
Credibility Propagation for Robust Data

Aggregation in WSNs

Mohsen Rezvani1 Aleksandar Ignjatovic1 Elisa Bertino2 Sanjay Jha1

1 University of New South Wales, Australia
{mrezvani,ignjat,sanjay}@cse.unsw.edu.au

2 Department of Computer Science, Purdue University
bertino@cs.purdue.edu

Technical Report
UNSW-CSE-TR-201414

May 2014

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Trust and reputation systems are widely employed in WSNs in order to help
decision making processes by assessing trustworthiness of sensor nodes in a data
aggregation process. However, in unattended and hostile environments, some so-
phisticated malicious attacks such as collusion attacks can distort the computed
trust scores and lead to low quality or deceptive services as well as to undermine
the aggregation results. Thus, taking into account the collusion attacks for de-
veloping a secure trust-based data aggregation in unattended environments has
become an important research issue.

In this paper, we address this problem by proposing a novel collaborative-
based trust framework for WSNs, which is based on the introduced concept of
credibility propagation. In this method, the trustworthiness of a sensor node is
evaluated from the amount of credibility that such a node collects from other
nodes. Moreover, we obtain the statistical parameters of sensors errors includ-
ing sensors’ variances from such credibility values. Accordingly, we propose an
iterative filtering algorithm to recursively compute the credibility and variance
of all sensors. Following this algorithm, an estimate of the true value of the
signal can be effectively obtained through the maximum likelihood estimation.
Furthermore, we augment the proposed trust framework with a collusion de-
tection and revocation method as well as data streaming algorithm. Extensive
experiments across a wide variety of configurations over both real-world and
synthetic datasets demonstrate the efficiency and effectiveness of our approach.

1 Introduction

Trust and reputation systems have a significant role in supporting operation
of a wide range of distributed systems, from wireless sensor networks (WSNs)
and e-commerce infrastructure to social networks, by providing an assessment of
trustworthiness of participants in such distributed systems. A trustworthiness
assessment at any given moment represents an aggregate of the behaviour of the
participants up to that moment and has to be robust in the presence of various
types of faults and malicious behaviour. There are a number of incentives for
attackers to manipulate the trust and reputation scores of participants in a
distributed system, and such manipulation can severely impair the performance
of such a system [1, 2].

In recent years, several approaches based on iterative filtering (IF) algorithms
for trust and reputation systems have been proposed [3, 4, 5, 6, 7, 8, 9, 10]. In
the past literature it was found that these algorithms exhibit better robustness
compared to the simple averaging techniques; however, these work did not take
into account more sophisticated collusion attack scenarios [11]. For example, we
showed in [11] how the IF algorithms can be compromised by a collusion attack
when the adversary has enough knowledge about the reputation computation
method.

In this paper, we propose a novel collaborative reputation system for WSNs
based on the idea of credibility propagation among the participants, called
CrPr. Based on this idea, each sensor collects credibility from all other sensors
according to the distance of its readings to the readings of other sensors in which
such a distance depends on the sensors variances. On the other hand, each sen-
sor gives credibility to other sensors based on both the likelihood of its readings
to the true value of signal and the distance of its readings to the readings of
other sensors. We exploit an iterative procedure for simultaneously computing
the trustworthiness of each sensor and the variance of its errors. We then use the
obtained values of the sensors variances to form an statistical estimator which
if the sensors errors are independent and normally distributed, represents the
maximum likelihood estimator (MLE). Furthermore, we augment the reputa-
tion system with a collusion detection and revocation method which identifies
the compromised nodes and eliminates them according to the normality of the
error behaviour in the sensor nodes.

Since readings keep streaming into aggregator nodes in WSNs, and since
attacks can be very dynamic (such as orchestrated attacks [2]), we extend CrPr
algorithm to data streaming and propose a real time version of the algorithm,
called Str-CrPr, which builds a model of sensors errors and updates the model
at any time instant.

We provide a thorough empirical evaluation of effectiveness and efficiency of
our proposed reputation system by using real world dataset as well as testing the
system on synthetically generated datasets. The results show that our method
provides both higher accuracy and better collusion resistance than the existing
IF methods.

Our contributions can be summarized as follows:

• A novel collaborative reputation system for WSNs which is effective in a
wide range of sensor faults and not susceptible to collusion attacks.

• An iterative algorithm to estimate the true value of the signal based on an

3

Base
Station

Aggregator Node/
Cluster Head

Aggregator Node/
Cluster Head

Cluster

Cluster

Figure 2.1: Network model for WSN.

interdependency relationship among credibility, variance and reputation
values.

• A novel collusion detection method based on an estimate of normality of
sensor errors in the proposed robust reputation framework.

• Extending the proposed reputation system to data streaming.

It is to be noted that while our reputation system is designed having WSNs
in mind, it is straightforward to extend our solution for trust and reputation
system in other applications such as online rating.

The rest of this paper is organized as follows. Section 2 formulates the
problem and specifies the assumptions. Section 3 presents our novel reputation
system. The real time version of our reputation system is described in Section 4.
Section 5 describes our experimental results. Section 6 presents the related work.
Finally, the paper is concluded in Section 7.

2 Preliminaries

2.1 Network Model

For the sensor network topology, we consider the abstract model proposed by
Wagner in [12] presented on Figure 2.1. The sensor nodes are divided into
disjoint clusters, and each cluster has a cluster head which acts as an aggregator.
Data are periodically collected and aggregated by the aggregator. In this paper
we assume that the aggregator itself is not compromised and concentrate on
algorithms which make aggregation secure when the individual sensor nodes
might be compromised and might be sending false data to the aggregator. We
assume that each data aggregator has enough computational power to run an
iterative filtering algorithm for data aggregation.

4

s1 s2 s3 s4 s5

t1

17.72

t2

18.60

t3 t4

19.40
18.11

18.49

20.63

18.60
20.0717.7819.44

18.7919.33

20.85

20.10

Figure 2.2: An example of ratings.

2.2 Basic Concepts and Notation

Galletti et al. recently proposed in [13] a mathematical framework for mod-
elling collaborative reputation systems. In this paper, we use their notation
and assumptions for describing our novel reputation system.

Let us consider a WSN with n sensors Si, i = 1, . . . , n. We assume that
the aggregator works on one block of readings at a time, each block compris-
ing of readings at m consecutive instants1. Therefore, a block of readings is

represented by a matrix X = {x1,x2, . . . ,xn} where xi = [x1
i x

2
i . . . xmi]

T
,

(1 ≤ i ≤ n) represents the ith m-dimensional readings reported by sensor node
Si. Let r = [r1 r2 . . . rm]T denote the aggregate values for instants t = 1, . . . ,m,
which some authors call a reputation vector2 [4]. Suppose that we would like to
obtain the reputation values from the existing readings X.

We can also visualize the readings model using a directed and weighted
bipartite graph G = (S, I,R), where S is a set of S-typed nodes representing
sensor nodes, I is a set of I-typed nodes representing time instants, and R is
a set of directed edges from S-typed nodes to I-typed nodes 3. For example, a
reading given by a sensor p ∈ S in time instant t ∈ I is denoted as xtp, which is
the weight associated with the edge (p, t) ∈ R in the graph. Thus, the absence
of an edge indicates that the sensor node did not report reading for the time
instant. Table 2.1 contains a summary of notation used in this paper.

Example 2.1. An example is shown by a readings matrix and a bipartite graph
in Table 2.2 and Figure 2.2, respectively (In order to make the graph clear, we
removed 6 edges from the graph in Figure 2.2). The sensor readings in the ex-
ample are from sensed temperatures in Intel Lab dataset [14] at four different
time instants I = {t1, t2, t3, t4} and 5 sensors S = {s1, s2, s3, s4, s5}. For ex-
ample in the readings, sensor s2 reported the temperature at time t3 of value
18.95 (x3

2 = 18.95). Given such a scenario, by taking the average of readings
at each instant, the reputation vector for the instants is r = 〈r1, r2, r3, r4〉 =
〈18.79, 18.74, 18.69, 18.57〉.

Note that the main objective of a reputation system is to determine the rep-
utation values for all time instants based on the readings reported by sensors

1In Section 4, we extend this assumption by taking into account the streaming data and
propose our real time reputation system.

2We find such terminology confusing, because reputation should pertain to the level of
trustworthiness rather than the aggregate value, but have decided to keep the terminology
which is already in use. Throughout this report, the terms reputation value and aggregate
value are used interchangeably.

3We use the graph visualisation method from [7] as an alternative method to present our
model.

5

Table 2.1: Notation used in this paper.

Notion Meaning

n number of sensors

m number of readings for each sensor

rt true value of the signal at time t

xts data from sensor s at time t

σs standard deviation of sensor s t

L(j, i) the likelihood that sensor j could have made the read-
ings of sensor i

cr(s) credibility of sensor s

rep(t) estimate reputation value at time t

var(s) estimate variance of sensor s

N(i) neighborhood of node i in the readings graph

Ti,j set of time instants which both sensor i and j have
reported for them

ni set of sensor nodes which have reported at least for
one common time instant with sensor i

dSΓ the average number of readings per sensor

〈i, vi, ti, Ei, Oi〉 Str-CrPr Model with i is a sensor identifier, vi is
the estimated variance of sensor i, ti is the number
of readings has been reported by sensor i, Ei is the
cumulative error of sensor i, and Oi is the number of
outlier readings reported by sensor i.

w the length of sliding window

tw the last time of the model rebuilding

δ threshold for number of outliers

ε threshold for variance divergence

κ relaxation time for rebuilding process

dt variance divergence at time t

τ Pearson correlation coefficient

c number of malicious sensor nodes

η density factor

which reflect the measurement of the true value of the signal. In the rest of this
paper, we assume that the stochastic components of sensor errors are indepen-
dent random variables with a Gaussian distribution; however, our experiments
show that our method works quite well for other types of errors without any
modification. However, if the error distribution of sensors is known, our al-
gorithms can be adapted to other random distributions to achieve an optimal
performance. Hence, we assume that the reading of sensor s at time instant t is

xts = rt + ets (2.1)

6

Table 2.2: A trace example of readings.

sensor readings
instant s1 s2 s3 s4 s5

t=1 17.72 19.33 19.44 18.83 18.60
t=2 19.40 20.85 18.63 17.78 20.33
t=3 18.11 19.68 18.79 19.83 20.63
t=4 18.60 20.10 18.57 20.07 18.49

where rt is the latent reputation at time instant t, that is hidden to the exter-
nal world, and ets is a random variable with a zero-mean Gaussian distribution
ets ∼ N (0, σ2

s). Our goal is therefore to recover the values of rt from the sensor
readings without knowing a priori sensors variances. We assume the normal
distribution since it well reflects nature of the noise [15]. However, we note that
the normal distribution assumption is not a limitation of our reputation system.
We use the probability distribution for estimating the similarity among readings
in the proposed credibility computation as well as testing the error behaviour of
sensors in our collusion detection module. We can adopt other probability dis-
tributions with simple changes to both the data credibility computation model
and the collusion detection module.

2.3 Threat Model

In this paper, we use a Byzantine attack model, where the adversary can com-
promise a set of sensor nodes and inject any false data through the compromised
nodes [16]. When sensors are distributed in an unattended environment such
as a cyber-physical system, taking into account this attack model is become a
significant security challenge [17, 18].

For describing the threat model, we assume that sensors are deployed in a
hostile unattended environment. Consequently, some nodes can be physically
compromised. We assume that when a sensor node is compromised, all the
information which is inside the node becomes accessible by the adversary. Thus,
we cannot rely on cryptographic methods for preventing the attacks, since the
adversary may extract cryptographic keys from the compromised nodes. We
assume that through the compromised sensor nodes, the adversary can send
false data to the aggregator and distort the aggregate values.

Furthermore, we assume that the attacker can either work individually or
collaboratively. In individual (non-collusion) attacks, false data is injected inde-
pendently. In the collaborative (collusion) attacks, the attacker controls multiple
sensors that coordinately report false data [19]. For both individual and collab-
orative attackers, we consider Slandering attacks that the attacker manipulates
the reputation of some instants by reporting false data either to increase or
decrease the reputation values. We also consider an Orchestrated attack that
the attacker launches a sophisticated collusion attack in order to undermine the
performance of the entire reputation system [11]. Moreover, we assume that the
attacker can obtain or estimate the parameters used in the reputation system,
and adjust its attack strategies accordingly.

Finally, we assume that the base station and aggregator nodes cannot be

7

compromised in this adversary model; there is an extensive literature proposing
how to deal with the problem of compromised aggregators [20, 21, 22, 23]; in
this paper we limit our attention to the lower layer problem of false data being
sent to the aggregator node by the compromised individual sensor nodes, which
has received much less attention in the existing literature.

2.4 Problem Statement

Our proposed reputation system is motivated by our recent work on discovering
a new and sophisticated collusion attack against the existing IF algorithms
for reputation system [11]. In this paper, our objective is to propose a novel
reputation computation algorithm with the following features:

• the proposed algorithm is robust with respect to outliers. If only a very
small fraction of readings xts are far from some form of a “consensus” of
other sensors, such readings have very little impact on the final aggregated
reputations produced by the system;

• the proposed algorithm is robust to collusion attacks, where a group of
sensors tries collaboratively to skew the reputation values by an orches-
trated effort;

• the proposed algorithm is “statistically sound”; for example, if individual
readings xts provided by any sensor s are “correct values” plus some zero
mean Gaussian noise independent for each instant, then the algorithm
should produce an output close to the optimal output which is produced
by the MLE;

• sensors variances are not an input to the proposed algorithm, because
such kind of information is unavailable in practice; the algorithm uses an
adaptation procedure which automatically provides such output merely
from the statistical features of the “raw” inputs.

