
Unified Representation and Reuse of Federated
Cloud Resources Configuration Knowledge

Denis Weerasiri1 Boualem Benatallah1 Jian Yang2

1 University of New South Wales, Australia
{denisw,boualem}@cse.unsw.edu.au

2 Macquarie University, Australia
jian.yang@mq.edu.au

Technical Report
UNSW-CSE-TR-201411

March 2014

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Current cloud resource delivery models enforce cloud resource consumers to
bear the burden of leveraging existing cloud resources configuration manage-
ment knowledge to satisfy consumers’ federated cloud application and resource
requirements. Because the support offered by current cloud resources configu-
ration management techniques is mostly limited to segregated cloud infrastruc-
tures or platform functionalities, which prevent any coordinated combination of
on-premise and off-premise applications, and resources. In this paper, we pro-
pose an embryonic data model for unified cloud resources configuration knowl-
edge representations. Also we propose a rule based recommender system, which
allows consumers to declaratively specify requirements and get recommenda-
tions of configuration management knowledge that satisfies the given require-
ments. We implemented a proof-of-concept prototype to test our approach.

1 Introduction
The Cloud computing paradigm transforms applications, hardware, and soft-
ware infrastructures into virtualized and dynamically scalable resources. These
resources are available to users in the form of cloud services(Infrastructure as a
Service, Platform as a Service, and Software as a Service) which are delivered
on demand over a network. These services provide service interface layers that
shift the focus from underlying infrastructure and operations such that cloud re-
source consumers are responsible to deploy and manage a configuration of cloud
resources based on consumers’ application and resource requirements[1, 2, 21].

Cloud computing is evolving in the form of both public (deployed by IT
organizations) and private clouds (usually deployed behind a company firewall).
A third option, a hybrid or federated cloud, is now emerging, where computing
resources drawn from a subset of private and public clouds combined at the
behest of its users. It is imperative that the federation of clouds leads to a unified
model which represents a single cloud of multiple cloud platforms that can be
used as needed. Thus the cloud federation requires the creation of an agile cloud
computing environment, in which cloud capabilities can be procured, configured,
deployed, and managed on demand by consumers, regardless of whether cloud
capabilities are private or public.

To describe a cloud resources configuration, consumers firstly interpret their
resource requirements (e.g., I need a project management service for 50 users
from May to July) and application requirements (e.g., I want my logistics ap-
plication to aggregate together order management, inventory and payroll ser-
vices from diverse providers that support OAuth 2.0 protocol) in the form of a
Cloud Resources Configuration Description(CRCD). CRCDs specify expected
resources, service levels, geo-location etc., of cloud resources configurations such
that providers can interpret CRCDs and deploy applications. To implement a
CRCD, consumers should understand the configuration description language
of a cloud resource provider. This language describes the available resources
and mechanisms for selecting particular configurations of those resources. Fur-
thermore to deploy and manage the described configuration, consumers need
to understand configuration management interfaces and processes of cloud re-
source providers. When one provider cannot satisfy consumers’ requirements,
consumers must understand configuration description languages, configuration
management interfaces, and processes of multiple providers to manage a fed-
erated cloud resources configuration. For an example, two CRCDs and two
deployment processes are required to deploy a federated Virtual Machine(VM)
over two providers (Amazon-EC2 and Rackspace). Furthermore, to change a
configuration (e.g., increasing memory from 1GB to 4GB), consumers should
map the change into relevant modifications in both CRCDs and trigger rele-
vant configuration management processes. In a summary, consumers need to
incoherently manage component cloud resources to manage a federated cloud
resources configuration.

Based on above observations, we concluded that existing configuration man-
agement techniques (1) are rarely transparent and adaptive to federated clouds;
(2) enforce consumers to gain expertise in multiple configuration management
knowledge domains; and (3) lead to increased management costs and potential
vendor lock-in as resources management of a new provider requires a different
expertise.

1

Hence an important research question is how to leverage existing cloud re-
sources configuration knowledge to support individualized application require-
ments on a federated cloud in a systematic manner. The challenges involved in
solving this research problem are (1) unified modeling of heterogeneous cloud
resources configuration management knowledge; (2) satisfying individualized
application and resource requirements with existing configuration knowledge;
and (3) capturing, customizing, and reusing existing configuration knowledge.

