
Interdependent Security Risk Analysis of Hosts

and Flows

Mohsen Rezvani1 Verica Sekulic1 Aleksandar Ignjatovic1

Elisa Bertino2 Sanjay Jha1

1 University of New South Wales, Australia
{mrezvani,vericas,ignjat,sanjay}@cse.unsw.edu.au

2 Department of Computer Science, Purdue University
bertino@cs.purdue.edu

Technical Report
UNSW-CSE-TR-201406

February 2014

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Detection of high risk hosts and flows continues to be a significant problem in
security monitoring of high throughput networks. A comprehensive risk assess-
ment method should take into account the risk propagation among risky hosts
and flows. In this paper this is achieved by introducing two novel concepts.
The first is an interdependency relationship among the risk scores of a network
flow and its source and destination hosts. In one hand, the risk score of a host
depends on risky flows such a host initiates and is targeted by. On the other
hand, the risk score of a flow depends on the risk scores of its source and des-
tination hosts. The second concept, which we call flow provenance, represents
risk propagation among network flows which takes into account the likelihood
that a particular flow is caused by other flows. Based on these two concepts,
we develop an iterative algorithm for computing the risk level of hosts and net-
work flows. We give a rigorous proof that our algorithm rapidly converges to
unique risk estimates, and provide its extensive empirical evaluation using two
real-world datasets. Our evaluation demonstrates that our method is effective
in detecting high risk hosts and flows and is sufficiently efficient to be deployed
in high throughput networks.

1 Introduction

A significant challenge for monitoring of large enterprise networks is the com-
plexity of extracting risky network flows from the large quantity of flows. Identi-
fying the most likely malicious activities makes taking effective countermeasures
a feasible task. For example, detected high risk network traffic can be forwarded
to a deep packet inspection tool, such as an Intrusion Detection System (IDS)
[24]. An IDS can then execute specific actions to determine whether there are
actual intrusions or other attacks. The security risk level of a network activity
such as a network flow can be evaluated based on both the risk level of the
content of the flow and the amount of the risk which is propagated by its re-
lated flows. Such recursive assessment makes the detection of risky activities
rather complicated because it needs to accurately define the relationship among
network activities.

Distributed attack scenarios such as distributed denial of service (DDoS)
attacks and Botnet initiated attacks are examples of attacks which generate
malicious network flows that can be evaluated using the above recursive assess-
ment. In such attack scenarios, an attacker can exploit plenty of methods and
vulnerabilities across different systems in the network. A promising solution for
risk assessment is one which takes into account inter-flow relationships. One
of the best illustrations of the inter-flow relationship is when an attacker cre-
ates a web session on a public web server hosted within a demilitarized zone
(DMZ), by compromising the web server. Since the web related flow traffic to
such server is a permitted flow according the security policy, the attacker can
initiate a new connection from the compromised server to a another server in
a protected network zone which allows it to download rootkits, send massive
spam or scan ports on the second server. This illustrates the fact that, in order
to adequately evaluate the level of risk of the initial flow in this scenario, we
need to consider the whole interdependency risk relationship among recorded
network flows.

This indicates that, in order to address the problem of flow risk assessment,
we need a comprehensive solution which considers the whole interdependency
risk relationship among the network flows as well as the hosts initiating and
targeted by the flows. This can be explained by the principle that the more
risky flows a host initiates or is targeted by, the higher the risk level is for the
host. Moreover, the risk score of a network flow partially depends on the risk
scores of its source and destination hosts. Therefore, there is an interdependency
relationship between network flows and hosts with respect to the assessment
of their risk scores. The idea of employing link analysis techniques such as
PageRank [3] and HITS [15] for detecting relevant IP flows has been proposed in
the recent research [30, 29]. However, in such approach the levels of risk of hosts
and levels of risk of flows are evaluated separately, without considering their
interdependency. Moreover, this type of risk assessment requires an evaluation
of two separate dependency graphs for assessing the level of risk for hosts and
flows which is very inefficient for high throughput networks.

In our recent work [23] we proposed an interdependency risk model for rank-
ing the risk level of network flows as well as the related hosts. In the proposed
flow risk analysis, a network flow is likely to be risky if it is initiated or targeted
by risky hosts. We consider a host to be risky if some of its related flows are
risky. With such interdependency in mind, we develop an iterative algorithm

3

for calculating the level of risk of hosts as well as the level of risk of network
flows. Moreover, we take into account two different aspects that may influence
the level of risk of a network flow, the risk of flow attributes and the risk of the
flow provenance. The risk of flow attributes is defined by an aggregation of the
risk level of the source and destination hosts of a flow and a predefined risk level
of the network flow.

Extending our previous work [23], this paper presents a comprehensive risk
assessment method for flows and hosts with an extensive analytical and ex-
perimental analysis. With respect to our previous work, this paper introduces
some significant new contributions. First, here we augment the flow dependency
graph with the notion of weighted flow causality relationship which facilitates a
formulation of a weighted risk propagation model. Second, we provide a math-
ematically rigorous analysis of the behaviour of our iterative algorithm; in par-
ticular, its convergence and uniqueness of the solution generated are formally
proved. Third, we study the time complexity and memory usage of our risk
assessment algorithm, which are important efficiency factors for online monitor-
ing algorithms. Our analysis shows that both the memory usage and the time
complexity of our algorithm are linear with respect to the number of network
flows in the algorithm time window. The experimental evaluation confirms our
analysis regarding the efficiency of the algorithm. Last but not least, sensitivity
analysis and experimental evaluations are conducted over two public datasets
of packet traces which include two attack scenarios.

The reminder of the paper is organised as follows. The assumptions and
preliminary definitions are introduced in Section 2. Section 3 presents the details
of our proposed risk computation model. In Section 4, we present the properties
of our iterative algorithm. Performance analysis and experimental results are
presented in Section 5. The related work is presented in Section 6. Concluding
remarks are made in Section 7.

2 Definitions of Basic Notions

In this section, we introduce several concepts used in our risk computation
model. These concepts include a basic definition of NetFlow, flow causality
relationship, flow dependency graph and flow provenance based on such a graph.
Throughout this paper, the terms IP flow and NetFlow are used interchangeably.

2.1 Network Flow

A network flow can be defined as a unidirectional or bidirectional sequence of IP
packets that belong to the same communication session between an application
at a source host, and an application at a destination host. They also have a
few common attributes such as being a member of the same TCP connection
or UDP session. A network flow can be identified through the transport header
5-tuple including the source and destination ports, the source and destination
IP addresses, and the protocol which usually is TCP or UDP.

Although the aforementioned 5-tuple can identify a network flow, a complete
description of a network flow can only be achieved using a full packet trace
captured by a tool such as tcpdump. However, handling full packet capture
for security analysis in a large enterprise network is a significant challenge in

4

LAN

DMZ

Internet
IPFIX

Exporter

IPFIX Message

Collector

Flow
Storage

Query

Application

Figure 2.1: IPFIX reference model.

Table 2.1: NetFlow samples based on session 5-tuple.

id start t s ip s port d ip d port pro

f1 108.37 98.114.205.102 1821 192.150.11.111 445 tcp

f2 108.51 98.114.205.102 1828 192.150.11.111 445 tcp

f3 110.47 192.150.11.111 1957 98.114.205.102 1924 tcp

f4 113.46 192.150.11.111 36296 98.114.205.102 8884 tcp

f5 114.52 98.114.205.102 2152 192.150.11.111 1080 tcp

terms of time and space complexity. Additionally, attackers frequently utilize
encryption and other methods to obfuscate their communication and defeat deep
packet inspection tools such as an IDS [24]. Furthermore, violation of privacy
is also a concern in raw packet analysis techniques.

By aggregating the packets of a flow, a summary information about the flow
can be extracted and applied for network management which can reduce the
overhead incurred when inspecting the tremendous quantity of network packets
in large networks. Thus, in this paper, we employ a summary of flow features
in our risk assessment method. These features include the above 5-tuple along
with the start time of the network flow.

Figure 2.1 illustrates the overall architecture of the IP Flow Information
Export (IPFIX) reference model [25] which is a deployment model for a network
flow analysis tool. The three main components in this model consist of an
Exporter, a Collector and an Application. Network devices such as switches
and routers can support the task of an IPFIX exporter by sending the IPFIX
messages to the collectors. The IPFIX collector can receive the flow packets
from several exporters and supports a query language on its flow storage. In
our work, the Application on Figure 2.1 measures the risk score of flows based
on an iterative computational method.

Example 1. As an example of NetFlow, Table 2.1 shows the flows collected
from the Honeynet Project, Challenge 1 of the Forensic Challenge 2010 [5]. This
table only includes a summary of information for bidirectional and session based
flows including the start time and the 5-tuple of the TCP/UDP session.

5

Attacker

Internet

Web Server

Host 1

Victim

f1

f2

f3

Figure 2.2: An example for anonymity through connection chains.

2.2 Flow Causality

In many real attack scenarios, the attacker typically exploits vulnerabilities in
a number of intermediate hosts, called stepping stones [1]. In a distributed
system, an attack can be carried out by a sequence of network flows in which
the first flow in the sequence has originated by the attacker host and the last
flow has as destination the target victim of the attack.

There is a large volume of published literature for detecting stepping stones
[1]. However, rather than detecting stepping stones, our method relies on the
inherent causality relationship which, in such a case, exists between each two
consecutive network flows.

Example 2. Figure 2.2 shows a simple attack scenario. In this scenario, the
attacker compromises the web server and then gains access to a terminal on the
server (flow f1). From the web server he may connect into vulnerable host 1
through an SSH tunnel using a password cracking attack (flow f2). The attack
on the victim is then launched from host 1 over an internal connection (flow
f3). In this example, flow f1 triggered flow f2 and flow f2 triggered flow f3.

In order to formally define the notion of flow causality, we use timing infor-
mation along with source and destination addresses of network flows. In general,
we aim to model the flow causality between two flows through the likelihood
that one of them triggers the other one. Moreover, we define the notion of
weighted causality relationship between two flows because a flow is more likely
to be the cause of other flows if these flows started shortly after it. Wang et al.
[28] defined a similar dependency strength between two flows based on timing in-
formation of these flows. Our formal definition of flow causality is an extension
of their definition.