3 Collaborative Reputation System

Since some of our terminology is also used either in everyday English or academic
fields, in this section, we first define the terms “credibility” and “variance”
precisely before describing and analyzing the proposed iterative algorithm to
compute them. We first assume that all sensors report readings for all time
instants and then we extend our model for supporting the sparsity pattern of
the readings.

3.1 Variance Estimation Principle

In the presence of stochastic errors for sensors readings in WSNs, a reputation
computation algorithm should produce estimates which are close to the optimal
ones in information theoretic sense. Thus, for example, if the noise present in
each sensor is a Gaussian independently distributed noise with a zero mean,
then the estimates produced by such an reputation algorithm should have a
variance close to the Cramer-Rao lower bound (CRLB), i.e, in such a case it

8

should be close to the variance of the MLE. However, such estimation should
be achieved without supplying the algorithm the variances of the sensors.

In the proposed reputation system, we aim to achieve an optimal estimate of
sensors variances. With such estimates of the variances, we employ a MLE-like
technique to estimate the true value of the signal. We argue that this objective
satisfies the above principle according to the following fact1:

Proposition 3.1 (Minimum Variance Estimator). Assume that the readings of
n sensors all have normal distributions but with different and known standard
deviations σ1, . . . , σn. Assume that using these sensors we have obtained mea-
surements X1, . . . , Xn for a quantity r of interest. In this case, the MLE is the
weighted average of readings of all sensors and it is expressed as follows:

r̂ =

n∑
i=1

1
σ2
i∑n

k=1
1
σ2
k

Xi. (3.1)

and such an estimate has minimal possible variance.

Proof. Since the standard deviations of sensors are now known, in this case we
can form the likelihood function with only one parameter, the expected value r:

Ln(r) =

n∏
i=1

1

σi
√

2π
e
− 1

2

(Xi−r)
2

σ2
i =

(
n∏
i=1

1

σi
√

2π

)
e
− 1

2

∑n
i=1

(Xi−r)
2

σ2
i

Differentiating with respect to r and setting the derivative equal to zero we get

d

dr
Ln(r) =

(
n∏
i=1

1

σi
√

2π

)
e
− 1

2

∑n
i=1

(Xi−r)
2

σ2
i

n∑
i=1

(Xi − r)
σ2
i

d

dr
Ln(r) = 0 ⇔

n∑
i=1

Xi

σ2
i

− r
n∑
i=1

1

σ2
i

= 0 ⇔ r =

∑n
i=1

Xi
σ2
i∑n

i=1
1
σ2
i

Thus, in this case the MLE is a weighted average of readings of all sensors,
with weights inversely proportional to their variances. Thus, we define MLE
estimator for this case as follows:

r̂ =

n∑
i=1

1
σ2
i∑n

j=1
1
σ2
j

Xi

It is easy to see that such an estimator is unbiased. Moreover it is well
known, in this case the MLE has the smallest (asymptotic) variance and we can
say that the MLE is efficient or attains the CRLB [25].

We obtain the variance of the above estimator as follows:

1A similar proposition with a different proof proposed in [24]

9

E
[
(r̂ − r)2

]
= E

 n∑
i=1

1
σ2
i
Xi∑n

j=1
1
σ2
j

− r

2

= E

 1(∑n
j=1

1
σ2
j

)2

(
n∑
i=1

Xi − r
σ2
i

)2

=
1(∑n

j=1
1
σ2
j

)2E

 n∑
i=1

(
Xi − r
σ2
i

)2

+ 2

n∑
i=1

n∑
j=1
j 6=i

(
Xi − r
σ2
i

)(
Xj − r
σ2
j

)
We now use the fact that if Xi and Xj are independent then E((Xi−µ)(Xj−

µ)) = E(Xi − µ)E(Xj − µ) = 0× 0 = 0. Thus

E
[
(r̂ − r)2

]
=

1(∑n
j=1

1
σ2
j

)2E

[
n∑
i=1

(
Xi − r
σ2
i

)2
]

=
1∑n

j=1
1
σ2
j

3.2 Definitions

The general idea of our proposed reputation system is based on an interdepen-
dency relationship among the credibility of sensors, the reputation values at
time instants, and the variance of sensors. In this work, we define:

• Credibility of a sensor node: it reflects how much other sensor nodes sup-
port the node based on the similarity among the readings of such a sensor
and the current estimate of the true value of the signal.

• Reputation value at a time instant: it is an estimate of the true value of
signal in that particular time instant.

• Variance of a sensor: it is the distance of the sensor’s readings from the
estimate of the true value of the signal.

In this paper, the credibility of a sensor node reflects the accumulated evi-
dence from other sensors for how well-suited the readings of such a sensor are to
serve as an estimation of the true value of the signal. In other words, the credi-
bility of a node can be measured by the mean of credibilities which such a node
obtains from all other nodes. Each node gives the credibility to other nodes in
accordance to the similarity between their readings for all time instants.

As we assumed the normal random distribution model for noise in sensor
readings, we define the similarity between readings of a sensor node and the
reputation values using the probability density function for this random distri-
bution. Let us consider sensor node j with standard deviation σj ; this sensor

10

f(xti; rt, σj) = 1
σj
√

2π
e

−(xti−rt)
2

2σ2
j

rt xti
x

Figure 3.1: credibility of sensor i given by sensor j at time t.

node “is going to assess” the credibility of the readings of another node i, by
estimating the (normalised) likelihood that it could have made such readings
itself (see Figure Figure 3.1), i.e., the credibility that sensor j confers to the
readings of sensor i should be equal to

L(j, i) =

(
m∏
t=1

1

σj
√

2π
e

−(xti−rt)
2

2σ2
j

) 1
m

=
1

σj
√

2π
e

− 1
m

∑m
t=1(xti−rt)

2

2σ2
j (3.2)

We now define the credibility of a sensor i as the aggregate of credibilities
conferred by other sensors, i.e., as normalised likelihood that all other sensors
might have made readings of sensor i, i.e., as

cr(i) =

 n∏
j=1
j 6=i

L(j, i)

1

n−1

=

 n∏
j=1
j 6=i

1

σj
√

2π
e

− 1
m

∑m
t=1(xti−rt)

2

2σ2
j

1

n−1

(3.3)

Equation (3.3) simply gives high credibility to nodes who report readings
very close to other nodes (“the community sentiment”), because the amount of
credibility of each node depends on the similarity of its readings to the current
estimate of the true value of the signal. In addition, the variance of each sensor
has a significant role in amount of credibility which such a node can grant to
other nodes. As can be seen in Equation (3.3), the sensor nodes with lower vari-
ance value grant high credibility to sensors with readings close to the readings
of that sensor.

Given the credibility value for sensor nodes by Equation (3.3), we approxi-
mate the reputation vector r = 〈r1, r2, . . . , rm〉 using a weighted average, where
the weight of a sensor node is the normalized value of its credibility. Thus, we
compute the reputation value at time instant t as follows:

rt = rep(t) =

n∑
i=1

cr(i)∑n
k=1 cr(k)

xti (3.4)

where term
∑n
k=1 cr(k) is used to normalize the credibility values in order to

make the sum of sensors weights to 1.

11

Table 3.1: Final credibility and variance values for sensors in the example graph
in Figure 2.2.

s1 s2 s3 s4 s5

Credibility 0.270 0.250 0.335 0.245 0.275

Variance 0.945 1.106 0.493 1.150 0.913

Given the reputation values by Equation (3.4), we can approximate the
variance of a sensor as the average squared Euclidean distance of its readings
to the reputation values. Thus, we compute the variance of sensor i as follows:

var(i) =
1

m

m∑
t=1

(xti − rep(t))2 (3.5)

The above formulation of credibility, reputation, and variance enable our
model to provide the proposed required features of a reputation system in Sec-
tion 2.4 via an iterative algorithm. Table 3.1 demonstrates the final credibility
and variance values of the sensors for the example graph shown in Figure 2.2.
The next section describes our iterative algorithm to compute these values; we
now explain why we introduced the credibility notion.

In the classical IF algorithm using the reciprocal function the weight given
to readings of a sensor i when an approximation of the reputation vector is
computed is the reciprocal of its estimated variance. If in any iteration of the
algorithm such approximate reputation vector gets close to readings of a partic-
ular sensor, since the reciprocal has a pole at 0, the iterative procedure gives to
that sensor’s readings weights converging to 1 and to all other sensors weights
converging to 0, which results in suboptimal performance. Such situation can-
not arise in our model because the credibility of a sensor derives from both the
similarity of its readings with the current reputation vector and the variance
values of other sensors. Thus, all sensors get non zero weights without any
regularisation, which also degrades the performance of the IF algorithm.

3.3 Computing Credibility and Variance

In this section, we describe an algorithm to find the credibility and variance
values of all sensors in the system. Note that from equations (3.3), (3.4) and
(3.5) we have mutual and transitive recursive definitions for credibility, reputa-
tion and variance concepts. Figure 3.2 shows the recursive relationship among
these three concepts in our reputation model. In this figure, arrows show the
dependency between the concepts. As can be seen in this figure, the credibility
value of a sensor depends on both reputation values and variances of sensors;
the reputation values are computed using the credibility values of the sensors;
and the variance value of a sensor is measured by the distance of its readings
from the reputation values for all time instants.

According to the aforementioned recursive relationship, we propose an itera-
tive method for computing credibility, variance values of sensors, and reputation
values. We denote the credibility, reputation and variance values at iteration l
by cr(l)(i), rep(l)(t), and var(l)(i), respectively. We also use the values obtained

12

Credibility for
each sensor

Variance for
each sensor

Reputation
for each time

instant

Figure 3.2: Recursive relationship among credibility, reputation and variance.

from iteration l to compute the values for iteration l+1. In subsequent sections,
we analyze how much the error decreases based on the number of iterations.

In the iterative algorithm from the initial values of variances, credibility val-
ues at the next iteration are computed for all sensors from values obtained at
the previous round of iteration. Then, using the credibility values, the reputa-
tion values are re-estimated for all time instants. After that, the new values for
the sensor variances are obtained by using the new reputation values. Thus, the
equations (3.3), (3.4) and (3.5) can be now re-written as follows:

cr(l+1)(i) =

 n∏
j=1
j 6=i

1√
2πvar(l)(j)

e
− 1
m

∑m
t=1(xti−rep(l)(t))2

2var(l)(j)

1

n−1

(3.6)

rep(l+1)(t) =

n∑
i=1

cr(l+1)(i)∑n
k=1 cr(l+1)(k)

xti (3.7)

var(l+1)(i) =
1

m

m∑
t=1

(xti − rep(l+1)(t))2 (3.8)

In order to compute the credibility values in the first iteration, we need to
initialize the variances of all sensors. We propose a similar value of variance
for all sensors which is computed as the mean of total variance of all readings.
Thus, we first compute the sum of variances of all sensors using Lemma 3.2. We
presented a similar lemma for computing total variances of sensors when the
readings are biased in [11]. Therefore, we used the similar method for proving
Lemma 3.2 for unbiased sensors readings.

Lemma 3.2 (Total Variance for Unbiased Readings). Let x̄t be the mean of
readings in time t, then, we have

x̄t =
1

n

n∑
j=1

xtj ,

and the statistic

S(t) =
n

m(n− 1)

n∑
i=1

m∑
t=1

(
xti − x̄t

)2
13

is an unbiased estimator of the sum of the initial variances of all sensors,
n∑
i=1

v
(0)
i .

Proof. Remind that xi = {xti : t = 1 · · ·m} is the unbiased readings of sensor
i. Now we form the second central moment of the sum of xi for all sensors as
follows:

E

 n∑
i=1

xi −
1

n

n∑
j=1

xj

2
 =

1

n2
E

 n∑
i=1

 n∑
j=1

(xi − xj)

2

=
1

n2
E

 n∑
i=1

n∑
j=1

n∑
k=1

(xi − xj)(xi − xk)

=

1

n2

n∑
i=1

n∑
j=1

n∑
k=1

(E[x2
i]− E[xixk]− E[xixj] + E[xjxk])

Since the readings xi are unbiased, E[x2
i] is equal to variance vi of sensor

i. In addition, we assume that the sensor noise is generated by independent
random variables, thus

E[xixj] =

{
0 if i 6= j ,

vi if i = j .

Given the above equations, we have:

E

 n∑
i=1

xi −
1

n

n∑
j=1

xj

2
 =

1

n2

n∑
i=1

(n2 E[x2
i]− nE[x2

i])

=

n∑
i=1

vi −
1

n

N∑
i=1

vi

=
n− 1

n

n∑
i=1

vi

Thus, we obtain

n∑
i=1

vi =
n

n− 1
E

 n∑
i=1

xi −
1

n

n∑
j=1

xj

2
 .

By approximating the expected value with the sample mean we get

n∑
i=1

vi ≈
n

m(n− 1)

m∑
t=1

n∑
i=1

(
xti − x̄t

)2
.

14

By using Lemma 3.2 and assuming equal value of variances for all sensors,
the initial value of variance for all sensors is computed as follows:

var(0)(i) =
1

m× (n− 1)

n∑
j=1

m∑
t=1

(
xtj −

1

n

n∑
k=1

xtk

)2

(3.9)

According to Equation (3.6), the credibility of each sensor depends on both
sensors variances and reputation values. Given these identical initial values for
sensors’ variances, we obtain the initial reputation values as the sample mean
of the sensors’ readings (see Proposition 3.1):

rep(0)(t) =
1

n

n∑
i=1

xti (3.10)

In addition, the sensors’ variances are obtained from Equation (3.8) for all
iterations l > 0. Thus, we form Equation (3.6) for computation of credibility of
a sensor as follows:

cr(l+1)(i) =

 n∏
j=1
j 6=i

1√
2πvar(l)(j)

e
var(l)(i)

2var(l)(j)

1

n−1

for all l > 1. (3.11)

Note that for the first iteration, the credibility of sensors is computed using
Equation (3.6), because the initial variance is obtained from Equation (3.9).
However, we employ Equation (3.11) for subsequent iterations to improve the
computational complexity of our iterative algorithm which is formally investi-
gated in Section 3.7.