Solving this research problem is beneficial to any consumer. Because re-
gardless of how different cloud resources (IaaS, PaaS and SaaS) are or how such
resources are deployed (public and private), almost every cloud resources config-
uration expects to satisfy individualized application requirements. Furthermore
consolidating and sharing cloud resources configuration management knowledge
are advantageous for consumers who do not have much skills in CRCD develop-
ment and management. Because consumers can leverage existing configuration
management knowledge in a unified manner. Also consumers are shielded from
provider specific, low level, complex, and heterogeneous configuration manage-
ment interfaces, and technologies. Based on above analyses, we propose the
following contributions.

1. A unified cloud resources configuration knowledge representation model1

2. A rule based recommender system. This system leverages the cloud re-
sources configuration knowledge representation model to support individ-
ualized application requirements. In essence the recommender system uses
a consumer specified application requirement context (e.g., intended task,
deployment scenario) to query a "cloud resources configuration knowledge
base(KB)", which returns configuration knowledge that satisfies the given
context

3. An incremental knowledge acquisition technique, starting with an empty
KB which is gradually built up

We also discuss a proof-of-concept prototype implementation and verify our pro-
posed approach based on 3 use cases, which involve 8 different cloud resources.

The paper is structured as follows. Section 2 explains the cloud resources
configuration knowledge representation model. Section 3 elaborates the rule
based recommender system and incremental knowledge acquisition technique.
Section 4 explains the implementation of our solution, followed by related work
(Section 5) and the conclusion including future work (Section 6).

2 Unified Knowledge Representation for Cloud
Resources Configurations

One of the main concepts of our research work is the unified knowledge repre-
sentation model for cloud resources configurations. Rather than treating cloud
resources as isolated entities, we describe a unified and hierarchical representa-
tion model for the logical organization of cloud resources configurations. This
model is based on the entity-relationship(ER) modeling. Each entity models

1In this paper "cloud resources configuration knowledge representation model" and "con-
figuration knowledge representation model" are used interchangeably.

2

Figure 2.1: UML class diagram of the Configuration Knowledge Representation
Model

reusable and customizable configuration knowledge of a desired cloud resource
(e.g., Virtual Machine(VM), key-value database, software development plat-
form) without referring to any resource provider. The configuration knowledge
captured is modeled as a set of Attributes and Management Rules. A config-
uration of cloud resources can be composed of one or more component cloud
resources (e.g., a web application server, composed of an application runtime and
persistent storage). These composites are modeled using relationships among
the component resource entities. We decided to follow the ER modeling as
it explicitly supports to specify relationships among component resources and
configuration descriptions of each component resource. The rest of the section
explains how cloud resources and configurations of cloud resources are modeled.

Resource

The Resource entity is the base entity, which can be specialized into either
Atomic Resource or Composite Resource. A set of Attributes and Management
Rules are associated with each Resource to describe capabilities of a cloud re-
source. Attributes model capabilities in forms of key-value pairs. Management
Rules will be explained next.

Management Rules

A cloud resources configuration is open for dynamic state changes during its life-
time. Consumers can invoke configuration management processes (e.g., deploy a
MySQL database and increase its capacity up to 10GB) which change the state.
Alternatively other events within the external environment can trigger state
changes of a cloud resources configuration (e.g., temporal events, application
workload metric change). Therefore a configuration knowledge representation
model should represent how it modifies its state when such events occur. To
capture and react to events, each Resource includes a set of Management Rules.
Management Rules follow active rule model[4]. Each rule consists of an event
name and optional handler. The event name specifies the signal that triggers
the invocation of the rule. The handler represents how the Resource should
behave when the certain event occur. For an example, the handler, which as-
sociates with "DEPLOY" event, is triggered when consumers request to deploy
a particular configuration representation model. In the current implementation
we only support "DEPLOY" event.

