
ElasticCopyset: An Elastic Replica Placement

Scheme for High Durability

Han Li Srikumar Venugopal

School of Computer Science and Engineering,
University of New South Wales, Australia
{hli,srikumarv}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201402

February 2014

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Distributed key-value stores (KVSs) are a standard component for data man-
agement for applications in Infrastructure-as-a-Service (IaaS) clouds. Replica
placement schemes for KVSs on IaaS have to be adapted to on-demand node
addition and removal, as well as, to handle correlated failures of the physical
hardware underlying the cloud. Currently, while placement strategies exist for
handling correlated failures, they tend to rely on static mapping of data to nodes,
which is inefficient for an elastic system. This paper presents ElasticCopyset,
a novel replica placement scheme, which fills in the gap of providing efficient
elasticity while maintaining high data durability when multiple nodes simulta-
neously fail. We experimentally demonstrate that ElasticCopyset maintains a
close to minimised probability of data loss at correlated failures under differ-
ent scenarios, and exhibits better scalability and elasticity than state-of-the-art
replica placement schemes.

1 Introduction

Distributed key-value stores (KVSs) [3, 9, 11] have become a standard com-
ponent for data management for applications deployed on Infrastructure-as-
a-Service (IaaS) clouds. Data in KVSs is organised in storage units, called
variously as chunks, tablets, partitions or virtual nodes, that are replicated for
improving fault tolerance and performance. A fundamental design choice in
KVSs is the placement scheme for storing replicas across distributed nodes. We
use the term copyset, derived from Cidon, et al. [7], to describe the set of nodes
on which a particular storage unit is replicated.

IaaS clouds are built from commodity components. At large scales, hardware
failure becomes the norm rather than an exception [28], causing multiple virtual
instances, that form the nodes of a KVS, to fail concurrently. As documented
in practice [15, 2, 26], data loss normally occurs in correlated failures, in which
a non-negligible percentage of nodes (0.5%-1%) cannot be restored even after
the failure is recovered [7]. Hence, the placement scheme must minimise the
probability of data loss when multiple nodes simultaneously fail.

The defining characteristic of IaaS is resource elasticity, wherein extra re-
sources, such as compute instances, can be acquired on-demand to deal with
increasing workload, and can be dismissed later to save on operational costs.
KVSs benefit from elasticity when node addition and removal are as efficient
as possible. This means that a placement scheme should be able to minimise
the impact of adding and removing a node to and from the KVS by requiring
minimum changes in the mapping between data storage units and nodes.

However, current replica placement strategies do not simultaneously satisfy
efficient elasticity, while maintaining high data durability in correlated failures.
Random replication is employed by popular distributed storage systems [11, 26,
18]. It uses hash functions to disseminate each data storage unit across a set of
randomly selected nodes. The random nature of this strategy provides efficient
scalability and load balancing, but also creates a large number of copysets. As
depicted in Figure 1, given the number of nodes that fail, a larger number of
copysets gives higher probability of data loss.

Alternatively, Cidon, et al. [7] proposed the copyset-based replication strat-
egy. The nodes are split into a number of copysets independently from the data,
while the replicas of a data storage unit are required to be stored on the same
copyset. This strategy builds on the insight that minimising the number of
copysets can lead to minimised probability of data loss when multiple nodes fail
simultaneously. However, current-state implementations [7, 8] focus on creating
copysets for static system deployment, but handle dynamic node addition and
removal inefficiently.

This paper presents ElasticCopyset, a novel replica placement scheme that
provides efficient elasticity while guaranteeing high data durability. In Elastic-
Copyset, nodes are split into groups, and a minimum number of copysets are
formed within each group. The contribution of this work is three-fold. First, a
novel shuffle algorithm is designed to generate minimum non-overlapping copy-
sets within each group, such that the probability of data loss is minimised when
multiple nodes simultaneously fail. Second, a novel replacement algorithm is
used to deal with node addition and removal efficiently. Third, a theorem is
proposed to determine the number of nodes in a group, with a proof that shows
the correctness of the algorithm. Through evaluation, we demonstrate that Elas-

1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

Number of copysets (millions)

Number of nodes: 5000
Replicas per storage unit: 3
Percentage of Node Failure: 1%

Figure 1.1: Probability of data loss versus number of copysets. Given the num-
ber of copysets required at each depicted point, distinct copysets were generated,
based on permutation described in Copyset Replication [7]. The probability of
data loss was calculated from simulating 10000 occurrences of correlated failure,
as depicted in Section 5.

ticCopyset maintains a close to minimised probability of data loss at correlated
failures under various scenarios, and exhibits better scalability and elasticity
than state-of-the-art placement schemes.

The rest of this paper is structured as follows. In the next section, we review
the state-of-the-art data placement strategies in data durability and scalability.
In Section 3, we provide mathematical definitions for the durability problem. We
present the design of ElasticCopyset in Section 4. The experimental evaluations
are presented in Section 5. Finally, we present our conclusions in Section 6.

2 Related Work

Replica placement and its impact on data durability has been studied exten-
sively in the past. Peer-to-peer system evaluations [29, 24] have considered
replication [19, 10, 14] versus coding techniques [22] to achieve high data dura-
bility, and concluded that replication provides better robustness to survive the
high rate of failures in distributed infrastructures. In the context of DHT sys-
tems, Glacier [16] uses massive replication to deal with large-scale correlated
failure events. In contrast, Carbonite [6] creates and keeps track of additional
replicas to handle small-scale failure events at a low cost, which is similar to the
failure scenario studied in this paper.

The relation between data durability and the number of possible replicas has
also been discussed previously [25, 27]. The trade-off here is between reducing
the probability of losing a data item during a simultaneous failure (by limiting
the number of replicas) and improving the robustness to tolerate a higher aver-
age failure rate (by increasing the number of replicas). However, none of these
have discussed the trade-offs between data durability and scalability.

Cidon,et al. [7] introduce the concept of scatter width, and discuss its rela-
tionship to data durability and scalability performance. Scatter width is defined
as the number of nodes that store copies for each nodes data. As discussed [7],

2

using a high scatter width means that each node shares data with more nodes.
Thus, it improves the performance to incorporate or recover a node, but creates
more opportunities of data loss under simultaneous failure of nodes. In con-
trast, using a low scatter width limits the number of nodes that each node can
share data with. It reduces the probability that all the replicas of some data
are lost when multiple nodes fail, with the trade-off of slow recovery time from
independent node failures.

This paper borrows the notions of scatter width and copyset from Cidon,et
al. [7, 8]. As the copyset is a set of nodes that store the replicas for a data storage
unit, the failure of a copyset is equivalent to the loss of that unit. The copyset-
based replication schemes (including this paper) focus on minimising the number
of copysets in the system to provide high data durability. However, existing
implementations of copyset-based replication [7, 8] rely on random permutation
to create copysets. For each node addition, new copysets are formed without
altering any existing copyset, while no affected copysets are dismissed at each
node removal. Instead, an existing node is randomly selected to replace the
removed node. This approach ends up in increasing number of copysets if nodes
join or leave dynamically. In contrast, node addition and removal are efficiently
dealt with in this paper.

This paper proposes to split the nodes into groups before forming copysets.
Yu, et. al [30] proposed Group DHT to constrain the placement of replicas
in a group of nodes, but this is similar to the copyset idea [7]. In contrast
to more structured placement such as group and copyset, popular key value
stores [11, 12, 18] prefer randomised replication for the purpose of efficient load
balancing. However, Carbonite [6] has identified that randomly replicating data
across a large set of nodes increases data loss probability under simultaneous
failures. Cidon,et al. [7, 8] have demonstrated that random replication is nearly
guaranteed to cause a data loss event once the size of the system scales beyond
hundreds of nodes.

There are other research efforts on data durability. Large companies [17, 13]
consider geo-replication as an effective technique to prevent data loss under large
scale concurrent node failures. However, this approach is not feasible for storage
providers that operate within one region. Disaster recovery systems [4, 23] use
replication and mirroring to increase durability. These systems focus on the
cost of propagating updates on mutable data, which is not applicable to the
immutable data in key-value stores [11, 18].