Algorithm 1 shows our iterative algorithm for computing credibility and
variance values for all sensors using the above equations. By computing the
variance values for the sensors, we can obtain the final estimate of reputations
by a MLE-like method described in the subsequent section.

Table 3.2 shows how the values of credibility, reputation and variance are
updated in the first six iterations for the example graph shown in Figure 2.2.

3.4 Computing the Final Reputation

Given the matrix X = {xti} where xti ∼ rt+ \(0, σ2
i) and the estimated variance

vector −→var, we propose to recover r = 〈r1, r2, . . . , rm〉 using an approximate form
of the Maximum Likelihood Estimation. We suggested a similar approximation
in [11].

We can now obtain an estimation which corresponds to MLE formula for the
case of zero mean normally distributed errors, but with estimated rather than
true variances. Therefore, we assume that the expected value rt of the measure-
ments is the true value of the quantity measured, and is the only parameter in
the likelihood function. Thus, in the expression for the likelihood function for
normally distributed unbiased case. that is,

Ln(rt) =

n∏
i=1

1

σi
√

2π
e

−(xti−rt)
2

2σ2
i

15

Algorithm 1 Credibility and variance computation.

1: procedure CredVarianceComputation(X = {xti})
2: Initialize var0(i) using (3.9)
3: Initialize rep0(i) using (3.10)
4: l← 0
5: repeat
6: for each sensor node i do
7: if l = 0 then
8: Compute cr(l+1)(i) using (3.6)
9: else

10: Compute cr(l+1)(i) using (3.11)
11: end if
12: end for
13: for each time instant t do
14: Compute rep(l+1)(t) using (3.7)
15: end for
16: for each sensor node i do
17: Compute var(l+1)(i) using (3.8)
18: end for
19: l← l + 1
20: until reputations and variances have converged
21: Return −→var and −→cr
22: end procedure

Table 3.2: Credibility and variance values after each iteration for sensors in the
example graph in Figure 2.2.

l
s1 s2 s3 s4 s5

CR VAR CR VAR CR VAR CR VAR CR VAR

0 1 0.920 1 0.920 1 0.920 1 0.920 1 0.920

1 0.272 0.962 0.264 1.083 0.328 0.510 0.254 1.149 0.282 0.900

2 0.269 0.951 0.254 1.097 0.333 0.499 0.246 1.152 0.277 0.907

3 0.270 0.948 0.252 1.103 0.335 0.496 0.245 1.151 0.276 0.911

4 0.270 0.946 0.251 1.105 0.335 0.494 0.245 1.150 0.275 0.912

5 0.270 0.946 0.251 1.106 0.335 0.494 0.245 1.150 0.275 0.913

we replace σ2
i by the obtained variance var(i) from Algorithm 1. Moreover, by

differentiating the above formula with respect to rt and setting the derivative
equal to zero we get

rt =

n∑
i=1

1
var(i)∑n
k=1

1
var(k)

xti for all t = 1, · · · ,m. (3.12)

Equation (3.12) provides an estimate of the true value of the reputations
measured as a weighted average of sensors readings, with the readings given a
weight inversely proportional to the estimation of their error variance provided

16

Table 3.3: Final sensors weights and reputation values in the example graph in
Figure 2.2.

Sensors s1 s2 s3 s4 s5

Weights 1.058 0.904 2.027 0.870 1.095

Instants t=1 t=2 t=3 t=4

Reputations 18.874 19.292 19.295 19.012

by our iterative algorithm:

r =

n∑
i=1

wixi (3.13)

Table 3.3 demonstrates the final sensors weights and reputation values for
the example graph shown in Figure 2.2 according to the Equation (3.13).

3.5 Collusion Detection and Revocation

As we described the proposed reputation system computes the credibility, vari-
ance and reputation values based on the readings of all sensor by assuming
stochastic error behaviour for all sensors. Although our experiments show that
this method is more robust than other IF algorithms for several different attack
scenarios, the attacker can still alter considerably the reputation results of the
IF algorithms (see Section 5.8). Thus, in this section we augment the repu-
tation system with our novel collusion detection technique proposed in [26] in
order to further diminish the impact of the compromised nodes. We will first
describe our proposed collusion detection scheme and then discuss the proposed
compromised nodes revocation approach.

Detection Method

Upon computing the reputation values by Equation (3.13), we carry out a col-
lusion detection and revocation method based on an analysis of the features
of error distribution of the sensor nodes. In the existing approaches, compro-
mised sensor nodes are usually detected as outliers from some form of average
of all readings. Instead, we propose a finer analysis based on a sequence of
sensor readings, by considering how differences between readings of the individ-
ual sensor nodes and the estimate obtained by Equation (3.13) are distributed.
The main idea behind our method is that, while faulty or compromised sensors
might skew the estimate, their action can only make non-compromised sensor
appear biased, but the variability of such sensors around such a value will still
have a distribution close to a normal distribution; on the other hand, the dif-
ference between the values provided by the compromised nodes will have highly
non normal distribution, reflecting their essentially non-stochastic (colluding)
behaviour. Accordingly, we assume a sensor with a non-Gaussian error distri-
bution is likely to be a compromised node.

17

In order to analyse the error behaviour of sensor nodes, we first compute the
sensors errors based on the distances of each sensor readings to the obtained
reputation from Equation (3.13). After that, we employ a hypothesis testing
method to assess the normality of the obtained error values for each sensor node.

Thus, let es = {ets : t = 1, · · · ,m} be the vector of error terms for a sensor
s, defined as

es = xs − r

where xs = {xts : t = 1, · · · ,m} is a sequence of readings from sensor s and
r = 〈r1, r2, . . . , rm〉 denote the reputation values obtained from the previous
phase of our framework.

The problem of deciding whether a sensor node s is compromised can be
formulated as a hypothesis testing problem with null and alternative hypotheses
as follows:

• Null hypothesis H0: The sequence of errors es is drawn from a Normal
distribution.

• Alternative hypothesis H1: The sequence of errors es is not drawn from
a Normal distribution.

In order to judge the compromise sensor nodes, we employ the Kolmogorov-
Smirnov test (K-S test) [25] on sample errors of each sensor. Using the esti-
mates for the sample mean and the sample variance we normalise the errors;
the Kolmogorov-Smirnov statistic then quantifies a distance between the empir-
ical distribution of such normalised samples of sensor errors es and the N (0, 1)
Normal distribution.

Revocation Method

The proposed collusion detection scheme classifies sensor nodes in two disjoint
sets: the set of the compromised, and the set of the non-compromised nodes.
We can now re-apply our proposed IF algorithm on non-compromised sensors
readings only to produce a more accurate estimation of the true value of the
signal. Thus, we will achieve new set of values for credibility and variance of
non-compromised nodes as well as new reputation values. We then compute the
variance of compromised nodes according to the distance of their readings to
the new reputation values.

3.6 Basic CrPr Algorithm

In this section, we describe the basic CrPr algorithm which includes the cred-
ibility and variance computation, reputation computation, and collusion detec-
tion modules. We simply wish to compute the sensors’ variances as well as
reputation vector for a matrix of sensors readings.

At the most basic level, the algorithm would proceed as in Algorithm 2. As
we have mentioned, our algorithm operates on batches of consecutive readings
of sensors, proceeding in several stages. In the first stage, we obtain the sensors
variances by employing the proposed iterative procedure for credibility and vari-
ance computation (see Section 3.3). Based on such an estimation of variance of
each sensor, in the next stage of CrPr algorithm, we provide an estimation of
the reputation vector calculated using a MLE-like method (see Section 3.4). In

18

the third stage, we apply our collusion detection and revocation method to di-
minish the contribution of the compromised nodes. After revoking the readings
of untrusted sensors, we re-run our credibility and variance computation as well
as the MLE-like method for computing the final reputation vector according to
the remaining readings (stage 1 and 2). Finally, we re-compute the variance
of compromised nodes according to the distance of their readings to the final
reputation vector.

Algorithm 2 Basic CrPr.

1: procedure CrPr(X = {xti})
2: −→var← CredVarianceComputation(X) . Section 3.3
3: Compute r using (3.13) . Section 3.4
4: colluders← ∅
5: for each sensor node s do . Section 3.5
6: Compute es ← xs − r
7: Test the normality of errors es using K-S test
8: if es is non-normal then
9: colluders← colluders ∪ {s}

10: end if
11: end for
12: if colluders 6= ∅ then
13: X̂ ← X − colluders
14: −→var← CredVarianceComputation(X̂) . Section 3.3
15: Compute r using (3.13) . Section 3.4
16: for each sensor node s ∈ colluders do
17: var(s)← 1

m
‖xs − r‖22

18: end for
19: end if
20: Return −→var and r
21: end procedure

3.7 Algorithmic Complexity

In order to assess the computational complexity of the basic CrPr algorithm,
we must evaluate the complexity of its three main sections: Algorithm 1 which
computes credibility and variance of sensors, the MLE-like method (Equa-
tion (3.13)), and the collusion detection and revocation method.

We evaluate the time complexity of Algorithm 1 in the worst case when all
sensors report readings for all time instants. We must model the complexity of
two main parts of the algorithm including the non-iterative computations (lines
2-3 and the first iteration) and the iterative part (lines 6-19). The complexity
of the computation of initial variances, initial reputations, and all computations
in first iteration can be modeled respectively by O(n × m), O(n × m), and
O(n2 × m). Thus, the complexity of computing initial values and the first
iteration of the algorithm is dominated by the complexity of line 8 which is in
O(n2×m). Although this looks expensive, for most real world datasets such as
the Intel Berkeley Lab dataset [14], the number of edges is more or less linear in
the number of time instants. Thus, the complexity can be reduced to O(n×m).

In order to model the complexity of the iterative part of Algorithm 1, we
must model the complexity of credibility, reputation, and variance computa-

19

tions. Clearly, the complexity of computing credibility values for all sensors in
a single iteration is O(n2). Moreover, if the worst case of the total number of
readings is n×m, computing the reputation and variance values requires a total
O(n × m) time. Accordingly, each iteration in our algorithm requires a total
O(n2 +n×m) = O(n×m) time, and for k iterations, the total running time for
the iteration part of the algorithm is O(k × n×m). By accumulating the com-
plexity of the two main parts of Algorithm 1, the complexity of the algorithm
in the worst case can be represented by O(k × n×m).

In the worst case, the complexity of our MLE-like method for computing
the reputation vector can be simply represented by O(n×m). In addition, the
complexity of the collusion detection method depends on computing the sensors
errors and normality testing of the errors which require a totalO(n×m). Clearly,
the complexity of Algorithm 1 dominates the complexity of other two sections
in Algorithm 2. Therefore, CrPr algorithm totally runs in O(k×n×m) in the
worst case when the readings matrix is dense.

It is clear that the complexity of CrPr algorithm is bounded in the con-
vergence speed. We will show how fast our algorithm converges due to an
exponential decrease on residual error in the algorithm (see Section 5.7).

3.8 Sparsity Pattern

In general, the structure of readings in real world datasets may be sparse. In
order to consider the sparsity in sensors readings, we define an adjacency matrix
A as follows:

A = {ati} ati =

 1 iff sensor i reports reading at time t,

0 otherwise.

By using the adjacency matrix A, if ati = 0, then xti = 0 in the readings
matrix X. In other words, the entries must not be considered as readings but
instead as missing values. Thus, we rewrite the previous equations for computing
credibility, reputation, and variance by considering both the adjacency matrix
and the missing values in the readings matrix.

In order to compute the credibility of a sensor in a sparse readings matrix,
we must consider two points for rewriting Equation (3.3): 1) a sensor achieves
credibility only for the time instants when it reported readings; 2) every two
sensors give credibility to each other if and only if they reported readings for
some common time instants. First, we define Ti,j as the set of time instants
which both sensors i and j have reported readings for those instants. In other
words, Ti,j = {t | ati = 1 ∧ atj = 1}. Now, we rewrite Equation (3.3) by taking
into account these two points as follows:

cr(i) =

 n∏
j∈ni
j 6=i

1

σj
√

2π
e

− 1
m

∑m
t=1(xti−rt)

2

2σ2
j

1

n−1

(3.14)

where ni is a set of all sensor nodes which have reported at least for one
common time instant with sensor i. In other words, ni = {j | |Ti,j | ≥ 1}

20

By using the same technique, the equations (3.4) and (3.5) for computing
the reputation vector and sensors variance become, respectively

rep(t) =
∑
i∈N(t)

cr(i)∑
k∈N(t) cr(k)

xti (3.15)

var(i) =
1

|N(i)|
∑
t∈N(i)

(xti − rep(t))2 (3.16)

where N(i) indicates the neighborhood of node i in the readings graph G
which is the set of vertices adjacent to i. Also, |N(i)| is the degree of vertex i
which is the total number of vertices adjacent to i. By using matrix A, we have
N(i) = {t | ati = 1} and N(t) = {i | ati = 1}.