3

Atomic Resource

An Atomic Resource represents configuration knowledge of a cloud resource that
does not rely on any other Resource. In other words, an Atomic Resource is an
indivisible resource into component resources from the perspective of resource
curators (those that primarily add/maintain configuration knowledge represen-
tation models in the KB). For an example, a VM with 4GB RAM and 4GHz
processing power, can be modeled as an Atomic Resource with two Attributes for
the memory and processing power. Atomic Resources act as primary building
blocks of Composite Resources.

Composite Resource

A Composite Resource is an umbrella structure that brings together other
Atomic and Composite Resources to model a configuration, which is composed
with multiple cloud resources. An example of Composite Resource would be an
E-Learning platform that consists of an artifact management service and stu-
dent identity management service to support 100 students. The cloud resources
brought together by a Composite Resource are referred to as its component re-
sources. A Composite Resource can be constructed by associating with other
available Resources. To represent these associations in our initial data model, a
Composite Resource consists of a list of references to otherAtomic and Compos-
ite Resources, additionally to what is available in a Resource. But Composite
Resources are not allowed to have cyclic references. This list specifies all the
components Resources, required to construct this particular composite cloud
resource. Unlike in Atomic Resources, handlers of a Composite Resource might
trigger other handlers of component resources as well.

3 KB based Reuse of Configuration Knowledge
The other concept (apart from the unified knowledge representation model for
cloud resources configuration) of our research work is the reuse of existing con-
figuration knowledge for individualized application and resource requirements.
We propose a rule based recommender system to implement this concept. Our
rule based recommender system intends to suggest configuration knowledge,
required for consumers during cloud resources configuration management pro-
cesses (e.g., deployment and configuration parameter modification). These sug-
gestions are generated based on a consumer specified context (e.g., intended
task and deployment scenario). This context represents an individualized appli-
cation or resource requirement. The suggested configuration knowledge includes
all necessary information and instructions, required to deploy a cloud resources
configuration, which satisfies the context description. Our system derives sug-
gestions from configuration knowledge artifacts (e.g., executable deployment
scripts, packaged virtual appliances) that were created for similar contexts in
the past. Consumers can accept or modify recommended configuration knowl-
edge artifacts according to consumers’ requirements. Alternatively consumers
can reject the recommendation, and create a new configuration knowledge ar-
tifact from scratch. Once such modifications are completed, the recommender
system translates those modifications into Recommendation Rules with help of

4

Figure 3.1: Rule based Recommender System Architecture

consumers and make available new recommendations for future consumer re-
quests.

In this section we first introduce Recommendation Rules of the recommender
system, followed by the construction, origin and evolution of Recommendation
Rules.

3.1 Recommendation Rules
Our recommender system maintains a cloud resources configuration knowledge
base(KB) which stores contexts, configuration knowledge representation mod-
els, and configuration knowledge artifacts. Recommendation Rules maintain
associations between those items in the KB as shown in Figure 3.2 and 3.3.
Recommendation Rules consist of contexts (when does the rule apply) and con-
clusions (what should be recommended when the rule is activated).

Once a consumer specifies a context description, our recommender system
generates a recommendation using a two-step process. First, the consumer
queries the "Task Category" database (See Figure 3.1) and specifies consumer’s
intended task (e.g., web application development, storage management, identity
management, customer relationship management, etc.,). As the result, the rec-
ommender system suggests an instance of an available configuration knowledge
representation model that satisfies the intended task. Second, the consumer
queries the "Deployment Scenario" database (See Figure 3.1) and specify the
preferred deployment model (e.g., local server, private cloud, or Amazon-EC2).
As the result, the recommender system suggests a configuration knowledge ar-
tifact that satisfies the specified deployment scenario of the previously recom-
mended configuration knowledge representation model in the 1st step. This
configuration knowledge artifact is input to a specific provider’s deployment ser-
vice to provision a cloud resources configuration, which satisfies the consumer’s
requirements.

In a summary, the recommendation in the 1st step is input as a context
parameter to the 2nd step. Both steps generate recommendations using two
different Recommendation Rule types as follows.

1. Recommendation Rules-A - Rules that map a task category to a cloud re-
sources configuration knowledge representation model (Figure 3.2). Cloud

5

Figure 3.2: UML class diagram of Recommendation Rules-A component

resource consumers or curators of configuration knowledge representation
models primarily add/maintain these rules.