Definition 1. (Flow Causality) The flow causality between flow fy with re-
spect to flow fx, denoted as fcs(fx, fy), is a measure of the likelihood that flow

6

t = |t(fx)− t(fy)|

fc
s(
f
x
,f

y
)
=

fc
s(
t)

0 T 2T 3T 4T0

0 .2

0 .4

0 .6

0 .8

1

fcs(t) = e−
t
T

e−1 = 0.3679

Figure 2.3: Plot of fcs(t) = e−
t
αT with α = 1.

fx triggered flow fy. It is defined as:

fcs(fx, fy) =

e−
|t(fx)−t(fy)|

αT

if dst(fx) = src(fy) and

0 < t(fy)− t(fx) ≤ T,

0 otherwise,

(2.1)

where t(fx), src(fx) and dst(fx) denote the start time, source address and des-
tination address of network flow fx, respectively. T is the maximum distance
between the starting times of two network flows to be considered for causality
relationship, and is called causality time interval. Moreover, α is a constant
chosen to reflect the impact of the time distance between two flows in the flow
causality, and is called timing factor1.

As defined above, fy is likely caused by fx if during a particular causality
time interval T , flow fy starts after flow fx and the source address of fy is
the same as the destination address of flow fx. Clearly, the above definition, if
directly applied, may likely lead to false positives in stepping stones detection
when some network flows start quickly after other flows without any causality.
While this is indeed the case, our iterative procedure is likely to filter out such
false positives, unless false positives happen on the entire risky path, which is
unlikely. Moreover, we should remember that such unlikely events are accept-
able, because we aim at identifying flows which are likely to be risky, and also
that our proposed risk propagation works quite well without any modification
for other definitions of flow causalities.

In order to take into account the time distance between two flows for com-
puting the causality weight, we choose an exponential function which decreases
sharply as the time distance increases. Figure 2.3 shows a plot of function
fcs(t) = e−

t
αT where t is the temporal distance between two flows.

1In the experiment and all examples, we set α = 1.

7

98.114.205.102 192.150.11.111 98.114.205.102

Flow (2), TCP (445)
Flow (4), TCP (8884)

(a) Flow sequence diagram.

f1

f3 f4f5

f2

0.983 0.958

0.967

0.991

0.984 0.960

(b) Flow dependency graph.

Figure 2.4: An example for flow dependency graph.

2.3 Flow Dependency Graph

The main idea behind the flow dependency graph is to model causality among
network flows in order to measure the propagation of risk across network flows.
We will also employ the flow dependency graph in order to extract the probable
attack pathways which a network flow has initiated. This dependency graph is
based on the notion of graph proposed in [29].

Definition 2. (Flow Dependency Graph) The flow dependency graph is a
weighted directed graph, generated by a sequence of flows F = {f1, f2, . . . , fn}
monitored during a particular time window; nodes are the flows in the sequence
F , while the edges represent possible causality between corresponding flows, with
weights of each edge given by the weight function fcs(fi, fj) from equation (2.1).

Note that we assume that all flows are collected by a centralized or a number
of distributed monitoring machines and the start time of the flows are assigned
by the machines. Moreover, we assume that all clocks on the monitoring ma-
chines are synchronized using Network Time Protocol (NTP).

Example 3. Figure 2.4 shows an example of a flow dependency graph for
network flows from Table 2.1. Figure 2.4(a) illustrates the temporal sequence of
two flows f2 and f4 using a sequence diagram in the Unified Modeling Language
(UML) notation. Figure 2.4(b) shows the flow dependency graph for all flows
including the vertices labeled by the flow identifiers and the edges labeled by the
causality among the flows. In this example, for computing the flow causalities,
we set the causality time interval to T = 120.

A significant benefit of using the flow dependency graph in our risk assess-
ment model is that it allows us to represent the causality between network flows.
This causality can be considered as resulting from a possible attack scenario in
which the attacker creates the flow A in the first step (from host 1 to host 2) and
after compromising the destination of this flow (host 2), the attacker establishes
the second flow B (from host 2 to host 3). Moreover, this causality relationship
shows that the risk level of flow A not only depends on the risk of its features
but it also is influenced by the risk score of flow B because flow A likely leads
to flow B.

Lemma 1. The flow dependency graph is a Directed Acyclic Graphs (DAG).

Proof. Assuming the opposite, if we have at least one cycle in the graph which is
a path (f1, f2, . . . , fk) such that (fk, f1) is also an edge, according to definition 1

8

for timing information of network flows involved in a causality relationship, we
would have t(f1) < t(f2) < . . . < t(fk) < t(f1), which is a contradiction.

A significant challenge in maintaining a flow dependency graph is the scal-
ability, due to possibly huge number of flows in the graph for high throughput
networks. Therefore, in Section 3 we will propose an efficient algorithm for mea-
suring the level of risk from this graph which makes our methodology scalable.

2.4 Flow Provenance

We first introduce the definition of risky path in a flow dependency graph, to
be used to represent a potential attack scenario initiated by a flow.

Definition 3. Risky Path. A risky path of a network flow f is every path in
the flow dependency graph starting at the node corresponding to f and ending
at a leaf node in the graph.

In the risk evaluation algorithm, we will consider the risk level of risky paths
for each flow. It is clear that there may be more than one risky path for a flow
in the flow dependency graph. We can consider either the highest risk value or
sum of risk values of all risky paths for a flow; in our implementations we opted
for the sum of risk values of all risky paths. Choosing the sum has an advantage
of making all operations linear, which facilitates the proof of convergence of our
method, presented in Section 4. More precisely, the flows which participated
in more risky paths will be assigned a higher risk score. We now define a new
graph, called the flow provenance, whose purpose is to simplify an evaluation of
the risk level for a flow.

Definition 4. Flow Provenance. The flow provenance tf of a network flow
f is a subgraph of the flow dependency graph with the following properties: (1)
tf includes the corresponding node of flow f and all nodes which are included in
the risky paths of f ; (2) tf contains all the edges of the flow dependency graph
that are between two nodes in tf .

Example 4. In the flow dependency graph shown in Figure 2.4(b), there are
two different risky paths for network flow f1: f1 → f3 → f5 and f1 → f4 → f5.
The flow provenance of network flow f1 is the subgraph that includes nodes f1,
f3, f4 and f5 and all of the edges between these nodes.

3 Provenance-Aware Risk Computation

In this section, we first introduce the conceptual organization of our iterative
risk computational framework which includes several different risk scores. We
then explain the details of computation operations for all of these risk scores.
Table 3.1 contains a summary of notations used in this paper.

3.1 Iterative Framework

The main idea behind our risk computation system is to model the network
flow monitoring activity as a data management problem. Therefore, the risk

9

Table 3.1: Notation used in this paper.

Notion Meaning

F set of all flows in the current time window

H set of all hosts in the current time window

w window length in number of flows

T causality time interval

t(f) start time of a flow f

fcs(fi, fj) flow causality between two flows fi and fj

α timing factor for the flow causality

src(f) source host of a flow f

dst(f) destination host of a flow f

srv(f) network service of a flow f including protocol and destination
port number

mlw(s) number of malware using a service s

ĥr(h) intermediate risk score of a host h

hr(h) final risk score of a host h for a time window

ar(f) risk score of a combination of attributes of a flow f

sr(s) risk score of a network service s

pr(f) risk score of provenance of a flow f

npr(f) normalised risk score of provenance of a flow f

f̂r(f) intermediate risk score of a flow f

fr(f) final risk score of a flow f for a time window

spr(p) risk score of a risky path p

Np(f) number of risky path shared between a flow f and its parent

Nt(f) number of flow causalities in all risky paths of provenance of a
flow f

assessment can be modelled as a negative trust (distrust) computation. Authors
in [8, 16] proposed a provenance-based model for data providers which assumes
an interdependency relationship between data items and data providers. We
model network flows as data items which are provided by network hosts. Hence,
we define an interdependency relationship between network hosts and flows in
order to formulate the risk measurement for both of them.

The provenance concept in data trustworthiness models represents the path
of provisioning a data item, whereas we have defined the concept of provenance
of a flow based on flows which are probably caused by that flow. While the
data provenance concept is related to the process of generating data items by
various data providers, the notion of flow provenance which we have introduced
represents network activities which are generated by the flow. Note that in the
usual sense of provenance as used in data management, the path of generat-
ing data by various data providers is used as a parameter for measuring data
trustworthiness [8]. In our definition, the direction is somewhat reversed, in the

10

1 1..*

1

1 1

1

destination

source

1 1
Host ServiceFlow

1 0..*

Provenance

Figure 3.1: Interdependency relationship between host and flow.

sense that the risk of a flow is impacted by the risk of further flows which are
caused by such a flow.

Figure 3.1 shows this interdependency between the host and the flow risk
levels in our risk computation model. As we can see from this figure, the risk
scores are assigned to both hosts and flows, in an interdependent manner. Ac-
cordingly, the risk of a host is computed by aggregating of the risk scores of the
network flows which are either initiated by or targeted at the host. Therefore,
there is a one-to-many relationship between the risk score of a host and its ini-
tiated and targeted flows. Furthermore, the level of risk of a flow is measured
by the risk scores of source host, destination host, service type, and provenance
of the flow. Hence, the dependency of the risk score of a flow to its source,
destination and service is a one-to-one relationship, while the flow provenance
leads to a one-to-many relationship between the risk score of a flow and risk
scores of all flows within the provenance of such flow. Figure 3.1 illustrates
these relationships using the UML multiplicity notation.

In order to deploy our risk assessment system on an ISP network, we need
a way for handling a large number of flows. The flows monitored are an in-
put stream for our system and they are handled in overlapping time windows.
In other words, we apply our risk assessment method on the current window,
also using as an initial risk evaluation value for hosts and flows obtained from
the previous window. Thus, risk evaluations in each subsequent window are
obtained via an update mechanism from the corresponding values from the pre-
vious window.

Figure 3.2 illustrates the iterative framework for computing the risk scores of
hosts and flows. We first explain the overall architecture of our system, leaving
the details to the subsequent sections. As shown in this figure, the two main
modules of our framework are the risk evaluation component for the current
time window and the update mechanism. Dashed lines are traversed in each
iteration within a computation for each window; the solid lines are traversed
from one window to the next one.

The risk score of a flow will be defined as an aggregate of the risk score of its
attributes and risk score of its provenance. For a set of monitored flows in the
current window, we iteratively compute the risk scores for flow attributes and
flow provenance respectively. In each iteration these two computed risk scores
for each flow are combined together in order to obtain the new value of the risk
score of the flow; such a score is used in the subsequent iteration to update the
risk score of the provenance as well as to compute the risk scores of the hosts;
the risk score of the host is then also used in the next iteration to obtain the
risk scores of the attributes.