The iterative version of the above equations can be simply achieved by the
same method which we used in Section 3.3. We can also rewrite the equation
for computing the initial value of variance for sensors as follows:

var(0)(i) =
1

(n− 1)

n∑
j=1

1

|N(j)|
∑

t∈N(j)

xtj − 1

|N(t)|
∑

k∈N(t)

xtk

2

(3.17)

By using a similar method, we can rewrite the MLE-like equation (3.12) as
follows:

rt =
∑
i∈N(t)

1
var(i)∑

k∈N(t)
1

var(k)

xti for all t = 1, · · · ,m. (3.18)

3.9 High Credibility to Sensors with More Readings

According to the credibility computation formula (3.14), the credibility of a
sensor node is computed by a geometric mean of all credibilities which are given
by other sensors. Although this ensures that the credibility of a sensor that has
consistently received with high endorsement by other sensors will be high, there
is still one possible way in which a sensor can obtain a high credibility value
unjustifiably: a malicious sensor node can report only one reading very close
to the community sentiment and then the sensor will obtain a high credibility
value by only reporting such a reading. In this section, we refine the previous
normalization method to address the issue.

In order to take into account the number of readings for computing the sensor
credibility in Equation (3.14), we add a hyperbolic function to the previous
simple averaging technique for the normalizing the credibility values. We choose
a hyperbolic function which increases sharply for the number of readings up to
the average number of readings per sensor, it rises slightly for the number of
readings larger than the average and it remains steady around one when the
number of readings is very close to the double of the average. By empirical
experiments, we selected function g(|N(i)|) as follows:

g(|N(i)|) = tanh

(
|N(i)|
dSΓ

)
dSΓ =

1

n

n∑
i=1

|N(i)|

21

x= |N (i)|

f(
x
),
g
(x
)

0 µ 2µ 3µ0

0.2

0.4

0.6

0.8

1

f(x) = tanh(1)
µ

x

g(x) = tanh(x
µ
)

tanh(1) = 0.7616

Figure 3.3: Plot of g(|N(i)|) = tanh
(
|N(i)|
µ

)
while µ = dSΓ .

where, N(i) indicates the number of readings for sensor i and dSΓ is the
average number of readings per sensor (the average degree of a S-typed nodes
in the graph representation).

Figure 3.3 shows a plot of function g(|N(i)|). By evaluating the Intel Lab
dataset [14], we found that the number of readings for most of sensor nodes are
very similar. Thus, we selected this hyperbolic function which gives a weight
close to one to the average value, while it penalises the sensor nodes which their
number of readings are much lower than the average value.

We can now refine the credibility computation (Equation (3.14)) by using
function g(|N(i)|) as follows:

cr(i) = g(|N(i)|)

 n∏
j∈ni
j 6=i

1

σj
√

2π
e

− 1
m

∑m
t=1(xti−rt)

2

2σ2
j

1

n−1

(3.19)

4 Credibility Propagation to Data Streaming

A large variety of WSN applications are characterized by real-time data stream-
ing. In these applications, sensor readings continuously arrive to the reputation
system. The challenge for data streaming applications is to achieve the trust-
worthiness of sensor nodes with low computational complexity, while swiftly
adopting to the changes in the sensors behaviours.

This section aims at extending CrPr to data streaming, specifically achiev-
ing online reputation system for sensors readings. The resulting algorithm,
called Str-CrPr, involves the following five main steps (Algorithm 3):

1. The first window of readings is used by CrPr algorithm to build the
initial stream model for sensor behaviors (Section 4.1).

2. For each subsequent readings, the current model is used for computing the
reputation value; if the value is close to the incoming readings, the stream

22

model is updated accordingly, otherwise the counter for the number of out-
liers will be incremented for appropriate sensor nodes and the reputation
value will be recomputed using only non-outlier readings (Section 4.2).

3. Sensors behaviour is checked for change detection using the distribution
of errors for sensor nodes (Section 4.3).

4. Upon triggering the change detection test, or if the number of outliers
exceeds a threshold, the stream model is rebuilt based on the readings of
the current window and the details of the previous model (Section 4.4).

5. If there are some new sensors reporting in the readings, the stream model
is updated for these new sensors (Section 4.5).

The idea of making a stream model in Str-CrPr is inspired from [27, 28],
albeit they used the stream models in the context of data clustering. In this
algorithm, xt = 〈xt1, xt2, . . . , xtn〉 indicates a set of readings reported by sensors
in time t.

Algorithm 3 Credibility propagation to data streaming.

1: procedure Str-CrPr(x1, . . . ,xw . . . ,xt, . . .)
2: Str-CrPr Model ← CrPr(〈x1, . . . ,xw〉) . Section 4.1
3: Window ← 〈x1, . . . ,xw〉
4: tw ← w
5: for each time instant t > w do
6: Update Str-CrPr Model . Section 4.2
7: Window ← xt

8: if Restart criterion then . Section 4.3
9: Rebuild Str-CrPr Model . Section 4.4

10: tw ← t
11: end if
12: for each new comer sensor k in xt do
13: Update Str-CrPr Model for new comer k . Section 4.5
14: end for
15: end for
16: end procedure

4.1 Str-CrPr Model

The main idea behind our Str-CrPr algorithm is to build a statistical model
of sensors’ behaviours and to subsequently update the model according to the
stream of readings. The readings stream model which is available at any time
instant, consists of a set of 5-tuple 〈i, vi, ti, Ei, Oi〉, where i is a sensor identifier
(we assume that each sensor has a unique numeric identifier in the range of [1,n]),
vi is the estimated variance of sensor i, ti is the number of readings reported by
sensor i, Ei is the cumulative error of sensor i, and Oi is the number of outlier
readings reported by sensor i.

In order to initialize the stream model, we execute the basic CrPr algorithm
over the first window of sensors readings (see line 2 in Algorithm 3). As a result,
we have the variance values for all sensors which have reported readings in the
first window. Moreover, we set the initial values of ti, Ei and Oi to zero for

23

all sensor nodes. These values will be updated according to the subsequent
readings. Now, we have our initial stream model according to the first window
of readings.

4.2 Model Update

For each new readings xt reported by sensors at time t, t > w, we update the
current stream model as well as compute the reputation value rt. Algorithm 4
shows our update mechanism running for each new reading at time t. Clearly,
at the first step, we estimate the reputation value rt using our MLE-like equa-
tion (3.12). Note that the equation needs the sensor variances. Thus, we use
the sensor variances from the current stream model for this computation.

Algorithm 4 Updating the stream model for incoming readings.

1: procedure Str-CrPrUpdate(Str-CrPr Model, xt)
2: Compute rt using (3.12)
3: for each sensor i reported readings in time t do
4: ti ← ti + 1
5: if

∣∣rt − xti∣∣ > 3σi then
6: Oi ← Oi + 1
7: xt ← xt − {xti}
8: end if
9: end for

10: Re-Compute rt using (3.12)
11: for each sensor i reported readings in time t do
12: Compute Eti using (4.1)
13: Ei ← Eti
14: end for
15: end procedure

At the second step of our update procedure, given an estimate of reputation
value rt, we can now detect the outlier readings in xt. Among the many outlier
detection methods proposed for WSNs [29, 30], we have selected a simple sta-
tistical test known as 3σ as it minimizes the expected detection time. However,
our streaming algorithm fits well with other alternatives in outlier detection
techniques. In the 3σ statistical test, all values that are more than three times
the standard deviation away from the estimated reputation value are labeled as
outliers. We also use the sensors variances from the current stream model for
this outlier detection step.

Upon detecting the reading of sensor i at time t as an outlier, the stream
model is updated by incrementing the number of outlier reports for the sensor
node. After that, the reputation value rt will be recomputed by eliminating the
detected outlier readings from xt. Although our MLE-like equation is robust
against outlier readings, eliminating the outlier readings makes the reputation
computation more accurate.

Given the final estimate of reputation value rt, we can now update the
cumulative error value for the sensors which have reported readings in time t.
Let us define the error as the variance of the sensor readings from the reputation
values computed by the MLE-like method from the last time of rebuilding the
model be w+ 1. Thus, the cumulative error of sensor i from time w+ 1 to t can

24

be computed as follow:

E
(t)
i =

1

t− w

t∑
k=w+1

(
xki − rk

)2
=

1

t− w

(
(t− w − 1)× E(t−1)

i +
(
xti − rt

)2)
As the error of each sensor for the time interval of the previous model build-

ing, 1 < t ≤ w, is presented by the estimated variance of sensor in the current
model, we only need to compute the cumulative error for the readings reported
after the time of previous model rebuilding. Moreover, both the number of read-
ings and the cumulative error for each sensor are stored in the stream model.
Thus, the above recursive equation for computing the cumulative error for sensor
i at time t can be written in the following form:

E
(t)
i =

0 t ≤ tw,

1
ti

(
(ti − 1)× E(t−1)

i + (xti − rt)
2
)

t > tw.
(4.1)

where tw is the time when the last model was built. Therefore, it takes O(1)
time to update the cumulative error for each sensor. We will investigate the
time and space complexity of Str-CrPr algorithm in Section 4.6.

4.3 Restart Criterion

A key difficulty of our streaming algorithm is to decide when to do a rebuild pro-
cess. Although a part of the stream model changes during the update process for
each incoming readings, the sensors’ variances must be recomputed through the
rebuild process. Thus, the restart criterion plays a significant role in triggering
the stream model rebuilding.

Two restart criteria have been jointly considered in Str-CrPr algorithm.
The simpler option is based on the number of detected outlier readings detected
during the update process; when the number of outlier readings for the majority
of sensors exceeds threshold δ × w, the restart criterion is triggered. A more
sophisticated restart criterion is based on detecting the statistical distribution
changes in sensor variances. While quite a few change point detection methods
have been proposed [31, 32], none of them works with our statistical model for
sensors variances. Thus, a new approach for change detection is presented in
this paper. The general idea behind our distribution change detection is based
on the following observation.

Observation 4.1. While the variance of a sensor has no significant changes,
the new readings decrease the cumulative values of the sensor errors, because a
larger number of readings makes our computation of sample variance of errors
more accurate. However, upon changes to the sensor variance, the cumulative
error will start to increase. This can be explained by the fact that the reputation
values, which are computed according to the previous variances values, are far
from the incoming sensor readings.

Figure 4.1 illustrates the trend of the distance between the cumulative errors
and variance values of sensors according to the above observation. For this

25

time

E
rr

or

w+ 1 κ λ λ + w

2 λ + w

1

2

3

4

Relaxation
Time

Change
Point

Figure 4.1: The trend of the cumulative error of sensors.

figure, we computed the cumulative error using Equation (4.1) from time w+ 1
when the computation of sensors variances for a whole of window of readings
is completed. Clearly, the distance between the cumulative errors and sensor
variances decreases from time w+ 1 to time λ. At the time λ, when the sensors
variances are doubled, the trend of the distance increases.

In order to detect a statistical distribution change on sensors variances based
on the above observation, we focus on the distance after an amount of relaxation
time. The relaxation time, κ, is defined as the number of readings which are
needed to compute the cumulative error of sensors in order to be statistically
robust for comparing the sensors variances. We start the computation of the
cumulative error after the previous rebuilding process from a whole window
of readings, say time w. Then, we have a relaxation time frame until time
κ × w which is used for receiving sufficient readings for robustly computing
the cumulative errors. Since sensor nodes may have different variance scales,
we normalize the distance between the cumulative errors and sensor variances.
Thus, the variance divergence dt is defined as the normalized distance between
the cumulative error and the sensor variance of all sensor nodes at time t,

dt =

√∑n
i=1(vi−Ei)2

n∑n
j=1 vj

(4.2)

Now, we define a threshold ε for the variance divergence dt to detect the
statistical distribution changes of sensor variances. In other words, when the
variance divergence dt exceeds the threshold ε, the restart criterion is triggered.

Note that the restart process is triggered when either the number of outlier
readings for the majority of sensors exceeds threshold δ × w or the variance
divergence exceeds threshold ε after the relaxation time κ × w from the last
rebuilding process. Clearly, we define both outlier threshold δ and relaxation
time κ as a fraction of window size w, because the maximum values for both of
the parameters is the window size. In section 5.9, we investigate the sensitivity
of the effectiveness and efficiency of Str-CrPr algorithm with respect to all of
these parameters.

26

4.4 Model Rebuilding

Upon triggering the restart criterion, a new stream model is rebuilt by launching
CrPr algorithm over the current window of readings. Thus, the sensor variances
in the stream model are updated by the results of CrPr algorithm. Moreover,
the values of ti, Ei, and Oi for all sensors are reset to zero. Finally, the value
of tw is set to the current time instant.

Since we are using a sliding window for storing the incoming readings, the
rebuilding process will be performed over the most recent sensor readings. More-
over, we exploit the previous values of sensors variances as initial values of the
variances for the rebuilding process. This idea not only makes the change of the
sensors variances smoothly, but also, as our experiments show, it increases the
convergence speed of our iterative algorithms.

4.5 Newcomer Sensor

A newcomer sensor is a sensor node that has not reported any readings during
the rebuilding window time. In other words, there is no 5-tuple corresponding
to a newcomer sensor node, because the first reading of such a node is reported
in the time t, t > w. Clearly, existing the newcomer sensors have important
impact on reputation computation, outlier detection and distribution change
detection in Str-CrPr algorithm as there is no knowledge about the variance
values of such sensors in the stream model.

In order to address the newcomer sensor issues, we compute the variance
of such a sensor based on its cumulative error during a relaxation time in-
terval for its readings. Moreover, the model update procedure excludes the
readings of a newcomer sensor during the reputation computation until its vari-
ance is estimated. The procedure computes the cumulative error for such a
newcomer sensor using Equation (4.1). Once the relaxation time interval for
a newcomer sensor finishes, the stream model is updated by adding a new tu-
ple 〈k, vk, tk, Ek, Ok〉, where k is a unique identifier for such a newcomer sensor
node; tk and Ek are defined similar to other sensor nodes in the stream model;
the variance of such sensor, vk, is equal the cumulative error; thus vk = Ek.
Also, the number of outliers for the newcomer sensor is initialized to zero, thus
Ok = 0. After adding the new 5-tuple to the stream model, Str-CrPr algo-
rithm treats the newcomer sensor as all other nodes.