2. Recommendation Rules-B - Rules that map a configuration knowledge
representation model and deployment scenario to a configuration knowl-
edge artifact (Figure 3.3). Configuration knowledge artifact developers or
cloud resource providers primarily add/maintain these rules.

Contexts of Rules

The recommender system maintains "Contexts" data (See Figure 3.1) for task
categories and deployment scenarios. The "Task Category" and "Deployment
Scenario" databases intend to capture meta-data and common information about
classes of similar resource and application requirements. These databases allow
cloud resource consumers to reuse and customize shared context knowledge. On
the other hand associating configuration knowledge representation models with
relevant task categories can effectively segment those models based on poten-
tially satisfying tasks.

The "Contexts" database is implemented as a hierarchical structure of con-
text entities. Therefore task categories can be associated from more generic (e.g.,
"Application Development", "Storage management") to more specialized enti-
ties (e.g., "Java based Web Application Development", "Relational Database
services"). Similarly deployment scenarios can be associated from more generic
(e.g., "public cloud deployment", "private cloud deployment") to more special-
ized entities (e.g., "VMWare vSphere Hypervisor 5.5", "Amazon-EC2", "Win-
dows Azure"). This hierarchical structure helps consumers to query "Contexts"
data and find either equal or approximately equal (but more generalized) con-
texts that satisfy consumers’ requirements.

Left hand side of Recommendation Rules in the UML class diagrams depicts
the context of rules. These two rule types consist of different types of contexts.
Rules-A consists of a context that describes the intended task of the consumer
(e.g., RuleID 1 in Table 3.1).

6

Figure 3.3: UML class diagram of Recommendation Rules-B component

Table 3.1: Examples of Reccomendation Rule Types
RuleID Context Recommendation
1 Task_Category="Tomcat based web application" KRM_ID*= "15"

2 KRM_ID*= "15" AND Deployment_Scenario= "EC2" KA_ID**= "637"

*KRM_ID stands for Knowledge Representation Model ID

**KA_ID stands for Knowledge Artifact ID

Rules-B consists of a context that describes the intended target deployment
of a selected configuration knowledge representation model (e.g., RuleID 2 in
Table 3.1).

More design level details on how these rules are originated, processed and
evolved are explained later in Section 3.

Conclusions of Rules

The right hand side of Recommendation Rules in the UML class diagrams de-
picts components, which construct the conclusion of a rule (See Figure 3.2
and 3.3). Both rule types have different conclusions based on the rule’s context.
Rules-A recommends a configuration knowledge representation model which is
described in detail in Section 2.

Rules-B suggests a configuration knowledge artifact, which can be classified
as follows.

1. An executable script : describes a deployment process in a cloud resources
configuration description language (e.g., Puppet1, dotCloud2, or Ansible-
works3); or a script implemented in a low level language (e.g., python,
shell scripts, or even WS-BPEL). Hence cloud resource consumers can
execute those scripts to deploy cloud resources configurations.

1http://docs.puppetlabs.com/puppet/3/reference/lang_summary.html
2https://www.dotcloud.com/
3http://www.ansibleworks.com/

7

2. A packaged virtual appliance : a virtual appliance packaged in a standard
format (e.g., OVF (Open Virtualization Format)). Consumers can down-
load the suggested package and import it into a supported cloud resource
provider (e.g., VMWare Workstation, Amazon-EC2).

Once the recommender system suggests a configuration knowledge artifact,
consumers can deploy the configuration knowledge artifact via a specific provider’s
configuration management service. Consumers can manage the deployed cloud
resources configuration then. We consider the management aspect of federated
cloud resources configurations as a future work.

In the next sections we explain how Recommendation Rules are originated,
processed and evolved.

3.2 Reuse of Configuration Knowledge
In order to increment and reuse existing knowledge in KB, we use a knowledge
acquisition and management technique called Ripple Down Rules (RDR)[6].
RDR technique has been successfully implemented in many domains (e.g., natu-
ral language processing, clinical pathology reports, call centers, database cleans-
ing, UI artifact reuse and soccer simulations). But to the best of our knowledge,
there has been no attempt to adapt RDR to the domain of cloud resources man-
agement knowledge reuse.