Such iterative risk computations for the current window will be repeated un-
til the changes in the risk scores become negligible. After finishing such iterative

11

Risk computation for current window

A set of network
flows in the

current window

Risk scores of flow
attributes (ar(f))

Risk score of flow
provenance (pr(f))

1 2

Risk score of flow
(fr(f))

3

Risk score of host
(hr(h))

4

Risk scores of
hosts

Risk scores of
flows

Update module

 h
iwhr

 hihr

 hi 1hr

 f
iwfr

 fifr

 fi 1fr

 fi 1rf̂

 hi 1rĥ

Figure 3.2: An iterative framework of computing risk scores of hosts and flows.

risk computation for the current time window, the risk scores of hosts and the
risk scores of the flows are passed to the update module. In the update mod-
ule, the current results will be combined with the results from the previous time
window by producing a weighted sum of such values and then a computation for
next time window will be started. We explain the details of such computation
process of this framework in the next sections.

3.2 Risk Score Computation for Network Flows

The risk score of each network flow is obtained by aggregating the risk score of
its attributes and the risk score of its provenance; the computation of the risk
score of the provenance exploits the flow dependency graph.

Risk of Flow Attributes

The risk score of flow attributes is calculated based on the risk scores of source
host, destination host, and the service type of the flow. For the risk computation
of source and destination hosts, we use the current risk score of related hosts,
while for computing the risk of flow service, we need a prior knowledge about
the risky services in the network services (see ¬ in Figure 3.2).

Although we can roughly assign risk scores to network services, we allow the
possibility that the risk scores of network services are supplied by the adminis-
trator, based on his prior knowledge about the network services. The Emsisoft
Portlist [10] lists the ports that are more frequently exploited by malware, such
as the TCP and UDP ports, as well as the malware using these ports. Based
on this port list, a service risk level for each flow is assigned. In other words,
if the destination port of a flow is in this port list, we assign a risk score to its
service according to the number of detected malwares using the port. Thus, the
risk score of service s obtains as follows:

sr(s) =
1 + mlw(s)∑

s′∈Portlist

(1 + mlw(s′))
(3.1)

12

where mlw(s) is the number of malware using service s reported by Emsisoft
Portlist. For example, there are five different malwares exploiting the Telnet
service, thus mlw(Telnet) = 5; however, since no malware has been reported
for the SSH service, mlw(SSH) = 0. Moreover, the denominator term in equa-
tion (3.1) is used to normalise the risk score of each flow service in order to bind
the risk score to the range of (0,1].

Having obtained the risk scores of all three attributes of a network flow, we
can define the risk score of attributes of a flow f as a simple average as follows1:

ar(f) =
hr(src(f)) + hr(dst(f)) + sr(srv(f))

3
(3.2)

where src(f), dst(f) and srv(f) denote the source, destination and network
service of flow f , respectively.

Risk of Flow Provenance

The risk score of a flow provenance is obtained from the risk scores of the
nodes in the provenance (see in Figure 3.2). As defined in Section 2, a flow
provenance is a subgraph of the flow dependency graph which includes a number
of risky paths. The risk score of a risky path is obtained as a weighted sum of the
risk scores of the flows within the path, with weight equal to the flow causality
between the node and its parent in the risky path. The rationale behind such a
risk computation for a risky path is that the risk value indicates the likelihood
of an attack proceeding via such risky path. Thus, we compute the risk score
of a risky path p, denoted as spr(p), as follows:

spr(p) =
∑
f∈p

fr(f)× fcs(parent(f, p), f), (3.3)

where fr(f) denotes the risk score of flow f and parent(f, p) is the network flow
corresponding to the parent node of f in the risky path p.

Since a flow provenance contains a number of risky paths, we compute the
risk score of flow provenance for flow f as the sum of risk scores of the risky
paths within flow provenance tf , i.e.,

pr(f) =
∑
p∈tf

spr(p); (3.4)

note that the summation is over all risky paths p within tf . In order to facilitate
the proof of convergence of our iterative risk computation algorithm, we nor-
malised the risk value of flow provenances to ensure that the risk value of flow
provenances is in the range of [0,1]; we will prove that this is indeed the case
in the next section. To obtain such normalisation, we first compute recursively
the total length Nt(f) of all risky paths in tf ; thus, each edge is counted with
a multiplicity equal to the number of risky paths which contain that edge.

Nt(f) =

0 f is a leaf node,

∑
f→f ′

(Nt(f
′) +Np(f ′)) otherwise.

(3.5)

1All of the functions in the equations below can be found in Table 3.1.

13

We now find the largest value of Nt in the entire graph, i.e. we define

M = max{Nt(f
′) : f ′ ∈ F}. (3.6)

To compute the value of pr(f) recursively, we first define a function which for
each node f computes recursively the number of risky paths within tf :

Np(f) =

1 f is a leaf node,

∑
f→f ′

Np(f ′) otherwise.
(3.7)

It is easy to see that the normalised sum of the right hand side of (3.4), i.e.,∑
p∈tf

spr(p)/M can be written in a recursive manner as

npr(f) =

0 f is a leaf node,

∑
f→f ′

npr(f ′) +
Np(f

′)fr(f ′)fcs(f,f ′)
M otherwise.

(3.8)

According to equations (3.5) and (3.7), the values of Nt(f) and Np(f) are
only dependent on the structure of the flow dependency graph. Thus, for each
time window we compute Nt(f) and Np(f) once, before starting the iterative
procedure for risk computation. Therefore, we use a Depth First Search (DFS)
algorithm on the flow dependency graph to compute the values of Nt(f) and
Np(f), as shown in Algorithm 1.

Note that equation (3.8) shows that the risk score of the flow provenance of
a network flow depends on the risk scores of its children in the flow dependency
graph (i.e., nodes f ′ suct that f → f ′). Thus, during the recursive procedure
for computing the risk scores, we use in each round of iteration a DFS algorithm
to compute the normalised risk scores of provenances for all flows in the graph,
as shown in Algorithm 2.

Since the flow dependency graph is mostly a sparse graph, we insert a new
virtual node in the graph, with edges to all existing nodes to allow all of the
DFS algorithms to traverse all nodes of the graph; this new virtual node is
the starting node for DFS algorithms. The algorithms recursively compute and
store the values of Np(f), Nt(f) and npr(f) for each flow (represented as a node
in the graph) in global arrays np, nt and npr, respectively.

Flow Risk Aggregation

As we described, the risk score of a flow is computed by aggregating the risk
values of the attributes and provenance of that network flow (see ® in Figure 3.2)
by a weighted sum:

f̂r(f) = cfar(f) + (1− cf)npr(f) (3.9)

where cf is a constant2, 0 ≤ cf ≤ 1. Thus, an administrator can select a larger
value for cf when he is confident which the risky services are. On the other
hand, a smaller value for this constant is appropriate when a higher weight is
to be given to flow provenances.

2In the experiment we set cf = 0.5 to equally reflect the importance of ar(f) and pr(f).

14

Algorithm 1 Recursive algorithm for computing Nt and Np

1: procedure ComputeNtAndNp(Graph G, Vertex v)
2: if not visited[v] then
3: visited[v]← true
4: Let f1, . . . , fk be k child nodes of v
5: if v is a leaf node then
6: np[v]← 1
7: nt[v]← 0
8: end if
9: for all i (i = 1, . . . , k) do

10: if not visited[fi] then
11: ComputeNtAndNp(G, fi)
12: end if
13: np[v]← np[v] + np[i]
14: nt[v]← nt[v] + np[i] + nt[i]
15: end for
16: end if
17: end procedure

Algorithm 2 Recursive algorithm for computing risk of flow provenance

1: procedure ProvenanceRisk(Graph G, Vertex v)
2: if not visited[v] then
3: visited[v]← true
4: Let f1, . . . , fk be k child nodes of v
5: if v is a leaf node then
6: npr[v]← 0
7: end if
8: for all i (i = 1, . . . , k) do
9: if not visited[fi] then

10: ProvenanceRisk(G, fi)
11: end if
12: npr[v]← npr[v] + npr[i] + (np[i]× fr(fi)× fcs(fv, fi))/M
13: end for
14: end if
15: end procedure

15

Table 3.2: Results of the risk computation for flows in Figure 2.4(b).

f1 f2 f3 f4 f5

src(f) 1 1 1 1 1

dst(f) 1 1 1 1 1

srv(f) 0.143 0.143 0.143 0.143 0.429

ar(f) 0.714 0.714 0.714 0.714 0.81

Np(f) 2 2 1 1 1

Nt(f) 4 4 1 1 1

pr(f) 0.995 0.995 0.248 0.250 0

f̂r(f) 0.278 0.278 0.156 0.157 0.132

Example 5. Table 3.2 shows an example of the intermediate results of our risk
score computation for network flows in the graph shown in Figure 2.4(b). For
this example, all risk scores are normalised and the value of cf is set to 0.5.
Moreover, the initial risk score of all network flows, fr(f), is set to 1.

3.3 Risk Score for Hosts

The risk score of a host is computed based on its engagement in risky network
activities (see ¯ in Figure 3.2). The network activities of a host are specified
by its incoming and outgoing network flows within the current time window.
Moreover, incoming and outgoing risky flows have different impact which needs
to be taken into account in the computation process. For example, network
flows which are initiated by a web server inside a DMZ have more influence on
the risk level of the server than incoming flows to such web server. In contrast,
incoming flows to a internal desktop host have more impact on the risk level of
the host than its outgoing flows. Therefore, we allow the network administrator
to manipulate this impact factor based on the network topology. We propose
the following equation, used in our experimental evaluations:

ĥr(h) =

cin
∑

f∈FI,h
fr(f)

|FI,h|
+

(1− cin)
∑

f∈FO,h
fr(f)

|FO,h|
(3.10)

where FI,h and FO,h are the set of incoming and outgoing flows of host h re-
spectively (in the current time window), and |F | is the cardinality of the set
F .

In equation (3.10), cin is a constant in the range 0 ≤ cin ≤ 1 chosen to reflect
the impact of incoming flows in the computation of the risk score. For example,
if cin has a large value, especially if cin > 0.5, we consider the incoming flows to
be more risky than the outgoing flows for the host risk computation. Moreover,
in this case a higher proportion of the risk score of a network flow is propagated
to its destination host. Such larger value of cin can be used, for example, for
detecting victims hosts of an attack. On the other hand, if cin has a smaller
value, especially if cin < 0.5, we consider the outgoing flows to be more risky
than the incoming flows for computing the risk score of a host. In addition, in
this case a high proportion of the risk score of a network flow is propagated to

16

Table 3.3: Results of the risk computation for hosts in Table 2.1.

Host cin = 0.2 cin = 0.5 cin = 0.8

98.114.205.102 0.612 0.500 0.409

192.150.11.111 0.388 0.500 0.591

its source host. If such a lower value of cin is used, since the originator hosts
are highly penalised with such a value, our risk computation method will assign
a high value of risk to the attackers hosts in an attack. In summary, if cin is
larger, the targeted hosts will be assigned higher values of risk; in contrast, for
smaller cin, originators will be assigned higher values of risk. Therefore, we
allow such a constant to be adjusted by the network administrator3.

