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Abstract

Object detection, classification and manipulation are some of the capabilities required by

autonomous robots. The main steps in object recognition and object classification are: seg-

mentation, feature extraction, object representation and learning. To address the problem of

learning object classification using multi-view range data, we use a relational approach. The

first step is to decompose a scene into shape primitives such as planes. A set of higher-level,

relational features is extracted from the segmented regions. Thus, features are presented in

three different levels: single region features, pair-region relationships and features of all

regions forming an object instance. The extracted features are represented as predicates

in Horn clause logic. Positive and negative examples are produced for learning by the la-

belling and training facilities developed in this research. Inductive Logic Programming

(ILP) is used to learn relational concepts from instances taken by a depth camera. As a

result, a human-readable representation for each object class is created. The methods devel-

oped in this research have been evaluated in experiments on data captured from a real robot

designed for urban search and rescue, as well as on standard data sets. The results show that

ILP is successful in recognising objects encountered by a robot and are competitive with

the other state-of-the-art methods.

In this report, we provide details of this plane-based object categorisation using rela-

tional learning, including the details of the developed segmentation method for producing

high-quality planar segments used for learning object classes, implementation of features

extraction, and specification needed for learning. We also perform some experiments to

evaluate the new features and compare our method with a state-of-the-art non-relational

object classifier.



1 Introduction

There are many applications that require machines with abilities close to those of human

efficiency and consistency in understanding, interpreting and representing the world [1, 2].

Many industries, including agriculture, healthcare, medicine, mining, construction, virtual

reality, entertainment, aviation and defence, make use of robots and artificial intelligence.

The potential benefits of these technologies have a considerable impact on industry and the

community by avoiding dangerous situations for humans by assigning parts of a task to a

machine. Such a machine must be able to understand its environment and the semantics

of complex objects, considering sub-parts and the functions of objects. The robot may be

required to detect the existence of objects, recognise them and avoid or manipulate them.

The current research is motivated by urban search and rescue (USAR), where a team of

robots is sent to a disaster site. These robots are expected to navigate the site autonomously

and, using captured data, find significant features, recognise and classify objects like vic-

tims, floors, walls and furniture. The scene might include some data that do not belong to

the object of interest (cluttering) or a part of an object surface might be absent due to occlu-

sion [3]. The robots are designed to return a human readable, annotated map [4] showing

their findings such as recognised objects [5, 6, 7, 8, 9], and especially, to locate victims and

to report their condition [10].

The focus of our research is to use machine learning to build an object classifier for an

autonomous robot in an urban search and rescue operation. Time of flight sensors, such as

laser range finders, radar and sonar, are often used to obtain 3D data for mobile robotics

applications, producing data in the form of a polygonal mesh and point cloud [11, 4, 12].

Therefore, 3D range images, or their corresponding point clouds, which represent a partial

view of the environment, are assumed to be the primitive input.

3D depth cameras, such as the Microsoft Xbox Kinect, are now widely used because

they provide both range and video images and their cost is much reduced compared with

previous generations of similar cameras. In a range image, each pixel’s value represents

the distance of the sensor to the surface of an object in a scene from a specific viewpoint

[13, 14]. This can be used to infer the shape of the object [15]. The Kinect, also incorporates

a colour video camera but in this research, we only use the depth information for object

recognition as colour calibration under different lighting conditions is problematic [1]. A

range image can be transformed into a set of 3D coordinates for each pixel, producing a

point cloud. Figure 1.1 shows a range image of a staircase with four steps, taken by a robot

positioned in front of the staircase. In this grey scale image, the darker colour represents

closer surfaces. For clarity, a colour-mapped version is also presented. The figure also

includes front and top views for the same point cloud. The point cloud has been segmented

into planes that are identified by unique colours. A range image only provides a partial view

of a scene, since it is taken from one viewpoint. Constructing a complete 3D point cloud

for an object requires multiple views.

In our early work [16, 17, 18], we extracted planes from the 3D point cloud based on

a region growing plane segmentation algorithm [16] and used them as primitives for object

categorisation. Planes are useful in built environments, including urban search and rescue
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Figure 1.1: Range image and its correspondent point cloud (coloured) from front and top
view

for identifying floors, walls, staircases, ramps and other terrain that the robot is likely to

encounter. Modelling a scene from planar patches are used in computer vision, robotics

and augmented reality [19]. For example, it has been used for scene understanding [20,

21], localisation [22] and 3D virtual reconstruction of the environment [23]. In this report,

we provide details of implementation of the plane segmentation method, feature extraction

and configuration for the ILP system used for the learning. Also, we add new features

and perform new experiments to evaluate them. In the following sections, we describe

the details of segmentation method, the features for extraction, the learning algorithm and

the additional experimental results that demonstrate the utility of this approach. We also

provide more detail of the system architecture and implementation.

2 The Overall Architecture

The overall system architecture can be decomposed into three general functions:

1. Data gathering: This covers different methods to obtain input images for the system.

2. Pre-processing, feature extraction and labelling: This is mostly performed by the GUI

implemented for this research and the configuration files.

3. Learning and evaluation: This is performed outside of the GUI and is controlled by

shell scripts that invoke external programs, including ALEPH [24].

Figure 2.1 illustrates the method. Note that there are some alternative labelling scenarios.

In one case, the user can label the result of segmentation to form an object. In the second

case, it is assumed that the input point cloud includes just one object and all segmented

regions form the object. Therefore, automatic labelling is possible if the name of the object

for a batch of data is provided. The output of labelling is a set of examples for each object

class. For learning and evaluation, the examples are split into training and test sets by using

10-fold cross-validation in our experiments.

The Platform

All programs have been implemented on Ubuntu 12.04. For some experiments, we augment

the software infrastructure developed by Team CASualty for controlling rescue robots. This

has two main components: ‘robotserv’ runs on the robot, performing the time-critical tasks

for control and perception. ‘robotgui’ runs on a base station, providing an operator interface

and also performs compute-intensive tasks, such as simultaneous localisation and mapping.
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Figure 2.1: Experimental setup in this research
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Figure 2.2: An overview of Team CASualty’s platform and its communication channels

Both components are configured by an XML file, which specifies which sub-systems are to

be used and their settings. Figure 2.2 shows an overview of this platform and its communi-

cation channels.

We will provide more related details later in Section 8. Next five sections focus on seg-

mentation, feature extraction and representation, the language specification used for learn-

ing and new experiments for evaluation.
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Figure 3.1: Illustration of plane segmentation steps and its communication with others

3 Segmentation

We use the plane as the primitive for describing objects, where an object is considered to be

composed of a set of planes derived from a point cloud. To find these planes, each point’s

normal vector is calculated and used to segment the point cloud. That is, neighbouring

points are clustered by the similarity of their normal vectors. A schematic view of the use

of plane segmentation is shown as Figure 3.1. Figure 1.1 shows an example of planes found

using this method.

3.1 Range Image to Point Cloud

A range image can be transformed into a set of points in 3D space, producing a 3D point

cloud [25]. Figure 3.2 shows the corresponding point cloud for Figure 1.1. Because using

just one view, such as the front view (Figure 3.2a) is ambiguous, the other views of the same

point cloud are also shown. Some points in this point cloud are removed because they are

far away, such as the points in the yellow region of the colour-mapped version in Figure 1.1.

After this conversion, an ordered (or structured) point cloud is available. Due to the

2D nature of the range image, the neighbourhood of each point in the ordered point cloud

can be easily and quickly found. This fact has a great impact on the preprocessing speed.

However, it should not be considered a limitation. Many algorithms create a neighbourhood

structure when the point cloud is unordered. Therefore, the input is not be limited by range

images. Any point cloud representing a partial view of an object can be used similarly.

A point cloud can be produced by converting a range image into a set of 3D points. Each

pixel in a range image has a 2D coordinate (X,Y) and a depth value, d. The pixels must be

projected onto a 3D (X, Y, Z) coordinate system in the robot’s frame of reference. We use

a routine provided by Team CASualty [26, 27, 28] in their CASrobot software libraries

created for RoboCup Rescue. Lai et al. [29] also provide a MATLAB code1 for the same

purpose.

1http://www.cs.washington.edu/rgbd-dataset/software/depthToCloud.m
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(a) Front view (b) Top view

(c) Left view (d) Right view

Figure 3.2: Corresponding point cloud for range image captured by SwissRanger SR3000
positioned in front of a staircase with four steps (Figure 1.1)

3.2 Plane Segmentation Algorithm

We developed a region growing plane segmentation algorithm in our early work [16] that

did not include using a distance threshold. In this report, we update that algorithm and

add the distance threshold criterion. The main idea of this region growing algorithm is

that neighbouring points with similar normal vector values can form a region and will be

represented as a plane. The method starts with a point and traverses the other points through

the neighbourhood structure. To decide if the point can be added to the planar surface, it

must satisfy the planar surface criteria, given below.

We have used the below values for input variables:

min_neighbour_num = 4

base_update_step = 8

num_initial_points = 16

θ = 15◦−20◦

The region growing criteria determine when to add a point to a region. Our algorithm is

based on using neighbouring points to grow the region. This is where the distance threshold,

δ , can be used to decide whether a point is too far away to be accepted as a neighbour for a

point. If a point is not too far, it can be included in the not visited neighbours list, candidates,

as shown in the algorithm.
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Algorithm 1 Region growing plane segmentation algorithm using normal vectors

Input: PointCloud
Input: min_neighbour_num > 0
Input: base_update_step > 0
Input: num_initial_points > 0
Input: min_region_size // minimum region size
Input: θ // angle threshold
Input: δ // distance threshold
Input: angle_m f < 1 // angle modifying factor
Input: normal vector f or all points in PointCloud

1: R←{} // output: Regions
2: for all p in the PointCloud do
3: if p is visited∨ p is re jected then
4: continue
5: else if number_o f _usable_neighbour(p)< min_neighbour_num then
6: continue
7: end if
8: CR← p
9: Base_normal← get_normal_vector(p)

10: candidates← get_not_visited_neighbours(p,δ )
11: for all q in candidates do
12: if Size(CR)< num_initial_points∨mod(Size(CR),base_update_step) = 0 then
13: Base_normal← get_average_normal_vectors(CR)
14: end if
15: current_angle← get_angle(Base_normal,get_normal_vector(q))
16: accepted← false
17: if Size(CR)< num_initial_points then
18: if current_angle < θ then
19: accepted← true
20: end if
21: else if current_angle < θ ∗angle_m f then
22: accepted← true
23: end if
24: if accepted then
25: CR←CR∪q
26: set_visited(q)
27: candidates← candidates∪get_not_visited_neighbours(q,δ )
28: end if
29: end for
30: if Size(CR)> min_region_size then
31: set_ f inal_normal_vector(CR)
32: R← R∪CR

33: end if
34: end for
35: return R
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(a) Colour version, the area having sim-
ilar normals are highlighted

(b) Normals are represented by RGB
colour

Figure 3.3: The top side of box and the ground have similar normal vectors

(a) Colour version; the area having sim-
ilar normals are highlighted

(b) Normals are represented by RGB
colour

Figure 3.4: Another example when part of the two object surfaces have similar normal
vectors

3.2.1 Calculating the Distance Threshold

In this section we explain how this threshold can be calculated. Since the segmentation

algorithm uses a point’s neighbours for growing the region, there is a chance that a neigh-

bouring point might have a normal vector close to the current point, even though it belongs

to another region. This may occur on edges because of the sensor’s point of view as shown

in Figures 3.3 and 3.4. For both figures, we have provided a colour version of the scene,

highlighting the area which such issue has happened. Also a point cloud version of the

scene is provided when the RGB colour of each point is formed by the normal vector of the

point. Figure 3.3 shows such situation for a top surface of a box and the ground, while Fig-

ure 3.4 illustrates the same for two situations where a side of a box and the wall are having

parallel normal vectors and also another wall has parallel normal vector with one side of a

wooden stick. A distance threshold may avoid such points, having parallel normals, but are

too distant, however, it is difficult to define too far or too distant.

