

Clearly, the modulation adjustment results in a growth of the overall energy
consumption, since the transmit power of the selected UAV increases exponen-
tially while its required transmit time decreases just linearly. In other words,
the overall energy budget is increased. A new round of energy balancing is
then carried out to balance the energy consumption, given the increased energy
budget.

The convergence of the proposed algorithm is obvious, because it gradually
increases the energy budget until the constraint of the transmit time is met and
the difference of energy consumption between any pair of UAVs is minimized.

5 Simulation Evaluation

In this section, we evaluate the performance of the EPLA. We also investigate
the impact of cooperative UAVs setup (i.e., number, flying pattern, trajectory)
on the proposed algorithm. Interesting findings will be discussed.
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Table 5.1: Configuration of Simulations
Parameters Values

Number of source node 1
Number of BS 1

hUAV 50m
λ0 0.125m
Lp 32 bytes
MR 100 packets
Pmax 5W
N0 3.98 x 10−12W
NR [1,20]
ε 0.5%
κ1 0.2
κ2 3
K2 2.5
γ0 3dB
Gtx 1dB
Grx 1dB

5.1 Simulation Model and Parameters

We first study the performance of EPLA for different network sizes. The max-
imum number of UAVs is 20. The detailed system-level simulation parameters
are shown in Table 5.1. Considering a cooperative fire surveillance scenario
[3, 7], the flight path of UAVs is modeled as a circle between the source node
and BS. The path length of each UAV is 2πr. The UAVs are uniformly dis-
tributed on the circular trajectory between the source and BS. While we use
the fire surveillance application as a case study of UAVs flight, the EPLA opti-
mization and algorithm are application-agnostic and hence applicable to a wide
variety of large-scale UAV relay networks. The distance between the source
node and BS is 2km and all the UAVs fly at the same speed which is 10m/s.
The wireless links between the source node and UAVs, UAVs and the BS are
modeled by block fading channels. Hence, the channel gain γi and γ′i are not
stable during the period of packet load scheduling.

Denote the initial energy of any UAV i as Ei(0). There are two key perfor-
mance metrics analyzed, i.e., network yield, and network energy consumption
(NEC). The simulation duration is indicated by T and Ei(T ) is the remain-
ing energy of UAV i at the end of simulation. Therefore, NEC is measured
by
∑NR
i=1(Ei(0) − Ei(T )), which is the energy consumption of all relay UAVs.

According to [28], network yield is calculated by

Network Yield =
the number of pkts received by BS

MR
(5.1)

Moreover, to see how much EPLA affects network lifetime, we also perform
additional simulations where the source node keeps transmitting data to the
BS. Specifically, since the data transmission will stop only when all relay UAVs
die, the network lifetime is defined as a time span until all the relay nodes run
out of their energy Ei(0).
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We also perform EPLA with different UAV’s trajectories to evaluate the
impact of our proposed scheduling algorithm on the network lifetime. In the
trajectory test, the trajectories of UAVs that we consider are a set of concentric
circles. The center of circular trajectories is fixed at the middle point between
the source and the BS. The radius of the circular trajectory r changes from
200m to 1000m as shown in Figure 5.1.

Figure 5.1: The top view of circular trajectory with different radius r. NR = 8.

For comparison purpose, we also simulate three other generic packet load
scheduling algorithms that are suitable in our context setting. The first one,
referred to as “Low Transmission Power (Low TxPower)”, is a greedy algorithm,
where the packet load scheduling is based solely on the Γi(t) [18]. Lower Γi(t)
implies that the UAV i has a higher γi. Hence, the UAV with higher Γi(t) is
assigned more packet load and the one with lower Γi(t) transmits less packets.
The second algorithm, referred to as “Average Allocation”, is a non-adaptive
strategy that schedules an equal number of packets to all UAV relays. Finally,
the last benchmarking strategy is referred to as “Random Allocation” in which
the packet load to each relay is randomly assigned.

13



Table 5.2: Comparison of runtime, where the variance is calculated based on 5
runs.

UAVs Optimal Schedules EPLA
mean variance mean variance

1 0.56s 0.000022 0.039s 0.000015
2 19.06s 1.6291 0.0438s 0.000013
3 42.6540s 0.5993 0.0477s 0.000039
4 50.0191s 12.4113 0.0507s 0.000019
5 129.1360s 147.9916 0.0664s 0.00003

5.2 Comparison To Optimal Packet Schedules

Figure 5.2 compares our proposed EPLA algorithm, i.e., Algorithm 1, with the
optimal strategy, the results for which are obtained by solving the optimization
problem in Section 4 using MATLAB BINTPROG program. Two cases are
considered. In the first case, the first hop reception quality is based on the
distance and channel between the source and UAVs, as described in Section
5.1. Observe that, the network yield achieved by EPLA is fairly close to that
of the optimal scheme. In particular, the performance of two schemes converge
as the number of relays NR increases. Note that, even in the worst case, the
performance of EPLA is only 5% lower than that of the optimal scheme.

The second case we consider is that the first hop is ideal. In other words,
no packet loss is experienced at this hop. We can see EPLA has very similar
network yield to optimal scheme. Specifically, the difference is smaller than 3%.
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Figure 5.2: Comparison of network yield. The error bar shows the standard
deviation over 5 runs.