There are different variations of RDR such as Single-Conclusion RDR (SCRDR),
Multiple-Conclusion RDR (MCRDR), and Collaboration RDR. In our recom-
mender system we implement SCRDR technique, which allows only conclusion
for a given context. SCRDR empower the reusability of existing configuration
knowledge representation models and configuration knowledge artifacts. Also
SCRDR increment knowledge by integrating new rules to the existing KB. As
a future work we will replace our SCRDR implementation with MCRDR which
allow multiple conclusions and rule modifications by adding exception rules.
MCRDR will enhance the productivity of our recommender system.

Figure 3.4 shows examples of two types of Recommendation Rule trees in
the KB. Rule A0 and B0 contain the default conclusion("unknown"). The
recommender system suggests the default conclusion, when the input context
is not specified. Thus in Rules-A tree, the inference engine triggers the default
conclusion, when the task category is not defined in input contexts. In Rules-B
tree, the engine triggers the default conclusion, when the deployment scenario or
configuration knowledge representation model are not specified. The KB depicts
"except" (true) branches and "if not" (false) branches. When consumers input
a context to the recommender system, the inference engine starts querying the
relevant Recommendation Rule tree. Starting from the root node, the engine
checks whether the next rule node is true or false by comparing the context
of each rule node with the consumer specified context. This task is carried
out repeatedly until the inference engine cannot proceed to find any more true
nodes. The conclusion of the last true node is returned back to the consumer.

To give an example, a curator of our KB may want to model a cloud re-
sources configuration for a "Java based Web application development". But
assume our KB does not contain this task category at this moment. That
means "Rule A2" does not exist in the Rule-A tree (see Figure 3.4). Hence
the curator queries the KB and find a cloud resources configuration knowledge

8

Figure 3.4: Example of Recommendation Rule Trees

representation model that is associated with "Task_Category"="Web Appli-
cation Development" ("Rule A1"). But the curator cannot find an "except"
rule that originated from "Rule A1". Therefore the curator firstly composes
and registers a configuration knowledge representation model in the KB. This
model describes the configuration with required component resources for the
Java based Web application development environment. The curator then reg-
isters an "except" rule ("Rule A2") under "Rule A1", and refer the composed
configuration knowledge representation model as the recommendation.

In another scenario, a cloud resource consumer may need to deploy an E-
Learning platform on a "VMWare vSphere Hypervisor"(Private Cloud). There-
fore the curator specifies the context as "Task_Category" = "E-Learning Plat-
form". The inference engine checks in Rules-A tree for a rule whose "Task_Category"
is equal to "E-Learning Platform". Once the engine finds the particular rule
("Rule A4"), the conclution of that rule is returned back to the consumer. The
consumer then specifies a "Deployment_Scenario" for the recommended con-
figuration knowledge representation model. The inference engine checks along
the "if not" path way in Rules-B tree, and realize the last rule node that is
set to true is "Rule B3". Hence the conclusion (e.g., a download link to a pre
built VMWare supported virtual appliance that includes Moodle; an E-Learning
platform) of "Rule B3" is recommended back to the consumer.

9

3.3 Knowledge Acquisition Process
The KB, empowered by SCRDR, incrementally acquires configuration knowl-
edge in forms of rules. Any change in contexts, configuration knowledge rep-
resentation models, or configuration knowledge artifacts activates an update to
the KB. Following cases create new Recommendation Rules in our KB.

1. A new configuration knowledge representation model or a configuration
knowledge artifact is registered on an existing context in the KB

2. A configuration knowledge representation model or a configuration knowl-
edge artifact is registered or modified on a non-existing context in the KB

Case 1 - Users (e.g., curators of the KB), who expect to register a con-
figuration knowledge representation model, can register a rule under Rules-A
tree by specifying an existing "Task_Category" as the context and referring
the new configuration knowledge representation model as the conclusion. Users
(e.g., cloud resource providers or configuration knowledge artifact developers),
who expect to register a configuration knowledge artifact, can register a new
rule under Rules-B tree by specifying an existing configuration knowledge rep-
resentation model and "Deployment_Scenario" as the context and referring the
new configuration knowledge artifact as the conclusion.