Example 6. Table 3.3 shows the results of our risk score computation for hosts
in the example shown in Table 2.1. For this example, the risk scores of network
flows are obtained from the previous section, as shown in Table 3.2 (row labeled

f̂r(f)). All the risk scores for hosts are computed using three different values for
constant cin: 0.2, 0.5 and 0.8.

3.4 Iterative Algorithm

As we have explained, an iterative algorithm is employed for computing the
risk scores for flows and hosts within each time window. Algorithm 3 shows
such iterative process; a host and a flow risk vectors (respectively hr and fr)
are inputs from the previous time window and an input vector F is a set of
monitored flows for the current time window. As we will show, our algorithm
converges to a unique solution regardless of what the initial assignment of the
risk values is; however, passing these values from one window to the next greatly
reduces the number of iterations till convergence.

Algorithm 3 Iterative algorithm for risk computation within each time window.

1: procedure RiskComputation(hr, fr, F)
2: Create flow dependency graph G from F
3: ComputeNtAndNp(G, 0) using algorithm 1
4: M ← max{Nt(f) : f ∈ F}
5: repeat
6: Compute ar(f) for all f ∈ F using equation (3.2)
7: Compute npr(f) for all f ∈ F using algorithm 2

8: Compute f̂r(f) for all f ∈ F using equation (3.9)

9: Compute ĥr(h) for all host h involved in F using equation (3.10)

10: fr← f̂r
11: hr← ĥr
12: until the change of risk values is smaller than the threshold value
13: Return fr and hr
14: end procedure

3In our experiments we set cin = 0.8 giving more importance to incoming flows than the
outgoing ones in computations of risk scores of hosts.

17

Table 3.4: Risk values for flows and hosts in Table 2.1 after each iteration.

Iteration
Flows Hosts

f1 f2 f3 f4 f5 h1 h2

0 1 1 1 1 1 1 1

1 0.278 0.278 0.156 0.157 0.132 0.388 0.612

2 0.223 0.223 0.176 0.176 0.202 0.411 0.589

3 0.230 0.230 0.174 0.174 0.192 0.409 0.591

4 0.229 0.229 0.174 0.174 0.194 0.409 0.591

5 0.229 0.229 0.174 0.174 0.193 0.409 0.591

Example 7. Table 3.4 shows how the risk values of flows and hosts are updated
in the iterative algorithm for sample flows shown in Table 2.1. For this example,
all risk scores are normalised and the constants values are set as cf = 0.5 and
cin = 0.8. Moreover, in this table, h1 and h2 denote hosts 98.114.205.102 and
192.150.11.111, respectively.

3.5 Update Process

As shown in Figure 3.2, the update process is one of the two main modules
of our risk computation architecture. This module allows the flows to keep
streaming into the risk computation system. In the update process and before
starting the risk computation for the next time window wi+1, we first obtain
initial risk scores h̄ri+1(h) of each host h and f̄ri+1(f) of each flow f , to be
used as initial values for the computation of the window wi+1. These risk scores
are provided by the update mechanism, as a weighted sum of the corresponding
values hrwi(h) from the previous window wi and h̄ri(h) from the previous values
obtained by the update mechanism for each host h, and in the same manner the
initial risk scores f̄ri+1(f) of each flow f , from the corresponding values frwi(f)
and f̄ri(f):

h̄ri+1(h) = chuhrwi(h) + (1− chu)h̄ri(h) (3.11)

f̄ri+1(f) = cfufrwi(f) + (1− cfu)f̄ri(f) (3.12)

In the above equations, chu and cfu are constants with 0 ≤ chu ≤ 1 and 0 ≤
cfu ≤ 1 which determine relative importance of the values from the current
time window versus previous update values. In other words, if chu and cfu are
large, the risk scores can change fast; if chu and cfu are small, the risk scores
will change more slowly from one window to the next 4.

4 Properties of the Algorithm

As we discussed, algorithm 3 iteratively computes the risk scores for flows and
hosts within each time window. In this section, we highlight the properties

4In our experiment these constants were to 0.5 to equally reflect the importance of risk
scores of current time window and the values from the previous updating process. Moreover,
the initial values of risk for all objects are set to one at the very beginning of the operation
of our system.

18

of the iterative procedure in our algorithm; we first prove that the difference
between risk scores for either a host or a flow at any two consecutive iterations of
Algorithm 3 is bounded. Next, we exploit this property to prove the convergence
of the algorithm. We then show that the algorithm converges to a unique risk
value for each host and each flow. Finally, we formally model the memory
usage and time complexity of the algorithm. The idea for exhibiting the risk
discrepancy bounds and convergence is inspired by a similar method presented
in [21], where it used in the context of bias and prestige of nodes in trust-based
networks.

4.1 Risk Discrepancy Bounds

Lemma 2. The risk value of provenance, flows and hosts is always in the range
[0, 1].

Proof. At the initial stage of our algorithm all risk values of flows, hosts and
provenances are set to 1. Assuming that the lemma thesis is true at tth stage
of iteration, we prove that it is also true for the values obtained at stage t+ 1.
Since

npr(t+1)(f) =
pr(t+1)(f)

M
=

∑
p∈tf spr(t+1)(p)

M

=

∑
p∈tf

∑
f ′∈p
f ′ 6=f

fr(t)(f ′)fcs(parent(f ′, p), f ′)

M

≤

∑
p∈tf

∑
f ′∈p
f ′ 6=f

1

M
=

Nt(f)

max{Nt(f ′) : f ′ ∈ F}
≤ 1.

Using the above fact, we now have for the risk of flows

fr(t+1)(f) = cfar(t)(f) + (1− cf)npr(t+1)(f)

= cf
hr(t)(src(f)) + hr(t)(dst(f)) + sr(srv(f))

3
+ (1− cf)npr(t+1)(f)

≤ cf
2 + sr(srv(f))

3
+ (1− cf) ≤ 1.

and, using the above for the risk of hosts,

hr(t+1)(h) =

cin
∑

f∈FI,h
fr(t+1)(f)

|FI,h|
+

(1− cin)
∑

f∈FO,h
fr(t+1)(f)

|FO,h|

≤
cin

∑
f∈FI,h

1

|FI,h|
+

(1− cin)
∑

f∈FO,h
1

|FO,h|
= 1.

Corollary 1. The maximum difference between the risk values of either a flow
or a host between any two iterations is 1.

Proof. Follows immediately from the fact that all risk values are in the range
of [0,1].

19

Lemma 3. The difference of the risk values of any flow f as well as any host
h obtained at two consecutive stages of iteration t and t + 1 is bounded by an
exponential function of t:∣∣∣fr(t+1)(f)− fr(t)(f)

∣∣∣ ≤ (1− 1

3
cf

)t

(4.1)

∣∣∣hr(t+1)(h)− hr(t)(h)
∣∣∣ ≤ (1− 1

3
cf

)t

(4.2)

Proof. We prove the lemma by mathematical induction. The risk computation
of flow f at stage t+ 1 is given by

fr(t+1)(f) = cf
hr(t)(src(f)) + hr(t)(dst(f)) + sr(t)(srv(f))

3

+ (1− cf)

∑
p∈tf

∑
f ′∈p
f ′ 6=f

fr(t)(f ′)fcs(parent(f ′, p), f ′)

M

(4.3)

Base Case: We first prove the bound for risk values of flows in the case
t = 1.∣∣∣fr(2)(f)− fr(1)(f)

∣∣∣ =∣∣∣∣∣cf hr(1)(src(f))− hr(0)(src(f)) + hr(1)(dst(f))− hr(0)(dst(f)) + sr(1)(srv(f))− sr(0)(srv(f))

3

+ (1− cf)(npr(1)(f)− npr(0)(f))
∣∣∣

≤ cf
3

∣∣∣hr(1)(src(f))− hr(0)(src(f))
∣∣∣+

cf
3

∣∣∣hr(1)(dst(f))− hr(0)(dst(f))
∣∣∣

+
cf
3

∣∣∣sr(1)(srv(f))− sr(0)(srv(f))
∣∣∣+ (1− cf)

∣∣∣npr(1)(f)− npr(0)(f)
∣∣∣

≤ cf
3

+
cf
3

+ (1− cf) = 1− 1

3
cf

Note that sr(1)(srv(f))− sr(0)(srv(f)) = 0 because the risk values of services
remain constant during the risk computation process; also according to Corol-
lary 1, the difference between the risk values is bounded by 1. Now, we similarly
prove the base case for the risk of hosts.∣∣∣hr(2)(h)− hr(1)(h)

∣∣∣ =∣∣∣∣∣∣∣
cin

∑
f∈FI,h

fr(2)(f)

|FI,h|
+

(1− cin)
∑

f∈FO,h
fr(2)(f)

|FO,h|
−
cin

∑
f∈FI,h

fr(1)(f)

|FI,h|
−

(1− cin)
∑

f∈FO,h
fr(1)(f)

|FO,h|

∣∣∣∣∣∣∣
≤
cin

∑
f∈FI,h

∣∣∣fr(2)(f)− fr(1)(f)
∣∣∣

|FI,h|
+

(1− cin)
∑

f∈FO,h

∣∣∣fr(2)(f)− fr(1)(f)
∣∣∣

|FO,h|

≤
cin

∑
f∈FI,h

(
1− 1

3cf
)

|FI,h|
+

(1− cin)
∑

f∈FO,h

(
1− 1

3cf
)

|FO,h|

≤ cin
(

1− 1

3
cf

)
+ (1− cin)

(
1− 1

3
cf

)
= 1− 1

3
cf .

20

Note that we used the fact that
∑

f∈FI,h
1 = |FI,h|.