3 Problem Definition

3.1 Parameter Definitions

We focus on the issue of data placement in distributed KVSs across a cluster
of N data nodes. Typically, the data is horizontally partitioned, and stored as
consolidated replicas. In this paper, we define the storage unit as the basic unit
for replication, which can refer to a key-value pair, a tablet or a data chunk
in different storage systems. Each storage unit is stored on a set of distinct
data nodes, which is called the copyset for this storage unit. The notational
conventions used in this paper are summarised in Table 3.1.

The number of distinct nodes in the copyset is defined by the replication

3

Table 3.1: Notational Conventions
Notation Description
R The replication number, i.e., #replicas of

each storage unit
S The scatter width
Pran The probability of data loss using random

replication
Pcs The probability of data loss using copyset

replication
N The number of nodes in the system
F The number of nodes failed in a correlated

failure
NG The number of nodes in each group
NE The number of extra nodes that cannot form

a complete group
Nsu The number of storage units in the database
Ncs The number of copysets in the system
C The number of columns in the shuffle matrix
L The number of rows in the shuffle matrix
a, b, c The array of nodes to shuffle
ma,mb,mc The matrix of nodes after shuffle
x, y The x, y coordinate of the shuffle matrix
i, j, k, n Non-negative integers
r, s, t Integers

number R. To reduce complexity, we use the same replication number for all
storage units in the system. Hence, every storage unit is stored by R nodes in
one copyset.

The number of nodes that store copies for each node’s data is defined as the
scatter width S [7]. Thus, each node should share copysets with S other distinct
nodes. Since each node has R − 1 other nodes in each copyset, then each node
should be assigned to at least S

R−1 copysets. Hence, S ≥ (R − 1). The scatter
width is determined by the system administrators, and is usually a multiple of
R−1. Theoretically, for a cluster of N nodes, the minimum number of copysets
is given by Equation 3.1, which is divided by R because each copyset is counted
R times. Thus, adding (or removing) a node requires S

(R−1)R copysets to be

created (or dismissed).

MinCopysets(N) =
S

R− 1

N

R
(3.1)

The challenge to achieve the minimum copysets lies on guaranteeing that
any two copysets overlap by at most one node. For any given node ni, there
are S

R−1 copysets that share ni. Amongst these copysets, if there exists two
copysets with another common node nj , then ni has only S − 1 other distinct
nodes to share its data. In this case, one more copyset is created for ni. Then,
the number of copysets will exceed the minimum number.

4

3.2 Probability of Data Loss

A correlated failure occurs when F nodes fail simultaneously, where F > R.
In random replication, each storage unit is randomly assigned to a set of R
nodes. The probability of losing at least one storage unit in this scenario [8] is
given by Equation 3.2, wherein Nsu is the number of storage units.

(
N
R

)
and(

F
R

)
denote the number of ways of picking R nodes unordered out of N and F

nodes, respectively.

Pran = 1−

(
1−

(
F
R

)(
N
R

))Nsu

(3.2)

In contrast, in a copyset-based scheme, the copysets are generated indepen-
dently from the data. Given Ncs copysets, the probability of losing a single

copyset is
(F
R)

(N
R)

Ncs

(N
R)

. Hence, the probability of incurring any data loss (i.e., losing

at least one copyset of nodes) is given by Equation 3.3.

Pcs = 1−

(
1−

(
F
R

)(
N
R

) Ncs(
N
R

))Ncs

(3.3)

Each copyset of nodes hosts multiple storage units. Thus, the number of
copysets is less than the number of storage units, i.e., Ncs < Nsu. Two conclu-
sions can be deducted from Equation 3.3. Firstly, since Ncs

(N
R)

< 1 and Ncs < Nsu,

then the copyset-based scheme gives a smaller probability of data loss, i.e.,
Pcs < Pran. Secondly, given the same R, N , and F , then Pcs is an increasing
function of Ncs. It means reducing the number of copysets can lead to a decrease
in the probability of data loss. This conclusion is consistent with Figure 1.1.

Hence, we focus on designing a copyset-based scheme that minimises the
number of copysets. Moreover, the elasticity characteristic of IaaS cloud means
that nodes are dynamically added or removed from the system. The minimum
number of copysets should be maintained under dynamic node changes.

4 Design of ElasticCopyset

This section describes the design of ElasticCopyset, a replication scheme that
efficiently creates and dismisses copysets as the nodes are added or removed dy-
namically, such that the number of copysets is close to minimum (Equation 3.1)
for higher data durability against correlated failures.

There are properties that form the basis for an elastic, minimal copyset
scheme. Firstly, given R and S defined in Section 3, each copyset contains R
nodes. Each node belongs to S

R−1 copysets, in which there are S other distinct
nodes. Secondly, any two copysets overlap by at most one node, such that the
total number of copysets can be minimised. Lastly, the addition or removal of
a node affects only S other nodes in the S

R−1 copysets it belongs to.
To achieve these properties, we propose that the nodes should be split into

groups, and that each node forms copysets only with nodes in the same group.
There are advantages of isolating nodes into groups. First, as the number of
nodes changes, the number of copysets can be changed by forming or dismissing
a group of nodes accordingly. Second, the effect of adding or removing a node
is restricted to one group, rather than the entire system.

5

a1

a1

a1

a2

a2

a2

a3

a3

a3

a4

a4

a4

a5

a5

a5

b1

b2

b3

b4

b5

b1

b2

b3

b4

b5

b1

b2

b3

b4

b5

c3

c4

c5

c5

c1

c2

c2

c3

c4

c4

c5

c1

c1

c2

c3

a1

a1

a1

b1

b2

b3

c3

c4

c5

a2

a2

a2

b4

b5

b1

c5

c1

c2

a3

a3

a3

b2

b3

b4

c2

c3

c4

a4

a4

a4

b5

b1

b2

c4

c5

c1

a5

a5

a5

b3

b4

b5

c1

c2

c3

c1 c2 c3 c4 c5b1 b2 b3 b4 b5a1 a2 a3 a4 a5

Shuffle
 S/(R-1) replicas
in different orders

Order 1 Order 2 Order 3

Merge
every 3 nodes

to form copysets

Divide
into 3 arrays

Figure 4.1: Create a minimum group of non-overlapping copysets by shuf-
fling. In this example, there are NG = 15 nodes, divided into 3 arrays:
{a1, a2, a3, a4, a5}, {b1, b2, b3, b4, b5} and {c1, c2, c3, c4, c5}. The scatter width
S = 6. Hence, C = 5, L = 3. The three arrays are replicated into three 3 × 5
matrices.

In ElasticCopyset, each group has the same number of nodes, denoted as
NG, which is pre-defined using a theorem described in Subsection 4.2. Every
NG nodes forms one complete group, wherein the minimum number of non-
overlapping copysets (i.e., share at most one node) are generated using a shuffle
algorithm presented in Subsection 4.1.

However, the number of nodes N is usually not a multiple of NG. There
are extra nodes, NE = (N mod NG), wherein 0 ≤ NE < NG. The NE nodes
are insufficient to form a new group. When NE > 0, ElasticCopyset randomly
selects (NG − NE) other nodes that are already in a complete group, to form
one extra group of NG nodes. This group is called an incomplete group, as
there are nodes selected from other complete copyset groups. ElasticCopyset
uses the same shuffle algorithm to generate copysets within incomplete groups.
Subsection 4.3 describes a replacement algorithm that handles node addition
and removal in these groups.

4.1 Generating Copysets in Groups

ElasticCopyset generates copysets with a shuffle algorithm that uses three dis-
tinct shuffle orders. It requires that the replication number R = 3, which is the
default value for many distributed storage systems [3, 18, 21, 26]. Cidon et. al [7]
had evaluated the effect of varying replication number against the data dura-
bility and system performance and report that “Increasing R = 3 to 4 does not
provide sufficient durability, while using R = 5 or more significantly hurts the
systems performance and almost doubles the cost of storage”. Hence, we use
R = 3.