Case 2 - Case 2 is triggered in two scenarios: (1) curators need to register,
or modify a configuration knowledge representation model; or (2) users (e.g.,
cloud resource providers, or configuration knowledge artifact developers) ex-
pect to register, or modify configuration knowledge artifacts. In both scenarios,
the expected "Task_Category" or "Deployment_Scenario" does not exist in
"Contexts" database (see Figure 3.1). Therefore users firstly register relevant
entries in "Contexts" database. When a new context is a specialization to an
existing context, the new context is positioned accordingly in the hierarchical
structure. Next, an "except" rule is registered in Rules-A or Rules-B tree ac-
cordingly. Alternatively a new rule is registered in a "if not" branch in Rules-A
or Rules-B tree.

These processes allow the evolution of our SCRDR based KB over time. Our
approach makes more productive suggestions when there are enough rules. So
our approach needs little consumer effort to specify contexts of rules when rules
are being created.

In a summary, our rule based recommender system lets consumers to focus
on their application and resource requirements, while the system shields con-
sumers from technical complexity of federated cloud service solutions. We argue
that a framework, which decouples a cloud resource requirement specification
from underlying resource and service configuration needs, caters for a flexible
characterization and planning of resource needs over time.

4 Implementation
To evaluate our approach, we implemented a proof-of-concept prototype. To test
the prototype, we also developed test cases based on 3 practical user scenarios.
These scenarios were based on a SENG10311 lecturer’s application requirements

1http://www.cse.unsw.edu.au/~se1031

10

(e.g., a pre-configured development environment packaged as a virtual appliance
for students, multi tenant software project management environment for all stu-
dent groups) which involved a composition of 8 different cloud services (Heroku,
Google-Drive, GitHub, LucidChart, PivotalTracker, Facebook developer API,
Twitter developer API, and Amazon-S3).

We implemented our recommender system as a proof-of-concept prototype
which includes two main components: an in-memory "Contexts" database and
SCRDR system using Java. These components collectively provide three fea-
tures: recommending configuration knowledge representation models for a given
task category; recommending configuration knowledge artifacts for a given de-
ployment scenario and configuration knowledge representation model; and ac-
quiring, and evolving configuration management knowledge.

To generate recommendations, there should be some rules in the recom-
mender system. Thus we constructed a context hierarchy and added rules
following SCRDR techniques as prerequisites. We added a set of task cate-
gories, deployment scenarios and configuration knowledge representation models
in our "Contexts" database. We modeled each Atomic Resource and modeled
Composite Resources by reusing previously modeled Atomic Resources. Rec-
ommendation Rules were registered in the KB which allowed lecturers to query
and get recommendations of cloud resources configurations for given task cate-
gories. Lecturers selected an available task category (e.g., SENG1031-Software
Engineering Workshop: server side appliances, Software development and man-
agement appliances for COMP9323). Selected context information was sent to
the inference engine. The engine matched the specified context with contexts of
available rules and returned a configuration knowledge representation model as
the recommendation. Lecturers then specified the deployment scenario from the
"Contexts" database. The chosen deployment scenario was sent back to the rec-
ommender system and the system returned a configuration knowledge artifact
as the recommendation. In our initial prototype recommendations are URLs.
Hence consumers can access and download the configuration knowledge artifact
and deploy it. Alternatively consumers can modify that artifact and add a new
rule that maps the modified artifact to a context in "Contexts" database.

5 Related Work and Discussion
In this section, we review and differentiate different approaches in research re-
lated to the cloud resources configuration management.

Some Software Configuration Management(SCM) solutions (e.g., Puppet,
Opscode Chef, and SmartFrog) and some other research initiatives automate
behaviors and capabilities of virtual machines(VM) in an cloud infrastructure[5,
11, 16]. Ubuntu Juju and Amazon OpsWorks automate behaviors and capabil-
ities of cloud services, which may consist of several component cloud resources
together. Hence those SCM solutions are capable of encapsulating a complete
service by defining how each component resource should be constructed and
managed. All these solutions use script-based and procedural programming ap-
proaches for configuration management and automation. Those approaches are
feasible for technical people (e.g., system administrators and devOps) rather
non-IT people who want to deploy and manage their own private or public
cloud[19].