Turk and Levoy [30] suggest a method for building a triangular mesh from a range

image using a distance threshold. If a point is too far from another point, no edge connects

them in the mesh. Range points are flattened by not including depth information, which

is using X,Y values and ignoring Z values. Next, the maximum distance between adjacent

range points, s, is determined. Finally, the distance threshold, 4s, is defined. The idea is

shown in Figure 3.5.
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Figure 3.5: Illustration of the idea for setting distance threshold to build a mesh from range
points

[30]

Although this thresholding mechanism does not work on our data, the same idea can

be applied to another statistical component. We do not flatten the range data, instead, the

minimum distance between each point and its adjacent neighbours is calculated. Next, the

average of these minimum values, s, is found. Similar to the above method, 4s is used as

the distance threshold.

Figures 3.6 and 3.7 show some instances of segmentation with and without using dis-

tance thresholds. The front view of segmentation with bounding convex hulls and oriented

bounding boxes is shown in the first figure. The top surface of one of the boxes is merged

with the ground as one planar surface when the distance criterion is not used. Incorporating

the distance criterion avoids this problem and better bounding for the related regions can be

achieved. A similar situation occurs in Figure 3.7. Here, the front and top views are shown

for the convex hull for regions and the oriented bounding boxes from the front view. We

compared segmentation, with and without the distance threshold, for 105 images containing

stairs. The segmentation of 69 images are improved and become closer to human manual

segmentation when employing the distance threshold.

3.2.2 Setting Minimum Region Size

Another parameter is used in this algorithm, that is the minimum region size. If the size of

a region, which is the number of points belonging to that region, is less than a threshold,

the region is rejected. It is important to set this threshold based on the range camera used

for capturing data. For this purpose, a comparable parameter such as camera density is

determined, which represents the relative number of pixels due to the camera’s field of

view. We defined the camera density for SwissRanger SR3000 as 3.5, while it is 10.0 for

Kinect and ASUS Xtion. Using this value, one minimum region size set for the SwissRanger

SR3000 can be set for another camera such as the Kinect by using the ratio of their camera

densities. Since the fields of view of the available cameras are given to the system, all

modules can set these parameters simply by specifying the camera that was used to capture

the image. Another factor to be considered is the sampling rate used to reduce the number

of points in the point cloud for faster processing.
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(a) Colour version of the scene

(b) Front view, bounding convex hull, without and with using distance threshold

(c) Front view, oriented bounding box, without and with using distance threshold

Figure 3.6: Boxes in a scene, the effect of using distance threshold

To calculate an appropriate minimum region size, we use min_region_size_base as the

base number of points for a range image taken by SwissRanger SR3000. This number

is scaled down in respect to the sub-sampling rate used. This threshold is also scaled by

the corresponding camera density. For example, we used 175 as the base value for planar

objects in various experiments.

4 Feature Extraction

We have used the plane as the primitives for describing objects, where an object is consid-

ered to be composed of a set of these primitives derived from a point cloud. The point cloud

is represented by a set of features extracted from these regions and by relationships between

regions. These features and relations include: the attributes of each individual region, the

relationships between every pair of regions, and features based on an aggregation of the

regions. After extracting these features, sets of regions are labelled according to the class to

which they belong. The ALEPH ILP system [24] is used to build a classifier for each class,

where objects belonging to that class are considered positive examples and all other objects

are treated as negative examples.
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(a) Colour version of the scene

(b) Front view, bounding convex hull, without and with using distance threshold

(c) Top view, bounding convex hull, without and with using distance threshold

(d) Front view, oriented bounding box, without and with using distance threshold

Figure 3.7: Bookcase in a scene, the effect of using distance threshold
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(a) Diameter (b) Width

Figure 4.1: Features of a convex hull

4.1 Single Region Features

4.1.1 Normal Vector:

The mass and normal vector of a planar region are the average of the points belonging to the

plane and the average of their normal vectors, respectively. The normal vector is represented

by its spherical coordinates (θ and φ ) [31], where θ is defined as zero when x=y=0. The

normal vector is normalised, so ρ = 1 for all cases.

4.1.2 Region Boundary

The boundary of a planar region can be represented by a convex hull [32]. For example,

Tsai et al. [33] used convex hulls to form boundaries of planes. There are many convex

hull algorithms [34, 35, 36, 37]. The method employed in this research is a modification

of the Andrew’s algorithm [38]. From the convex hull, two more features can be extracted:

the diameter of the convex hull and the width of the convex hull. The former is the distance

between two points on the convex hull that are furthest away [39]. The latter can be defined

as the distance between two parallel lines containing the convex hull [40]. The width and

diameter for a convex hull are illustrated in Figure 4.1. Calculating the ratio between these

two features, another scale-invariant feature, convex_ratio, can be created. Some algorithms

[40, 41, 39] are described for finding the diameter and width of a convex hull. We use the

source code2 provided by Schneider and Eberly [42] that implements rotating calipers [41].

Since we are using range data and the point cloud does not show the whole 3D object

shape, it is sufficient to find a 2D convex hull. The 2D convex hull algorithm introduced by

Andrew [38] serves as a starting point. To fit a convex hull around a region, its points must

be projected onto a 2D space. This is performed by projecting the region onto the smallest

dimension of its oriented bounding box. After fitting the convex hull, it is projected back to

3D coordinates.

4.1.3 Bounding Box and Region Distribution

An additional feature is how a region is distributed. One way to calculate this is by using

the bounding box and calculating the length of its three axes. By determining the difference

between the maximum and minimum values of a region’s point coordinates (4x, 4y and

4z) and comparing them, we decide along which axis the plane is distributed the most.

2http://www.geometrictools.com/LibMathematics/Containment/Wm5ContMinBox2.cpp
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Another feature set consists of the ratios between each pair of the above values (4x
4y , 4y

4z and
4x
4z ), which is robust to scaling. These attributes are in the sensor’s frame of reference and

since they are not object-centred, rotating the object might affect them.

4.1.4 Oriented Bounding Box

Since region distribution does not consider orientation, it is useful to create an oriented

bounding box for each region and to use its properties in the object description. To fit an

oriented bounding box to each region, we use the method presented by Gottschalk [43] and

implemented by Gregson [44].

Similar to 4x, 4y and 4z, three values 4di can be determined, which show how the

region is distributed along the oriented bounding box axes (where 4d1 ≥ 4d2 ≥ 4d3).

However, of interest are the ratios 4d1
4d2

, 4d2
4d3

and 4d1
4d3

. Since the oriented bounding box

is robust to rotation, these ratios benefit from this robustness in addition to their scale-

invariance.

Figure 4.2 shows the RGB-colour version of the scene, bounding boxes and oriented

bounding boxes after the planar segmentation. Each region is represented by a different

colour using the provided colour legend. In contrast to bounding boxes that are not object

centred, oriented bounding boxes are object centred and can provide features that are invari-

ant to transformation such as rotation. Since oriented bounding boxes were a later addition

to our research, both feature sets are used separately in various experiments. Thus, bounding

box features are introduced first, and are later replaced by oriented bounding boxes.

4.2 Region Relationships

The relationships between shape primitives describe the structure of an object and can be

used to find similarities between instances of object classes. Thus, after finding segments

and calculating their individual properties, relationships are constructed between each pair

of primitives. These are in the form of how the regions are located with respect to each

other and how their individual features can be compared.

4.2.1 Angle Between Two Regions

The angle between two regions is the angle between their normal vectors.

4.2.2 3D Spatial Relationship

Another relationship is based on binary topological [45] and spatial [46, 47] relationships

such as the directional relationship [48, 49] that describes how two planes are located with

respect to each other. For example, as shown in Figure 4.3, rectangle b is located on the east

side of rectangle a, from the perspective of one 2D view. To find this direction between two

rectangles, the line that connects both centres is used. The line that connects the centres of

a and b is closer to the east axis defined on the centre of rectangle a. Thus, we say that b is

east of a. This definition can be easily extended to other directions, north-east, north-west,

south-west and south-east. Note that this relation is view dependent.
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(a) Colour legend

(b) Pitch/roll ramp

(c) Stairs

(d) Stairs

(e) Kinect box on the table

Figure 4.2: RGB-colour image (left), bounding boxes (middle) and oriented bounding boxes
(right) for some selected objects. Each region is represented by a different colour using the
provided colour legend.
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Figure 4.3: Example of spatial arrangement for four rectangles a, b, c and d

A further relationship is when two rectangles share partial edges or one rectangle covers

the other. In this figure, rectangle a covers c, while rectangles b and c are connected. Also

rectangle d covers all rectangles a, b and c.

This concept is defined for 2D space and requires some modification to be used for 3D

space. Several researches have studied this kind of relationship. Borrmann et al. [50] define

3D spatial data types and their operators and devise a spatial query language. Berretti and

Del Bimbo [51] propose a modelling technique for 3D spatial relationship, while Zlatanova

et al. [52] give an overview of models for 3D topology. Ellul and Haklay [53] identify the

requirements for 3D spatial relationships and Chen and Schneider [54] discuss this 2D to 3D

generalisation and propose a neighbourhood configuration model to encode the topological

relationship. We chose to test a simpler approach in this research. In Figure 1.1, two views

of the same segmented 3D point cloud are shown: front view and top view. Both views

are shown as 2D images. Regions that might not look parallel to each other from one view,

are clearly parallel from another. The 3D view can be projected onto two 2D views to find

the spatial-directional relationships in each 2D view. For this purpose, a bounding cube,

with respect to the sensor’s coordinate frame, is generated for each set of points assigned

to a region. Two projections of this cube are then used to represent the minimum bounding

rectangles for the region from each of the two views. The projections are on the XY plane

(front view) and the ZX plane (top view). Referring to Figure 4.3, the X-axis represents the

West to East and the Y-axis shows the South to North direction in the front view. For the

top view, the X-axis is in the South to North direction while the Z-axis represents the West

to East direction

It is possible that redundant relations will be generated for an object description. How-

ever, there are mechanisms for eliminating redundancies. For example, if the bounding

rectangle of region X from a particular view is covered by the bounding rectangle of region

Y, and region Z has another relationship with region Y, the relationship between region Z

and X in that view is eliminated. This can be seen in the front view of Regions 1, 4 and 5 in

Figure 4.2e. Region 5 is covered by Region 4, while there is another relationship between

Regions 1 and 4. As a result, since the coverage relationship between Regions 4 and 5 dom-

inates any possible relationship between Regions 1 and 5, the relationship between Region

1 and Region 5 is eliminated.