Figure 4.1 illustrates the shuffle algorithm of generating copysets for a group
of nodes. It consists of three steps: divide, shuffle and merge. The number of
nodes in each group NG is a multiple of R, such that the nodes are equally
divided into R = 3 arrays, denoted as a, b, and c, each containing C = NG

R
nodes (and columns). The ith node of the array is denoted as a[i], b[i], and c[i],

6

respectively, where 0 ≤ i < C. {
C = NG

R

L = S
R−1

(4.1)

In the shuffle phase, each node is replicated L = S
R−1 times, such that each

array is converted into an L× C matrix, as defined in Equation 4.1. The three
matrices are denoted as ma,mb, and mc. The node located at the xth row, yth

column is denoted as m[x][y], wherein 0 ≤ x < L and 0 ≤ y < C. As depicted
in Figure 4.1, the arrays a[i], b[i], and c[i] are replicated into the corresponding
matrices in Order 1, 2, and 3 respectively. The orders are described as follows.
For each node, k increases from 0 to L− 1 inclusively.

Order 1. Left-to-right, then up-to-down. That is, the kth replica of a[i] is placed
at ma[k][i].

Order 2. Up-to-down, then left-to-right. That is, the kth replica of b[i] is placed
at mb[x][y], wherein
x = (i + k ∗ C) mod L, and y = b i+k∗C

L c.

Order 3. Up-to-down, then right-to-left. That is, the kth replica of c[i] is placed
at mc[x][y], wherein
x = (i + k ∗ C) mod L, and y = C − 1− b i+k∗C

L c.

In the merge phase, the three small matrices created via shuffle are merged
into one larger L × (3C) matrix. Given each pair of (x, y), wherein 0 ≤ x < L
and 0 ≤ y < C, every three nodes (ma[x][y],mb[x][y],mc[x][y]) form a copyset.
For example, in Figure 4.1, (a1, b2, c4), (a3, b4, c4) and (a4, b5, c4) form three
different copysets. Hence, the large matrix generates L ∗ C copysets. By com-
paring Equation 3.1 and 4.2, it can be deducted that the algorithm generates
the minimum number of copysets for NG nodes.

L ∗ C =
S

R− 1

NG

R
(4.2)

Hence, given NG for a cluster of N nodes, there are b N
NG
c complete groups.

One extra incomplete group will be created, if NE = (N mod NG) > 0. Thus,
there are d N

NG
e groups, each containing S

R−1
NG

R copysets. Therefore, the to-
tal number of copysets generated by ElasticCopyset TotalCopysets(N,NG), is
given by Equation 4.3 as a function of N and NG. Compared to Equation 3.1,
ElasticCopyset generates more copysets than minimum. The difference is given
by Equation 4.4, which is linear with S and NG.

TotalCopysets(N,NG) =
S

R− 1

NG

R
d N
NG
e (4.3)

ExtraCopysets(N,NG) =
S

R− 1

NG −NE

R
(4.4)

4.2 The Minimum Group with Non-overlapping Copysets

The key design of ElasticCopyset is to determine the minimum number of nodes
required to form a group. As shown in Equation 4.4, using a smaller NG can

7

produce close to the minimum number of copysets required, which reduces the
probability of incurring data loss under simultaneous failures.

However, it is also required that each node share copysets with S other
distinct nodes. ElasticCopyset shuffles each node into S

R−1 copysets, in which
there are exactly S nodes other than this node. Yet, it is uncertain that these S
nodes are mutually distinct. Hence, our task is to find out the minimum value
of NG, such that there are exactly S other distinct nodes in the S

R−1 copysets
that each node belongs to.

Theorem 1. Given the shuffle algorithm and a group of NG = R ∗ C nodes.
When C is the smallest odd number that is greater than L, wherein L = S

R−1 ,
any two copysets in the group overlap with each other by at most one node.

In the following, we will prove Theorem 1 by deduction. Note that given
each pair of (x, y), wherein 0 ≤ x < L and 0 ≤ y < C, every three nodes
(ma[x][y],mb[x][y],mc[x][y]) form a copyset.

Requirements for Column-wise Shuffle

As we think of the shuffle algorithm in column-wise, each node in array a[i],
which is shuffled in Order 1, always and only appears in the ith column of the
resulted matrix ma. In contrast, the node localities for the 2nd array b[i] and
the 3rd array c[i] depend on C, which is constrained by Lemma 1, proved in
Appendix A.1.

Lemma 1. When C ≥ L, any b[i], after shuffled by L times in Order 2 (or c[i]
in Order 3), will appear once at most in any column of the resulted matrix.

Since each a[i] appears in only one column, Lemma 2 can be deducted from
Lemma 1, as proved in Appendix A.2.

Lemma 2. When C ≥ L, given 0 ≤ i, j, k < C, any combination of (a[i], b[j])
or (a[i], c[k]) appears in at most one copyset.

Requirements for Row-wise Shuffle

As we consider the shuffle algorithm in row-wise, each a[i] appears in each and
every row of ma, while the localities of b[i] and c[i] still depend on C. Similarly,
if each b[i] (or c[i]) is also placed in each and every row of the resulted matrix mb

(or mc), it will simplify the operation of restricting any two nodes from being
allocated together more than once. According to Lemma 3, C and L should be
co-prime (i.e. mutually prime). The proof is given in Appendix A.3.

Lemma 3. When C ≥ L, if C and L are co-prime, every node, after replicated
by L times (either in Order 1, 2 or 3), will appear once in each and every row
of the resulted matrix.

The Minimum C for Non-overlapping Copysets

According to Lemma 3, the minimum C for ElasticCopysets is one of L’s co-
prime numbers that are greater than L. One candidate of C is the smallest odd
number greater than L. We have proved Lemma 4 in Appendix A.4, given two
possible values of L: i) L is even; ii) L is odd. In both circumstances, there
does not exist a pair of (b[i], c[j]) that appears in more than one copyset.

8

E EE

Complete Group

E E

E

...

Complete Group

......

S→XX

Incomplete Group

New IaaS
Cloud

S

S

S→E

S→SX

E→S S→SE

X→S

S→SS

NewS→SS

E
S
X

NewElementary Node
Supplementary Node
Extra Node

New Node

021

0 0

3

3 3

S→E Same node, change role

S→XS Change node and role

Figure 4.2: Adding and removing nodes in ElasticCopyset.

Lemma 4. When C is the smallest odd number greater than L, given 0 ≤ i, j <
C, any combination of (b[i], c[j]) appears in at most one copyset.

Hence, based on Lemma 2 and 4, the value of C for the minimum group with
non-overlapping copysets is, the smallest odd number that is greater than L
(Lemma 5, proved in Appendix A.5). Given such C, each node shares copysets
with exactly S other distinct nodes in each group, as depicted in Lemma 6,
proved in Appendix A.6.

Lemma 5. When C is the smallest odd number greater than L, any two copysets
share at most one common node.

Lemma 6. When C is the smallest odd number greater than L, every node
belongs to exactly L copysets, in which there are exactly S other distinct nodes.

4.3 Handling Node Addition and Removal

In a distributed storage system running on an IaaS cloud, nodes can sponta-
neously join or leave the system. ElasticCopyset aims at minimal disruption
of existing copysets when handling node addition and removal. Since there are
complete and incomplete groups, the change of nodes is handled according to
the type of groups the node belongs to. We have defined three roles of a node,
as follows.

• Extra: the node is in the incomplete group, and not in any complete group.

• Elementary: the node is in a complete group, and not in the incomplete
group.

• Supplementary: the node is in both complete and incomplete groups.

Figure 4.2 depicts the operations to deal with node changes. A new node
is always added to the incomplete group, in which there are nodes selected

9

from other complete groups as the supplement. Shown as Scenario 0, one of
the Supplementary nodes is chosen and replaced by the new node. The cho-
sen Supplementary node becomes Elementary, while the new node is marked as
Extra. In addition, if (N mod NG) = 0 where there is no incomplete group,
ElasticCopyset will randomly select (NG − 1) Elementary nodes from the com-
plete groups, to form a new incomplete group with the new node. The selected
Elementary nodes then become Supplementary.