Inductive Step: We assume the bound to be true for iteration t for

every flow f and every host h, thus
∣∣∣fr(t+1)(f)− fr(t)(f)

∣∣∣ ≤ (
1− 1

3cf
)t

and∣∣∣hr(t+1)(h)− hr(t)(h)
∣∣∣ ≤ (1− 1

3cf
)t

. We first show that the bound is true for

iteration t+ 1 for every flow f as follows:

∣∣∣fr(t+2)(f)− fr(t+1)(f)
∣∣∣ =∣∣∣∣∣cf hr(t+1)(src(f))− hr(t)(src(f)) + hr(t+1)(dst(f))− hr(t)(dst(f)) + sr(t+1)(srv(f))− sr(t)(srv(f))

3

+ (1− cf)

∑
p∈tf

∑
f ′∈p
f ′ 6=f

fcs(parent(f ′, p), f ′)
(

fr(t+1)(f ′)− fr(t)(f ′)
)

M

∣∣∣∣∣∣∣∣
≤ cf

3

∣∣∣hr(t+1)(src(f))− hr(t)(src(f))
∣∣∣+

cf
3

∣∣∣hr(t+1)(dst(f))− hr(t)(dst(f))
∣∣∣

+ (1− cf)

∑
p∈tf

∑
f ′∈p
f ′ 6=f

∣∣∣fr(t+1)(f ′)− fr(t)(f ′)
∣∣∣

M

≤ cf
3

(
1− 1

3
cf

)t

+
cf
3

(
1− 1

3
cf

)t

+ (1− cf)
Nt(f)

(
1− 1

3cf
)t

M

≤ cf
3

(
1− 1

3
cf

)t

+
cf
3

(
1− 1

3
cf

)t

+ (1− cf)

(
1− 1

3
cf

)t

=

(
1− 1

3
cf

)t+1

Again, we have used the fact that
∑

p∈tf
∑

f ′∈p
f ′ 6=f

1 = Nt(f) ≤ max{Nt(f
′) :

f ′ ∈ F}. Now we similarly show that the bound is true for iteration t + 1 for
every host h as follows:

|hr(t+2)(h)− hr(t+1)(h)| =∣∣∣∣∣∣∣
cin

∑
f∈FI,h

fr(t+2)(f)

|FI,h|
+

(1− cin)
∑

f∈FO,h
fr(t+2)(f)

|FO,h|
−
cin

∑
f∈FI,h

fr(t+1)(f)

|FI,h|
−

(1− cin)
∑

f∈FO,h
fr(t+1)(f)

|FO,h|

∣∣∣∣∣∣∣
≤
cin

∑
f∈FI,h

∣∣∣fr(t+2)(f)− fr(t+1)(f)
∣∣∣

|FI,h|
+

(1− cin)
∑

f∈FO,h

∣∣∣fr(t+2)(f)− fr(t+1)(f)
∣∣∣

|FO,h|

≤ cin
(

1− 1

3
cf

)t+1

+ (1− cin)

(
1− 1

3
cf

)t+1

=

(
1− 1

3
cf

)t+1

21

4.2 Proof of Convergence

Using the above risk discrepancy bound, we now show that the risk scores for
both flows and hosts converge.

Theorem 1. For every flow f ∈ F , sequence {fr(t)(f)}, t ∈ N, and for every

host h ∈ H, sequence {hr(t)(h)}, t ∈ N, converge.

Proof. To show convergence, we will show that for every flow f , sequence
{fr(t)(f), n ∈ N} and for every host h, sequence {hr(t)(h), n ∈ N} are Cauchy
sequences. This follows immediately from the bound obtained in Lemma 3; for
every flow f ∈ F and ∀n,m ∈ N, we have∣∣∣fr(n+m)(f)− fr(n)(f)

∣∣∣
≤
∣∣∣fr(n+m)(f)− fr(n+m−1)(f)

∣∣∣+ · · ·+
∣∣∣fr(n+1)(f)− fr(n)(f)

∣∣∣
≤
(

1− 1

3
cf

)n+m−1

+ · · ·+
(

1− 1

3
cf

)n

=

(
1− 1

3
cf

)n

×

[(
1− 1

3
cf

)m−1

+ · · ·+ 1

]

=

(
1− 1

3
cf

)n 1−
(
1− 1

3cf
)m

1−
(
1− 1

3cf
)

≤
(

1− 1

3
cf

)n
1

1−
(
1− 1

3cf
)

=
3

cf

(
1− 1

3
cf

)n

.

Similarly, for every host h and ∀n,m ∈ N, we have∣∣∣hr(n+m)(h)− hr(n)(h)
∣∣∣ ≤ 3

cf

(
1− 1

3
cf

)n

.

Thus, when n is sufficiently large, for allm the values of
∣∣∣fr(n+m)(f)− fr(n)(f)

∣∣∣
and

∣∣∣hr(n+m)(h)− hr(n)(h)
∣∣∣ can be made arbitrarily small. The claim now fol-

lows from the fact that all Cauchy sequences on reals are convergent.

We now show that our algorithm converges rapidly.

Lemma 4. For every value ε > 0 of the threshold, algorithm 3 converges after
N = δ + log(1− 1

3 cf)
ε many steps.

Proof. Since by the previous Theorem∣∣∣fr(n+m)(f)− fr(n)(f)
∣∣∣ ≤ 3

cf

(
1− 1

3
cf

)n

;∣∣∣hr(n+m)(h)− hr(n)(h)
∣∣∣ ≤ 3

cf

(
1− 1

3
cf

)n

,

22

the same inequalities hold for the limit as m→∞; thus, denoting the limits by
fr(∞)(f) and hr(∞)(f) respectively, we obtain∣∣∣fr(∞)(f)− fr(n)(f)

∣∣∣ ≤ 3

cf

(
1− 1

3
cf

)n

;∣∣∣hr(∞)(h)− hr(n)(h)
∣∣∣ ≤ 3

cf

(
1− 1

3
cf

)n

.

Thus, both
∣∣∣fr(∞)(f)− fr(n)(f)

∣∣∣ ≤ ε and
∣∣∣hr(∞)(h)− hr(n)(h)

∣∣∣ ≤ ε whenever

3
cf

(
1− 1

3cf
)n
< ε; taking the logarithm of both sides we get that this happens

just in case log(1− 1
3 cf)

3
cf

+ n ≤ log(1− 1
3 cf)

ε, which proves our claim with δ =

log(1− 1
3 cf)

cf
3 .

4.3 Proof of Uniqueness

In this section, we prove that algorithm 3 provides unique solutions for risk
scores of both hosts and flows.

Theorem 2. For any given assignments of the risk values of services, for every
flow f ∈ F , sequence {fr(t)(f)}, t ∈ N, and for every host h ∈ H, sequence

{hr(t)(h)}, n ∈ N, converge to unique values, independent on the initial values

of fr(0)(f) and hr(0)(h).

Proof. We prove the uniqueness of the fixed point in our iterative algorithm
using “proof by contradiction”. If the algorithm does not provide a unique fixed
point, then we have at least two different fixed points which provide different risk
scores for both hosts and flows. Assume the provided risk value for flow f (host
h) by the first and second fixed points are fr∗1(f) and fr∗2(f) (hr∗1(h) and hr∗2(h)),
respectively. Denote the corresponding normalized flow provenance risk value
by npr∗k(f) for the k-th fixed point. We first prove the following inequalities by
mathematical induction.

∀n ∈ N, |fr∗1(f)− fr∗2(f)| ≤
(

1− 1

3
cf

)n

; (4.4)

∀n ∈ N, |hr∗1(h)− hr∗2(h)| ≤
(

1− 1

3
cf

)n

. (4.5)

Base Case: From equation (4.3) in the fixed point and for the case n = 1,
we have

|fr∗1(f)− fr∗2(f)| =∣∣∣∣cf hr∗1(src(f))− hr∗2(src(f)) + hr∗1(dst(f))− hr∗2(dst(f))

3
+ (1− cf)(npr∗1(f)− npr∗2(f))

∣∣∣∣
≤ cf

3
|hr∗1(src(f))− hr∗2(src(f))|+ cf

3
|hr∗1(dst(f))− hr∗2(dst(f))|

+ (1− cf) |npr∗1(f)− npr∗2(f)|

≤ cf
3

+
cf
3

+ (1− cf) = 1− 1

3
cf

23

Now, we similarly prove the base case (n = 1) for the risk of hosts.

|hr∗1(h)− hr∗2(h)| =∣∣∣∣∣∣∣
cin

∑
f∈FI,h

fr∗1(f)

|FI,h|
+

(1− cin)
∑

f∈FO,h
fr∗1(f)

|FO,h|
−
cin

∑
f∈FI,h

fr∗2(f)

|FI,h|
−

(1− cin)
∑

f∈FO,h
fr∗2(f)

|FO,h|

∣∣∣∣∣∣∣
≤
cin

∑
f∈FI,h

|fr∗1(f)− fr∗2(f)|

|FI,h|
+

(1− cin)
∑

f∈FO,h
|fr∗1(f)− fr∗2(f)|

|FO,h|

≤
cin

∑
f∈FI,h

(
1− 1

3cf
)

|FI,h|
+

(1− cin)
∑

f∈FO,h

(
1− 1

3cf
)

|FO,h|

≤ cin
(

1− 1

3
cf

)
+ (1− cin)

(
1− 1

3
cf

)
= 1− 1

3
cf .

Note that we used the fact that
∑

f∈FI,h
1 = |FI,h|.

Inductive Step: We assume the equations (4.4) and (4.5) to be true in the
case n for every flow f and every host h, thus |fr∗1(f)− fr∗2(f)| ≤

(
1− 1

3cf
)n

and |hr∗1(h)− hr∗2(h)| ≤
(
1− 1

3cf
)n

. We first show that inequality (4.4) is true
in the case n+ 1 for every flow f as follows:

|fr∗1(f)− fr∗2(f)| =∣∣∣∣cf hr∗1(src(f))− hr∗2(src(f)) + hr∗1(dst(f))− hr∗2(dst(f))

3
+ (1− cf)(npr∗1(f)− npr∗2(f))

∣∣∣∣
≤ cf

3
|hr∗1(src(f))− hr∗2(src(f))|+ cf

3
|hr∗1(dst(f))− hr∗2(dst(f))|

+ (1− cf) |npr∗1(f)− npr∗2(f)|

≤ cf
3

(
1− 1

3
cf

)n

+
cf
3

(
1− 1

3
cf

)n

+ (1− cf)
Nt(f)

(
1− 1

3cf
)n

M

≤ cf
3

(
1− 1

3
cf

)n

+
cf
3

(
1− 1

3
cf

)n

+ (1− cf)

(
1− 1

3
cf

)n

=

(
1− 1

3
cf

)n+1

Again, we have used the fact that
∑

p∈tf
∑

f ′∈p
f ′ 6=f

1 = Nt(f) ≤ max{Nt(f
′) :

f ′ ∈ F}. Now we similarly show that the bound is true for the iteration n + 1
for every host h as follows:

24

|hr∗1(h)− hr∗2(h)| =∣∣∣∣∣∣∣
cin

∑
f∈FI,h

fr∗1(f)

|FI,h|
+

(1− cin)
∑

f∈FO,h
fr∗1(f)

|FO,h|
−
cin

∑
f∈FI,h

fr∗2(f)

|FI,h|
−

(1− cin)
∑

f∈FO,h
fr∗2(f)

|FO,h|

∣∣∣∣∣∣∣
≤
cin

∑
f∈FI,h

|fr∗1(f)− fr∗2(f)|

|FI,h|
+

(1− cin)
∑

f∈FO,h
|fr∗1(f)− fr∗2(f)|

|FO,h|

≤ cin
(

1− 1

3
cf

)n+1

+ (1− cin)

(
1− 1

3
cf

)n+1

=

(
1− 1

3
cf

)n+1

Now, we proved the inequalities hold for any n ∈ N; thus, we obtain

|fr∗1(f)− fr∗2(f)| ≤ lim
n→∞

(
1− 1

3
cf

)n

= 0;

|hr∗1(h)− hr∗2(h)| ≤ lim
n→∞

(
1− 1

3
cf

)n

= 0.