15



u = ns v = u× (pt−ps)
‖pt−ps‖2

w = u× v

α = v.nt φ = u. (pt−ps)
d

θ = arctan(w.nt ,u.nt)

d =‖ pt − ps ‖2

Figure 4.4: Relative difference between two masses and their associated normals
[57]

4.2.3 Relative Difference Between Normal Vectors

Another region relationship is calculated from the difference between two centres of mass

(ps and pt) that belong to two regions, using their associated normal vectors (ns and nt).

This feature is used in the PCL [55] for creating Point Feature Histograms (PFH) [56]. The

relationship is defined by a 4-tuple < α,φ ,θ ,d > and a coordinate frame at ps as shown in

Figure 4.4, where d is the Euclidean distance between two points.

4.3 Region-Set Features

Another category of features considers all regions that together form an object. For example,

the pitch/roll ramp is formed by Regions 2 and 3 in Figure 4.2b, while Regions 2, 3 and 5

in Figure 4.2e form the box. In the case of the stairs in Figures 4.2c and 4.2d, the number

of regions that make up the object class is not fixed as stairs may have a different number

of steps. For example, region-sets (1,3,4,5,6) and (1,3,4,5) in Figure 4.2c form stairs. This

can be handled by a recursive class description.

4.3.1 Number of Regions Forming an Object

Following the previous point, many objects will have a fixed number of regions visible in a

particular view, therefore, the number of visible regions may be used as a feature. However,

as noted above, in some cases that number is not always useful.

4.3.2 Oriented Bounding Box and Corresponding Ratios

Another feature can be calculated by making an oriented bounding box for the whole object.

Similar to the single region feature, three ratios for each box are extracted.The third category

of features is based on considering all regions that form an object.

Binning for Angle and Ratio values

We have used a binning system instead of using the exact value for angles and ratios. An

angle will be represented by one of the following bins as 0±15, 45±15, 90±15, 135±15,

180±15, 22.5±15, 67.5±15, 112.5±15 and 157.5±15 or their negative corresponding.
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Similar to binning used for angle values, ratios are binned in intervals defined around

fixed values 1, 1.5, 2, 2.5, ... with the interval length 0.5 (i.e. ±0.25). That is, they can be

represented as:
{ i±0.25; i = 1, 1.5, 2, 2.5, 3, ...}
This binning system works for ratios ≥ 1 such as OBB ratios 4d1

4d2
, 4d2
4d3

and 4d1
4d3

which

are always ≥ 1. When the ratio � 1, and to avoid having small ratios such as 0.005, the

concept of inverted ratio values is defined here.

The inverted ratio can be explained by an example. If a � b then a
b � 1, and therefore

b
a ≥ 1. Instead of using the ratio a

b � 1, we use b
a ≥ 1. To show that we have applied this

inversion, we represent the inverted ratios by a negative sign. For example, when a
b = 0.78,

its inverted ratio is b
a = 1.28. This value (1.28) must be represented as 1.5±0.25, however

since it is an inverted version, its corresponding ratio bin will be represented as -1.5±0.25.

5 Feature Representation

The directional relationships of rectangles shown in Figure 4.3, can be expressed easily

as Prolog facts. For example, the Prolog facts for some of the directional relationships in

Figure 4.3 are:

east(a,b). /* (rectangle) a is on the east side of b. */

covers(a,c), not_covers(a,b).

/* a covers c and a does not cover b. */

connected(b,c). /* b is connected to c. */

covers(d,X). /* d covers all rectangles. */

Here, the names of the relations are east, covers, not_covers and connected. The last clause,

is not a ground fact. It is a generalisation that contains the variable X, and subsumes the

three ground facts:

covers(d,a).

covers(d,c).

covers(d,b).

This section, explains how features and relations are encoded as Prolog facts. To represent

a region-set that includes one or more regions, a Prolog list is used. The type of each

region is represented by a particular primitive. For example, when only plane segmentation

is applied, each region is a plane. However, if the segmentation algorithm can provide

more primitives such as a cylinder, then the relation name used in Prolog will show the

corresponding type. It is important that each region is denoted by a unique name or ID.

As shown, there are five planar regions as the result of segmentation in Figure 4.2e. The

regions shown in this figure can be represented as below, which is automatically generated

as the result of segmentation.

The general form is:

plane(plane_ID).
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and the instances of planes are:

plane(pl_001). plane(pl_002).

plane(pl_003). plane(pl_004). plane(pl_005).

Since Regions 2, 3 and 5 form a box, this combination can be represented as below, which

can be created automatically as the result of supervised training or labelling, as discussed

later. There are two ways to represent a region-set belonging to a class: using the name of

the class as the relation name, or using the class name as an argument. That is, the general

form can be either:

object_class_name(region_set).

% or

class(object_class_name, region_set).

and in this example it will be

box([ pl_002, pl_003, pl_005 ]).

% or

class(box,[ pl_002, pl_003, pl_005 ]).

There is no significant difference between these two representations. Since we construct

a binary classifier for each class, it is preferable to use the same declarations and settings

for each class without changing the names of the relations. The first representation requires

unique declarations and settings for each class, but is easier to read. Therefore, we use the

second representation in our implementation, to save some effort, but in our explanations,

we sometimes use the first notation, for clarity.

As mentioned earlier, the features are grouped into three categories: single region fea-

tures, region relations and region-set features. The next section describes the representation

of these features as defined for learning.

6 ALEPH and Language Specification for Learning

ALEPH is the machine learning toolkit that is mainly used in this research. A part of the

result of learning the class stairs using ALEPH is shown below. The features and relations

for a large set of images are extracted and passed to ALEPH as background knowledge.

The implemented GUI is used to label 237 instances as positive examples and 656 negative

examples of the object stairs. It is also necessary to give some constraints to ALEPH to

reduce the search for the hypothesis. One of the rules constructed by ALEPH is given below.

In this example, plane segmentation is used and ALEPH is compiled with SWI-Prolog.
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%[Rule] [Pos cover = 213 Neg cover = 0]

stairs(REG_SET) :-

member(C, REG_SET), member(D, REG_SET),

angle(D, C, `0 ± 15'),

member(E, REG_SET),

angle(E, C, `90 ± 15'), angle(E, D, `90 ± 15'),

distributed_along(E, axis_X).

This rule covers 213 positive examples (over 89.87% of total positives) and no negative

examples. The member relation, which is predefined in Prolog, specifies that the first argu-

ment is a member of the list that is provided as the second argument. In other words, the

primitive (plane) exists in the given region-set or the region belongs to the region-set.

This clause defines a region-set as belonging to the class stairs if it has at least three

planes, C, D and E of which regions C and D are approximately parallel, both regions C

and D are approximately perpendicular to region E and region E is distributed mostly along

the X-axis.

In addition to providing positive and negative examples to ALEPH, some constraints on

the hypothesis language must be given [24]. Mode declarations have the form:

mode(RecallNumber,PredicateMode).

The first argument, recall number, specifies the maximum number of instances for the pred-

icate. This must be a positive number greater than or equal to 1 or ‘*’, which represents no

limit. For example, for predicate parent(P, C), the recall number is 2 since a child can have

two parents [58], while for sister(S1, S2), the recall number does not have a limit.

The second argument defines how a predicate must be called. It follows the template

below:

p(ModeType, ModeType, ...).

ModeTypes can be simple or structured. A simple ModeType has three possible forms: +T,

-T and #T. A ‘+’ means that the variable is treated as input of the specified type, while ‘-’

indicates an output variable of the given type and ‘#’ specifies that it is a constant of the

given type. A structured ModeType follows the form f(..) where f is a function symbol, and

its arguments may also be simple or structured ModeTypes. For example,

:- mode(1,mem(+number,+list)).

shows a mode declaration having solely simple modetypes while

:- mode(1,mem(+number,[+number|+list])).

shows an example having both.

Determination statements specify the predicates that might be used for hypothesis con-

struction:
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:- modeb(1,angle(+region,+region,#angle_bin)).

:- modeb(1,normal_spherical_theta(+region,#angle_bin)).

:- modeb(1,normal_spherical_phi(+region,#angle_bin)).

:- modeb(*,ratio_yz(+region,#ratio_bin)).

:- modeb(*,ratio_xz(+region,#ratio_bin)).

:- modeb(*,ratio_xy(+region,#ratio_bin)).

:- modeb(*,ch_ratio(+region,#ratio_bin)).

:- modeb(*,dr_xy(+region,+region,#direction)).

:- modeb(*,dr_xz(+region,+region,#direction)).

:- modeb(*,distributed_along(+region,#axis)).

:- modeb(*,obb_ratio23(+region,#ratio_bin)).

:- modeb(*,obb_ratio13(+region,#ratio_bin)).

:- modeb(*,obb_ratio12(+region,#ratio_bin)).

:- modeb(1,rel_dif_nv_alpha(+region,+region,#angle_bin)).

:- modeb(1,rel_dif_nv_phi(+region,+region,#angle_bin)).

:- modeb(1,rel_dif_nv_theta(+region,+region,#angle_bin)).

:- modeb(1,rs_obb_ratio23(+region_set,#ratio_bin)).

:- modeb(1,rs_obb_ratio13(+region_set,#ratio_bin)).

:- modeb(1,rs_obb_ratio12(+region_set,#ratio_bin)).

:- commutative(angle/3).

:- commutative(rel_dif_nv_alpha/3).

Figure 6.1: Mode declarations corresponding to the features used in this research

determination(TargetName/Arity,BackgroundName/Arity).

The first argument specifies the name and arity of the target predicate, which appears in the

head of the hypothesis clauses. The next argument defines name and arity of a predicate

which can contribute in the body of such clauses. Only one target predicate can be used.

The features were discussed in previous sections. Next, we introduce a specification

that can be used to guide our object classification method using ALEPH. Each region-set

includes some regions and each region has some attributes. In addition, each region pair

and each region-set might have some relations. Therefore, the following are declared:

:- modeb(*,n_of_parts(+region_set,#n)).

which directs the learning algorithm to consider the number of regions in the region-set.

:- modeb(*,member(-region,+region_set)).

which selects each region in the region-set for further processing. Other features can be

declared as Figure 6.1, where the relations angle and rel_dif_nv_alpha are commutative.

For the hypothesis mode declaration, there are two possible approaches, as discussed in

Section 5:

• Defining a different mode for each object class:

:- modeh(*,box(+region_set)).

:- modeh(*,stairs(+region_set)).
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%...

:- modeh(*,wall(+region_set)).

• Defining a single mode with the class name as an argument:

:- modeh(*,class(#class_name,+region_set)).

class_name(box).

class_name(stairs).

%...

class_name(wall).