An existing node can fail or be consciously removed from the system at any
time. Node removal is handled according to the role of the removed node. There
are three scenarios, labeled as 1, 2, and 3 in Figure 4.2, respectively.

Scenario 1: the removed node is Extra. An Elementary node is randomly
selected from one complete group to replace the removed node. The selected
node becomes Supplementary.

Scenario 2: the removed node is Elementary. The incomplete group offers
one of the Extra nodes. This node replaces the removed node in the affected
complete group, and becomes Supplementary since it has been assigned to a
complete group. In addition, if NE = 0 where there is no Extra node, the
incomplete group is dismissed. The complete group with the removed node
becomes the new incomplete group, wherein the existing nodes become the
Extra nodes, thus NE = NG − 1. Another node is randomly selected from a
complete group to replace the removed node, and becomes Supplementary.

Scenario 3: the removed node is Supplementary. There are two solutions.
The first solution consists of two steps: i) select an Elementary node to replace
the removed node in the incomplete group as in Scenario 1; ii) select an Extra
node to replace the removed same node in the complete group as in Scenario
2. This approach is involved with two operations of node replacement. An
alternative is to provision a new node from the cloud, and use it to replace the
removed node.

Now we discuss the number of copysets involved in each node operation. In
each group, each node is associated with S

R−1 copysets. Hence, replacing a node

in a group affects S
R−1 copysets, while changing the role of a node does not

affects any copyset. As we can see in Figure 4.2, each node addition or removal
is involved with only one replacement of node in the groups, thus affecting only
S

R−1 copysets.
However, there are extreme cases where the whole incomplete group needs

to be altered. When a new incomplete group is created (due to node addition),
although there are S

R−1
NG

R copysets formed in the new group, data movement

is required in only S
R−1 copysets that contain the new node. When an existing

incomplete group is dismissed, it does involve data movement for all its S
R−1

NG

R
copysets. Nevertheless, as discussed in Scenario 2, the incomplete group is
dismissed when all its nodes have become Supplementary. In order to reduce
the amount of data moved during this process, ElasticCopyset requires that no
data should be assigned to the copysets that are in the incomplete group whilst
having no Extra node. Hence, the data is moved out gradually as more Extra
nodes become Supplementary. By the time when the incomplete group is to be
dismissed, there is already no data left.

To summarise, in ElasticCopyset, each node addition or removal requires
data movement in at most S

R−1 copysets, which involves only one scatter width
of nodes.

10

1

10

100

1000

10000

100000

10
0

20
0

40
0

80
0

16
00

32

00

64
00

12
80

0

25
60

0

51
20

0

N
um

be
r o

f C
op

ys
et

s

Number of Nodes

Copyset Replication
ElasticCopyset

(a) Number of copysets

0%

1%

2%

3%

4%

5%

6%

10
0

20
0

40
0

80
0

16
00

32

00

64
00

12
80

0

25
60

0

51
20

0

P
er

ce
nt

ag
e

of
 #

co
py

se
ts

ex

ce
ed

in
g

th
e

m
in

im
um

Number of Nodes

Copyset Replication
ElasticCopyset
0.5%-Line

(b) Percentage exceeding the minimum
copyset number, i.e., Equation 3.1.

Figure 5.1: Number of copysets generated by different placement strategies.

5 Evaluation

In this section, we provide a set of experimental results to evaluate the impact
of ElasticCopyset against Copyset Replication [7] and Random Replication, on
data durability under correlated failures. We have used simulations to evaluate
the algorithms as we do not have access to the thousands of compute nodes
needed for real-world experiments. Nevertheless, ElasticCopyset is a general-
purpose data placement scheme that can be implemented on a wide range of
distributed storage systems that distribute data across a cluster of nodes.

For all the experiments, the replication number is set as R = 3, as explained
in Section 4.1. The number of nodes N changes between 1000 and 10000, and
there are 10000 storage unit (e.g., data chunk, partition) assigned to each node.
This is the typical cluster size at Facebook [2], LinkedIn [5] and RAMCloud [20],
and is also consistent with the experiments conducted in Copyset Replication [7].

We have evaluated data durability under three scenarios: i) static deploy-
ment with varied settings of number of nodes, scatter width and percentage of
nodes that failed; ii) scaling the system, both up and down, at a constant rate;
and iii) elastic scaling based on workload demands. We have used the probabil-
ity of data loss to quantify data durability. Each loss probability is calculated
in this way: we simulate 10000 times of correlated failures. Each time, certain
percentage of the nodes are randomly chosen to fail. This correlated failure is
considered to have caused data loss if there exists at least one copyset in which
all nodes have failed. The probability of data loss is equal to the number of
correlated failures that have caused data loss, divided by 10000.

5.1 Evaluations on Static Deployment

Varied Numbers of Nodes

As Figure 1.1 has demonstrated, the probability of data loss is dominated by
the number of copysets in the system. In this experiment, we used different
numbers of nodes, to study the number of copysets generated using different
placement schemes. The number of nodes is doubled at every step, starting
from 100 up to 51200. The scatter width is set as S = 10, which is consistent
with that reported for Facebook deployment [2] and in the evaluation of Copyset
Replication [7].

11

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 50 100 150 200 250 300 350 400 450 500

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

Scatter Width S

Random Replication
Copyset Replication
ElasticCopyset

(a) Probability of data loss, with 1% of
nodes failed.

0
100
200
300
400
500
600
700
800
900

1000

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r o

f c
op

ys
et

s
(x

10
00

)

Scatter Width S

Random Replication
Copyset Replication
ElasticCopyset

(b) Number of copysets

80%

85%

90%

95%

100%

105%

110%

115%

120%

0 50 100 150 200 250 300 350 400 450 500

P
er

ce
nt

ag
e

to
 th

e
gi

ve
n

S

Scatter width S

Copyset Replication, Average S
ElasticCopyset, Average S
Copyset Replication, Minimum S
ElasticCopyset, Minimum S

(c) Average/Minimum Scatter Width

Figure 5.2: Testing how the varied scatter width S will impact the system of
5000 nodes

Figure 5.1 compares the number of copysets generated by Copyset Repli-
cation and ElasticCopyset. Figure 5.1(a) shows that, the numbers of copysets
generated in both schemes increase linearly with the number of nodes. In order
to clearly differentiate the two numbers, we present Figure 5.1(b), which com-
pares the resulted number of copysets towards the minimum copysets defined
in Equation 3.1. As can be seen, when the number of nodes N > 100, the
percentage of copysets exceeding the minimum number is less than 0.5% using
Copyset Replication. In contrast, ElasticCopyset generates slightly more copy-
sets. When N ≤ 400, the number of copysets generated exceeds the minimum
by 5%. This percentage of excess falls below 0.5% when N ≥ 3200. Overall,
both schemes generate a close to minimum number of copysets.

Varied Scatter Widths

In a data placement scheme, the value of scatter width is determined by the
system administrators. Figure 5.2 depicts how a system of 5000 nodes will be
affected when the scatter width S increases from 0 up to 500.

Figure 5.2(a) depicts the probability of data loss when 1% of the nodes
fail simultaneously. As can be seen, the probability of data loss using Copyset
Replication and ElasticCopyset is below 40% even when S = 500, while with
Random Replication, the data is almost guaranteed to be lost when S > 50.
Figure 5.2(b) shows that the number of copysets generated by Copyset Replica-
tion and ElasticCopyset grows steadily and linearly as S increases. In contrast,
the number of copysets generated by Random Replication goes beyond one mil-
lion even when S is small, because Random Replication forms one copyset for
each storage unit, and there are 10000 storage units per node. By comparing

12

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

Percentage of nodes that fail concurrently

ElasticCopyset
500 Nodes
1000 Nodes
2000 Nodes
5000 Nodes
10000 Nodes
33.3%-Line

Figure 5.3: Probability of data loss with varying percentages of nodes failed
simultaneously, using ElasticCopyset, given S=10.

Figure 5.2(a) and 5.2(b), it shows that the probability of data loss is deter-
mined by the number of copysets in the system. This is also consistent with the
conclusion of Figure 1.1.