11

AutoNetKit provides a template-based configuration description language
for large and complex network emulations[17]. AutoNetKit generates vendor
specific device configuration knowledge (in forms of scripts) using the template
based configuration description. Our approach leverages existing configuration
knowledge using a unified configuration knowledge representation model.

A configuration knowledge reuse mechanism is analyzed for individualized
use of a software system called MythTV here[15]. In difference to our approach,
this research does not follow a unified data model to represent configuration
knowledge. A unified meta-model is proposed to capture meta-data (e.g., se-
curity, pricing, legal etc.,) of cloud services in[14]. This approach focuses on
service discovery aspect, but we focus on configuration management aspect.

There are three main areas of related work: CRCD languages, configura-
tion management and orchestration tools built on top of those languages, and
approaches to federated cloud service management.

Cloud Resources Configuration Description(CRCD) Language Clas-
sification

CRCD languages can be template-based and model-driven[18].
Template-based approaches aggregate resources from a lower level of the

cloud stack and expose the package, along with some configuration options, to
a higher layer. The OVF manages resources of various types by describing how
a cloud offering is presented and consumed. The service offering is abstracted
from the specific type of cloud resource offered. Consumers use service templates
to describe what a cloud service can offer. Galán et al. extend OVF standard
through configuration parameters for components included in Virtual Machines
(VM) as capabilities that should be exposed by an IaaS provider[9].

Model-driven approaches define various models of the software at different
levels of the cloud stack; and aim to automate the deployment of abstract, pre-
defined, and composite solutions on cloud infrastructures[5, 10]. Konstantinou
at al. proposes a virtual appliance model that treats virtual images as building
blocks for IaaS composite solutions[16]. Developers determine deployment-time
requirements in a cloud-independent manner using a parameterized deployment
plan. At the SaaS level, a model-driven approach can allow users to design
applications independent of any platform[13]. This research proposes an appli-
cation meta-model that enables the modeling of components of an application,
component dependencies at both SaaS and IaaS levels[8]. Other approaches
describe how to create SaaS application definitions with variability points that
can be customized to particular requirements[12].

Configuration Management and Orchestration Tools Classification

Cloud resource providers and 3rd party organizations create tools for CRCD
modeling, composition, deployment and management on top of provider spe-
cific CRCD languages. These tools automate configuration management and
orchestration operations while give operational control to consumers.

1. Some tools are based on unstructured CRCDs

(a) e.g., To deploy a LucidChart academic runtime instance, consumers
need to send an email to the LucidChart support team mentioning

12

resource requirements

2. Some tools are based on structured CRCDs and provide a web based
control interface. For an example, the deployment of web application
development runtimes in Nitrous.IO requires users to complete an on-line
form.

3. Some tools are based on structured CRCDs and provide a control API.
These tools use a script based and procedural CRCD language for config-
uration management and orchestration (e.g., Puppet, Chef, Ubuntu Juju,
Amazon OpsWorks, and RightScale)

Federated Cloud Service Management

The topic of the federation of cloud services has recently gained traction in
the scientific community. This research proposes a utility-oriented federation
across different cloud providers that support dynamic expansion or contraction
of capabilities (storage and computing resources)[3]. This research tackles the
problems of cloud intermediation and proposes a cloud broker topology where
an intermediate layer federates separate "back end" clouds[7]. Villegas et al.
propose a layered architecture mediated by a cloud broker at each cloud stack
tier to cater for specific concerns of the parties at that tier[20]. We specifically
focus on the configuration management aspect of federated cloud resources.

6 Conclusion and Future Works
In this paper, we have presented a framework to build unified, customizable and
reusable configuration knowledge representations for federated cloud resources.
The framework consists of (1) a unified configuration knowledge representa-
tion model for federated cloud resources; (2) a declarative and context-aware
language to specify consumers’ application and resource requirements in terms
of task categories and deployment scenarios; (3) automatic recommendation of
configuration knowledge artifacts for a given context; and (4) an incremental
configuration knowledge acquisition mechanism based on a Ripple Down Rules
base. To evaluate the feasibility and efficiency of the proposed framework, we
implemented our system as a proof of concept prototype. As future work, we
plan to (1) extend our declarative requirement specification language with other
dimensions (e.g., the expected uptime period of a cloud resources configuration)
to bring time-aware configuration management and orchestration capabilities,
and (2) extend the unified configuration knowledge representation model to
support model-driven configuration management and orchestration techniques.