Similar to the previous example, an appropriate determination must be provided based on

the above modes:

:- determination(box/1,angle/3). % for each object class

and when using the second approach for hypothesis mode declaration:

:- determination(class/2,angle/3).

Some constant definitions are also required as below:

%--- Axes ---

axis(axis_X). axis(axis_Y). axis(axis_Z).

%--- directions ---

direction(north). direction(east).

direction(south). direction(west).

direction(is_covered). direction(covers).

direction(connected).

%--- angle_bins ---

anglebin(`0 ± 15'). anglebin(`-0 ± 15').

%...

anglebin(`180 ± 15'). anglebin(`-180 ± 15').

anglebin(`22.5 ± 15'). anglebin(`-22.5 ± 15').

%...

anglebin(`157.5 ± 15'). anglebin(`-157.5 ± 15').

%--- ratio_bins ---

ratiobin(`1.0 ± 0.25'). ratiobin(`-1.0 ± 0.25').

ratiobin(`1.5 ± 0.25'). ratiobin(`-1.5 ± 0.25').

%...

ratiobin(`10.0 ± 0.25'). ratiobin(`-10.0 ± 0.25').

ratiobin(`10.5 ± 0.25'). ratiobin(`-10.5 ± 0.25').
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Parameter Settings in ALEPH

Some parameter settings used in ALEPH [24] are required:

• The number of literals for an acceptable clause can be limited using the following the

parameter setting. The default value is 4. It is set to a higher value, 10.

:- set(clauselength,+V).

• As the dataset contains noise, experiments vary ALEPH’s tolerance to noise using the

following directive. The default value for V is 0, i.e. no noise.

:- set(noise,+V).

• Another parameter is an upper bound for the number of nodes for exploration during

the search. The default value is 5000. A higher value of 10000 is used here and can

be set by:

:- set(nodes,+V).

• Each clause covers some positive examples. However, it is possible to specify the

minimum number to reject clauses with a small coverage. The default value is 1.

:- set(minpos,+V).

7 Additional Experimental Evaluation

7.1 Feature evaluation

An RGB-D dataset of some common household objects is provided by Lai et al. [29] using

a Microsoft Xbox Kinect sensor. Only one object on a turntable appears in each scene. As

a result, after applying segmentation to the input scene, there is no need to select which re-

gions form an object, since most regions participate. We have performed some experiments

using this dataset in our previous work [18].

Although the dataset includes 51 classes, only a subset has been chosen, including ball,

bowl, cap, cereal box and coffee mug. Note that each class has a different number of phys-

ically distinct instance sets. A physically distinct instance set (PDIS) is a collection of

images of a particular instance of a class taken from different angles by rotating the object

on a turntable and from different camera mounting points. Using the original captured and

cropped images, sub-samples are taken from each sequence for each object, taking every ith
frame. There is a specific split arrangement for training/testing data. Data for each object

class come from a different physically distinct instance each of which is stored separately.

For example, data for the class ball are saved in 7 folders, while the number of folders for

the bowl object class is 6. As suggested by Bo et al. [59], for each iteration of learning, one

PDIS of each object is chosen randomly as the test set and the rest form the training set.

This random train/test split technique is k-fold cross validation, with a specific implemen-

tation to test the classification on a PDIS of an object which has not been used for training.
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Table 7.1: Numerical information about the chosen subset of RGB-D dataset used as the
first dataset

Object class Pos# Neg# PDIS# Number of images for each PDIS

ball 225 582 7 [33,32,33,32,32,32,31]

bowl 160 647 6 [24,24,24,23,33,32]

cap 104 703 4 [26,27,25,26]

cereal box 119 688 5 [23,25,25,24,22]

coffee mug 199 608 8 [22,23,23,22,22,22,33,32]

Total 807

PDIS#: Number of physically distinct instance sets

We refer to this implementation as folder-based split. For each class, the chosen physically

distinct instance sets for training are treated as positive or negative examples for training

based on the current object, while the union of test sets is used for testing for all objects.

In this section, experiments are conducted on a subset of this RGB-D dataset with dif-

ferent configurations. The aim is to measure learning performance using only plane seg-

mentation on household objects that have curved surfaces. The distance threshold option is

used. The experiments seek to test some features not covered in the previous experiments:

• Region-set oriented bounding box and its ratios (Section 4.3.2). This feature is added

to set to the basic configuration to determine how it affects the performance.

• Relative difference between normals (Section 4.2.3) instead of directional relation-

ship features.

• Using each region’s oriented bounding box features (Section 4.1.4) instead of its

bounding box features.

• Combine two of the above new features.

The configurations for this set of experiments are presented as in Figure 7.1. There are five

configurations using five classes from the RGB-D dataset based on a sub-sampling factor

of 25. Since the objects in the RGB-D dataset are much smaller when compared to the

planar objects previously used, the minimum size for a region to be accepted is decreased

by setting min_region_size_base=10.

The number of physically distinct instance sets for each class, the number of images in

each PDIS and the number of positive and negative examples used for this experiment set

are presented in Table 7.1.

As mentioned earlier, the folder-based split approach is used for this experiment set. Ta-

ble 7.2 shows the performance comparison for the configurations used including the number

of rules and the compression average. The measures are provided per configuration in the

form of the weighted mean and standard deviation values. The results show that:
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% method:
PLOCRL (PLane-based Object Categorisation using Relational Learning)

% segmentation method used: just plane segmentation

% minimum region size: decreased.

% angle threshold:20◦

% distance threshold: used

:- set(noise,10).

% data: RGB-D dataset using every 25th frame

% ball, bowl, cap, cereal box, coffee mug

% features common between all configurations

% angle

% normal_spherical_theta, normal_spherical_phi

% ch_ratio

% additional features for configuration(1)

% ratio_yz, ratio_xz, ratio_xy, distributed_along

% dr_xy, dr_xz

% additional features for configuration(2)

% ratio_yz, ratio_xz, ratio_xy, distributed_along

% dr_xy, dr_xz

% rs_ratio_obb23, rs_ratio_obb13

% rs_ratio_obb12

% additional features for configuration(3),

(testing dr versus rel_dif_nv)

% ratio_yz, ratio_xz, ratio_xy, distributed_along

% rel_dif_nv_alpha

% rel_dif_nv_phi

% rel_dif_nv_theta

% additional features for configuration(4),

(testing BB versus OBB)

% obb_ratio23

% obb_ratio13

% obb_ratio12

% dr_xy, dr_xz

% additional features for configuration(5),

(using both OBB and rel_dif_nv)

% obb_ratio23

% obb_ratio13

% obb_ratio12

% rel_dif_nv_alpha

% rel_dif_nv_phi

% rel_dif_nv_theta

Figure 7.1: Configurations for experiments involving the RGB-D dataset
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Table 7.2: Comparing overall weighted mean and the standard deviation for feature evalua-
tion experiments

Experiment Accuracy (%) Precision (%) Recall (%)
Number of Compression

Rules Average

1 89.21±2.88 70.47±4.24 76.97±7.82 11.79±0.78 16.44±1.50

2 88.71±2.91 68.64±5.21 76.66±6.47 12.96±1.18 15.17±1.30

3 89.29±2.99 69.97±5.60 77.26±7.69 11.99±0.40 15.45±1.45

4 87.79±2.55 67.43±3.82 74.67±7.26 11.12±0.65 15.38±1.06

5 90.84±2.25 73.52±3.06 81.92±7.96 10.13±0.62 19.65±2.05

Experiment 1 : No feature substitution

Experiment 2 : Adding oriented bounding box ratios for region-set

Experiment 3 : Directional relationships versus relative difference between normals

Experiment 4 : Bounding Box versus Oriented Bounding Box for each region

Experiment 5 : Combination of 3 & 4

• Using the region-set oriented bounding box feature has no major effect on overall

measures at least for the selected object classes.

• The alternative features (using relative difference between normals instead of direc-

tional relationships and the region’s oriented bounding box instead of bounding box)

are practical and even their substitution combination increases the performance and

average compression, as well as reducing the number of rules.

In addition to the overall measures, it is useful to examine the performance measures

per class as shown in Table 7.3. The results show that:

• Accuracy, precision and recall are improved after each single substitution (Configu-

rations 3 and 4) more than 40% of the time.

• Comparing the basic configuration (configuration 1) and combined substitution con-

figuration (configuration 5), the accuracy, precision and recall are improved 80%,

60% and 80% of the time respectively, which suggests the benefits of using these

substitutions together.

• Accuracy, precision and recall are improved for the class cap after using the region-set

bounding box ratio feature, which shows its potential for further investigation.

Regarding the number of rules and compression average:

• Improvement is obtained more than 60% of the time by any single feature substitu-

tion.

• Comparing the basic configuration (configuration 1) and combined substitution con-

figuration (configuration 5), 80% of the combined substitutions have fewer rules with

a greater compression average.
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Table 7.3: Comparing each object class weighted mean and the standard deviation for fea-
ture evaluation experiments

Object Experiment Accuracy (%) Precision (%) Recall (%)
Number of Compression

Rules Average

ball 1 88.39±3.16 73.65±9.64 85.27±10.53 11.89±1.50 26.55±2.78

2 88.39±3.16 72.87±6.85 84.87±10.48 12.22±2.23 26.91±3.96

3 87.27±2.82 70.64±6.63 82.04±6.55 13.44±1.97 21.38±3.43

4 85.03±2.23 66.15±6.32 79.7±11.44 11.11±2.17 24.55±3.97

5 87.42±2.64 69.13±6.16 87.35±7.81 10.56±1.40 29.2±1.93

bowl 1 85.32±4.24 65.33±11.61 62.62±25.15 11.67±1.89 12.38±1.61

2 84.13±3.31 59.86±12.72 63.09±30.56 11.89±2.59 11.58±1.80

3 84.58±4.79 62.62±11.95 60.53±29.29 11.44±1.61 14.41±3.16

4 82.7±5.29 56.37±12.56 57.19±26.07 10.33±1.79 12.47±2.88

5 85.55±4.12 63.6±8.06 65.39±27.49 10.89±2.04 12.47±2.10

cap 1 88.02±3.31 69.47±8.83 70.13±11.22 6.89±0.96 12.44±2.02

2 88.62±3.31 71.96±8.60 70.74±10.39 10.00±1.41 7.69±2.09

3 88.02±2.82 70.09±8.60 70.31±7.87 7.56±1.39 8.69±1.72

4 89.14±4.24 73.15±12.04 69.66±15.19 6.11±1.26 12.85±3.10

5 94.9±2.44 86.71±9.05 88.85±4.12 6.11±1.17 19.17±4.38

cereal box 1 97.38±1.73 91.9±8.12 94.09±7.07 3.44±0.48 35.8±5.09

2 96.55±2.23 88.73±9.00 93.33±6.40 3.78±0.65 35.24±5.67

3 96.78±1.73 89.41±6.78 93.31±6.16 4±0.82 31.49±4.21

4 97.67±1.41 93.2±5.74 94.06±9.11 3.11±0.85 40.93±10.08

5 97.67±1.41 93.5±3.74 93.26±8.94 3.78±0.8 34.24±7.33

coffee mug 1 78.44±4.58 45.44±8.94 65.16±13.96 17.44±3.03 8.42±1.68

2 77.47±4.79 43.83±8.42 64.24±11.31 18.56±3.34 8.1±1.14

3 81.06±5.19 49.96±8.71 72.42±15.96 15.78±2.68 8.78±2.75

4 75.82±3.31 41.44±7.48 64.92±5.74 17.78±2.90 6.47±1.11

5 79.86±3.00 47.65±6.48 66.9±18.22 12.78±2.68 11.32±2.28

Experiment 1 : No feature substitution

Experiment 2 : Adding oriented bounding box ratios for region-set

Experiment 3 : Directional relationships versus relative difference between normals