Figure 5.2(c) shows the percentage of the average and minimum scatter
width of all the nodes, towards the S given by system administrators. As
S increases, ElasticCopyset presents a wave-like ascent in the average scatter
width, and a constant minimum scatter width equal to the given S. By com-
parison, Copyset Replication shows a steady decline in both the average and
minimum scatter widths. The latter is less than 94% of S when S > 50. Over-
all, ElasticCopyset exhibits higher scatter width than Copyset Replication, but
the percentages of deviation to the given S are less than 10% in both schemes.

The result of Figure 5.2(c) can be explained. ElasticCopyset guarantees that
each node is put into copysets with S distinct nodes, so the minimum scatter
width is always equal to S. Moreover, the incomplete group generates extra
copysets, the number of which, i.e., Equation 4.4, is determined by both S and
NE , causing a non-linear increase in the average scatter width of ElasticCopyset.
In contrast, Copyset Replication uses random permutation to form S

R−1 copysets
for each node, without guarantee that there are S distinct nodes. A greater S
results in more duplicating nodes in the copysets that a node belongs to. Hence,
the average and minimum scatter widths both decrease as the given S grows.

Varied Percentages of Node Failure

In this experiment, we study data durability under varied percentages of nodes
that fail in a correlated failure. There are five tests, wherein the number of
nodes grows from 500 to 10000. In each test, the percentage of nodes that are
selected to fail increases by 0.5% from 0 up to 5%. The scatter width is S = 10.

Figure 5.3 depicts the probability of data loss using ElasticCopyset. For a
system of 500 nodes, the loss probability rises, but remains below 10% even
when 5% of the nodes fail simultaneously. As the number of nodes increases,
there is a clear trend that the probability of data loss grows more quickly. For
example, when 5% of 10000 nodes fail concurrently, the probability of data loss
is almost 90%. The reason is that, given the same percentage of node failure,
there are more nodes failed in a system with more nodes, which naturally leads
to higher data loss probability.

13

0
100
200
300
400
500
600
700
800
900

1000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
um

be
r o

f C
op

ys
et

s
(x

10
00

)

Percentage of nodes added

S=10, Copyset Replication
S=10, ElasticCopyset
S=50, Copyset Replication
S=50, ElasticCopyset
S=250, Copyset Replication
S=250, ElasticCopyset

(a) Number of copysets

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

Percentage of nodes added

S=10, Copyset Replication
S=10, ElasticCopyset
S=50, Copyset Replication
S=50, ElasticCopyset
S=250, Copyset Replication
S=250, ElasticCopyset

(b) Probability of data loss

Figure 5.4: Scale up the system by adding nodes one-by-one at runtime. Given
initial number of nodes N = 5000 that scales up to 10000. The figures show
varying percentage that the system is scaled, using varying setting of scatter
width. The percentage of node failure is 1%.

We have added a horizontal line at 33.3% in Figure 5.3. If a system can
tolerate one time of data loss in every three system failures, ElasticCopyset
can sustain 5% of node failure rate for up to 2000 nodes. Alternatively, it
can support a system of 10000 nodes if no more than 3% of the nodes would
fail simultaneously. We have also conducted this experiment using Copyset
Replication. The results (not shown due to page limit) are almost identical
to Figure 5.3. This is because both Copyset Replication and ElasticCopyset
generate a close to minimum number of copysets (Figure 5.1).

5.2 Scaling at a constant rate

We have studied the data durability with static deployment, in which the copy-
sets were statically generated based on the settings of the system. In this sub-
section, we study the scalability of the placement schemes with two online eval-
uations, wherein the system is scaling during runtime, both up and down at a
constant rate.

The first experiment is the evaluation on system scale-up. The placement
schemes are required to handle node additions. The initial number of nodes is
N = 5000. The new nodes are added one after another during the runtime,
until the system scale is doubled (i.e., N = 10000). There are three tests, with
the scatter width S set as 10, 50, and 250, respectively.

Figure 5.4(a) compares the number of copysets generated by Copyset Repli-
cation and ElasticCopyset during scale-up. In all the tests, as the system scales
up, the number of copysets increases more quickly when using Copyset Replica-
tion than when using ElasticCopyset. Consequently, as shown in Figure 5.4(b),
given 1% of nodes that simultaneously fail, ElasticCopyset consistently presents
a smaller probability of data loss than Copyset Replication. When the system
is scaled up by 100%, the probability of data loss in Copyset Replication is also
almost 100% greater than ElasticCopyset.

The second experiment is to study system scale-down, which is exactly the
reverse of the scale-up experiment. The number of nodes is N = 10000. The
nodes were removed from the system one-by-one during runtime, until the sys-
tem scale was reduced to a half (i.e., N = 5000). Similarly, there are three tests,
with S = 10, 50 and 250. The percentage of nodes that fail is also 1%.

14

0
50

100
150
200
250
300
350
400
450
500

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

N
um

be
r o

f C
op

ys
et

s
(x

10
00

)

Percentage of nodes removed

S=10, Copyset Replication S=10, ElasticCopyset
S=50, Copyset Replication S=50, ElasticCopyset
S=250, Copyset Replication S=250, ElasticCopyset

(a) Number of copysets

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

P
ro

ba
bi

lit
y

of
 d

at
a

lo
ss

Percentage of nodes removed

S=10, Copyset Replication S=10, ElasticCopyset
S=50, Copyset Replication S=50, ElasticCopyset
S=250, Copyset Replication S=250, ElasticCopyset

(b) Probability of data loss

Figure 5.5: Scale down the system by removing nodes one-by-one at runtime.
Given initial number of nodes N=10000 that scales down to 5000. The figures
show varying percentage that the system is scaled, using varying setting of
scatter width. The percentage of node failure is 1%.

As depicted in Figure 5.5(a), as the system scales down from 10000 to 5000,
the number of copysets remains constant when using Copyset Replication. In
contrast, ElasticCopyset is able to steadily reduce the copyset number during
the scale-down. As a result, ElasticCopyset exhibits a smaller probability of
data loss than Copyset Replication in Figure 5.5(b). When the system is scaled
down by 50%, the probability of data loss in ElasticCopyset is 50% smaller than
Copyset Replication.

The experiments have demonstrated that, ElasticCopyset handles online
node addition and removal better than Copyset Replication, and maintains a
smaller probability of data loss than Copyset Replication during both scale-up
and scale-down.

5.3 Elastic scaling under workload

In this experiment, we study the scalability of the placement schemes when
the system is subject to a dynamic workload. The test scenario is based on
the workload analysis on Facebook’s Memcached deployment [1]. The workload
(e.g. number of requests per second) follows the diurnal pattern, wherein there
are peaks in day time and bottoms in night time. The system is, either automat-
ically or manually, scaled up and down incrementally according to the changes of
workload. During the process of dynamic scaling, we compared ElasticCopyset
against Copyset Replication, on data durability.

The input of this experiment is depicted in Figure 5.6(a). We simulated
the workload to match the temporal patterns described in the Facebook de-
ployment [1]. Every 24 hours is a period of wave, and there are 200 hours in
total. The bottom workload is set as 50,000 requests per second. Depending on
the peak workload, there are three types of patterns, namely low, medium, and
high. The peak workload are 75000, 100000, and 150000 reqs/sec, respectively,
which are 50%, 100% and 200% greater than the bottom workload. Hence, in
the remaining of Figure 5.6, the results are labeled as Low, Medium, and High
Workload, respectively.