Bibliography
[1] M. Armbrust and et al. A view of cloud computing. Commun. ACM,

53(4):50–58, Apr. 2010.

[2] T. J. Bittman. The road map from virtualization to cloud comput-
ing. https://www.gartner.com/doc/1572031, March 2011. Accessed:
24/11/2013.

13

[3] R. Buyya and et al. Intercloud: Utility-oriented federation of cloud com-
puting environments for scaling of application services. In Algorithms and
architectures for parallel processing, pages 13–31. Springer, 2010.

[4] S. Ceri, R. Cochrane, and J. Widom. Practical applications of triggers and
constraints: Successes and lingering issues. In Proc. 26th VLDB, pages
254–262, 2000.

[5] T. C. Chieu and at al. Solution-based deployment of complex application
services on a cloud. In SOLI, 2010 IEEE International Conference on,
pages 282–287. IEEE, 2010.

[6] P. Compton and et al. Ripple down rules: Turning knowledge acquisition
into knowledge maintenance. Artificial Intelligence in Medicine, 4(6):463–
475, 1992.

[7] E. Elmroth and L. Larsson. Interfaces for placement, migration, and mon-
itoring of virtual machines in federated clouds. In 2009. GCC’09. Eighth
International Conference on, pages 253–260. IEEE, 2009.

[8] C. Fehling and R. Mietzner. Composite as a service: Cloud application
structures, provisioning, and management. it - Information Technology,
53(4):188–194, 2011.

[9] F. Galán and et al. Service specification in cloud environments based on
extensions to open standards. In Proceedings of the fourth international
ICST conference on communication system software and middleware, pages
16–25. ACM, 2009.

[10] P. Goldsack and at al. The smartfrog configuration management frame-
work. ACM SIGOPS Operating Systems Review, 43(1):16–25, 2009.

[11] P. Goldsack, J. Guijarro, S. Loughran, A. N. Coles, A. Farrell, A. Lain,
P. Murray, and P. Toft. The smartfrog configuration management frame-
work. Operating Systems Review, 43(1):16–25, 2009.

[12] S. Hagen and A. Kemper. Model-based planning for state-related changes
to infrastructure and software as a service instances in large data centers.
In Cloud Computing, 2010 IEEE 3rd International Conference on, pages
11–18. IEEE, 2010.

[13] M. Hamdaqa, T. Livogiannis, and L. Tahvildari. A reference model for
developing cloud applications. In CLOSER, pages 98–103, 2011.

[14] P. Hoberg, J. Wollersheim, and H. Krcmar. Service descriptions for cloud
services-the customer’s perspective. In Proceedings of ConLife Academic
Conference, 2012.

[15] J. Huh, M. W. Newman, and M. S. Ackerman. Supporting collaborative
help for individualized use. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 3141–3150. ACM, 2011.

14

[16] A. V. Konstantinou and et al. An architecture for virtual solution com-
position and deployment in infrastructure clouds. In Proceedings of the
3rd International Workshop on Virtualization Technologies in Distributed
Computing, VTDC ’09, pages 9–18, New York, NY, USA, 2009. ACM.

[17] H. Nguyen and et al. How to build complex, large-scale emulated net-
works. Testbeds and Research Infrastructures. Development of Networks
and Communities, 46:3, 2011.

[18] M. P. Papazoglou. Making business processes compliant to standards and
regulations. In EDOC, 2011 15th IEEE International, pages 3–13. IEEE,
2011.

[19] B. Satzger and et al. Winds of change: From vendor lock-in to the meta
cloud. Internet Computing, IEEE, 17(1):69–73, 2013.

[20] D. Villegas and et al. Cloud federation in a layered service model. J.
Comput. Syst. Sci., 78(5):1330–1344, Sept. 2012.

[21] L. Wang, R. Ranjan, J. Chen, and B. Benatallah. Cloud computing:
methodology, systems, and applications. CRC Press, 2012.

15