Experiment 4 : Bounding Box versus Oriented Bounding Box for each region

Experiment 5 : Combination of 3 & 4
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(a) Ball
(b) Bowl

(c) Cap (d) Cereal box

(e) Coffee mug

Figure 7.2: Colour and segmented version of selected objects from the RGB-D dataset

Because only plane primitives have been used, lower accuracy might be expected for

this experiment in comparison to previous experiments in which objects with mostly pla-

nar surfaces were used [16, 17, 18]. However, the high accuracy obtained in the above

experiments shows that the method can be applied to an object with curved surfaces. How-

ever, rules are expected to be larger, with less compression. Thus, extending segmentation

to cover more primitive shapes such as cylinders and spheres might lead to an improve-

ment in accuracy, but particularly should result in rules that are more readable and may be

learned more quickly. More regions should be expected when using only plane segmenta-

tion. Figure 7.2 shows an example for each class after segmentation in which each region is

represented by its convex hull. Extending the segmentation should decrease the number of

extracted regions as well as leading to less complexity for learning.

7.2 Comparison with a Non-Relational Object Classifier

As discussed in our previous work [18], Bo et al. [59] present a non-relational object clas-

sifier using an RGB-D dataset [29] with promising accuracy. Their method is compared

with the method developed in this research, PLOCRL, using folder-based split approach as

previously described. Bo et al. [59] provide MATLAB code3 for comparison. However, at

the time of this experiment, a modification of the classification method was needed follow-

ing the documentation provided in their C++ code, which meant using the ‘linear’ option to

scale the training and testing data. They introduced depth kernel descriptors for classifica-

tion using depth and colour images. However, since the current research uses solely range

data, and their corresponding point clouds, the related gradient kernel descriptors (Gradient

KDES), local binary pattern kernel descriptors (LBP KDES), dense normal kernel descrip-

tors (Normal KDES), size kernel descriptors (Size KDES), and their combinations are used

for comparison.

3http://www.cs.washington.edu/ai/Mobile_Robotics/projects/kdes/
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Table 7.4: Numerical information about the chosen subset of RGB-D dataset used as the
second dataset

Object class Pos# Neg# PDIS# Number of images for each PDIS

ball 225 761 7 [33,32,33,32,32,32,31]

bowl 160 826 6 [24,24,24,23,33,32]

cap 104 882 4 [26,27,25,26]

cereal box 119 867 5 [23,25,25,24,22]

coffee mug 199 787 8 [22,23,23,22,22,22,33,32]

sponge (planar) 179 807 6 [26,24,32,33,31,33]

Total 986

PDIS#: Number of physically distinct instance sets

Table 7.5: Numerical information about the chosen subset of RGB-D dataset used as the
third dataset

Object class Pos# Neg# PDIS# Number of images for each PDIS

ball 225 889 7 [33,32,33,32,32,32,31]

bowl 160 954 6 [24,24,24,23,33,32]

cap 104 1010 4 [26,27,25,26]

cereal box 119 995 5 [23,25,25,24,22]

coffee mug 199 915 8 [22,23,23,22,22,22,33,32]

sponge (total) 307 807 10 [26,24,32,33,31,33,32,32,32,32]

Total 1114

PDIS#: Number of physically distinct instance sets

Three datasets are used for this comparison. One dataset includes five classes used in

the previous section (ball, bowl, cap, cereal box, coffee mug) taking every 25th image from

the image sequence as shown in Table 7.1. For the second dataset, a subset of the class

sponge is added, which is mostly planar with the same sampling factor (see Table 7.4). The

third dataset is the second dataset plus the rest of the class sponge, which is not mostly

planar with the same sampling factor (Table 7.5).

The PLOCRL method uses two configurations: basic and extended, which are the first

and the last configurations (configurations 1 and 5 respectively) explained in the previous

section, as before and after both feature substitutions. For both configurations, only plane

segmentation is used. Since Bo et al. [59] give only the average accuracy of classification,

this measure is used with the above descriptors to compare against this research’s method,

PLOCRL, for these two configurations. The results are shown in Table 7.6.

Bo et al. [59] build a multi-class classifier, while the method developed here employs

a binary classifier for each object class. Therefore, the accuracy measure for our method

must consider positive examples for each class, ignoring negative examples as discussed
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Table 7.6: Comparing mean and the standard deviation of accuracy with a non-relational
method using three subsets of the RGB-D dataset

Method
Dataset 1 Dataset 2 Dataset 3

Accuracy Accuracy Accuracy

Gradient KDES 69.38±8.56 69.38±8.56 69.87±14.69

LBP KDES 65.86±14.31 68.95±8.65 71.73±13.44

Normal KDES 77.25±7.31 72.02±8.06 72.76±12.24

Size KDES 74.61±12.83 68.32±13.11 76.05±9.47

Gradient + LBP KDES 82.53±9.60 74.08±12.62 78.98±11.60

combination of all 84.36±8.63 76.79±13.28 82.03±10.15

Basic version of PLOCRL 75.23±8.30 76.85±5.10 73.26±4.38

Extended version of PLOCRL 79.92±8.16 79.70±6.05 74.27±8.18

Dataset 1: ball, bowl, cap, cereal box, coffee mug

Dataset 2: ball, bowl, cap, cereal box, coffee mug, sponge (planar)

Dataset 3: ball, bowl, cap, cereal box, coffee mug, sponge (total)

by Abudawood and Flach [60]. That is, we calculate and sum true positive values for all

classes, then divide the result by the total number of positive examples used for testing to

determine the accuracy of PLOCRL as a multi-class classifier. In this case, since positive

examples of one class are treated as negative examples of other classes, when TPi represents

the true positive for the binary classifier for object class i, then the accuracy for the multi-

class classifier using n binary classifiers is

n
∑

i=1
T Pi

n
∑

i=1
T Pi+

n
∑

i=1
FNi

, which is equal to

n
∑

i=1
T Pi

N , where N

is the total positive examples used for testing.

Although the PLOCRL method used solely planar primitives, the comparison shows that

its accuracy is very close to a state-of-the-art classifier even when it is tested on a subset of

common objects having curved surfaces. The PLOCRL outperforms the majority of depth

kernels most of the time. While the accuracy of a non-relational object classifier decreases

by adding a planar shape object to the dataset, the accuracy of PLOCRL method increases.

However, as expected, due to using plane segmentation, adding non-planar object shapes

affects the accuracy of the method slightly. Besides accuracy, the method inherits relational

learning benefits over non-relational methods. It describes the relationship between sub-

parts, which is a useful feature of relational learning. In addition, knowledge accumulation,

learning by using previously learned concepts in background knowledge, is an additional

superior aspect of using relational learning. These two properties are not present in other

methods such as the depth kernel descriptors.

29



7.3 Discriminative versus Descriptive Rules

The rules induced by ALEPH are discriminative rather than descriptive. For example, a

stairs object can be defined by a different number of regions:

stairs([pl_01,pl_03,pl_04,pl_05,pl_06,pl_08]).

stairs([pl_01,pl_03,pl_04,pl_05]).

Both form a staircase but one is a subset of the other. If the induced rule for the smaller

region-set can cover the larger one, ALEPH will not generalise it. That is, ALEPH creates

a rule that is sufficiently practical to discriminate, but it is not necessarily the most descrip-

tive rule. To create a more descriptive rule, further directions must be given to ALEPH.

Additional analysis of examples used for training may also be necessary.

Searching for clauses in ALEPH is affected by two parameters: the search strategy and

the evaluation function. These parameters can be defined by:

:- set(search,Strategy).

:- set(evalfn,Evalfn).

where Strategy can be ar, bf, df, heuristic, ibs, ic, id, ils, rls, scs and false. For example,

bf, which is the default strategy, enumerates shorter clauses before longer ones. EvalFn

can take the values coverage, compression, posonly, pbayes, accuracy, laplace, auto_m,

mestimate, entropy, gini, sd, wracc, or user define. Investigating the options for the search

strategy and the evaluation function may be helpful to achieve rules that are more descrip-

tive.

As shown earlier in the previous work [17, 18], learned concept descriptions can be

put into background knowledge to help learn another concept description. Additionally, a

concept like stairs can be represented by a recursive description. To achieve a recursive

rule, it might be necessary to define an evaluation function that rewards a recursive rule,

since a recursive rule might be ignored if another rule is considered superior with respect to

the current evaluation function. However, the most important factor in achieving a recursive

rule is providing appropriate mode declarations and determinations which guide ALEPH to

reduce the size of input arguments in the hypothesis.

ALEPH constructs three non-recursive rules for stairs, using only angle predicates as

shown in Figure 7.3.

It is also able to construct recursive rules when some help is provided in the form of

a declaration to accept a hypothesis as the output rule. For the current research, it was

possible to make ALEPH learn a recursive description for stairs by the following mode

declarations and determinations. These declarations and determinations guided ALEPH to

replace a plane-set with a smaller subset of itself to form a recursive description:
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%[Rule 1] [Pos cover = 143 Neg cover = 2]

stairs(REG_SET) :-

member(C,REG_SET), member(D,REG_SET),

angle(D,C,`0±15'), member(E,REG_SET),

angle(E,D,`0±15'), angle(E,C,`0±15').

%[Rule 2] [Pos cover = 213 Neg cover = 1]

stairs(REG_SET) :-

member(C,REG_SET), member(D,REG_SET),

angle(D,C,`0±15'), member(E,REG_SET),

angle(E,D,`90±15'), angle(E,C,`90±15').

%[Rule 3] [Pos cover = 92 Neg cover = 0]

stairs(REG_SET) :-

n_of_parts(REG_SET,4), member(C,REG_SET),

member(D,REG_SET), angle(D,C,`0±15').

Figure 7.3: Non-recursive rules for a stairs object class using only angle predicate

:- mode(*,stairs(+plane_set)).

:- mode(*,member(-plane1,+plane_set)).

:- mode(*,member(-plane2,+plane_set)).

:- mode(1,angle(+plane1,+plane2,#angle_bin)).

:- mode(1,((+plane_set) = ([-plane1|-plane_set]))).

:- mode(1,((+plane_set) = ([-plane2|-plane_set]))).

:- commutative(angle/3).

:- determination(stairs/1,stairs/1).

:- determination(stairs/1,`='/1).

:- determination(stairs/1,member/2).

:- determination(stairs/1,angle/3).