Based on these workload, we then simulated the changes of number of nodes.
As shown in Figure 5.6(b), when the workload is at the bottoms, there are 5000
nodes. The number of nodes is increased as the workload rises. The system scale

15

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

R
eq

ue
st

s
/ s

ec
on

d
(x

10
00

)

Time (hours)

Low Workload
Medium Workload
High Workload

(a) Workload

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r o

f n
od

es
 (x

10
00

)

Time (hours)

Low Workload
Medium Workload
High Workload

(b) Number of nodes

0
20
40
60
80

100
120
140
160

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r o

f c
op

ys
et

s
(x

10
00

)

Time (hours)

Copyset Replication

Low Workload
Medium Workload
High Workload

(c) Number of copysets

0
2
4
6
8

10
12
14
16

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r o

f c
op

ys
et

s
(x

10
00

)

Time (hours)

ElasticCopyset

Low Workload
Medium Workload
High Workload

(d) Number of copysets

0%

3%

6%

9%

12%

15%

0 20 40 60 80 100 120 140 160 180 200

P
ra

ba
bi

lit
y

of
 d

at
a

lo
ss

Time (hours)

Copyset Replication

Low Workload
Medium Workload
High Workload

(e) Probability of data loss

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0 20 40 60 80 100 120 140 160 180 200

P
ra

ba
bi

lit
y

of
 d

at
a

lo
ss

Time (hours)

ElasticCopyset

Low Workload
Medium Workload
High Workload

(f) Probability of data loss

Figure 5.6: Compare the performance of dynamic scaling between Copyset
Replication and ElasticCopyset. The system is scaled based on different types
of workloads. Initial number of nodes N=5000, with 1% of nodes fail.

peaks approximately at 6000, 7000, and 8500 nodes, for Low, Medium, and High
Workload, respectively. Hence, given N = 5000 at the bottom, the percentages
of scaling up are respectively 20%, 40% and 80% under the workloads.

The number of nodes in Figure 5.6(b) is served as the direct input for evalu-
ating the data durability at elastic scaling. The numbers of copysets generated
are shown in Figure 5.6(c) and 5.6(d), respectively. Initially, about 8500 copy-
sets were generated in both schemes. However, as the time elapses, the two
schemes exhibit two disparate trends. In Copyset Replication, the number of
copysets cumulates step by step every 24 hours, and grows steadily each day.
While in ElasticCopyset, the number of copysets rises and declines according to
the number of nodes, and remains at a horizontal level in the long run.

Consequently, given 1% of nodes that fail, the probability of data loss, which
is determined by the number of copysets, also exhibits two disparate trends. As
shown in Figure 5.6(e), the loss probability in Copyset Replication increases
steadily day after day. During 200 hours, the probability grows from 1% to
12% under the high workload. At this rate, the probability of data loss will

16

exceed 50% within 1000 hours (i.e. 40 days). In contrast, ElasticCopyset man-
ages to maintain the data loss probability below 1.5% under varied workloads
(Figure 5.6(f)).

Figure 5.6 has demonstrated that, when the system is dynamically scaled
up and down within a range over a long period of time, ElasticCopyset is able
to maintain data loss probability at a close to minimised level, while Copyset
Replication is not.

5.4 Discussions

We have presented the experimental results. The evaluations on static deploy-
ment have demonstrated that, ElasticCopyset exhibits a close to minimised
probability of data loss under varied system setups and failure rates. Yet, it is
noticeable (Figure 5.1(b) and 5.2(b)) that ElasticCopyset generates more copy-
sets than Copyset Replication, resulting in slightly higher probability of data
loss shown in Figure 5.2(a). This is due to the extra copysets generated in the
incomplete group (Equation 4.4). Nevertheless, as shown in Figure 5.1(b), the
percentage of extra copysets is less than 6%.

The evaluations on scalability have shown that ElasticCopyset greatly out-
performs Copyset Replication by maintaining the minimum copysets during
online node addition and removal. The results can be explained. During
scale-up, Copyset Replication requires S

R−1 new copysets to be generated for
each node addition, while ElasticCopyset generates new copysets only when a
new incomplete group is required. To illustrate, we assume n new nodes are
added. Copyset Replication creates S

R−1n new copysets, while ElasticCopy-

set creates S
R−1

NG

R d
n

NG
e new copysets (Equation 4.3). When n � NG, then

S
R−1

NG

R d
n

NG
e ≈ S

R−1
n
R . Since S

R−1n is R times as many as S
R−1

n
R , given R = 3,

then the number of copysets generated for new nodes is almost tripled in Copyset
Replication than in ElasticCopyset.

During scale-down, when a node is removed, Copyset Replication uses an
existing node to replace it, without destroying any existing copyset. While
in ElasticCopyset, the whole incomplete group is dismissed when there is no
Extra node. Hence, when the system is scaled down, the number of copysets in
ElasticCopyset is reduced accordingly, while the number in Copyset Replication
remains unchanged.

Overall, ElasticCopyset leverages the incomplete group to create and dismiss
copysets for dynamic node addition and removal, and also maintains a close
to minimised probability of data loss in both static deployment and dynamic
scaling.

6 Conclusion

This paper addressed the issue of data durability under correlated node failures
for distributed storage systems that are required to efficiently scale up and down
in direct response to workload demands. We have proposed ElasticCopyset, a
novel, general-purpose replica placement scheme that builds on the concept of
“copysets” [7, 8]. Given the scatter width of the data placement, ElasticCopyset
defines the minimum number of nodes that can form a group, and splits the
nodes in the system into a list of complete group and one incomplete group.

17

ElasticCopyset uses a novel shuffle algorithm to generate a minimum number of
non-overlapping copysets within each group to minimise the probability of data
loss. ElasticCopyset also leverages the incomplete group to efficiently handle
node addition and removal, such that each node operation affects only one
scatter width of nodes.

We have evaluated ElasticCopyset against the current-state replica place-
ment schemes including Random Replication and Copyset Replication. The
evaluation has demonstrated that ElasticCopyset is able to maintain a close to
minimum probability with the setting of varying values of scatter width, system
scales, and percentage of node failure. In contrast to the current-state Copyset
Replication, ElasticCopyset has also exhibited much better scalability and elas-
ticity in the scenario where the distributed system is required to dynamically
scale up and down under the diurnal workload pattern.

Future plans include evaluating ElasticCopyset in an actual distributed stor-
age system such as HDFS or Cassandra. We would also like to leverage dis-
tributed protocols in order to co-ordinate the placement of data storage units
across the system.

Bibliography

[1] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload
analysis of a large-scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64. ACM, 2012.

[2] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, et al. Apache
hadoop goes realtime at facebook. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data, pages 1071–1080.
ACM, 2011.

[3] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM Transactions on Computer Systems (TOCS),
26(2):1–26, 2008.

[4] F. W. Chang, M. Ji, S.-T. Leung, J. MacCormick, S. E. Perl, and L. Zhang.
Myriad: Cost-effective disaster tolerance. In FAST, volume 2, page 8, 2002.

[5] R. J. Chansler. Data availability and durability with the hadoop distributed
file system. The USENIX Magazine, FILESYSTEMS, 2012.

[6] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.
Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica maintenance
for distributed storage systems. In NSDI, volume 6, pages 4–4, 2006.

[7] A. Cidon, S. Rumble, R. Stutsman, S. Katti, J. Ousterhout, and M. Rosen-
blum. Copysets: Reducing the frequency of data loss in cloud storage. Pro-
ceedings of the 2013 USENIX conference on Annual Technical Conference,
2013.

18

[8] A. Cidon, R. Stutsman, S. Rumble, S. Katti, J. Ousterhout, and M. Rosen-
blum. Mincopysets: Derandomizing replication in cloud storage. In Net-
worked Systems Design and Implementation (NSDI), 2013.

[9] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB Endowment, 1(2):1277–
1288, 2008.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with cfs. ACM SIGOPS Operating Systems Review,
35(5):202–215, 2001.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. ACM SIGOPS Operating Sys-
tems Review, 41(6):205–220, 2007.

[12] B. Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

[13] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan. Availability in globally distributed storage
systems. In OSDI, pages 61–74, 2010.

[14] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In ACM
SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM, 2003.

[15] Z. Guo et al. Failure recovery: When the cure is worse than the disease. In
Proceedings of the 14th USENIX Conference on Hot Topics in Operating
Systems, HotOS’13, page 88, Berkeley, CA, USA, 2013. USENIX Associa-
tion.

[16] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly durable,
decentralized storage despite massive correlated failures. In Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2, pages 143–158. USENIX Association, 2005.

[17] J. Hamilton. Geo-replication at facebook.