The above inequalities are possible if and only if fr∗1(f) = fr∗2(f) and hr∗1(h) =
hr∗2(h), which proves our claim.

4.4 Memory Usage and Complexity Analysis

In order to formulate the time and space complexity of our iterative risk com-
putation in algorithm 3, we assume that the size of the window is w = |F |.

The memory required the algorithm mainly consists of the memory needed
for storing of all risk values for hosts and flows in the window as well as the
temporary values used by the recursive implementation of the DFS-like algo-
rithm for computing risk of flow provenances. Clearly, the memory required
for keeping the risk scores for hosts and flows including the intermediate and
temporary risk scores in a window with size w is in O(w). Note that the number
of hosts is less than the number of flows in a window. Also, the space complex-
ity of algorithm 2 is in O(w) which is equal to the space complexity of a DFS
algorithm in general [7]. Moreover, the space complexity for maintaining the
flow dependency graph is in O(|V | + |E|) by using an adjacency matrix where
|V | and |E| are the number of nodes and edges in the graph, respectively. Al-

though the maximum number of edges in a DAG is |V |(|V |−1)2 , the results of
our experiments over two real datasets show that the number of edges in the
flow dependency graph is around |E| = O(2 ∗ |V |) (see Section 5.2). Thus, the
storage complexity of algorithm 3 is in O(w).

The time complexity of the risk computation for all flow attributes, hosts,
and the aggregation of the risks of flow attributes and flow provenance in a
single iteration is in O(w). Moreover, the computation complexity of risk nor-
malisation is in O(w) as the normalisation is done through dividing each risk
value by the sum of all risk scores.

The risk of the flow provenance in Section 3.2 is computed by algorithm 2
which is a DFS-like algorithm over the flow dependency graph. Generally, the

25

complexity of a DFS algorithm is in O(|V |+|E|) where |V | and |E| are the num-
ber of nodes and edges in the graph, respectively [7]. Since the flow dependency
graph is sparse, the complexity of the risk computation for the flow provenance
is actually linear in the number of flows. Thus, in total, each iteration in our
algorithm requires O(w) steps, and for k iterations, the total running time for
the iterative algorithm is in O(k × w). The fact that the total number of iter-
ations is logarithmic in the value of the threshold guarantees the efficiency of
our method.

5 Experimental Evaluation

In this section we present the results of a performance evaluation of our system
in order to validate its effectiveness and efficiency.

5.1 Experimental Environment

Our experiments were conducted on two public datasets which include two at-
tack scenarios. To evaluate the effectiveness, we performed our risk computation
on both of these datasets and show that the model assigns high risk scores to the
victims and attackers which are involved in the attack scenarios. To evaluate
the efficiency, we measured the elapsed time for our risk assessment process and
two other recent models based on PageRank and HITS algorithms [30, 29], and
we show that our model is superior to those two methods in terms of computa-
tional complexity. Moreover, we show that the performance of our approach is
adequate for handling high throughput networks.

All the experiments have been conducted on an iMac PC with 2.00GHz
Intel Core 2 Duo processor and 4GB RAM running Ubuntu 12.04 LTS. The
program code has been written in Java with JDK 1.7. Table 5.1 summarizes
the experimental parameters which are used for all experiments.

Table 5.1: Experimental parameters.

Parameter Value

Causality time interval 600 seconds

of flows within a time window 2000

Length of sliding time window (# of flows) 400

The source of risky ports EMSISOFT

The maximum input cache size (# of flows) 10000

Accuracy threshold in iterative algorithm 0.001

Constants cf , chu and cfu 0.5

Constant cin 0.8

Constant α 1

26

Honeynet Dataset

In order to evaluate the effectiveness of our model, we applied the model to the
public traces which were captured by the Honeynet project, Scan 18 [5]. This
dataset includes an attack scenario which consists of a sequence of attacker ac-
tivities including scanning, compromising, downloading and installing a Rootkit,
and sending spam emails. In this attack scenario, the attacker compromised a
local honeypot machine with IP address 172.16.1.108 using at least two different
stepping stones to scan and attack the network. Moreover, attacker exploited
a number of different IP addresses including 211.185.125.124, 211.180.229.190,
193.231.236.41, 216.136.129.14, and 209.61.188.33 [29].

MIT Lincoln Dataset

We also applied our risk computation model to the MIT Lincoln dataset [9]
which is used extensively for evaluating intrusion detection systems. Although
there are several reservations regarding the accuracy of this dataset [19, 18], to
our knowledge, no further datasets have been released.

The MIT Lincoln dataset includes a Distributed Denial of Service (DDoS)
attack scenario and was originally proposed by a DARPA project for evaluating
Intrusion Detection Systems. The data file was collected over a span of approx-
imately 3 hours on Tuesday, 7 March 2000, from 9:25 AM to 12:35 PM and the
five phases of the attack scenario were [9]:

• IPsweep of the network from a remote site

• Probe of live IP’s to look for the sadmind daemon running on Solaris hosts

• Breaking via the sadmind vulnerability, both successful and unsuccessful
on those hosts

• Installation of the trojan mstream DDoS software on three hosts at the
network

• Launching the DDoS

Based on the above steps, the attacker installs hacking tools on three ma-
chines inside the network with IP addresses 172.16.115.20, 172.16.112.50, and
172.16.112.10. After compromising these three victims, the attacker performs a
DDoS attack from all these nodes to the victim machine 131.84.1.31 by flooding
packets. The statistical overview of the dataset is presented in Table 5.2.

Table 5.2: The MIT Lincoln flow statistics.

The size of the pcap file 117M

Number of packets 649787

Capture duration 11652 seconds

Data bit rate 76680.78 bits/sec

Number of nodes (hosts) 34521

Number of flows 103006

27

0

1

2

3

4

5

6

60 180 300 420 540 660 780 900 1020 1140

N
u

m
b

e
r

o
f

fl
o

w
 c

au
sa

lit
y

(T
h

o
u

sa
n

d
s)

Causality time interval (Seconds)

w=500 w=1000 w=1500 w=2000 w=2500

(a)

0

1

2

3

4

5

6

500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

N
u

m
b

e
r

o
f

fl
o

w
 c

au
sa

lit
y

(T
h

o
u

sa
n

d
s)

Sliding window length (# of flows)

T=60 T=300 T=600 T=900 T=1200

(b)

Figure 5.1: Average number of flow causalities.

5.2 Sensitivity Analysis

Beyond investigating the effectiveness and efficiency of our risk assessment ap-
proach, we also measured the sensitivity of the results with respect to the risk
computation parameters: the length of the sliding time window and the causal-
ity time interval (Section 2.2). Both these parameters impact the efficiency of
our approach because the number of flow causalities depends on the parameter.
Clearly, the number of causalities identifies the number of edges in the flow
dependency graph which is a significant parameter for the computational com-
plexity of our risk computation algorithm, as shown in Section 4.4. Therefore,
in this section we investigate the number of flow causalities according to the
different values for these two parameters by running experiments over a subset
of the MIT Lincoln dataset including its first 10000 network flows.

Figure 5.1 compares the average number of flow causalities (edges in the
flow dependency graph) on the MIT Lincoln dataset with respect to both the
sliding window length and causality time interval. One can see in Figure 5.1(a)
that by increasing the causality interval time, we achieve a stable number of
flow causalities for each different value of sliding window length. This can be
explained by the fact that a very large value of the causality interval time ex-
ceeds the maximum time interval between two network flows within the window.
Since we defined the sliding window based on the number of network flows, an
administrator can estimate a maximum threshold for the causality time interval
according to the window length and the throughput of the network.

Figure 5.1(b) confirms that large values of the causality time interval sim-
ilarly increase the number of flow causalities. Clearly, an administrator may
choose the time interval value T = 600 as it generates a large enough number
of flow causalities. Moreover, the sliding window length can be selected based
on the available memory and processing power.

5.3 Effectiveness

We evaluated the effectiveness of our solution by running the system on both
Honeynet Scan 18 and Lincoln datasets. The Honeynet dataset has only 47
flows and our tool performed the risk analysis in a single window; experimental
parameters are presented in Table 5.1. In order to detect the victim hosts and
flows, we set cin to 0.8 to give more importance to incoming flows than outgoing
ones in computations of risk scores of hosts. The top 10 high risk hosts and

28

flows ranked by our tool are reported in Table 5.3. In this table, the flows and
hosts indicated in bold are the actual victims in the attack scenario according
to the Honeynet dataset. These results show that our system assigned high
risk values to the main victim with IP address 172.16.1.108. Moreover, our
detected third high risk host with IP address 172.16.1.103 is the next victim
which responded to SYN scan of the attacker in the dataset [5]. As one can see
in this table, the risk of the first host is very high compared with the risk of the
second victim. This is due to the fact that in the attack the host 211.185.125.124
launched a sequence of a ”RPC GETPORT Call” followed by the actual buffer-
overflow attack, first to 172.16.1.103 and then 172.16.1.108. Moreover, the host
172.16.1.103 was immune from this attack while the host 172.16.1.108 has been
affected by it [5].

In order to detect the hosts that are originators of attacks in the Honeynet
dataset, we set cin to 0.2. Table 5.4 shows the top 10 high risk hosts and flows,
ranked by our tool in this experiment. In this table, the hosts indicated in bold
are the actual originators of the attack scenario in the Honeynet dataset. Our
tool ranked four out of five attackers (except 216.136.129.14) in the top 7 hosts
(see column 3 and 4). This can be explained by the fact that by setting a low
value for parameter cin, our tool assigns a higher level of risk to the hosts which
initiate the highest risk flows.

Table 5.3: Risk evaluation results for Honeynet Scan 18 dataset with cin = 0.8.