The result is as below for a total of 237 positive examples and 656 negative examples using

solely the angle feature:

[Rule 1] [Pos cover = 227 Neg cover = 8]

stairs(B) :-

B=[C|D], D=[E|F], F=[G|H],

member(I,D), angle(C,I,'0±15').

[Rule 2] [Pos cover = 207 Neg cover = 0]

stairs(B) :-

B=[C|D], stairs(D).
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The second rule is the recursive one that accepts a region-set B as stairs if another plane-set

D is stairs, while D is the remaining plane-set after removing the head plane(s) from the

plane-set B.

In summary, ALEPH can provide rules based on relational information between primi-

tives and features. These rules are practical enough to classify objects into different classes.

However, the rules might be different from a human’s description of the concept.

8 Details and Configurations

8.1 Data Gathering

8.1.1 General Procedure

As mentioned earlier, range data are captured using different depth cameras from various

environments. The range images are generally saved in pgm or png formats. The range

camera is mounted on a robot, which is driven into the environment, stopped where needed,

and a sequence of images are taken when the robot is not moving. During each capture

session, the camera is moved according to predefined pan, tilt and zoom values provided to

the robot through the configuration file. To ensure a high quality image, without blurring,

a user-defined value sets a delay after each camera movement and before the next shot. An

example of such a setting for the server side is as below, which specifies the camera the

Kinect Xbox and pan angles −30◦, −20◦, −10◦, −5◦, 0◦, 5◦, 10◦, 20◦ and 30◦ for each

capture session. It also forces a 600ms delay between each shot.

<foreground

type="CollectImages" PTZ="PTU"

Cameras="DepthCam Kinect" WaitTimeMSecs="600">

<justpandeg pan="-30" />

<justpandeg pan="-20" />

<justpandeg pan="-10" />

<justpandeg pan="-5" />

<justpandeg pan="0" />

<justpandeg pan="5" />

<justpandeg pan="10" />

<justpandeg pan="20" />

<justpandeg pan="30" />

</foreground>

On the GUI side, the following entry defines how the capture session is started and what

task must be run. As shown, the task begins when the ‘c’ key is pressed.

<fgtask key="c" task="CollectImages" />

Each snapshot must be numbered sequentially and saved in the same collection folder. Since

having a colour version of scene can help the user, especially for labelling, the user has the
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Figure 8.1: A robot panel showing a camera input

option to configure the system to take both colour and depth images for each snapshot. The

colour images are generally saved in ppm or png formats. The operator of the robot is able

to see the colour and depth versions of the scene through a panel before starting the capture

process. Figure 8.1 shows the panel window that displays the state of the robot and the

scene in front of the robot. The user can control the robot arm that carries the cameras

by choosing pre-defined positions or by using the keyboard to set the desired angle before

starting image collection.

8.1.2 Using Other Image Collection Systems

The image collection module used in this research applies to all range cameras: the Swis-

sRanger SR3000, Kinect Xbox and ASUS Xtion Pro Live. However, NiViewer, a tool in

the OpenNI4 toolkit developed by PrimeSense5, can also be used to capture image with the

ASUS Xtion Pro Live, although the output of this program has different format. Hence, we

implemented a small program to convert this output into the same format as the rest of the

image collection module.

8.1.3 Image Collection Without Using a Robot

The image collection module does not have to be run on a robot. It can be run on a computer

connected to a range camera. In this case, there is no option to move the camera around

and only one image per capture session can be taken. The user can move the camera or the

object manually to cover different views.
4http://www.openni.org/
5http://www.primesense.com/
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Figure 8.2: Illustration of the module developed for fetching data from folders/sub-folders

8.2 Pre-processing, Feature Extraction and Labelling

8.2.1 From Range Image to Point Cloud

Range images are stored in folder and sub-folder structure. For example, a folder named

stairs can contain some sub-folders. Images related to this object class are placed in each

sub-folder. This facilitates folder-based split implementation, which splits objects into train-

ing and test sets and eliminating one specific instance set from the training set to put it in the

test set. For most perception and learning tasks, point clouds are created from range images.

These can be sampled, sub-sampled and converted to other formats such as the PCL’s point

cloud format, known as Point Cloud Data (PCD)6.

8.2.2 Fetching Input Data

A module is implemented to navigate each folder and its sub-folders and to fetch one item

at each step as shown in Figure 8.2. This module can ignore the rest of the items in the

sub-folder and jump to the next sub-folder based on a user request. It can create a dynamic

naming based on the current item that can be used later in other modules such as segmenta-

tion results and labelling. If the item is a range image and a corresponding masked image is

provided to separate the desired object from the background in the range image, such as the

RGB-D dataset provided by Lai et al. [29], this module is able to apply this mask, creating

a masked version of the range image for further processing.

For example, the entry below in the configuration file defines such a navigation scenario

for the system to fetch range images. The configuration defines how to fetch input images

with the following parameters:

• one folder or all sub-folders

• folder, name pattern, file sampling factor

6http://pointclouds.org/documentation/tutorials/pcd_file_format.php
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• point cloud sampling factor

• cropped or full image? what is the original frame for the cropped version?

• other files attached such as colour and masking

• training action: automatic Positive/Negative examples or defined by user

<background name="navigateObjSSList">

<Collection

name="ball" filetype="*_depthcrop.png"

dir="./rgbd-dataset/cropped/rgbd-dataset/ball/"

use_layerNaming="false" fileStep="5"

num_deleted_prefix="0" num_deleted_suffix="14"

action="POS" add_to_prefix="" add_to_suffix=""

depthCam="KinectNew" ystep="1" xstep="1">

<putToFrame w="640" h="480"/>

<otherfiles id="colour"

add_to_prefix="" add_to_suffix="_crop.png"/>

<otherfiles id="mask"

add_to_prefix="" add_to_suffix="_maskcrop.png"/>

<otherfiles id="location"

add_to_prefix="" add_to_suffix="_loc.txt"/>

</Collection>

...

<Collection

...// another collection of input images

</Collection>

</background>

In this example, the instances of the class ball are stored in a nested folder structure starting

from the specified directory. The name of each range image follows a pattern shown as

‘*_depthcrop.png’ and every fifth image is selected. The camera is a Kinect and the sam-

pling rate for the point cloud must not be applied. For labelling, every image must be treated

as a positive example and the user does not need to interfere. Since the image is cropped, the

original frame dimensions are provided here as well. In addition to the range image, colour

image and masking image files are provided. Another file, location, defines the top-left

corner coordinate of the object in the scene. The names of additional files follow the input

pattern of the range image by removing and adding prefixes and suffixes as specified. That

is, if the name of an input image is ‘X_depthcrop.png’, the corresponding colour image,

masking image and location images are ‘X_crop.png’, ‘X_maskcrop.png’ and ‘X_loc.txt’

respectively.

This module is extended to work with any logged range data, such as maps and navi-

gation logs, where there is no one-to-one correspondence between sensor data due to their

different capture rates. This module also is able to fetch any other type of input to pass it
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Figure 8.3: An example of labelling process by using the GUI. Top-right view shows the
selected regions.

to the next component in the system. This capability is used to load already segmented data

for the feature extraction module.

After loading a range image, if the user does not want to ignore it or in the case of

automatic processing, the image is passed to another module to be converted to a point

cloud. For this purpose, it is important to know the specification of the camera originally

used for image capture. This information is provided in the input configuration file for each

batch of input images.

Since a corresponding point cloud can have many points, making processing time con-

suming, the user can specify a sampling factor to control the point cloud resolution. There

are different methods for sampling a point cloud [61]. However the easiest is to take every

ith point based on the range image’s 2D grid, which is possible when the point cloud is

ordered. Note that i is the sampling rate.

8.3 Labelling

Labelling can be manual or automatic. For manual labelling, the visual output of segmen-

tation is provided to the user via the GUI. Each region is coloured differently to make it

easier for the user to select. The user can click on any point of a region to add the region

to the current region-set. After adding all desired regions to the region-set, the user can

specify how the training example must be treated: a positive example for one specific class

and negative example for some classes. An example of the GUI is shown in Figure 8.3.

An object class can be defined by various number of regions. For example, as shown

in Figure 8.4, a staircase can be formed by 4, 5, 6 and 7 segmented planes. It is time-

consuming for the user to select all 4, 5, 6 and 7 combinations of such planes manually.

Therefore, optional values are added to define the minimum and maximum number of re-
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Figure 8.4: Setting the minimum and maximum region-set size in the GUI to produce more
than one region-set during manual labelling

gions forming an object. Figure 8.4 shows a situation where the user has selected seven

regions such as p1, p2, p3, p4,, p5, p6 and p7, but aims to form objects containing four to

seven regions and labels each as a staircase. By using four as the minimum and seven as the

maximum, any four to seven sub-lists of the above regions will be automatically labelled as

an instance of staircase. That is, the region-sets below will be created:

{p1,p2,p3,p4}, {p2,p3,p4, p5}, {p3,p4,p5,p6,}, {p4,p5,p6,p7},

{p1,p2,p3,p4,,p5}, {p2,p3,p4,p5,,p6}, {p3,p4,p5,p6,,p7},

{p1,p2,p3,p4,,p5,p6}, {p2,p3,p4,,p5,p6,p7} and

{p1,p2,p3,p4,,p5,p6,p7}

In the case of automatic labelling, all regions from the segmentation module will form a

region-set and an instance of an object class. Depending on the input configuration, the seg-

mentation result will be saved as a positive example for the specified class and as negative

examples for the other classes. If automatic labelling is activated, but the type of exam-

ple (positive or negative) has not been provided, the region-set will be shown in the user

interface and the user will specify the type of region-set through the interface.

8.4 Configuration File for the Main Processing Module

A configuration file must be provided for the main pre-processing component. It sets the

values for the parameters such as:
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• The type of the camera producing the images

• The control panel for the main system (plane segmentation and feature extraction):

3 camera density

3 using logger option

3 using normal smoothing option

3 the option of angle criterion for the segmentation

3 activating step by step confirmation for processing

3 number of views used for point cloud visualisation

3 choosing the regions mode to be displayed: planes, cubes, oriented bounding

box, convex hull, etc.

3 running mode: normal, just training, just extracting, automatic extraction and

training

3 using distance threshold by calculating mesh threshold

3 create triangular mesh for the point cloud

3 save the point cloud as a PCD file

3 log the range image: when the original range image is not visible

3 base for minimum acceptable region size

3 angle threshold for segmentation

3 data fetching task: file navigation, map navigation, etc.

3 the option to save the result of segmentation as convex hulls and OBBs

3 the option to save each region points as a separate point cloud in PCD format

• Training panel:

3 the list specifies the name of the classes for training

2 a space separated list

2 a file contains the name of the object classes per line

3 training options: positive/negative

• Colour legend

3 number of rows

3 number of columns

3 height and width of legend cells

Figure 8.5 shows an example of a configuration file to control the GUI and the main process.

