
An Empirical Study of On-Line Models for

Relational Data Streams

Ashwin Srinivasan1 Michael Bain2

1 Department of Computer Science, IIIT, New Delhi, India

ashwin@iiitd.ac.in
2 School of Computer Science & Engineering, UNSW, Sydney, Australia

mike@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201401

January 2014

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

To date, Inductive Logic Programming (ILP) systems have largely assumed that
all data needed for learning have been provided at the onset of model construc-
tion. Increasingly, for application areas like telecommunications, astronomy,
text processing, financial markets and biology, machine-generated data are be-
ing generated continuously and on a vast scale. We see at least four kinds of
problems that this presents for ILP: (1) It may not be possible to store all of
the data, even in secondary memory; (2) Even if it were possible to store the
data, it may be impractical to construct an acceptable model using partitioning
techniques that repeatedly perform expensive coverage or subsumption-tests on
the data; (3) Models constructed at some point may become less effective, or
even invalid, as more data become available (exemplified by the “drift” problem
when identifying concepts); and (4) The representation of the data instances
may need to change as more data become available (a kind of “language drift”
problem). In this paper, we investigate the adoption of a stream-based on-line
learning approach to relational data. Specifically, we examine the representa-
tion of relational data in both an infinite-attribute setting, and in the usual
fixed-attribute setting, and develop implementations that use ILP engines in
combination with on-line model-constructors. The behaviour of each program
is investigated using a set of controlled experiments, and performance in prac-
tical settings is demonstrated by constructing complete theories for some of the
largest biochemical datasets examined by ILP systems to date, including one
with a million examples — to the best of our knowledge, the first time this has
been empirically demonstrated with ILP on a real-world data set.



Figure 1.1: Results of a poll on the largest sized datasets analysed (from KD-
nuggets April 2013 – used with permission).

1 Introduction

Can an Inductive Logic Programming (ILP) system process millions of data
instances effectively and efficiently? It is not unreasonable to ask in return:
why is this an important question? A recent survey of current data analysis
practice1 suggests that the largest datasets routinely analysed in 2013 were
normally around a terabyte or so, with some much larger in size (see Figure 1.1).
It is not clear what form the analysis took, but in ILP terms, this is substantially
larger than the biggest problems considered so far.

The point of course, is not that ILP engines should be able tackle very large
datasets because other people are doing it, nor is it the case that all significant
analysis problems are ones with large amounts of data ([12] for example, has
a collection of real-life problems characterised by small amounts of data). In-
stead, the main issues are these: (1) Very large datasets, once the province only
of large internet companies or scientific areas such as experimental physics, are
now created or captured routinely in almost every field of scientific, industrial
and social endeavour, and, importantly, many of the more interesting questions
now being asked of this data are relational; (2) As the size and diversity of
data generated increases, human comprehension is becoming a bottleneck [26].
Machine-learning methods that can extract information and convey them to us
in a manner to provoke insight are expected to play an important role over the
next decade [16]. Since its inception, the construction of human-comprehensible
theories from relational data has been a primary motivation for ILP. By em-
ploying a highly expressive subset of first-order logic, and by making explicit
provisions for incorporating domain-specific knowledge ILP systems should be
a natural choice for addressing the second problem, providing they are capable
of handling the first problem (that is, data volume)2.

1http://www.kdnuggets.com/2013/04/poll-results-largest-dataset-analyzed-data-mined.

html
2It seems, prior to our work, that two artificial relational regression data sets, each of one

million examples, were the largest ever used by an ILP system (HTILDE-RT) [21].

1



We envisage at least four kinds of problems that very large datasets present
for ILP:

1. It may not be possible to store all of the data, even in secondary memory;

2. Even if it were possible to store the data, it may be impractical to contruct
an acceptable model using partitioning techniques that repeatedly perform
expensive coverage or subsumption-tests on the data;

3. Models constructed at some point may become less effective, or even in-
valid, as more data become available (an example of this is the “drift”
problem when identifying concepts); and

4. The representation of the data instances may need to change as more data
become available (a kind of “language drift” ptoblem).