4.6 Memory Usage and Complexity Analysis

In this section, we study the complexity and memory usage of Str-CrPr al-
gorithm, which are important efficiency factors for streaming algorithms. The
algorithms are required to have a constant memory usage and a small computing
time in the whole computation process [27]. The memory usage of Str-CrPr
algorithm mainly consists of all readings in the sliding window and the 5-tuples
in the stream model 〈i, vi, ti, Ei, Oi〉. The temporary variables employed in
update process, change detection and newcomer handling consume very small.
Clearly, the memory usage for keeping the sensor readings in a window with size
w is O(w × n). Also, the memory usage for the stream model is O(n). Thus,
the memory usage of Str-CrPr algorithm can be represented by O(w × n).
Moreover, the memory usage remains steady in the streaming process.

27

The time complexity of Str-CrPr algorithm depends on the complexity of
the algorithm for each time instant. At each time t when a new reading arrives,
the updating operation in Section 4.2 is executed which has linear complexity
with respect to the number of readings in the time; thus its complexity is O(n)
(see Algorithm 4). The evaluation of the restart criterion in Section 4.3 cal-
culates both the number of outlier readings and the variance divergence which
takes time O(n). The model rebuilding in Section 4.4 performs CrPr algorithm
over the current window of readings. The complexity of this step is O(k×n×w)
in the worst case (see Section 3.7). The newcomer sensor handling procedure in
Section 4.5 computes Ek by simple operations like assignment, summation and
multiplication on results from last time step, and thus takes a constant comput-
ing time O(1). Therefore, the overall time complexity of Str-CrPr algorithm
depends on the rebuilding process by applying CrPr algorithm. However, while
there is no change in statistical distribution of sensors’ errors, the time com-
plexity of Str-CrPr algorithm remains in O(n).

5 Experiments

In this section, we detail the steps taken to evaluate the robustness and efficiency
of our reputation system. The objective of our experiments is to evaluate the
robustness and efficiency of our approach for estimating the true value of the
signal based on the sensor readings in the presence of faults and collusion at-
tacks.

5.1 Experimental Environment

Although there are a number of real world datasets for evaluating reputation
systems and data aggregation in sensor networks such as Intel Lab dataset
[14], SensorScope [33], Great Duck Island (GUI) [34], and NAMOS [35], none
of them provide a clear ground truth. Thus, we conducted our experiments
by both using SensorScope as a real-world dataset and generating synthetic
datasets with parameters similar to the real world dataset.

The SensorScope project is a collaboration between environmental scientists
and hardware/software engineers at EPFL which aims at facilitating the adap-
tion of WSNs as a common tool by a community with no professional knowledge
in sensor networking [36]. The deployed sensor network in this project consists
stations with sensor nodes that are capable of measuring 9 distinct environmen-
tal quantities: air temperature and humidity, surface temperature, incoming
solar radiation, wind speed and direction, precipitation, soil water content, and
soil water suction [36]. We selected the temperature measurements of a dataset
collected from deploying a small sensor network at the Grand-St-Bernard pass
at 2400 m between Switzerland and Italy. The dataset was collected every 2
minutes over 43 days by these station at 23 weather stations. A summary of
statistical parameters of the dataset is presented in the Table 5.1.

For generating the synthetic datasets, we exploit the statistical parameters
of one day readings from the SensorScope dataset. In order to model the tem-
perature measurement in our simulation, we generate the true value of the signal
by using sine function f(t) = 20 + Sin

(
2π t

m −
π
2

)
. Similar to the SensorScope

dataset, each sensor reports the readings every two minutes; and we collect the

28

readings for a day as a block for evaluating our reputation system. Thus, we
set m = 720. In addition, we consider a zero mean Gaussian noise for sensors
readings with different variance values for the sensors (see Equation (2.1)). In
[11], we recently proposed a method for estimating the sensors bias. Thus, we
can eliminate the bias from sensors’ readings by using the same method. More-
over, similar to the SensorScope dataset, we assume that all sensor nodes report
the readings for all time instants. However, we evaluate the behaviour of our
algorithm for sparsity patterns in Section 5.6. If not mentioned otherwise, we
generate the synthetic datasets according to the parameters listed in Table 5.2.

For each experiment which is based on synthesis datasets, we perform the
algorithms over 100 different synthetically generated datasets, and then results
were averaged. All the experiments have been conducted on an HP PC with
3.30GHz Intel Core i5-2500 processor with 8Gb RAM running a 64-bit Windows
7 Enterprise. The program code has been written in MATLAB R2012b.

Table 5.1: SensorScope dataset statistics.

Parameter SensorScope Dataset

Number of sensors 23
Number of time instants 30,249

Number of readings 588,524
Average # of readings per sensor 25,588

Table 5.2: Experimental parameters for synthetic datasets.

Parameter Value

n 23

m 720

Convergence threshold 10−12

Number of repeat 100

True value of the signal f(t) = 20 + Sin
(
2π t

m
− π

2

)
The level of significance in K-S test α = 0.05

In all experiments, we compare CrPr algorithm against four other IF tech-
niques proposed for reputation systems. For all parameters of other algorithms
used in the experiments, we set the same values as used in the original papers
where they were introduced.

The first IF method considered computes the trustworthiness of sensor nodes
based on the distance of their readings to the current state of the estimated
reputation [4]. We investigate two proposed discriminant functions g(d) =
d−1 and g(d) = 1 − kld in our experiments and call these methods as dKVD-
Reciprocal and dKVD-Affine, respectively.

The second IF method we consider is a correlation based ranking algorithm
proposed by Zhou et al. in [3]. In this algorithm, trustworthiness of each sensor
is obtained based on the correlation coefficient between the sensor readings and
the current estimate of the true value of the signal. In other words, this method
gives credit to sensor nodes whose readings correlate well with the estimated
true value of the signal. Based on this idea, the authors proposed an iterative

29

Table 5.3: Summary of different IF algorithms.

Name Discriminant Function

dKVD-Reciprocal wl+1
i =

(
1
m

∥∥xi − rl+1
∥∥2

2

)−1

dKVD-Affine wl+1
i = 1− k 1

m

∥∥xi − rl+1
∥∥2

2

Zhou wl+1
i = 1

m

m∑
i=1

(
xti−x̄t

σxi

)(
rt−r̄
σr

)
Laureti wl+1

i =
(

1
m

∥∥xi − rl+1
∥∥2

2

)− 1
2

algorithm for estimating the true value of the signal by applying a weighted
averaging technique. They argued that correlation coefficient is a good way
to quantify the similarity between two vectors. Thus, they employed Pearson
correlation coefficient between sensor readings and the current state of estimate
signal in order to compute the sensor weight. We call this method as Zhou.

The third algorithm considered has been proposed by Laureti et al. in [5] and
is an IF algorithm based on a weighted averaging technique similar to dKVD-
Reciprocal algorithm. The only difference between these two algorithms is in
the discriminant function. The authors in [5] exploited discriminant function
g(d) = d−β and β = 0.5. We call this method as Laureti.

Table 5.3 shows a summary of aggregation and discriminant functions for all
of the above four different IF methods.

We use the Root Mean Square (RMS) error as the accuracy comparison
metric in all experiments which is as follows:

RMS Error =

√∑m
t=1(rt − r̂t)2

m
(5.1)

where rj and r̂j denote the true value and the estimated value of the reputation
for time instant t, respectively.

We first conduct experiments by injecting only Gaussian noise into sensor
readings. In the second part of the experiments, we investigate the behaviour of
these approaches by emulating a simple, non-colluding attack scenario presented
in [4, 37]. We then evaluate these approaches in the case of our sophisticated at-
tack scenario presented in [11]. For all these three scenarios, we investigate the
performance of the collusion detection module in details. After that, we eval-
uate the algorithms for different readings’ resolutions, clustering variances and
various sparsity patterns. We also analyze the properties of CrPr algorithm in
terms of error and convergence. Finally, we analyze Str-CrPr algorithm for
parameters sensitivity and efficiency metrics.

5.2 Accuracy without Attacks

In the first batch of experiments we assume that there are no malicious sensor
nodes. Thus, the errors are fully stochastic; we generate the errors of sensors
with zero-mean Gaussian distributions. In order to evaluate the performance of
CrPr algorithm in comparison with the performance of existing IF algorithms,

30

we consider unbiased errors with different variances for sensor nodes. We have
chosen to present the case with the error of a sensor s at time t given by
ets ∼ N (0, s × σ2), considering different values for the baseline sensor variance
σ2. Figure 5.1(a) reports the performance of CrPr algorithm for estimating the
true value of the signal as well as the performance of other IF algorithms. The
results show that in this experiment, the performance of our approach superior
to other IF algorithms as it has a smaller RMS error.

Figure 5.1(b) reports the accuracy results of CrPr algorithm and the infor-
mation theoretic limit for the minimal variance provided by the CRLB, achieved,
for example, using the MLE with the actual, exact variances of sensors, which
are NOT available to our algorithm (see Proposition 3.1). As one can see from
these results, our proposed approach closely matches the minimal possible vari-
ance coming from the information theoretic lower bound.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12
Unbiased2: Unbiased users with different variances

σ

R
M
S
E
rr
o
r

dKVD-Reciprocal

dKVD-Affine
Zhou
Laureti
MLECR-NoIF-Colluder

(a) Unbiased error

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3
Unbiased2: Cramer−Rao lower band and our approach

σ

R
M
S
E
r
r
o
r

MLE with Actual Variances

MLECR-NoIF-Colluder

(b) Unbiased error

Figure 5.1: Accuracy for No Attack scenarios with different variances.

5.3 Robustness Against Simple Attacks

In order to evaluate the robustness of our algorithm against simple attack sce-
narios, we use two types of malicious behaviour proposed in [4, 37] over both
SensorScope dataset and synthetic datasets: random readings and a promot-
ing attack. For both of the simple attack scenarios, we selected a subset of
readings from SensorScope dataset as the baseline dataset which includes the
temperature values measured by all 23 sensors for a day in October 23, 2007.

For the random rating scenario, we modify 20% of the readings from the
baseline dataset by injecting uniformly random real values in the range of [-5,5]
for those sensors.

In slandering and promoting attacks, one or more sensor nodes falsely reports
lower and higher values for their readings, respectively, about one or more time
instants [2]1. The attacks can be conducted by either an individual attacker or
a coalition of attackers. The attacker can achieve the control of many sensor
nodes, referred to as malicious nodes, and conduct either a slandering attack

1Actually, slandering and promoting attacks are defined in reputation systems for online
rating applications where the attacker falsely produces negative and positive ratings for an
item, respectively. We evaluate our reputation system against such attacks by injecting the
false readings into a real dataset in wireless sensor networks.

31

(decreasing the reputation value by providing lower values for its readings) or
a promoting attack (increasing the reputation value by providing higher values
for its ratings) [19]. Note that the objective of this attack scenario is to skew the
aggregate values through reporting outlier readings by a number of compromised
nodes.

We first evaluate CrPr algorithm along other IF algorithms against both
random readings and a promoting attack scenario by considering only 20% of
the sensor nodes as malicious nodes involved in the scenarios. In the promot-
ing attack scenario, malicious nodes always report the lowest temperature value
(we considered -5 for experiments over SensorScope dataset) except for their
preferred time instants, which they report the highest temperature value (we
considered +5 for experiments over SensorScope dataset). We also assume that
the malicious nodes are promoting only for 10% of all time instants. In the
next experiment, we evaluate the robustness of our algorithm over similar at-
tack scenarios by taking into account different values of variances for sensors
errors as well as employing variable number of compromised nodes by generating
synthetic datasets.

Let r and r̃ be the reputation vectors before and after injecting each sce-
nario (random readings and promoting attack), respectively. In the proposed
reputation system, the vectors are the results of Equation (3.13). Table 5.4 re-
ports the values of the 1-norm difference between these two vectors, ||r− r̃||1 =∑m
t=1 |rt − r̃t| as well as the ratio of this difference, 1

m ||r− r̃||1 for CrPr algo-
rithm along with the other IF algorithms. In this table, the results of Average
algorithm show how the attacker can skew the sample mean of readings in these
two scenarios; and all of the IF algorithms are significantly more robust than
Average. One can see that the reputations given by CrPr algorithm take less
into account than other methods for both attack scenarios. In this experiment,
we received instability for Zhou approach and we therefore eliminate its results
in Table 5.4.

Figure 5.2(a) and Figure 5.2(b) show the perturbations due to the injection
of the random readings and the promoting attack, respectively. As can be seen,
the perturbations change only slightly when using CrPr algorithm.

Table 5.4: 1-norm absolute error between reputation vectors

‖r− r̃‖1
(

1
m ||r− r̃||1

)
Average dKVD-Reciprocal dKVD-Affine Laureti CrPr

Random Readings 142.73 (0.20) 51.96 (0.07) 102.29 (0.14) 62.41 (0.09) 14.41 (0.02)

Promoting Attack 797.83 (1.11) 76.90 (0.11) 111.64 (0.16) 197.09 (0.27) 25.73 (0.04)

In order to evaluate the robustness of CrPr algorithm by taking into ac-
count both different values of sensors’ variance and various number of compro-
mised nodes, we assume that the attacker compromises c (c < n) sensor nodes
and reports random and outlier readings by these nodes. We also generate
synthetically datasets for these experiments. Figure 5.3 shows the accuracy of
CrPr algorithm in the presence of such simple attack scenarios. Comparing
the RMS errors of the algorithm for these attack scenarios and the previous
experiments (see Figure 5.1), it can clearly be seen that our approach achieves
the accuracy of No Attack scenario; thus, this validates the robustness of CrPr
against both the random readings and the promoting attack scenarios. In next

32

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700R
e

p
u

ta
ti

o
n

 v
al

u
e

Sorted times according to their reputation values

Original Reputation Values Random Readings (20%)

(a) Random Readings

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700R
e

p
u

ta
ti

o
n

 v
al

u
e

Sorted times according to their reputation values

Original Reputation Values Promoting Attack (20%)

(b) Promoting Attack

Figure 5.2: Perturbations of reputation vector.

section, we show that this robustness is approximately stable in the case of
proposed sophisticated attack scenario in [11], while other IF algorithms are
significantly compromised against such an attack scenario.