[18] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[19] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In ACM
SIGOPS Operating Systems Review, volume 30, pages 84–92. ACM, 1996.

[20] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum.
Fast crash recovery in ramcloud. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 29–41. ACM, 2011.

[21] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, et al.
The case for ramclouds: scalable high-performance storage entirely in dram.
ACM SIGOPS Operating Systems Review, 43(4):92–105, 2010.

19

[22] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of
inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD inter-
national conference on Management of data, pages 109–116. ACM, 1988.

[23] H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara.
Snapmirror R©: file system based asynchronous mirroring for disaster recov-
ery. In Proceedings of the 1st USENIX Conference on File and Storage
Technologies, pages 9–9. USENIX Association, 2002.

[24] R. Rodrigues and B. Liskov. High availability in dhts: Erasure coding vs.
replication. In Peer-to-Peer Systems IV, pages 226–239. Springer, 2005.

[25] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence. Fab: build-
ing distributed enterprise disk arrays from commodity components. ACM
SIGOPS Operating Systems Review, 38(5):48–58, 2004.

[26] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed
file system. In 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10. IEEE, 2010.

[27] R. van Renesse and F. B. Schneider. Chain replication for supporting high
throughput and availability. In OSDI, volume 4, pages 91–104, 2004.

[28] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing hard-
ware reliability. In Proceedings of the 1st ACM Symposium on Cloud com-
puting, pages 193–204. ACM, 2010.

[29] H. Weatherspoon and J. D. Kubiatowicz. Erasure coding vs. replica-
tion: A quantitative comparison. In Peer-to-Peer Systems, pages 328–337.
Springer, 2002.

[30] H. Yu, P. B. Gibbons, and S. Nath. Availability of multi-object operations.
In Proc. of the Third USENIX Symp. on Networked Systems Design and
Implementation, pages 211–224, 2006.

20

A Proof of Lemmas

A.1 Proof of Lemma 1

Proof. According to Order 2, b[i] appears at mb[x][y], wherein xb = (i + k ∗ C)
mod L, yb = b i+k∗C

L c, given i ∈ [0, C) and k ∈ [0, L). When C ≥ L, let
C = L + t, wherein t ≥ 0. Thus, for any k1 < k2, i.e. k1 + 1 ≤ k2, we have:

yb(k2) ≥ b i+(k1+1)∗(L+t)
L c > bk1 + i+k1∗t+t

L c ≥ bk1 + i+k1∗t
L c

= b i+k1∗(L+t)
L c = yb(k1).

That is, yb(k1) 6= yb(k2). There are no two replicas of b[i] appearing in the
same column. However, when C < L, there exists at least one violation. For
example, let i = 0, k1 = 0 and k2 = 1, then yb = bk1C

L c = bk2C
L c = 0. That is,

b[0] appears twice in Column yb = 0.
According to Order 3, for each c[i], yc = C − 1 − yb. Given C ≥ L and

k1 6= k2, since yb(k1) 6= yb(k2), then yc(k1) 6= yc(k2). Hence, Lemma 1 is also
valid for c[i].

A.2 Proof of Lemma 2

Proof. Given any two copysets, i.e., (a[i1], b[j1], c[k1]) and (a[i2], b[j2], c[k2]). We
use proof by contradiction. We presume i1 = i2 and j1 = j2. According
to Order 1, a[i] is placed at ma[x][y] wherein ya = i. Since i1 = i2, then
ya1 = ya2. Moreover, since ya1 = yb1 and ya2 = yb2 (defined in merge phase),
then yb1 = yb2. However, according to Lemma 1, if j1 = j2, then yb1 6= yb2,
which contradicts yb1 = yb2. That is, the presumption is not valid. Hence, there
does not exist two copysets sharing the same a[i] and b[j]. Similarly, if k1 = k2,
then yc1 6= yc2. There does not exist two copysets that share the same a[i] and
c[k], either.

A.3 Proof of Lemma 3

Proof. According to Order 1, a[i] is placed at xa = k wherein k ∈ [0, L). Thus,
a[i] appears in each and every row.

According to Order 2, b[i] appears at xb = (i + k ∗ C) mod L wherein
k ∈ [0, L). We use proof by contradiction. We presume there exist b[i] and
k1 6= k2, such that xb = xb1 = xb2, i.e., presuming two integers t1 and t2, such
that: {

i + k1 ∗ C = t1 ∗ L + xb

i + k2 ∗ C = t2 ∗ L + xb

(A.1)

From Equation A.1, we have: C
L = t2−t1

k2−k1
. Let k1 < k2, then 0 < k2−k1 < L.

Since (t2− t1) and (k2−k1) are both integers, there must exist an integer s > 1,

such that C
L = s(t2−t1)

s(k2−k1)
, i.e., s is a common divisor of C and L. However, C

and L are co-prime, meaning that their greatest common divisor is s = 1, which
contradicts s > 1. Hence, the presumption is invalid. there is no b[i] appearing
more than once in any row of the matrix. Moreover, there are L replicas of b[i]
in mb that has exactly L rows. Since each row contains at most one b[i], the
only possible layout is that each b[i] appears once in each and every row. In

21

addition, according to Order 3, xc = (i + k ∗ C) mod L = xb. The conclusion
for b[i] is also valid for c[j].

A.4 Proof of Lemma 4

It consists of two parts: i) L is even; and ii) L is odd.

Proof for an Even L

Proof. Let L = 2t and C = 2t + r, wherein t ≥ 1 and r ≥ 0. According to
Order 2, ∀kb ∈ [0, L), each b[i] appears at mb[x][y] where:

yb = b i+kbC
L c = b i+kb∗(2t+r)

2t c = kb + b i+kbr
2t c

xb = (i + kbC) mod L =⇒ xb = i + kbr − 2tb i+kbr
2t c

According to Order 3, ∀kc ∈ [0, L), each c[j] appears at mc[x][y] where:
yc = C − 1− b j+kcC

L c = C − 1− kc − b j+kcr
2t c

xc = (j + kcC) mod L =⇒ xc = j + kcr − 2tb j+kcr
2t c

If (b[i], c[j]) appears in the same copyset, i.e., xb = xc and yb = yc, then we
have Equation A.2.{

b i+kbr
2t c − b

j+kcr
2t c = i+kbr

2t −
j+kcr

2t

b i+kbr
2t c+ b j+kcr

2t c = 2t + r − 1− (kb + kc)
(A.2)

From b i+kbr
2t c − b

j+kcr
2t c = i+kbr

2t − j+kcr
2t , we know (i + kbr) and (j + kcr)

are congruent modulo 2t. That is,

i + kbr ≡ j + kcr mod 2t (A.3)

When r = 0, Simultaneous equations A.2 for (kb, kc) becomes

{
b i
2tc − b

j
2tc = i

2t −
j
2t

b i
2tc+ b j

2tc = 2t− 1− (kb + kc)
,

which has multiple valid solutions for (kb, kc), given certain b[i] and c[j]. For ex-
ample, let i = j = 0, then there are 2t possible solutions shown in Equation A.4.
Thus, r 6= 0.{

kb = 0

kc = 2t− 1

{
kb = 1

kc = 2t− 2

{
......

......

{
kb = 2t− 1

kc = 0
(A.4)

When r = 1, i.e., C = L+1, Simultaneous equations A.2 for (kb, kc) becomes{
b i+kb

2t c − b
j+kc

2t c = i+kb

2t −
j+kc

2t

b i+kb

2t c+ b j+kc

2t c = 2t− (kb + kc)
(A.5)

Given any valid value of i, j and t, we use proof by contradiction to prove that
Simultaneous equations A.5 have at most one solution for (kb, kc). We presume
there are two solutions, i.e. (kb1, kc1) and (kb2, kc2), such that kb1 6= kb2 and
kc1 6= kc2, then we have Equations A.6 and A.7.