This configuration defines a panel that specifies camera settings as a Kinect with a camera

density of 10. It sets the GUI to show and store the result of segmentation visualisation
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<gui>

<tabs>

<tab name="PlanePanel"> <planepanel

robot="Emu" camDensity="10.0"

askForProcess="true" numOfViews="4"

showRegionsModes="ConvexHulls OBBs_gottschalk"

Training="true" Extracting="true"

Smoothing="true" sleepTime="500000"

calc_mesh_threhsold="true"

logPointCloudAsPCD="false"

convertPCDframe="false"

min_region_size_base="10"

angle_threshold="20.0"

RunMode="Extract_AutoTrain"

Task="navigateObjSSList"

saveConvexhOBB="true"

saveRegionsAsPCD="true">

<Render1 z="1.5" />

<Render2 z="2.5" y="1.5" />

<Render3 z="2.5" x="-1.0" />

<Render4 z="2.5" x="1.0" />

<Legend rows="2" cols="15" row_height="20" col_width="25"/>

<ItemPosNegSelect

row_height="25" col_width="30" sort_items="true"

items="ball bowl cap coffee_mug sponge"

item_options="+ -"/>

</tabs>

</gui>

Figure 8.5: An example of a configuration file to control the GUI and the main process

as convex hulls and OBBs. It sets a smoothing option for normal vectors as true, and

also uses distance threshold by calculation in the segmentation process. It deactivates the

option of saving the point cloud in PCD format. It sets a minimum region size and angle

threshold based on provided values and runs the main system in the mode of extracting and

automatic labelling. Following running mode, the background task that fetches the input

data is introduced. Such a task was shown in Section 8.2.2. After defining the settings for

main processing, four views are defined for the points of view that the user prefers such

as front, top, left and right views. The next entry defines the colour legend and finally the

items to be shown in the training panel are specified, which in this case are five class labels.

Figure 8.3 has four views, a legend colour having two rows and fifteen columns and

other control and monitoring options at the time of labelling five planes to form a positive

example of a staircase and a negative example for other object classes shown in the list.

The above configuration specifies that the result of segmentation must be stored as sep-

arate regions as PCD files, which can be visualised using pcd_viewer7. It also enforces

the convex hull and OBB representations of regions must be saved. Figure 8.6 shows the

structure of such an output for each image.

7http://pointclouds.org/documentation/overview/visualization.php
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object_name number of regions after segmentation

region number (starts from 1)

mass of region

normal vector

number of points forming oriented bounding box (it must be 8)

point 1 of OBB

point 2 of OBB

point 3 of OBB

...

point 8 of OBB

number of points forming the boundary convex hull (let say c)

point 1 of convex hull

point 2 of convex hull

point 3 of convex hull

...

point c of convex hull

next region number ...

Figure 8.6: The structure of segmentation result containing regions’ mass, normal, convex
hull and OBB representations

8.5 Learning and Evaluation

8.5.1 Preparation

The outputs from feature extraction and labelling are saved as Prolog predicates. These

predicates are appended to a file called ‘features.b’, which forms the background knowledge

used for learning.

Positive examples of each class are saved in a file ‘X.f ’ as ground facts, where X is the

name of the class. Similarly, negative examples of class X are saved in file ‘X.n’. This file

naming system follows the ALEPH convention for input file names.

Two implementations of k-fold cross validation are used for evaluation and separating

examples into training and test sets. For the first implementation of k-fold cross validation,

we use Perl scripts provided by Michael Bain. All positive examples are put together and

split k-fold. One of these k folds is selected for testing in each iteration. This is the same

selection method for negative examples.

The second method is slightly different and instances of each class are provided as

different physically distinct sets. The RGB-D dataset has this attribute. Considering an

experiment on objects ball, bowl, cap, coffee mug and sponge with 7, 6, 4, 8 and 10 phys-

ically distinct sets respectively, examples of the ball class are stored in seven folders, and

each folder contains different views of the same physically distinct ball instance. That is

the second implementation of k-fold cross validation, the random folder-based split, which

keeps one randomly selected physically distinct set every time for testing and uses the rest

for training. Unix shell scripts for this implementation of k-fold cross validation is written

during this research. Table 8.1 shows the ten random folder-based split configuration used

for the same experiment. For each trial, one physically distinct instance set of each object

class is chosen for testing as shown in this table and the rest are used for training. That
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Table 8.1: An example of the ten random folder-based split configuration

Object class PDIS# T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

ball 7 1 2 3 4 5 6 7 2 4 6

bowl 6 2 3 4 5 6 1 2 5 3 1

cap 4 3 4 1 2 3 4 1 2 3 4

coffee mug 8 5 6 7 8 1 2 3 4 1 7

sponge 10 8 9 6 5 2 1 4 3 10 7

Ti: Triali

PDIS#: Number of physically distinct instance sets

is, in the first trial, physically distinct sets 2, 3, 4, 5, 6 and 7 of the class ball are used for

training, as positive examples for this class and negative examples for other classes. A phys-

ically distinct set 1 of the class ball is used for positive examples for testing this class and

physically distinct sets 2, 3, 5 and 8 of the object classes bowl, cap, coffee mug and sponge

respectively are used as negative examples for testing the class ball. Similarly, physically

distinct sets of classes bowl, cap, coffee mug and sponge that are not used for this test, are

used as training negative examples for the learning class ball.

Shell script for random folder-based split

The following shell script is implemented to split the positive/negative examples for the

implementation of k-fold cross validation using the random folder-based split, described

above. It then calls the training module followed by the testing module to calculate perfor-

mance measures such as accuracy, precision and recall.

This script can take advantage of a multi-core CPU by specifying the lower and upper

bounds for trial numbers. For example, to have ten trials on a Quad-Core CPU, we can use

this script with bounds (1 and 3), (4 and 6), (7 and 8) and (9 and 10).

This script also handles possible interruptions, such as power failures. That is, if some-

thing interrupts or kills the processes, resuming them can avoid redoing the majority of the

processing already completed. For example, if the first core was working on the ith class

on trial j at the time of the interruption, the process is resumed from this class and trial,

accepting the previous ones. This script has options such as shuffling the order of examples

and using fewer negative examples, given a percentage split.

To run this script, we pass the name of the configuration file containing the proper lan-

guage specification, the folder containing the positive and negative examples of the classes

and a file containing the name of the classes and the number of PDIS for each.
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Listing 1: Shell script for evaluation using random folder-based split
1 #!/bin/bash

2 #

3 # Author: Reza Farid , UNSW , Australia

4 # 2011 -2014

5 # Uses train/test split based on folders used for each object class

6 # if split configuration file exists , it will be used , otherwise it will be ←↩
generated randomly

7 #

8 # To create train.n, there are two options:

9 # 1) Using all negative examples based on the split

10 # 2) Using percentage of each category/folders of examples based on the ←↩
split

11 bothtest =1

12 # if bothtest ==0 means that we just test positives and not negatives

13 # if bothtest ==1 means that negative examples will be tested as well

14 # if use shuffle ==1 means that positive examples for training will be ←↩
shuffled

15 runtraintest =1

16

17 split_file_name="split.txt"

18 train_n_temp="temp.n"

19 neg_percent="0.35"

20 use_less_neg =0

21 use_shuffle =0

22 num_of_arg= $#

23 if [ $num_of_arg -lt 5 ] ; then

24 echo

25 echo

26 echo "USAGE: $(basename $0) <Spec > <data SUFFIX > <objects_folders file > <←↩
trial_lower > <trial_upper > [use less negative =0] [bothtest =1] [use ←↩
shuffle =0]"

27 echo

28 echo

29 if [ -d "class_spec" ]

30 then

31 echo "type as:"

32 ls class_spec -l

33 else

34 echo "type such as noise , noise_nodr , ..."

35 fi

36 echo

37 echo

38 exit 1

39 fi

40 if [ $num_of_arg -gt 5 ] ; then

41 use_less_neg=$6

42 fi

43 if [ $num_of_arg -gt 6 ] ; then

44 bothtest=$7

45 fi

46 if [ $num_of_arg -gt 7 ] ; then

47 use_shuffle=$8

48 fi

49 outfolder_base="./ results/results_doall_rgbd"

50 [ ! -d "$outfolder_base" ] && mkdir $outfolder_base

51

52 #------------------------------------ Suffix used for data

53 suffixParameter=$2

54 data_folder="data_f_n/data_f_n_"$suffixParameter
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55 echo "data_folder="$data_folder

56 #------------------------------------ Object_List_File

57 obj_list_file=$3

58 i=0

59 while read line ; do

60 #echo $line

61 part1=$(echo $line | cut -d " " -f1)

62 part2=$(echo $line | cut -d " " -f2)

63 obj_classes[${i}]= $part1

64 obj_classes_folder_count[${i}]= $part2

65 i=$(($i + 1 ))

66 done < $obj_list_file

67 objc_max=$ {# obj_classes[@]}

68 # show settings

69 for (( i = 0 ; i < $objc_max; i++ ))

70 do

71 echo ${obj_classes[${i}]} ' :: ' ${obj_classes_folder_count[${i}]} ' ←↩
physically distinct instance set '| column

72 done

73 #------------------------------------ Trial bounds

74 trial_lower=$4

75 trial_upper=$5

76

77 total_acc =0.0

78 #----------------------------------------------------------

79 # specification

80 #----------------------------------------------------------

81 type=$1

82 #echo enter specification filename

83 #read specfile

84 specfile="class_"$type".b"

85 specfile_addr="class_spec/"$specfile

86 #----------------------------------------------------------

87 # extracted predicates

88 #----------------------------------------------------------

89 #echo enter features filename

90 #read featurefile

91 featurefile="features/features_"$suffixParameter".b"

92 outfolder0=$outfolder_base"/results_"$suffixParameter

93 [ ! -d "$outfolder0" ] && mkdir $outfolder0

94 outfolder1=$outfolder0"/results_"$type

95 if [ $use_less_neg -eq 1 ]

96 then

97 outfolder1=$outfolder1"_neg_"$neg_percent

98 fi

99 for (( i = $trial_lower ; i <= $trial_upper; i++ ))

100 do

101 [ ! -d "$outfolder1" ] && mkdir $outfolder1

102 outfolder2=$outfolder1"/trial"$i

103 [ ! -d "$outfolder2" ] && mkdir $outfolder2

104 trial_summary_file=$outfolder2/'trial_mean.txt '

105 local_split=$outfolder2/$split_file_name

106 # check if split file exists

107 if [ -f $local_split ]

108 then

109 echo 'loading '$local_split

110 sed -i "s/]=/]= /g" $local_split

111 VALUES=$(awk '/^( chosen)/{print $NF}' $local_split)

112 cnt=0

113 echo 'VALUES= '

114 for VALUE in $VALUES
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115 do

116 xc[${cnt}]= $VALUE

117 echo 'chosen folder['$cnt ']= '$VALUE

118 cnt=$(($cnt + 1 ))

119 done

120 else

121 echo 'making split '

122 # select one randomized folder for each class

123 for (( objc = 0 ; objc < $objc_max; objc++ ))

124 do

125 xc_max=${obj_classes_folder_count[$objc ]};

126 xc[${objc }]=$[ ( $RANDOM % $xc_max ) + 1 ]