1
2

3
4

5

4

6

8
0

5

10

standard deviation

Random Readings: MLECR−NoIF−Colluder

number of colluders

R
M

S
 E

rr
or

(a) Random Readings

1
2

3
4

5

4

6

8
0

5

10

standard deviation

Simple Attack: MLECR−NoIF−Colluder

number of colluders

R
M

S
 E

rr
or

(b) Promoting Attack

Figure 5.3: Accuracy of CrPr with simple attack scenarios.

5.4 Robustness Against Collusion Attacks

We in [11] very recently proposed a novel sophisticated attack scenario against
existing IF algorithms for trust and reputation systems when an adversary em-
ploys several malicious nodes in order to launch a collusion attack. In this attack
scenario, all but one malicious node distorts the simple average of readings by
reporting outlier readings, while the remaining malicious node reports a value
very close to such distorted average thus making such reading appear to the
IF algorithm as a highly reliable reading. As a result, the IF algorithms will
converge to the value provided by the last malicious node.

In this experiment, we assume that the adversary employs c (c < n) ma-
licious nodes to launch the above attack scenario. The attacker uses the first
c − 1 malicious nodes to generate outlier readings in order to skew the simple
average of all readings. The adversary then falsifies the last node’s reading by

33

injecting the values very close to such skewed average. This collusion attack sce-
nario makes the IF algorithm to converge to a wrong stationary point. In order
to investigate the accuracy of CrPr algorithm with respect to this collusion
attack scenario, we synthetically generate several datasets with various num-
bers of compromised nodes (c). We in [11] applied the attack scenario against
the dKVD-Reciprocal, dKVD-Affine, Zhou and Laureti approached and showed
how the attacker skews the results of the IF algorithms. Moreover, since we
showed that dKVD-Affine method is the least sensitive to the attacked sce-
nario. Therefore in this paper, we compare the accuracy of CrPr algorithm
with only KVD-Affine method for the experiment.

Figure 5.4 reports the accuracy of CrPr algorithm along with the accuracy
of the dKVD-Affine method in the presence of the collusion attack scenario. It
can be clearly seen that our algorithm is superior to dKVD-Affine algorithm
in terms of accuracy against the attack scenario. Moreover, by comparing the
accuracy of the algorithm in this experiment with the results from No Attack
experiment in Figure 5.1, we can argue that our reputation system is robust
against the collusion attack scenario. The reason is that our approach not
only provides high accuracy against this attack, it also actually approximately
reaches the accuracy of the scenarios without any false data by colluders.

1
2

3
4

5

4

6

8
0

5

10

standard deviation

Collusion Attack: dKVD−Affine

number of colluders

R
M

S
 E

rr
or

(a) dKVD-Affine

1
2

3
4

5

4

6

8
0

5

10

standard deviation

Collusion Attack: MLECR−NoIF−Colluder

number of colluders

R
M

S
 E

rr
or

(b) CrPr

Figure 5.4: Accuracy with respect to the collusion attack.

5.5 Readings Resolution and Clustered Variances

Medo and Wakeling [38] investigated the effect of different scales of data over
several IF algorithms and showed that the data resolution has significant impact
on the performance of the IF algorithms. In order to analyze the behaviour of
CrPr algorithm over the low resolution readings and different variance patterns,
we perform experiments with methodology presented in [38]. We exploited an
individual variance pattern for sensor nodes for generating synthetic datasets in
the previous experiments, because the variance of each sensor s was computed
using s× σ2 for considering different values for the baseline sensor variance σ2.
In this section, we employ a clustered pattern for sensors variances by uniformly
randomly selecting the variance of sensor s from the distribution U[σmin;σmax]
by considering different values for σmin and σmax.

For these experiments, we created synthetic datasets with parameters similar

34

to the parameters in Table 5.2. The scale of the true value of the signal is in the
range of R = [5, 50]. Thus, for each value of R, we generate the true value of the
signal by using sine function f(t) = R+ 5× Sin

(
2π t

m −
π
2

)
. Also, we consider a

zero-mean Gaussian noise for readings of each sensor i with standard deviation
σi which is randomly selected by a uniform distribution U[σmin;σmax], where
σmin and σmax are real values which will be defined for each experiment.

In order to investigate the accuracy of our reputation systems, we evaluate a
normalized RMS error, RMS/(R− 1) (see (5.1) for RMS Error) for each exper-
iment. Moreover, we consider Pearson correlation coefficient [25] to investigate
the performance of our algorithm for ranking of sensors according to σ2

i with
the estimated variance given by var(i). The correlation coefficient, denoted by
τ , is a measure of the strength of the linear relationship between the true and
estimated sensor variances and takes on values ranging between +1 and -1. A
value of τ = 0 indicates no linear relationship, +1 indicates a perfect positive
linear relationship, and -1 indicates a perfect negative linear relationship. We
choose the correlation coefficient metric, because our objective is compare our
results with the experimental results in [38].

For the first experiment, we keep a constant reading resolution R = 30,
a constant value of σmin = 0, and various values of σmax in the range of
[1, 29]. By choosing the range and at the worst case, a highest noisy sensor with
σi = σmax = 29 could potentially report a very low temperature for the highest
temperature environment circumstance, and vice versa. Figure 5.5 shows the
performance of CrPr algorithm along with the performance of the other IF al-
gorithms for this experiment. It can be clearly seen that our reputation method
is less sensitive to the increasing amount of sensor noise by providing less RMS
error for estimating reputation values as well as more accurate sensors variances
based on the value of Pearson’s τ .

By comparing the results of this experiment with the experiments in Sec-
tion 5.2, we found that when the sensors variances are not clustered, the IF
algorithms, particularly dKVD-Reciprocal and Laureti, are able to achieve sig-
nificantly higher accuracy than clustered variance values for sensors. However,
CrPr algorithm generates a very high accuracy for estimating reputation vec-
tor and sensor variances in both variance patterns (individual and clustered).
Moreover, we observe a strong relationship between two performance metric,
RMS error and τ for three algorithms dKVD-Reciprocal, Laureti and CrPr.
These results can be explained by the fact that these three algorithms place
harsh sanction against the high noisy sensors when they compute the sensor
weights (see Table 5.3).

In order to investigate the effect of changing the readings’ resolution, we
performed simulations where the sensor errors was fixed in proportion to the
width of the readings scale, and varied the value of R in the range of [5, 50]
while generating the readings by the previous equation for f(t). We also set
σmin = σmax/8 and σmax = R− 1, so that the maximum possible sensor errors
cover the readings’ scale. Figure 5.6 shows the performance of CrPr algorithm
along with the performance of the other IF algorithms for this experiment. In
this experiment, algorithm Zhou experienced very high RMS errors as well as
very low correlation values between the estimated and real sensors variances by
increasing the resolution scales. We did not display the results of this algorithm
to make the graphs more clear.

As we can see in Figure 5.6, CrPr algorithm is superior to the other IF

35

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Variance Change

σmax

N
o
rm

a
li
ze
d
R
M
S
E
rr
o
r

dKVD-Reciprocal

dKVD-Affine
Zhou
Laureti
CRPR

(a)

0 5 10 15 20 25 30
0.995

0.9955

0.996

0.9965

0.997

0.9975
Variance Change

σmax

τ

dKVD-Reciprocal

dKVD-Affine
Zhou
Laureti
CRPR

(b)

Figure 5.5: Accuracy with clustered variances and a constant readings scale.

algorithms as it has smaller RMS error and higher correlation value for its
variance estimation. Medo and Wakeling [38] reported that Laureti algorithm
is the least sensitive algorithm when the resolution scale changes. We compare
the trend of the RMS error and correlation value in Figure 5.6. The comparison
shows that this experiment not only validates their results, but it demonstrates
that CrPr algorithm exactly achieves the flexibility of Laureti while at the same
time achieving the lowest RMS error and the best sensors variances estimation.

0 10 20 30 40 50
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11
Resolustion Change

Resolution

N
o
rm

a
li
ze
d
R
M
S
E
rr
o
r

dKVD-Reciprocal

dKVD-Affine
Laureti
CRPR

(a)

0 10 20 30 40 50
0.994

0.9945

0.995

0.9955

0.996

0.9965

0.997

0.9975
Resolustion Change

Resolution

τ

dKVD-Reciprocal

dKVD-Affine
Laureti
CRPR

(b)

Figure 5.6: Accuracy with different readings resolutions.

5.6 Sparsity Pattern in Sensor Readings

In Section 3.8, we described how CrPr algorithm supports the sparsity pattern
in sensors readings. We also proposed a method to give higher credibility to
the sensors with higher number of readings in Section 3.9. In order to evaluate
the performance of CrPr algorithm over sparse readings, we define a density
factor 0 < η ≤ 1, which is the proportion of number of readings for each sensor.
Clearly, a value of η = 1 indicates no sparsity pattern.

For the experiments in this section, we selected a subset of readings from
the SensorScope dataset as the baseline dataset which included the temperature
values measured by all 23 sensors throughout of a day, October 23, 2007. In
this experiment, we consider various values for density factor, η, in the range

36

of [0.5, 1]. Moreover, for injecting the sparsity pattern based on each value of
the density factor, we change the original SensorScope dataset by uniformly
randomly removing m× (1− η) readings for each sensor.

Let r and r̃ be the reputation vectors before and after injecting the sparsity
patterns. Table 5.5 reports the values of the 1-norm difference between these
two vectors, ||r− r̃||1 =

∑m
t=1 |rt − r̃t| as well as the ratio of this difference,

1
m ||r− r̃||1 for CrPr algorithm along with the other IF algorithms. Clearly,
the experiment results show that, increasing the density factor improves the
accuracy of all the IF algorithms. This can be explained by the fact that all of
these algorithms are using a kind of collaborative technique among sensor nodes
for estimating the reputation values as well as sensors trustworthiness; and the
density of the sensors readings has a significant effect in the performance of each
collaborative method [39].

Table 5.5: 1-norm absolute error between reputation vectors

‖r− r̃‖1
(

1
m ||r− r̃||1

)
Average dKVD-Reciprocal dKVD-Affine Laureti CrPr

η = 0.5 130.47 (0.18) 99.82 (0.14) 105.24 (0.15) 101.64 (0.14) 118.66 (0.16)

η = 0.6 105.79 (0.15) 77.05 (0.11) 84.87 (0.12) 82.17 (0.11) 93.47 (0.13)

η = 0.7 84.24 (0.12) 60.19 (0.08) 67.12 (0.09) 65.24 (0.09) 72.24 (0.10)

η = 0.8 63.45 (0.09) 45.01 (0.06) 50.28 (0.07) 49.09 (0.07) 52.40 (0.07)

η = 0.9 40.27 (0.06) 28.60 (0.04) 32.16 (0.04) 31.50 (0.04) 32.43 (0.05)

5.7 Analysis of Error and Convergence

In this section, we perform a set of experiments to analyze the properties of
our iterative algorithm in terms of error and convergence. Thus, we investi-
gate two types of errors for both credibility and variance values computed in
each iteration of CrPr algorithm over the SensorScope dataset. For each of
credibility and variance values, we define the maximum error by choosing the
worst-case error for all sensor nodes. Therefore, the maximum errors at iteration
l is computed as follows:

error(l)
cr = max

i

∣∣∣cr(∞)(i)− cr(l)(i)
∣∣∣

error(l)
var = max

i

∣∣∣var(∞)(i)− var(l)(i)
∣∣∣

We also define the mean error of credibility and variance values over all
sensors as follows:

error(l)
cr =

1

n

n∑
i=1

∣∣∣cr(∞)(i)− cr(l)(i)
∣∣∣

error(l)
var =

1

n

n∑
i=1

∣∣∣var(∞)(i)− var(l)(i)
∣∣∣

Figure 5.7 illustrates how the aforementioned errors decline for both cred-
ibility and variance values. Clearly, the algorithm has converged after 31 it-
erations. For all experiments, we set convergence threshold with an error∥∥var(l+1) − var(l)

∥∥
2

less than 10−12.

37

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12
Sensors Credibilities for SensorScope

Iteration

E
r
r
o
r

Maximum Error

Mean Error

(a) Credibility

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Sensors Variances for SensorScope

Iteration

E
r
r
o
r

Maximum Error

Mean Error

(b) Variance

Figure 5.7: Convergence and error of CrPr algorithm.

Table 5.6: Confusion matrix for collusion detection.

Actual Class
Predicted Class

Colluder Benign

Colluder True Positive (TP) False Negative (FN)
Benign False Positive (FP) True Negative (TN)

5.8 Collusion Detection Performance

As we described, an important module of our reputation framework is a collusion
detection system, which is a binary classification technique for classifying the
sensor nodes in two groups: compromised and non-compromised nodes. Based
on the results of this collusion detection system, we eliminate the contributions
of detected compromised nodes and then re-run the credibility computation
phases of our framework in order to obtain the final reputation based on only
the readings of non-compromised sensor nodes. Therefore, the performance of
the collusion detection system has a significant role in improving the accuracy
of the proposed reputation system.