(b i + kb2
2t
c − b i + kb1

2t
c)− (bj + kc2

2t
c − bj + kc1

2t
c)

=
kb2 − kb1

2t
− kc2 − kc1

2t

(A.6)

22

(b i + kb2
2t
c − b i + kb1

2t
c) + (bj + kc2

2t
c − bj + kc1

2t
c)

= −(kb2 − kb1)− (kc2 − kc1)
(A.7)

From Equation A.3, we have kb2 − kb1 ≡ kc2 − kc1 mod 2t, when r = 1.
Thus, (kb2 − kb1) = (kc2 − kc1) ± n ∗ 2t, where n ≥ 0. Let kb1 < kb2. Since
∀k ∈ [0, L) = [0, 2t), then we have 0 < kb2 − kb1 < 2t and −2t < kc2 − kc1 < 2t.
Thus, we have Equation A.8, wherein n ∈ {0, 1}.

(kb2 − kb1) = (kc2 − kc1) + n ∗ 2t (A.8)

Presuming n = 0, i.e. kb2 − kb1 = kc2 − kc1 > 0, then,
(b i+kb2

2t c − b
i+kb1

2t c) + (b j+kc2

2t c − b
j+kc1

2t c)
≥ (b i+kb1

2t c − b
i+kb1

2t c) + (b j+kc1

2t c − b
j+kc1

2t c) = 0,
while −(kb2−kb1)− (kc2−kc1) < 0, which contradicts Equation A.7. Hence,

n 6= 0.
When n = 1 and kb1 < kb2, we have −2t < kc2 − kc1 < 0, and (kb2 − kb1) =

(kc2 − kc1) + 2t =⇒ kb2−kb1

2t − kc2−kc1

2t = 1.
Thus, from Equation A.6, we have,
(b i+kb2

2t c − b
i+kb1

2t c)− (b j+kc2

2t c − b
j+kc1

2t c) = 1
Since kb < L, let kb = L− s = 2t− s, wherein s > 0. Since i ≤ C − 1 = 2t,

we have: b i+kb

2t c ≤ b
2t+2t−s

2t c = 2 + b−s
2t c < 2. Thus, b i+kb

2t c ∈ {0, 1}. Similarly,

b j+kc

2t c ∈ {0, 1}. Therefore,
b i+kb2

2t c − b
i+kb1

2t c ∈ {−1, 0, 1}
b j+kc2

2t c − b
j+kc1

2t c ∈ {−1, 0, 1}
(b i+kb2

2t c − b
i+kb1

2t c)− (b j+kc2

2t c − b
j+kc1

2t c) = 1

=⇒

(b i+kb2

2t c − b
i+kb1

2t c) + (b j+kc2

2t c − b
j+kc1

2t c) = ±1.
Simultaneous equations A.6 and A.7 become:{

(kb2 − kb1)− (kc2 − kc1) = 2t

−(kb2 − kb1)− (kc2 − kc1) = ±1
=⇒{

kb2 − kb1 = t∓ 1/2

kc2 − kc1 = −t± 1/2

However, since ∀k are integers, (kb2 − kb1) or (kc2 − kc1) cannot be non-
integers. That is, when r = 1, there does not exist two distinct solutions
(kb1, kc1) and (kb2, kc2) for any two nodes b[i] and c[j]. Hence, when L is even,
any combination of (b[i], c[j]) appear together in at most one copyset.

Proof for an Odd L

Proof. When L is an odd number, let L = 2t − 1 and C = 2t + r, wherein
t ≥ 1 and r ≥ −1 and both are integers. Similar to the previous proof, given
∀kb ∈ [0, L) and ∀kc ∈ [0, L), we have,

yb = kb + b i+kb∗(r+1)
2t−1 c

xb = i + kb ∗ (r + 1)− (2t− 1)b i+kb∗(r+1)
2t−1 c

yc = C − 1− kc − b j+kc∗(r+1)
2t−1 c

xc = j + kc ∗ (r + 1)− (2t− 1)b j+kc∗(r+1)
2t−1 c

23

If (b[i], c[j]) appears in the same copyset, i.e., xb = xc and yb = yc. Then we
have Equation A.9.

b i+kb∗(r+1)
2t−1 c − b j+kc∗(r+1)

2t−1 c
= i+kb∗(r+1)

2t−1 − j+kc∗(r+1)
2t−1

b i+kb∗(r+1)
2t−1 c+ b j+kc∗(r+1)

2t−1 c
= 2t + r − 1− (kb + kc)

(A.9)

When r = −1 or r = 0, Simultaneous equations A.9 for (kb, kc) have multiple
solutions. We have to skip the proof due to page limit. Hence, r 6= −1 and r 6= 0.

When r = 1, i.e., C = L + 2, we have Equations A.10.{
b i+2kb

2t−1 c − b
j+2kc

2t−1 c = i+2kb

2t−1 −
j+2kc

2t−1

b i+2kb

2t−1 c+ b j+2kc

2t−1 c = 2t− (kb + kc)
(A.10)

Similarly, we use proof by contradiction to prove that there is at most one
solution. Presume there are two solutions, i.e. (kb1, kc1) and (kb2, kc2), such
that kb1 6= kb2 and kc1 6= kc2, then we have Equations A.11 and A.12.

(b i + 2kb2
2t− 1

c − b i + 2kb1
2t− 1

c)− (bj + 2kc2
2t− 1

c − bj + 2kc1
2t− 1

c)

=
2(kb2 − kb1)

2t− 1
− 2(kc2 − kc1)

2t− 1

(A.11)

(b i + 2kb2
2t− 1

c − b i + 2kb1
2t− 1

c) + (bj + 2kc2
2t− 1

c − bj + 2kc1
2t− 1

c)

= −(kb2 − kb1)− (kc2 − kc1)

(A.12)

When r = 1, let kb1 < kb2. Similarly, we have Equation A.13, wherein
n ∈ {0, 2}.

2(kb2 − kb1) = 2(kc2 − kc1) + n ∗ (2t− 1) (A.13)

When n = 0, Equation A.12 is violated. The proof is skipped due to page
limit. Hence, n 6= 0.

When n = 2, we have kb2−kb1

2t−1 −
kc2−kc1

2t−1 = 1. From Equation A.11, we have

(b i+2kb2

2t−1 c − b
i+2kb1

2t−1 c)− (b j+2kc2

2t−1 c − b
j+2kc1

2t−1 c) = 2. Similarly, it can be deducted

that, (b i+2kb2

2t−1 c − b
i+2kb1

2t−1 c) + (b j+2kc2

2t−1 c − b
j+2kc1

2t−1 c) = 2s, where s ∈ {−1, 0, 1}.
Hence, the solution for Equations A.11 and A.12 is:{
kb2 − kb1 = t− s− 1/2

kc2 − kc1 = −t− s + 1/2
.

However, since ∀k are integers, (kb2 − kb1) or (kc2 − kc1) cannot be non-
integers. Hence, when L is odd, any combination of (b[i], c[j]) appear together
in at most one copyset.

A.5 Proof of Lemma 5

Proof. Given any two copysets, i.e. (a[i1], b[j1], c[k1]) and (a[i2], b[j2], c[k2]). We
presume the same a[i] is shared in these two copysets, i.e., i1 = i2. According to
Lemma 2, b[j1] and b[j2] must be different, and c[k1] and c[k2] are also different

24

nodes. Hence, a[i] is the only common node. Otherwise, we presume the same
b[j] is shared. According to Lemma 4, c[k1] and c[k2] must be different. Hence,
b[j] is the only common node. Moreover, if both a[i] and b[j] are not shared,
then c[k] also becomes the only possible common node. To sum up, two copysets
share at most one common node in any cases.

A.6 Proof of Lemma 6

Proof. Given any node ni in the group. Since C is the smallest odd number
greater than L, then L and C are co-prime. According to Lemma 3, ni appears
once in each and every row in the matrix that consists of L rows. Since nodes
from different rows cannot form a copyset, then ni belongs to L distinct copysets.
In each copyset that the node ni belongs to, there are R−1 other distinct nodes.
According to Lemma 5, any two copysets share at most one common node, which
can only be ni. Therefore, the L copysets contain L ∗ (R − 1) distinct nodes
other than ni. Since S = L ∗ (R − 1), then ni shares copysets with S other
distinct nodes.

25