In this paper, we focus on discrimination tasks, which is perhaps the most
common type of problem addressed by ILP, and seek to engineer a general-
purpose ILP-based system that can meet the following requirements: (R1) It
should be able to construct (good) discriminatory models for the data in an
efficient manner — by this, we mean approximately linear in the number of
data instances seen; (R2) It should be able to handle indefinite amounts of
relational data; and (R3) It should be able to track distributional changes in
the data, resulting in changes in the model and in the representation of the
data.

We design the system using as as building blocks:

• A simple transducer-like extension to an ILP system that defines the pro-
cessing of examples arriving in a stream;

• The feature-construction (“propositionalisation”) abilities of a general-
purpose ILP system to construct new relational features of examples on-
demand (this is different to the usual approach) ; and

• Well-established on-line model construction algorithms that have been
shown to have an exceptionally robust capacity to construct models even
in potentially infinite dimensional feature-spaces and when concepts can
drift.

We provide empirical evidence, using a range of controlled datasets, that
an ILP system can be devised to satisfy the requirements R1–R3. In addition,
the program’s performance in practical settings is demonstrated by constructing
complete theories for some of the largest bio-chemical datasets examined by ILP
systems to date.

The rest of the paper is organised as follows. Section 2 describes work in
stream-based on-line learning that is relevant to the paper. In Section 3 we
describe our approach to relational data stream analysis. Section 4 describes
experiments with synthetic data sets, and some large real-world datasets. Sec-
tion 5 describes previous and related work. Section 6 concludes the paper.
Appendix A has details relevant to our implementation and experiments.

2



2 On-Line Learning with Streaming Data

Data streams—dating back at least to the 1960s [17]—are useful as a (data)
model for dealing both with data that is generated continuously, and with large
datasets that have to be stored in secondary memory. The difficulties with
streaming data analysis arise from the fact that an analysis algorithm neither has
the ability to select the ordering of data instances in the stream, nor is it feasible
to store them (beyond perhaps a small quantity in an internal buffer). Desirable
features [3] of a suitable analysis algorithm are: (a) It processes each instance
only once (or perhaps a few times), and must update its model incrementally as
each example is processed; (b) Its time complexity must be near-linear in the
number of data instances (that is, it cannot take more than a small constant
amount of time processing each instance); (c) It must be memory-efficient; and
(d) It must be capable of “anytime” prediction (that is, a model can be used
to predict at any point in the data sequence). Substantial efforts have been
invested into both supervised and unsupervised model-construction that adhere
to these requirements. We refer the reader to [10] for a very readable text on
the area; and to [1] for some key work.

It is both natural and efficient to adopt an on-line approach to the analysis
of a data stream. In this setting a model is updated as elements of the data
stream are received. For example, techniques for on-line learning have been
substantially bolstered recently by developments in the method of stochastic
gradient descent (SGD) [5]. With SGD, an example-by-example update rule is
obtained to estimate the parameters of a convex objective function. This has
allowed on-line versions of some established techniques for discrimination, like
support-vector machines and logistic regression.

The straightforward way to adopt these methods to a data stream of re-
lational data is to have an ILP engine examine a sample of the data—either
on-line or off-line—and construct a fixed set of features. From this point on,
standard on-line techniques for stream processing can be invoked. We denote
this as fixed-attribute model construction in this paper, and use it as the baseline
for comparison. Its limitations are clear enough: the sample chosen will have to
sufficiently representative of the data; and there is no opportunity to alter the
feature-set were the data distribution to change.

However, there is at least one on-line feature-based learner that does not
require a fixed set of features, and has proved to be remarkably robust both with
very large numbers of irrelevant features and drifting distributions. Winnow
[19] uses a linear threshold discriminator, and a multiplicative weight-update
scheme. At any instant t the algorithm represents each data instance using
a Boolean vector ~xt. Surprisingly, following the work of [4] on an infinite-
attribute model for Winnow-like algorithms, there is no requirement that each
data instance use the same set of features. Thus the ~xt could all be of different
dimensionality (care has to be taken of course to ensure that the naming of
features remains consistent)3.