The detection performance of the module is evaluated by its accuracy, pre-
cision, and recall measurements for each experimental scenario. A higher value
shows that the collusion detection module is superior. The accuracy is the pro-
portion of the total number of predictions that were correct; the recall or true
positive rate is the proportion of colluders that were correctly detected; pre-
cision is the proportion of the detected colluders that were correct. Accuracy,
precision and recall measurements are calculated based on a confusion matrix
in Table 5.6 as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (5.2)

Precision =
TP

TP + FP
× 100 (5.3)

Recall =
TP

TP + FN
× 100 (5.4)

38

Table 5.7: Performance of our collusion detection module.

Metric No Attack Random Readings Promoting Attack Collusion Attack
Accuracy 95.27 99.19 99.22 98.71
Precision 0 96.24 96.44 96.35

Recall 0 100 100 98.32

For all experiments described in previous sections, we obtained the confusion
matrix as well as the accuracy, precision and recall measurements for collusion
detection module. Table 5.7 shows the performance results of the collusion
detection module for the previous scenarios based on the average values of three
metrics accuracy, precision and recall for each experiment. The table shows
that the collusion detection mechanism not only is able to successfully detect
the compromised nodes with high accuracy, precision and recall values in the
attack scenarios, but it provides an acceptable accuracy for No Attack scenarios.
Thus, applying this mechanism on completely clean readings has no impact on
the performance of reputation computation process. Note that we can only
investigate the accuracy metric for No Attack scenarios, because there is no
compromised node for them and therefore TP = 0. Consequently, the precision
and recall measurements are zero for all the cases in the scenarios.

5.9 Str-CrPr Performance

This section reports the empirical evaluation of effectiveness and efficiency of
Str-CrPr algorithm. Let us first present the experimental settings before
discussing the results.

Experimental Settings

Our experiments for evaluating the performance of Str-CrPr algorithm have
been conducted on a subset of the SensorScope dataset. This subset includes
the temperature values measured by all 23 sensors throughout 30 days, from
September 26, 2007 to October 25, 2007. We selected this duration because
some sensors did not reported data for first days. However, Str-CrPr algo-
rithm needed enough readings from all sensor nodes to build a comprehensive
streaming model. We assumed that the data keeps streaming into the algorithm.
The 30-day streaming data consists of about 467,000 reported data. Similar to
section 5.3, we compiled the original published dataset and then created a ma-
trix form of readings from the dataset. Consequently, the matrix form of the
readings consists of 21,509 time instants with density factor of 94.07%. We ap-
plied Str-CrPr algorithm on the streaming dataset to estimate the aggregate
value for each time instant.

Effectiveness

The effectiveness of Str-CrPr algorithm depends on the accuracy of the al-
gorithm which can be measured by two criteria: RMS error of the aggregate
values and the percentage of outliers. The RMS error represents the accuracy
of the algorithm for estimating the true value of the signal. Since there is no

39

clear ground truth for the SensorScope dataset, we first execute CrPr algo-
rithm over the entire dataset and obtain an estimate of the true value of the
signal. This estimate is then considered as a ground truth for computing the
RMS error of Str-CrPr algorithm with respect to different parameters values.
In other words, in this section, the RMS error criteria is the distance between
the reputation values from Str-CrPr and CrPr algorithms. Note that, the
results of these two algorithms are identical when the windows size for the latter
algorithm is equal to the number of time instants in the dataset (value of m).

The second criterion, the percentage of outliers, evaluates the time effective-
ness of a data streaming model [27]. As we discussed, outliers may be caused
by either faults in the sensor nodes or change in the stream model. Also, the
contribution of outliers are eliminated from reputation computations. Thus,
this makes it desirable to keep the number of outliers as low as possible. Since
the number of outliers is reset after each model rebuilding, we keep updating
the total number of outliers during each model rebuilding. Thus, the percentage
of outlier can be obtained as follows:

percentage of outliers =

∑
models

∑n
i=1Oi

Total # of readings
(5.5)

Figure 5.8 compares the effectiveness of Str-CrPr algorithm on the Sen-
sorScope dataset depending on the window length w. Figure 5.8(a) shows that
Str-CrPr algorithm achieves high accuracy with an RMS error less than 0.2
for w > 7500. Moreover, the least percentage of outliers is achieved by the sim-
ilar window length (around 0.01%), while the highest outlier percentage is only
0.045% which is achieved by the smallest window length (w = 500), as shown in
Figure 5.8(b). Interestingly, the results show that the lower variance divergence
threshold (ε = 0.1) provides high accuracy with respect to both criterion, the
RMS error and the outliers percentage. This can be explained by the fact that
the lower value of this threshold raises the sensitivity of the model restart cri-
terion, and therefore increases the number of model rebuilding processes. Our
evaluation results reported in the next section, where we analyze the number of
model rebuilding for the same experiments, validates this explanation.

0 2000 4000 6000 8000 10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
RMS Error

w, Window size

R
M
S
E
rr
o
r

δ = 0.1, ε= 0.1

δ = 0.1, ε= 0.2

δ = 0.2, ε= 0.1

δ = 0.2, ε= 0.2

(a)

0 2000 4000 6000 8000 10000
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Percentage of outliers

w, Window size

P
er
ce
n
ta
g
e
o
f
O
u
tl
ie
rs

δ = 0.1, ε= 0.1

δ = 0.1, ε= 0.2

δ = 0.2, ε= 0.1

δ = 0.2, ε= 0.2

(b)

Figure 5.8: Accuracy of Str-CrPr depending on window length w.

Figure 5.9 displays the influence of the restart parameters on the accuracy
of Str-CrPr algorithm with respect to the percentage of outliers. For both
of these experiments, we set the window size w = 720 which is the maximum

40

number of readings per sensor during a day. We can see that the algorithm
has lower percentage of outliers when both of restart parameters are less than
0.2. However, larger values for the parameters increase the number of outliers,
because they decrease the sensitivity of the algorithm for model rebuilding.

Moreover, the percentage of outliers remains steady for large values of the
variance divergence threshold (ε > 0.2) with respect to both values of out-
lier threshold, as shown in Figure 5.9(b). The reason is that large values of
ε diminish the contribution of the variance divergence in the restart criterion.
Consequently, the outlier threshold is the only criteria for making a decision
about model rebuilding. This also verifies the high distance between the outlier
percentage values appropriate to two different values for outliers threshold δ.
Likewise, the large values of outliers threshold (δ > 0.2) eliminate its contribu-
tion in the restart criterion when we set a tough variance divergence threshold
(ε = 0.1) as shown in Figure 5.9(a). However, the larger value of the variance
divergence threshold increases the role of outlier threshold for making a decision
about model rebuilding.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.03

0.035

0.04

0.045

0.05

0.055

0.06
Percentage of Outliers

δ, Outliers Threshold

P
er
ce
n
ta
g
e
o
f
O
u
tl
ie
rs

w= 720,ε = 0.1
w= 720,ε = 0.2

(a)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.03

0.032

0.034

0.036

0.038

0.04

0.042
Percentage of Outliers

ε, Variance Divergence Threshold

P
er
ce
n
ta
g
e
o
f
O
u
tl
ie
rs

w = 720,δ = 0.1

w = 720,δ = 0.2

(b)

Figure 5.9: Accuracy of Str-CrPr depending on restart parameters δ and ε.

Efficiency

We presented the efficiency of Str-CrPr algorithm by formulating its memory
usage and time complexity in section 4.6. We showed that the memory usage
of the algorithm only depends on the number of sensors and the window size.
However, the main parameter which influences the processing time of the algo-
rithm is the number of model rebuilding. In this section, we assess the efficiency
of Str-CrPr algorithm by analysing the processing time and the number of
model rebuilding.

Table 5.8 gives the elapsed time (in seconds)2 and the number of model
rebuilding of Str-CrPr on various parameter settings, focusing on the most
representative results. As one can see, the number of model rebuilding signif-
icantly declines by increasing the threshold of variance divergence. This can
be explained by a very small percentage of outliers presented by Str-CrPr in
the previous experiment, as shown in Figure 5.8(b). In other words, the restart
criterion mostly depends on the variance divergence of sensor nodes. Moreover,

2The elapsed time measured by tic/toc functions in MATLAB R2012b.

41

Table 5.8: Elapsed time (in seconds)/number of model rebuilding of Str-CrPr.

Restart
δ = 0.1 δ = 0.1 δ = 0.2 δ = 0.2
ε = 0.1 ε = 0.2 ε = 0.1 ε = 0.2

w = 1000 3.72/10 2.79/4 3.7/9 2.61/2
w = 2000 3.12/4 3.11/4 3.13/4 3.11/4
w = 3000 4.87/11 3.6/6 5/11 3.61/6
w = 4000 4.55/8 2.99/3 4.54/8 2.98/3
w = 5000 4.32/6 3.6/4 4.35/6 3.58/4
w = 6000 4.76/5 3.06/2 4.74/5 3.05/2
w = 7000 5.47/5 4.8/4 5.48/5 4.79/4
w = 8000 4.92/4 3.13/2 4.92/4 3.13/2
w = 9000 4.38/3 4.39/3 4.39/3 4.38/3
w = 10000 4.61/3 4.61/3 4.62/3 4.61/3

there is a general downward trend in the number of rebuildings when increasing
the window size, although the algorithm experiences some fluctuation which
may be caused by various changes in the behaviour of sensor errors in the Sen-
sorScope dataset. We also can see a steady trend for number of rebuildings
on all different values of restart parameters when w > 9000. The reason is
explained by the results in Figure 5.8(b), where we observe that the percentage
of outliers remains steady for these window size values.

Table 5.8 also shows that the computational cost (elapsed time) increases
with both window size and number of model rebuildings. Interestingly, the
trend of the elapsed time fluctuates for large values of window size (around
w > 5000). For example, the elapsed time of the algorithm for w = 8000 with
the first restart parameter settings (first column in the table) is higher than the
elapsed time observed by same experiment with w = 7000 while the number
of rebuildings for the former experiment is less. This high computation cost
is due to the sensitivity of CrPr algorithm to large windows (value of m) as
we have shown by formally analyzing the time complexity of the algorithm in
Section 3.7.

6 Related Work

Trust and reputation systems play critical role in WSNs as a method of resolving
a number of important problems, such as secure routing, fault tolerance, false
data detection, compromised node detection, secure data aggregation, cluster
head election, outlier detection, etc [40]. There are three areas of work related
to our research: IF algorithms, trust and reputation systems for WSNs, and
secure data aggregation with compromised node detection in WSNs.

Several papers have proposed IF algorithms for trust and reputation systems
[3, 4, 5, 6, 7, 8, 9, 10]. DeKerchove and Dooren in [4] proposed an IF algorithm
for computing reputation of objects and raters in a rating system. They intro-
duced both reciprocal and affine discriminant functions. We investigated the
performance of their methods in Section 5. The primary idea of the algorithm
proposed in [3] is to gives high credit to users whose ratings correlate nicely
with the estimated true ratings of objects. Laureti et al. in [5] proposed an

42

IF algorithm based on a weighted averaging technique where the weights are
computed through a simple reciprocal discriminant function. Li et al. in [7]
proposed six different algorithms, which are all iterative and are very similar.
The only difference among the algorithms is their choice of norm and aggre-
gation function. Ayday et al. proposed a slightly different iterative algorithm
in [8]. Their main differences from other algorithms are: 1) the ratings have
a time-discount factor, so in time, their importance will fade out; and 2) the
algorithm maintains a black-list of users who are especially bad raters. Liao et
al. in [9] proposed an iterative algorithm which beyond simply using the rating
matrix, also uses the social network of users. The main objective of author in
[10] is to introduce a “Bias-smoothed tensor model”, which is a Bayesian model,
of rather high complexity. Medo et al. in [38] performed a comparative evalu-
ation of several IF algorithms with different scales of discrete ratings and user
variances. They also showed that where the rating resolution is low, increased
noise in user’s ratings improves the overall performance of the algorithms. Gal-
letti et al. in [13] provided a mathematical framework to model collaborative
reputation systems. They also proposed sufficient conditions for convergence of
the systems using basic results of the fixed point theory. Alfaro and Shavlovsky
in [24] very recently proposed CrowdGrader, a tool that lets students submit and
collaboratively grade solutions to homework assignments. They employed an IF
algorithm to estimates the consensus grades and of the grading accuracy of each
student, which is very similar to the IF algorithm proposed in [4] with reciprocal
discriminant function. Fouss et al. in [15] proposed a few reputation models
based on a simple consumer-provider interaction model. The main idea of the
proposed reputations frameworks is based on using Expectation-Maximization
algorithm for obtaining the maximum likelihood of the parameters of a proba-
bilistic model for ratings with considering the observed and unobserved values.
Such IF algorithms consider simple cheating behaviour by adversaries. How-
ever, none of them take into account sophisticated malicious scenarios such as
collusion attacks. For example, Rezvani et al. [11] proposed a collusion attack
against existing IF algorithms and showed that most of existing IF algorithms
are vulnerable against the proposed attack [11]. We showed that our approach
is robust against this collusion attack.