High risk flows High risk hosts

Risk Flow Risk Host

0.0599 172.16.1.108:1026:193.231.236.41:21:TCP 0.3250 172.16.1.108

0.0517 172.16.1.108:1029:209.61.188.33:25:TCP 0.1518 211.185.125.124

0.0498 172.16.1.108:1028:216.136.129.14:25:TCP 0.1164 172.16.1.103

0.0480 211.185.125.124:790:172.16.1.108:111:UDP 0.1060 193.231.236.41

0.0480 211.185.125.124:3500:172.16.1.108:111:TCP 0.0486 209.61.188.33

0.0453 172.16.1.108:931:211.185.125.124:791:UDP 0.0399 216.136.129.14

0.0448 172.16.1.108:39168:211.185.125.124:4450:TCP 0.0394 172.16.1.107

0.0427 193.231.236.41:1522:172.16.1.108:113:TCP 0.0266 216.168.224.69

0.0427 193.231.236.41:1519:172.16.1.108:113:TCP 0.0237 172.16.1.106

0.0427 193.231.236.41:1516:172.16.1.108:113:TCP 0.0232 172.16.1.105

In order to evaluate the effectiveness of our risk assessment methodology for
very large datasets, we applied our tool to the MIT Lincoln dataset. In order
to perform a risk assessment for a dataset of size 103006 flows (see Table 5.2)
and with a window size of 2000 flows with 20% sliding factor (see Table 5.1),
the tool utilized 65 sliding time windows. At the end of each time window wi,
1 ≤ i ≤ 65, we have partial risk scores hrwi(h) and frwi(f) for hosts and flows,
respectively. In practice, such results, obtained in real time, would be used by
the network administrator to monitor for possible malicious activities. We now
evaluate these results for each time window as well as the final results after
finishing the risk computation for all of the 65 windows.

29

Table 5.4: Risk evaluation results for the Honeynet Scan 18 dataset with cin =
0.2.

High risk flows High risk hosts

Risk Flow Risk Host

0.0533 211.185.125.124:790:172.16.1.108:111:UDP 0.3062 211.185.125.124

0.0533 211.185.125.124:3500:172.16.1.108:111:TCP 0.2897 172.16.1.108

0.0506 172.16.1.108:931:211.185.125.124:791:UDP 0.0990 193.231.236.41

0.0498 172.16.1.108:39168:211.185.125.124:4450:TCP 0.0783 211.180.229.190

0.0487 172.16.1.108:1026:193.231.236.41:21:TCP 0.0564 172.16.1.103

0.0416 172.16.1.108:1029:209.61.188.33:25:TCP 0.0557 203.111.78.182

0.0408 211.185.125.124:789:172.16.1.103:111:UDP 0.0307 209.61.188.33

0.0408 211.185.125.124:3495:172.16.1.103:111:TCP 0.0108 65.195.31.2

0.0390 172.16.1.108:1028:216.136.129.14:25:TCP 0.0097 172.16.1.107

0.0377 172.16.1.103:32773:211.185.125.124:790:UDP 0.0086 172.16.1.106

Figure 5.2 shows the highest risk hosts detected by our system, based on
the results in each time window and with respect to two different values for
parameter cin. The bar charts in this figure show for each host in how many
windows (out of all 65 windows) the host was detected as a high risk host. The
line charts in this figure shows the cumulative risk computed for the highest
risk hosts. One can see in Figure 5.2(a) that by setting cin to 0.8 and in both
metrics, our risk assessment model detected the main victim as the highest
risk host (the host with IP address 131.84.1.31). The highest values of risk for
address 131.84.1.31 in both experiments can be the result of the huge number
of flows created during the DDoS attack scenario to the host.

Similar to the previous experiment on the Honeynet dataset, in order to
detect the originators of the DDoS attack in the MIT Lincoln dataset, we set
cin to 0.2. As can be seen in Figure 5.2(b), our tool ranked two out of three
attackers including 172.16.115.20 and 172.16.112.50 (except 172.16.112.10) in
the top 20 hosts out of about 3500 hosts (see Table 5.2). Interestingly, both
HITS and PageRank algorithms failed to rank the third victim (172.16.112.10)
in the top ranked hosts [30].

Although, the results validate the effectiveness of our risk assessment method
for small and large networks, our tool could not rank the attacker address
216.136.129.14 in the Honeynet dataset and 172.16.112.10 in the MIT Lincoln
dataset among the top 10 high risk hosts. We believe that a better initial values
for our tool’s parameters including risk level for risky services as well as constant
parameters (cf , chu, cfu and cin) based on prior knowledge about the network
topology would improve the accuracy of our attacker and victim detection.

It is important to notice that the main objective of our risk assessment model
is to rank the risk of network activities and therefore, the proposed solution
does not replace the functions of an intrusion detection system (IDS). However,
results from our risk assessment tool can be provided in real time to security
tools with deep inspection capabilities such as an IDS [24]. The IDS can then
execute specific actions to determine whether there are actual intrusions or other

30

0.01

0.1

1

10

100

0

10

20

30

40

50

C
o

m
u

la
ti

ve
 r

is
k

sc
o

re

N
u

m
b

e
r

o
f

w
in

d
o

w
s

High risk hosts

of windows risk score

(a) cin = 0.8.

0.1

1

10

100

0

10

20

30

40

50

C
o

m
u

la
ti

ve
 r

is
k

sc
o

re

N
u

m
b

e
r

o
f

w
in

d
o

w
s

High risk hosts

of windows risk score

(b) cin = 0.2.

Figure 5.2: High risk hosts in the MIT Lincoln dataset.

attacks.

5.4 Efficiency

We compared our approach with the approach in [30] with respect to effective-
ness. The comparison was made using the Honeynet dataset. The comparison
results show that both approaches gave the highest risk values to attacker and
victim nodes and flows. However, our approach shows a clear advantage in
terms of efficiency.

To better explain the efficiency of our methodology, remember that we use
only one dependency graph for computing risk scores of both hosts and flows. On
the other hand, the approach in [30] runs some link analysis algorithms on two
graphs, one for hosts and another for flows. However, the efficient computation
of PageRank and HITS algorithms over even one very large dependency graph
for a large scale network is a great challenge [2], let alone on two huge graphs.

The sliding time window implementation for input flows in our risk compu-

31

10

100

500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

El
ap

se
d

 t
im

e
 f

o
r

ri
sk

 p
ro

ce
ss

in
g

(s
e

co
n

d
s)

Size of time window in number of flows

Provenance PageRank

Figure 5.3: Elapsed time for risk computation techniques based on the size of
time window.

tation allows our approach to be deployed as an online monitoring tool for large
scale networks. Moreover, for achieving high efficiency, a network administrator
can alter the performance parameters of the tool based on the hardware and
the network throughput. The other advantage of our methodology stems from
the use of sliding, overlapping windows; while this reduces the computation re-
quirements for each window, our methodology does not suffer in effectiveness
due to the fact that information from each new window is combined with the
information obtained from the past windows.

We quantify the efficiency of our tool by analysing its memory usage and
processing time. The main parameter which influences the memory usage of the
system is the maximum window size for the flow stream. Thus, we evaluated
the processing time (the elapsed CPU time) of our provenance-aware algorithm
along with the risk assessment approaches proposed in [29, 30] based on different
size of the time window. Authors in [29] proposed a method based on PageRank
algorithm to evaluate the risk scores of network flows in a flow dependency
graph, while they suggested a host dependency graph for computing the risk
scores of hosts using the similar algorithm. Therefore, in order to evaluate the
efficiency of their approach, we applied the PageRank algorithm on both flow
and host dependency graphs and then considered the sum of the elapsed times
for the efficiency of the approach (PageRank algorithm). Figure 5.3 shows the
results of this experiment.

From Figure 5.3, we can see that in the algorithms proposed in [29, 30]
the elapsed time for computing the risk scores of hosts and flows by applying
the PageRank algorithm increases significantly as the size of time window in-
creases (the red line). This can be explained by the fact that the size of flow
dependency graph is directly dependent on the size of the time window and the
high processing time comes from the application of PageRank to a very large
graph. However, our provenance-aware mechanism computes both the scores of
hosts and flows for such time window in a reasonable processing time (the blue
line). Moreover, the results in Figure 5.3 show that the processing time of our

32

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9 10 11 12

D
is

cr
e

p
an

cy

Iteration

Maximum Discrepancy Mean Discrepancy

(a) Flow risk discrepancies.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9 10 11 12

D
is

cr
e

p
an

cy

Iteration

Maximum Discrepancy Mean Discrepancy

(b) Host risk discrepancies.

Figure 5.4: Exponentially decreasing discrepancies.

method increases much slower for large time windows and thus can handle high
throughput networks.

5.5 Analysis of Discrepancy and Convergence

In this section, we perform a set of experiments to analyze the properties of
our iterative algorithm in terms of discrepancy and convergence. Thus, we
investigate two types of discrepancies for both the risk values of flows and hosts
computed in each iteration of algorithm 3 over the Honeynet Scan 18 dataset.
For each of flows and hosts risk values, we define the maximum discrepancy
by choosing the worst-case discrepancy for all flows and hosts, respectively.
Therefore, the maximum discrepancy at iteration l is computed as follows:

discrepancy
(l)
fr = max

{∣∣∣∣f̂r(∞)
(f)− f̂r

(l)
(f)

∣∣∣∣ : f ∈ F
}

discrepancy
(l)
hr = max

{∣∣∣∣ĥr
(∞)

(h)− ĥr
(l)

(h)

∣∣∣∣ : h ∈ H
}

We also define the mean discrepancy of risk values over all flows and hosts
as follows:

discrepancy
(l)
fr =

1

|F |
∑
f∈F

∣∣∣∣f̂r(∞)
(f)− f̂r

(l)
(f)

∣∣∣∣
discrepancy

(l)
hr =

1

|H|
∑
h∈H

∣∣∣∣ĥr
(∞)

(h)− ĥr
(l)

(h)

∣∣∣∣
where H denotes the set of all hosts in the current time window. Figure 5.4
illustrates how the aforementioned discrepancy decline for both flow and host
risk values. Clearly, the algorithm converges after 12 iterations.

6 Related Work

Work related to our research falls into three categories: dependency discovery
among network traffic, static risk assessment and data provenance management.

There are a number of papers investigating how to discover potential depen-
dencies among network flows [6, 13, 14, 26]. Chen et al. in [6] introduced the
Orion system that discovers dependencies for enterprise applications by using

33

packet headers and timing information. Iliofotou et al. in [13] proposed the use
of Traffic Dispersion Graphs (TDGs) as a way to monitor, analyze, and visualise
network traffic by modelling the hosts as a social network. The key contribu-
tion in [14] is a novel statistical rule mining solution, called eXpose, to extract
significant communication patterns in a packet trace. Savilla and Ou in [26]
presented AssetRank, a generalisation of PageRank algorithm, which automati-
cally digests the dependency relations in an attack graph as well as the baseline
information of the vulnerability attributes to compute the relative importance
of attacker assets. Halappanavar et al. in [12] proposed a networks-of-networks
(NoN) model of interactions between heterogeneous entities for an enterprise
cyber system. Moreover, they showed how the graph-theoretic method can be
applied on the top their model for detection of critical nodes and their dependen-
cies, reachability analysis, models for cascading failures and subgraph pattern
mining. While these approaches exploited techniques for dependency analysis
on network activities, our method employs provenance relations among network
flows as well as interdependency relation between hosts and flows in order to
detect high risk hosts and flows.