127 echo 'chosen folder['$objc ']= '${xc[$objc]}

128 echo 'chosen folder['$objc ']= '${xc[$objc]} >> $local_split

129 done

130 fi

131 [ -f "$trial_summary_file" ] && rm $trial_summary_file

132 xc_acc =0.0

133 for (( objc = 0 ; objc < $objc_max; objc++ ))

134 # for (( objc = 0 ; objc < 1; objc++ ))

135 do

136 objname=${obj_classes[$objc]}

137 echo $objname

138 outfolder=$outfolder2/$objname

139 [ ! -d "$outfolder" ] && mkdir $outfolder

140 final_processing_file=$outfolder/'rules.result '

141 # check if processing is done for the trial and the object

142 if [ -f "$final_processing_file" ]

143 then

144 echo 'process is done for '$outfolder

145 else

146 # processing the trial and the object

147 rm -rf $outfolder /*

148 echo 'processing is started for '$outfolder

149 #

150 # forming train.b

151 #

152 cat $specfile_addr $featurefile > $outfolder/train.b

153 #

154 # forming test.f & train.f

155 #

156 text_for_search='img_ '$objname '_'${xc[$objc]}'_'

157 echo 'trial '$i ':: object '$xc '--->' $text_for_search

158 grep "$text_for_search" $data_folder/$objname.f > $outfolder/test.f

159 if [ $use_shuffle -eq 1 ]

160 then

161 echo 'shuffle train.f'

162 grep -v "$text_for_search" $data_folder/$objname.f > $outfolder/←↩
train.f.tmp

163 shuf $outfolder/train.f.tmp > $outfolder/train.f

164 rm $outfolder/train.f.tmp

165 else

166 grep -v "$text_for_search" $data_folder/$objname.f > $outfolder/←↩
train.f

167 fi

168 #

169 # forming test.n & train.n

170 #

171 for (( other_objc = 0 ; other_objc < $objc_max; other_objc ++ ))

172 do

173 if [ $other_objc -ne $objc ]
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174 then

175 other_objname=${obj_classes[$other_objc ]}

176 other_text_for_search='img_ '$other_objname '_'${xc[$other_objc ]}'_'

177 grep "$other_text_for_search" $data_folder/$other_objname.f >> ←↩
$outfolder/test.n

178 if [ $use_less_neg -ne 1 ]

179 then

180 #

181 # use all negative examples

182 #

183 grep -v "$other_text_for_search" $data_folder/$other_objname.f >> ←↩
$outfolder/train.n

184 else

185 #

186 # use_less_neg

187 #

188 no_of_folders=${obj_classes_folder_count[$other_objc ]}

189 picked_folder=${xc[$other_objc ]}

190 for (( folder_number = 1 ; folder_number <= $no_of_folders; ←↩
folder_number ++ ))

191 do

192 if [ $folder_number -ne $picked_folder ]

193 then

194 text_2='img_ '$other_objname '_'$folder_number '_'

195 echo 'trial '$i '::neg object '$other_objname '--->' $text_2

196 grep "$text_2" $data_folder/$other_objname.f > $outfolder/←↩
$train_n_temp

197 n_size=$(wc -l $outfolder/$train_n_temp | awk '{print $1}')

198 no_neg_for_training=$(echo "scale =0; $n_size * $neg_percent "| ←↩
bc)

199 echo 'total neg='$n_size $TAB 'using '$no_neg_for_training | ←↩
column

200 shuf -n $no_neg_for_training $outfolder/$train_n_temp >> ←↩
$outfolder/train.n

201 rm $outfolder/$train_n_temp

202 fi

203 done

204 fi

205 sed -i "s/class($other_objname ,/class($objname ,/g" $outfolder/test.n

206 sed -i "s/class($other_objname ,/class($objname ,/g" $outfolder/←↩
train.n

207 fi

208 done

209 if [ $runtraintest -eq 1 ]

210 then

211 #----------------------------------------------------------

212 # running dotrain_test

213 #----------------------------------------------------------

214 echo "running dotrain_test"

215 #exit

216 bash dotrain_test.sh $outfolder 'train ' $bothtest

217 fi

218 rm $outfolder /*.b

219 fi

220 test_out_file=$outfolder/'test.out '

221 if [ -f "$test_out_file" ]

222 then

223 acc=$(awk '/^( Accuracy)/{ print $NF}' $test_out_file)

224 echo 'test Accuracy='$acc

225 echo 'test accuracy['$objc ']= '$acc >> $trial_summary_file

226 fi
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227 done

228 echo "%----- calculations done." >> $trial_summary_file

229 #-------- Calculate total accuracy and mean of total for the current trial

230 if [ $runtraintest -eq 1 ]

231 then

232 bash calc_mean.sh $trial_summary_file "test accuracy" "accuracy" ←↩
$trial_summary_file

233 fi

234 done

Shell script for training and testing

The following shell script is the main script for the training and testing modules using the

random folder-based split. It also calculates the performance measures.

Listing 2: Shell script for training/testing
1 #!/bin/bash

2 #

3 # Author: Reza Farid , UNSW , Australia

4 # 2011 -2014

5 #

6 num_of_arg= $#

7 if [ $num_of_arg -lt 2 ] ; then

8 echo

9 echo

10 echo "USAGE: $(basename $0) <output Directory > <class name >"

11 fi

12 alephpl="aleph_rf.pl"

13 outDir=$1

14 objname=$2

15 tmpfile=$outDir/"train_tmp.pl"

16 if [ $# -gt 2 ] ; then

17 bothtest=$3

18 else

19 bothtest =0

20 fi

21 inducetype="induce"

22 #inducetype =" induce_max"

23

24 mkdir $outDir/misc

25 echo ":- compile('$alephpl ')." > $tmpfile

26 echo ":- read_all('"$outDir"/"$objname"')." >> $tmpfile

27 #bash cat_non_comment.sh aleph.config >> $tmpfile

28 #cat aleph.config >> $tmpfile

29 echo ":- set(recordfile ,'"$outDir"/misc/record.txt ')." >> $tmpfile

30 echo ":- set(goodfile ,'"$outDir"/misc/good.txt ')." >> $tmpfile

31 echo ":- $inducetype." >> $tmpfile

32 echo ":- write_rules('"$outDir"/rules.txt ')." >> $tmpfile

33 echo ":- write_rules('"$outDir"/hyp.pl ')." >> $tmpfile

34 echo ":- open('"$outDir"/test.out ',write ,Stestout)," >> $tmpfile

35 echo "set_output(Stestout)," >> $tmpfile

36 echo "write ( '++++++++++++++++++++++++++++ ') , nl," >> $tmpfile

37 echo "write('Testing Positive Examples ...'), nl ," >> $tmpfile

38 echo "write ( '++++++++++++++++++++++++++++ ') , nl," >> $tmpfile

39 echo "test('"$outDir"/test.f',show ,Tp,NPosTot)," >> $tmpfile

40 if [ $bothtest -eq 1 ];

41 then

42 echo "write('----------------------------'), nl," >> $tmpfile
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43 echo "write('Testing Negative Examples ...'), nl ," >> $tmpfile

44 echo "write('----------------------------'), nl," >> $tmpfile

45 echo "test('"$outDir"/test.n',show ,Fp,NNegTot)," >> $tmpfile

46 echo "Fn is NPosTot - Tp ," >> $tmpfile

47 echo "Tn is NNegTot - Fp ," >> $tmpfile

48 echo "Error is ((Fp + Fn) / (NPosTot + NNegTot))," >> $tmpfile

49 echo "Precision is (Tp / (Tp + Fp))," >> $tmpfile

50 echo "Recall is (Tp / (Tp + Fn))," >> $tmpfile

51 echo "write('[Test set performance ]'), nl ," >> $tmpfile

52 echo "write_cmatrix ([Tp,Fp,Fn,Tn]), nl ," >> $tmpfile

53 echo "format('~ tStatistics~t~72|~n~n')," >> $tmpfile

54 echo "write('Error = '), write(Error), nl," >> $tmpfile

55 echo "write('Precision = '), write(Precision), nl," >> $tmpfile

56 echo "write('Recall = '), write(Recall), nl, write(' (Sensitivity) ')←↩
, nl," >> $tmpfile

57 echo "write(pos(Tp,NPosTot)), nl ," >> $tmpfile

58 echo "write(neg(Fp,NNegTot)), nl ," >> $tmpfile

59 else

60 echo "Test_Accuracy is ((Tp)/( NPosTot)) ," >> $tmpfile

61 echo "write('[Test set performance ]'), nl ," >> $tmpfile

62 echo "write('Accuracy = '), write(Test_Accuracy), nl," >> $tmpfile

63 fi

64 echo "write('[end of test]')," >> $tmpfile

65 echo "close(Stestout)." >> $tmpfile

66 echo ":- halt." >> $tmpfile

67 echo ""$inducetype" in progress ..."

68 swipl -q -s $tmpfile > $outDir/rules.result0

69 sed -n '/theory/,/total clauses constructed/p' $outDir/rules.result0 > ←↩
$outDir/rules.result

70 #cat "$outDir ".out >> $outDir.result

71 rm $outDir/rules.result0

72 #rm $tmpfile

73 echo "["$inducetype" is used]" >> $outDir/rules.result

74 sed -n '/Training set performance /,/Accuracy/p' $outDir/rules.result

75 sed -n '/Test set performance /,/end of test/p' $outDir/test.out

76 #cat $outDir/rules.result

77 rm $tmpfile

8.5.2 Learning

ALEPH is the ILP learner used in most experiments described in this research. It can be

compiled with two different Prolog systems: YAP8 and SWI-Prolog9. In this research,

ALEPH is run in SWI-Prolog. Further information about using ALEPH is provided by

Srinivasan [24] and Conceição [58].

Each class description learned in each iteration is saved in a separate file. The perfor-

mance measures are expressed as a confusion matrix. The file includes the Prolog rule,

its coverage, the positive examples covered by the rule (True Positives) and the negative

examples covered by the rule (False Positives). A script converts coverage results to an

HTML file and links each example with its corresponding screen snapshots after segmen-

tation. This HTML file can facilitate matching each false positive/negative to its visual

segmentation and feature boundary result for further analyses.

8http://www.dcc.fc.up.pt/∼vsc/Yap/
9http://www.swi-prolog.org/
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8.5.3 Analysis

Other scripts have been written to assist in the analysis of the results of learning. These

scripts make it easier to work out the role of different regions in the concept description, as

discussed in our previous work [18]. For the most part, the following are calculated: overall

accuracy, precision, recall, number of rules and compression average per iteration. These

measures are also calculated for each class over all iterations. Some scripts are also im-

plemented to compare different scenarios of the same dataset using different configurations

such as the results provided in Section 7.

9 Conclusions

In this report, we have provided the details of the original approach used in this research,

which uses planes as the segmentation primitives. The segmentation method is discussed in

detail including the use of a distance threshold. A few features are added and used for new

experiments including comparison with a state-of-the-art non-relational object classifier.

The details of the system architecture, learning specifications and implementation are also

provided.
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