Our work is also closely related to the trust and reputation systems in WSNs.
Authors in [41] proposed a general reputation framework for sensor networks in
which each node develops a reputation estimation for other nodes by observing
its neighbors which make a trust community for sensor nodes in the network.
Xiao et al. [42] proposed a trust based framework which employs correlation
to detect faulty readings. Moreover, they introduced a ranking framework to
associate a level of trustworthiness with each sensor node based on the number
of neighboring sensor nodes are supporting the sensor. Li et al. [43] proposed
PRESTO, a model-driven predictive data management architecture for hier-
archical sensor networks. PRESTO is a two tier framework for sensor data
management in sensor networks. The main idea of this framework is to consider
a number of proxy nodes for managing sensed data from sensor nodes. Lim et
al. [44] proposed a cyclic framework based on an interdependency relationship
between network nodes and data items for assessing their trust scores based.
Sun et al. [45] proposed a combination of trust mechanism, data aggregation,
and fault tolerance to enhance data trustworthiness in Wireless Multimedia
Sensor Networks (WMSNs) which considers both discrete and continuous data

43

streams. Tang et al. [46] proposed a trust framework for sensor networks in
Cyber Physical System (CPS). An example of deployment of sensors in CPS
is a battle-network system in which the sensor nodes are employed to detect
approaching enemies and send alarms to a command center. Although fault de-
tection problems have been addressed by applying trust and reputation systems
in the above research, none of them take into account sophisticated malicious
scenarios such as collusion attacks in adversarial environments.

Reputation and trust concepts can be used to address the compromised node
detection and secure data aggregation problems in WSNs. Alzaid [47] proposed
a secure aggregation scheme to address bad mouthing, ballot stuffing, replay and
newcomer attacks; however the scheme is limited to detecting the On/Off attack
launched from only one child cell. Ho et al. [48] proposed a framework to detect
compromised sensor nodes in WSN and then apply a software attestation for
the detected nodes. They reported that the revocation of detected compromised
nodes can not be performed due to a high risk of false positive in the proposed
scheme. The main idea of false aggregator detection in the scheme proposed in
[49] is to employ a number of monitoring nodes which are running aggregation
operations and providing a MAC value of their aggregation results as a part
of MAC in the value computed by the cluster aggregator. High computation
and transmission cost required for MAC-based integrity checking in this scheme
makes it unsuitable for deployment in WSN. Lim et al. [37] proposed a game-
theoretical defense strategy to protect sensor nodes and to guarantee a high
level of trustworthiness for sensed data. Moreover, a number of approaches
have been proposed in the area of secure tiny aggregation in WSNs [20, 21, 22].
These studies focus on detecting false aggregation operations by an adversary,
that is, when data aggregator nodes obtain data from source nodes and produce
wrong aggregated values. Such approaches do not address neither the problem
of false data being provided by the data sources nor the problem of collusion.
However, when an adversary injects false data by a collusion attack scenario,
it can affects the results of the honest aggregators and thus the base station
will receive skewed aggregate value. In this case, the compromised nodes will
attest their false data and consequently the base station assumes that all reports
are from honest sensor nodes. Although the aforementioned research takes into
account false data injection for a number of simple attack scenarios, to the
best of our knowledge, no existing work addresses this issue in the case of a
sophisticated attack of colluding adversaries compromising a number of nodes in
a manner which employs high level knowledge about data aggregation algorithm
used.

7 Conclusions

In this paper, we introduced a novel collaborative reputation system which not
only perform accurately in the presence of different types of faults and simple
attacks such as random ratings and promoting attack, but also is robust against
the sophisticated collusion attacks which most of the existing IF algorithms are
vulnerable.

44

Bibliography

[1] Audun Jøsang and Jennifer Golbeck. Challenges for robust trust and rep-
utation systems. In Proceedings of the 5 th International Workshop on
Security and Trust Management, Saint Malo, France, 2009.

[2] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of at-
tack and defense techniques for reputation systems. ACM Comput. Surv.,
42(1):1:1–1:31, December 2009.

[3] Yan-Bo Zhou, Ting Lei, and Tao Zhou. A robust ranking algorithm to
spamming. EPL (Europhysics Letters), 94(4):48002–48007.

[4] Cristobald de Kerchove and Paul Van Dooren. Iterative filtering in repu-
tation systems. SIAM J. Matrix Anal. Appl., 31(4):1812–1834, 2010.

[5] P. Laureti, L. Moret, Y.-C. Zhang, and Y.-K. Yu. Information filtering via
Iterative Refinement. EPL (Europhysics Letters), 75:1006–1012, September
2006.

[6] Y.-K. Yu, Y.-C. Zhang, P. Laureti, and L. Moret. Decoding information
from noisy, redundant, and intentionally distorted sources. Physica A Sta-
tistical Mechanics and its Applications, 371:732–744, November 2006.

[7] Rong-Hua Li, Jeffrey Xu Yu, Xin Huang, and Hong Cheng. Robust
reputation-based ranking on bipartite rating networks. In SDM’12, pages
612–623, 2012.

[8] Erman Ayday, Hanseung Lee, and Faramarz Fekri. An iterative algorithm
for trust and reputation management. In Proceedings of the 2009 IEEE
international conference on Symposium on Information Theory - Volume
3, ISIT’09, pages 2051–2055, 2009.

[9] H. Liao, G. Cimini, and M. Medo. Measuring quality, reputation and trust
in online communities. ArXiv e-prints, August 2012.

[10] Bee-Chung Chen, Jian Guo, Belle Tseng, and Jie Yang. User reputation in
a comment rating environment. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD
’11, pages 159–167, 2011.

[11] Mohsen Rezvani, Aleksandar Ignjatovic, Elisa Bertino, and Sanjay Jha. Se-
cure data aggregation technique for wireless sensor networks in the presence
of collusion attacks, 2014.

[12] David Wagner. Resilient aggregation in sensor networks. In Proceedings of
the 2nd ACM workshop on Security of ad hoc and sensor networks, SASN
’04, pages 78–87, New York, NY, USA, 2004. ACM.

[13] A. Galletti, G. Giunta, and G. Schmid. A mathematical model of col-
laborative reputation systems. Int. J. Comput. Math., 89(17):2315–2332,
November 2012.

[14] The Intel lab dataset. available at: http: // berkeley. intel-research.

net/ labdata/ , 2004.

45

[15] François Fouss, Youssef Achbany, and Marco Saerens. A probabilistic rep-
utation model based on transaction ratings. Inf. Sci., 180(11):2095–2123,
June 2010.

[16] Baruch Awerbuch, Reza Curtmola, David Holmer, Cristina Nita-rotaru,
and Herbert Rubens. Mitigating byzantine attacks in ad hoc wireless net-
works. Technical report, Department of Computer Science, Johns Hopkins
University, Tech, 2004.

[17] Alvaro Cardenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian
Perrig, and S. Shankar Sastry. Challenges for securing cyber physical sys-
tems. In Workshop on Future Directions in Cyber-physical Systems Secu-
rity. DHS, July 2009.

[18] Pedram Radmand, Alex Talevski, Stig Petersen, and Simon Carlsen. Tax-
onomy of wireless sensor network cyber security attacks in the oil and gas
industries. In Proceedings of the 2010 24th IEEE International Conference
on Advanced Information Networking and Applications, AINA ’10, pages
949–957, Washington, DC, USA, 2010. IEEE Computer Society.

[19] Yan Sun and Yuhong Liu. Security of online reputation systems: The evo-
lution of attacks and defenses. Signal Processing Magazine, IEEE, 29(2):87
–97, march 2012.

[20] Haowen Chan, Adrian Perrig, and Dawn Song. Secure hierarchical in-
network aggregation in sensor networks. In Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS ’06, pages
278–287, New York, NY, USA, 2006. ACM.

[21] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. SDAP: a secure
hop-by-hop data aggregation protocol for sensor networks. In MobiHoc,
pages 356–367, 2006.

[22] Sankardas Roy, Mauro Conti, Sanjeev Setia, , and Sushil Jajodia. Secure
data aggregation in wireless sensor networks. Information Forensics and
Security, IEEE Transactions on, 7(3):1040–1052, 2012.

[23] Bartosz Przydatek, Dawn Song, and Adrian Perrig. Sia: Secure information
aggregation in sensor networks. In Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems, SenSys ’03, pages
255–265, New York, NY, USA, 2003. ACM.

[24] Luca de Alfaro and Michael Shavlovsky. Crowdgrader: Crowdsourcing the
evaluation of homework assignments. CoRR, abs/1308.5273, 2013.

[25] Larry Wasserman. All of statistics : a concise course in statistical inference.
Springer, New York, 2010.

[26] Mohsen Rezvani, Aleksandar Ignjatovic, Elisa Bertino, and Sanjay Jha. Se-
cure data aggregation technique for wireless sensor networks in the presence
of collusion attacks. Technical Report UNSW-CSE-TR-201319, School of
Computer Science and Engineering, UNSW, July 2013.

46

[27] Xiangliang Zhang, Cyril Furtlehner, Cecile Germain-Renaud, and Michele
Sebag. Data stream clustering with affinity propagation. IEEE Transac-
tions on Knowledge and Data Engineering, 99(PrePrints):1, 2013.

[28] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based
clustering over an evolving data stream with noise. In In 2006 SIAM Con-
ference on Data Mining, pages 328–339, 2006.

[29] Yang Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques
for wireless sensor networks: A survey. Communications Surveys Tutorials,
IEEE, 12(2):159–170, 2010.

[30] Suat Ozdemir and Yang Xiao. Ftda: outlier detection-based fault-tolerant
data aggregation for wireless sensor networks. Security and Communication
Networks, 6(6):702–710, 2013.

[31] Jaxk Reeves, Jien Chen, Xiaolan L Wang, Robert Lund, and Qi Qi Lu.
A review and comparison of changepoint detection techniques for climate
data. Journal of Applied Meteorology and Climatology, 46(6):900–915, 2007.

[32] S. Muthukrishnan, Eric van den Berg, and Yihua Wu. Sequential change
detection on data streams. In Proceedings of the Seventh IEEE Interna-
tional Conference on Data Mining Workshops, ICDMW ’07, pages 551–550,
Washington, DC, USA, 2007. IEEE Computer Society.

[33] The SensorScope lausanne urban canopy experiment (LUCE) project.
Data set available at: http: // sensorscope. epfl. ch/ index. php/

LUCE , 2006.

[34] University of California at Berkeley. Habitat monitoring on great duck
island. http://www.greatduckisland.net/, 2004.

[35] NAMOS: Networked aquatic microbial observing system. Data set available
at: http: // robotics. usc. edu/ ~ namos/ data/ jr_ oct/ web/ , 2005.

[36] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, Martin Vet-
terli, Olivier Couach, and Marc Parlange. Sensorscope: Out-of-the-box en-
vironmental monitoring. In Proceedings of the 7th international conference
on Information processing in sensor networks, IPSN ’08, pages 332–343,
Washington, DC, USA, 2008. IEEE Computer Society.

[37] Hyo-Sang Lim, G. Ghinita, E. Bertino, and M. Kantarcioglu. A game-
theoretic approach for high-assurance of data trustworthiness in sensor
networks. In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 1192 –1203, april 2012.

[38] Matus Medo and Joseph R. Wakeling. The effect of discrete vs. continuous-
valued ratings on reputation and ranking systems. CoRR, abs/1001.3745,
2010.

[39] Zan Huang, Daniel Zeng, and Hsinchun Chen. A comparison of
collaborative-filtering recommendation algorithms for e-commerce. IEEE
Intelligent Systems, 22(5):68–78, September 2007.

47

[40] Trust mechanisms in wireless sensor networks: Attack analysis and coun-
termeasures. Journal of Network and Computer Applications, 35(3):867 –
880, 2012.

[41] Saurabh Ganeriwal, Laura K. Balzano, and Mani B. Srivastava.
Reputation-based framework for high integrity sensor networks. ACM
Trans. Sen. Netw., 4(3):15:1–15:37, June 2008.

[42] Xiang-Yan Xiao, Wen-Chih Peng, Chih-Chieh Hung, and Wang-Chien Lee.
Using SensorRanks for in-network detection of faulty readings in wireless
sensor networks. In Proceedings of the 6th ACM international workshop on
Data engineering for wireless and mobile access, MobiDE ’07, pages 1–8,
New York, NY, USA, 2007. ACM.

[43] Ming Li, Deepak Ganesan, and Prashant Shenoy. PRESTO: feedback-
driven data management in sensor networks. In Proceedings of the 3rd
conference on Networked Systems Design & Implementation - Volume 3,
NSDI’06, pages 23–23, 2006.

[44] Hyo-Sang Lim, Yang-Sae Moon, and Elisa Bertino. Provenance-based trust-
worthiness assessment in sensor networks. In Proceedings of the Seventh In-
ternational Workshop on Data Management for Sensor Networks, DMSN
’10, pages 2–7, 2010.

[45] Yan Sun, Hong Luo, and Sajal K. Das. A trust-based framework for fault-
tolerant data aggregation in wireless multimedia sensor networks. IEEE
Trans. Dependable Secur. Comput., 9(6):785–797, November 2012.

[46] Lu-An Tang, Xiao Yu, Sangkyum Kim, Jiawei Han, Chih-Chieh Hung, and
Wen-Chih Peng. Tru-Alarm: Trustworthiness analysis of sensor networks
in cyber-physical systems. In Proceedings of the 2010 IEEE International
Conference on Data Mining, ICDM ’10, pages 1079–1084, 2010.

[47] Hani Mohammed Alzaid. Secure data aggregation in wireless sensor net-
works. PhD thesis, Queensland University of Technology, 2011.

[48] Jun-Won Ho, M. Wright, and S.K. Das. ZoneTrust: Fast zone-based node
compromise detection and revocation in wireless sensor networks using
sequential hypothesis testing. Dependable and Secure Computing, IEEE
Transactions on, 9(4):494 –511, july-aug. 2012.

[49] Suat Ozdemir and Hasan Çam. Integration of false data detection with
data aggregation and confidential transmission in wireless sensor networks.
IEEE/ACM Trans. Netw., 18(3):736–749, June 2010.

48