The work most closely related to our research is by Wang et al. [28, 29, 30],
which aims at risk assessment for hosts and flows by employing link analysis al-
gorithms such as PageRank and HITS. They introduced flow dependency graph
and applied PageRank and HITS algorithms to the graph in order to obtain
risk scores of network flows [28, 29]. Due to the huge number of flows in a
high throughput network and high computational cost of these algorithms on a
very large graph, the efficiency of such an approach is a significant challenge.
Therefore, they proposed the notion of host dependency graph [30] and showed
that the new graph has a lower number of nodes and edges than the flow de-
pendency graph. However, by applying the link analysis algorithms on the host
dependency graph, such approach only obtains risk scores for hosts, without
any information about risk scores of flows. We have proposed the idea of flow
provenance along with interdependency relationship between hosts and flows in
order to evaluate efficiently the risk of both of them.

There are lots of studies on network and information security risk assess-
ments. Ben Mahmoud et al. in [17] proposed a security risk assessment frame-
work to measure quantitatively the risk propagation among nodes connected
to the network through taking into account the interconnection between nodes.
Rahman et al. in [22] presented a qualitative network security risk analysis
using declarative logic. They formalized transitive reachability to compute ex-
posure of vulnerabilities on hosts and then employed their risk assessment model
to synthesize necessary firewall rules and host replacements. Both of the above
risk assessment methodologies are based on static network information including
hosts vulnerabilities, host impact and connectivity among them. Thus, they do
not consider dynamic risky behavior of hosts; however we modeled dynamic risk
propagation among network activities through modeling the risk provenance of
the network flows. Clearly, the result of these static risk assessment methods
can be used as a priori knowledge about the risk scores of hosts and services in
our risk assessment framework.

A large number of approaches have been proposed for trust frameworks
and data provenance management [4, 8, 16, 27], but none of them dealt with
risk assessment of network flows based on flow provenance. Dai et al. in [8],
proposed a provenance-aware trust model for data management which takes into

34

account various parameters that may affect the data trustworthiness including
data similarity, data conflict, path similarity and data deduction. Moreover,
they considered the inter-dependency of trustworthiness between data items and
the appropriate data provider. Also, they enhanced their trust model for sensor
networks where the information keeps streaming into the system [16]. Our idea
for proposing a provenance-aware model for risk assessment on network flows is
inspired by the provenance-based trust model proposed by these two approaches.
Etuk et al. in [11] proposed TAF, a trust assessment framework for streaming
information to estimate the quality of inferences under information uncertainty.
They also reported new challenges for investigating trust over streaming data
such as trade-offs between quality and latency. An interesting research issue
that we mention as a part of future work is to improve the efficiency of our risk
assessment framework through the ideas employed in the trust frameworks for
streaming data.

To the best of our knowledge, no existing work considers the provenance
and interdependency between hosts and flows in order to assess risk on network
activities. Different from the existing works, in this paper, we employ a novel,
effective and efficient risk assessment solution for evaluating both risk scores of
hosts and flows simultaneously.

7 Conclusions

This paper has presented a novel risk assessment method for hosts and flows
which takes into account the interdependency between the risk of hosts and
flows as well as the flow provenance. The update mechanism as an integral part
of the proposed risk assessment solution allows a deployment of our approach in
real time. Besides proving convergence of our iterative algorithm and providing
analytic estimates for its performance, we have also evaluated the effectiveness
and efficiency of our method by performing experiments on two publicly avail-
able datasets. Results show that our method is effective for assigning high risk
scores to hosts and flows involved in attack scenarios as well as efficient in terms
of processing time for performing risk assessment in a high throughput network.

As future work, we plan to extend our risk assessment framework to data
streaming. In addition, we plan to integrate our framework into OpenFlow
and Software Defined Network (SDN) architectures [20] which can improve the
deployment of our system as an online monitoring system.

Bibliography

[1] Ahmad Almulhem and Issa Traore. A survey of connection-chains detection
techniques. In Communications, Computers and Signal Processing, 2007.
PacRim 2007. IEEE Pacific Rim Conference on, pages 219–222, 2007.

[2] Pavel Berkhin. A survey on PageRank computing. Internet Mathematics,
2(1):73–120, 2005.

[3] Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis
Tsaparas. Link analysis ranking: algorithms, theory, and experiments.
ACM Trans. Internet Technol., 5(1):231–297, February 2005.

35

[4] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why and where:
A characterization of data provenance. In Jan Van den Bussche and Victor
Vianu, editors, Database Theory ICDT 2001, volume 1973 of Lecture Notes
in Computer Science, pages 316–330. Springer Berlin / Heidelberg.

[5] The Honeynet Project Challenges. Scan 18 and challenge 1 of the forensic
challenge 2010. http://www.honeynet.org/challenges, 2012. [Online;
accessed 1-August-2013].

[6] Xu Chen, Ming Zhang, Z. Morley Mao, and Paramvir Bahl. Automating
network application dependency discovery: experiences, limitations, and
new solutions. In Proceedings of the 8th USENIX conference on Operating
systems design and implementation, OSDI’08, pages 117–130, 2008.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009.

[8] Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu. An ap-
proach to evaluate data trustworthiness based on data provenance. In
Proceedings of the 5th VLDB workshop on Secure Data Management, SDM
’08, pages 82–98, 2008.

[9] MIT Lincoln Laboratory: Cyber Systems & Technology: DARPA Intrusion
Detection. Lincoln laboratory scenario (DDoS) 1.0, 2012.

[10] Emsisoft. Emsisoft portlist - all known TCP and UDP ports of malware,
trojans, spyware, viruses. http://www.emsisoft.com/en/kb/portlist/,
2012. [Online; accessed 1-October-2012].

[11] Anthony Etuk, Timothy J. Norman, Chatschik Bisdikian, and Mudhakar
Srivatsa. TAF: A trust assessment framework for inferencing with uncer-
tain streaming information. In 5th International Workshop on Information
Quality and Quality of Service for Pervasive Computing, pages 475–480,
2013.

[12] Mahantesh Halappanavar, Sutanay Choudhury, Emilie Hogan, Peter Hui,
John R. Johnson, Indrajit Ray, and Lawrence B. Holder. Towards a
network-of-networks framework for cyber security. In Intelligence and Se-
curity Informatics (ISI), 2013 IEEE International Conference on, pages
106–108, 2013.

[13] Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael Mitzen-
macher, Sumeet Singh, and George Varghese. Network monitoring using
traffic dispersion graphs (TDGs). In Proceedings of the 7th ACM SIG-
COMM conference on Internet measurement, IMC ’07, pages 315–320,
2007.

[14] Srikanth Kandula, Ranveer Chandra, and Dina Katabi. What’s going on?:
learning communication rules in edge networks. SIGCOMM Comput. Com-
mun. Rev., 38(4):87–98, August 2008.

[15] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J.
ACM, 46(5):604–632, September 1999.

36

[16] Hyo-Sang Lim, Yang-Sae Moon, and Elisa Bertino. Provenance-based trust-
worthiness assessment in sensor networks. In Proceedings of the Seventh In-
ternational Workshop on Data Management for Sensor Networks, DMSN
’10, pages 2–7, 2010.

[17] Mohamed Slim Ben Mahmoud, Nicolas Larrieu, and Alain Pirovano. Quan-
titative risk assessment to enhance aeromacs security in sesar. In Integrated
Communications, Navigation and Surveillance Conference (ICNS), 2012,
pages C7–1–C7–15, 2012.

[18] Matthew V. Mahoney and Philip K. Chan. An analysis of the 1999
DARPA/Lincoln laboratory evaluation data for network anomaly detec-
tion. In In Proceedings of the Sixth International Symposium on Recent
Advances in Intrusion Detection, pages 220–237. Springer-Verlag, 2003.

[19] John McHugh. The 1998 Lincoln laboratory ids evaluation. In Recent Ad-
vances in Intrusion Detection, volume 1907 of Lecture Notes in Computer
Science, pages 145–161. Springer Berlin Heidelberg, 2000.

[20] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
Flow: enabling innovation in campus networks. SIGCOMM Comput. Com-
mun. Rev., 38(2):69–74, March 2008.

[21] Abhinav Mishra and Arnab Bhattacharya. Finding the bias and prestige
of nodes in networks based on trust scores. In Proceedings of the 20th
International Conference on World Wide Web, WWW ’11, pages 567–576,
New York, NY, USA, 2011. ACM.

[22] Mohammad Ashiqur Rahman and Ehab Al-Shaer. A formal approach for
network security management based on qualitative risk analysis. In In-
tegrated Network Management (IM 2013), 2013 IFIP/IEEE International
Symposium on, pages 244–251, 2013.

[23] Mohsen Rezvani, Aleksandar Ignjatovic, Elisa Bertino, and Sanjay Jha.
Provenance-aware security risk analysis for hosts and network flows. In
Network Operations and Management Symposium, 2014. NOMS 2014.
IEEE/IFIP, May 2014.

[24] Martin Roesch. Snort - lightweight intrusion detection for networks. In Pro-
ceedings of the 13th USENIX conference on System administration, LISA
’99, pages 229–238, Berkeley, CA, USA, 1999. USENIX Association.

[25] G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek. Architecture for IP
Flow Information Export. RFC 5470 (Informational), March 2009. Up-
dated by RFC 6183.

[26] Reginald E. Sawilla and Xinming Ou. Identifying critical attack assets in
dependency attack graphs. In Proceedings of the 13th European Sympo-
sium on Research in Computer Security: Computer Security, ESORICS
’08, pages 18–34, 2008.

[27] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A survey of data
provenance in e-science. SIGMOD Rec., 34(3):31–36, September 2005.

37

[28] Shaonan Wang, Radu State, Mohamed Ourdane, and Thomas Engel.
FlowRank: ranking NetFlow records. In Proceedings of the 6th Inter-
national Wireless Communications and Mobile Computing Conference,
IWCMC ’10, pages 484–488, 2010.

[29] Shaonan Wang, Radu State, Mohamed Ourdane, and Thomas Engel. Min-
ing netflow records for critical network activities. In Proceedings of the
Mechanisms for autonomous management of networks and services, and
4th international conference on Autonomous infrastructure, management
and security, AIMS’10, pages 135–146, 2010.

[30] Shaonan Wang, Radu State, Mohamed Ourdane, and Thomas Engel.
RiskRank: Security risk ranking for IP flow records. In Network and Ser-
vice Management (CNSM), 2010 International Conference on, pages 56
–63, oct. 2010.

38