Note that in Figures 5.2, the simulation results are based on 5 independent
runs. Moreover, we only consider a network with up to 5 UAVs. The reason
for the small-scale nature of these experiments is due to the prohibitive com-
putational complexity that is required for solving the optimization problem in
MATLAB BINTPROG program. Our MATLAB simulations are implemented
using a 2.7 GHz Intel core processor with 8 GB of memory. Moreover, observed
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by Table 5.2, the runtime of the optimal scheme is increased significantly while
increasing NR. However, the variance of runtime of EPLA is less than 0.02
second. Specifically, when NR = 5, EPLA is 2mins faster than the optimal
scheme. Thus, our heuristic is much more efficient than the optimal scheme on
runtime and can be directly applied to the real-time applications.

5.3 Network Yield and Energy Consumption

Figure 5.3 shows the network yield of the aforementioned four packet load
scheduling algorithms. When the number of UAVs is small, they provide similar
performance of network yield. As the number of relays NR increases, so does
the network yield since more UAVs cooperate with each other to forward data.
However, observe that our proposed EPLA algorithm achieves significantly bet-
ter performance, more so with higher NR. Specifically, our algorithm achieves
15%, 30% and 38% higher network yield when NR = 20. The network yield is
improved by EPLA since the packets transmitted by the UAV with large δi has
higher reception probability than the one with low δi.
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Figure 5.3: Comparison of network yield with different packet scheduling algo-
rithms. The error bar shows the standard deviation over 100 runs.

Figure 5.4 compares the four algorithms based on NEC. Generally, greater
the number of UAVs in the network, lower is the NEC, since the UAVs with
smaller Γi(t) relay more data. When NR = 1, the NEC is the highest since there
is only one relay node. The four algorithms have the same performance since
the packet load scheduling is effective only when NR > 1. Specifically, EPLA
saves 50%, 75% and 78% more energy than TxPower, Average and Random
allocations. The reason is, for EPLA, most of the packets are scheduled to
the UAVs with small Γi(t), which decreasing the energy consumption of the
network.
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Figure 5.4: Comparison of NEC with different packet scheduling algorithms.
The error bar shows the standard deviation over 100 runs.

5.4 Network Lifetime

Figure 5.5 illustrates the impact of the number of UAVs on the network lifetime
given that the source node keeps transmitting data packets and the battery
capacity of each UAV is around 80J . We can see that the network lifetime is
extended by increasing the NR. The graph readily suggests that EPLA achieves
significantly better performance than the other algorithms. Particularly, when
NR = 20, our proposed algorithm allows the cooperative UAVs to have a longer
lifetime than the Low TxPower algorithm by 33%, the Average Allocation by
60% and 66.7% longer than the Random Allocation. The reason is that the
energy consumptions of UAVs are balanced by adjusting the number of packets
that each UAV is to forward and that the modulation the UAV is to use. Par-
ticularly, our algorithm requires the UAVs with better channels over the second
hop to forward more packets, such that the energy can be most efficiently used.
It also balances the energy consumption among UAVs by adjusting their modu-
lations, such that the lifetime of the entire UAV swarm can be extended. In the
figure, we also see that the network life of our proposed algorithm grows much
faster with the increase of the number of cooperative UAVs, compared to the
lifetime of the other three algorithms. Specifically, when NR is smaller than 4,
there is no much difference on the performances of four algorithms. When NR
= 20, the network lifetime with EPLA is 8mins longer than the Low TxPower
scheduling.

5.5 Guideline for UAVs Trajectories Design

Figure 5.6 plots the network lifetime with respect to the radius of the circular
trajectory of UAVs, where NR = 10. The center of the circular trajectories is the
halfway point between the source node and BS, as illustrated in Figure 5.1. We
can see the network achieves the longest lifetime when r is around 600 meters.
That is because this is the case where the packet error on the first hop and
the channel gain on the second hop are leveraged, thereby achieving the best
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Figure 5.5: The performance of network lifetime with different packet scheduling
algorithms. The error bar shows the standard deviation over 100 runs.

end-to-end performance on both two hops. For EPLA, it allocates the packet
load from the UAVs with large Γi(t) to the ones with small Γi(t). When r is
about 600m, energy consumption of UAVs has minimum value which is higher
than Low TxPower algorithm for 400 seconds. Whereas r is smaller or larger
than 600m, the lifetime goes down as most of UAVs has large Γi(t) due to the
fading on two hops.
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Figure 5.6: The performance of network lifetime with different packet scheduling
algorithms. The error bar shows the standard deviation over 100 runs.
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6 Conclusion and Future Work

In this paper, we proposed an energy-efficient relaying scheme which can extend
the lifetime of cooperative UAVs in human-unfriendly environments. An NP-
hard optimization problem was formulated to guarantee packet success rates and
balance energy consumption. A practical suboptimal solution was developed
by decoupling energy balancing and modulation selection. Simulation results
confirm that our suboptimal method can reduce the computational complexity
by three orders of magnitude with negligible degradation of network yield and
lifetime, compared to the NP-hard optimal solution. It is also revealed that
our scheme can save energy by 50%, increase network yield by 15%, and extend
network lifetime by 33%, compared to existing greedy algorithms. As a future
direction of this study, we plan to build a testbed and start the UAVs flight
test. More UAV trajectories will be investigated in our experiment. To increase
communication range of the UAV, a hybrid antenna for the UAV as we proposed
in previous work [17] will be combined with EPLA algorithm.
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