3This is not the same as using a sparse-vector representation (as in e.g., [18], which enables
learning from high-dimensional data). In that setting, the complete set of features is known
beforehand, but each data instance is represented by only those features that have some non-
default value. Usually, the default value is 0, and an instance is represented by those features
with non-zero values. During computation, all other features for the instance are taken to
have the value 0. Dynamically adding features, e.g., as in text classification [15], is handled

3



This simple algorithm has be shown to satisfy all the desirable requirements
just listed. Importantly, it also has some well-understood theoretical properties.
For example, it is known that if that target concept is a disjunction of k features,
then Winnow will make O(k log n) mistakes, where n is the number of features.
It can also be shown that if the number of mistakes is bounded by some M ,
then Winnow will terminate within M

ε ln
(
M
δ

)
examples for some small ε, δ such

that the probability that the resulting model has error greater than ε is at
most δ. That is, a concept class learnable within mistake-bounded learning is
PAC-learnable [19].

3 Relational Data Stream Analysis

We now examine the possibility of using two well-understood building blocks
(feature-construction by an ILP system and on-line model construction) to con-
struct models for relational data streams.

Two model-constructors for relational data resulting from using this ap-
proach are shown in Figs. 3.1 and 3.2. Both can be implemented quite simply
within an existing ILP system: the details relevant to a specific implementation
are in Appendix A. ILP-based feature construction has been well-studied; see,
e.g., [32, 14]. Briefly, a feature f — more correctly, a feature function — is a
Boolean function of a relational instance x, defined using an ILP system, back-
ground knowledge, constraints, etc., such that f(x) = TRUE if the ILP system
can find a definition for x in its hypothesis space, otherwise f(x) = FALSE .

For example, f1(m) = TRUE for any molecule m if the molecule has 3 fused
benzene rings; otherwise f1(m) = FALSE. The task of the ILP engine is find
definitions like these, given definitions of general cyclic structures (like benzene
rings), functional groups (like methyls, alcohols etc.) and so on. For streams
we have two choices. In Fig. 3.1 the features are obtained while processing the
data stream: each data instance is represented by a finite number of features,
but the complete set of features is not known beforehand. This is the so-called
infinite-attribute setting described in [4]. In contrast, Fig. 3.2 assumes a fixed-
attribute representation, in which all instances are represented by a fixed-set of
features that are obtained before stream-processing commences.

Both the components used here—the ILP-based feature constructor, and the
on-line model constructor—are not new, but surprisingly, not much is known
about their combination to construct models for relational streams.4 It is not
known, for example: (a) how the procedures in Figs. 3.1 and 3.2 compare against
each other as techniques for model construction from streams of relational data;
and (b) whether effective and efficient on-line learning is possible when ILP-
based feature construction is performed during stream analysis. Concern stems
from the fact that both construct features and feature vector can both be
computationally expensive. Next we conduct experimental studies that provide
an empirical basis for answers to these questions.

by the infinite-attribute setting.
4We note that the procedure in Fig. 3.2 is just an adaptation to the on-line setting of

the approach adopted by ILP-based “propositionalisation” methods. This is related to the
learning from interpretations approach studied by [20], and the results here can be seen as
adding to what is known from that work.

4



Single-Pass Relational Stream Modelling (Infinite Attribute Space):

rel model infinite attr(B, I,L, S): Background knowledge B; feature constraints I;
language restriction L; and a stream S of relational data instances.

Return: A set of features and a model

1. Let the initial mistakes m0 = 0

2. Let the initial model be M0

3. F0 = ∅
4. for t = 1, 2, . . .:

(a) Get new example et from S and its prediction yt

(b) ~x′t = feature vector(et, B, Ft−1)

(c) Predict y′t = predict(Mt−1, ~x′t)

(d) If prediction is incorrect (that is, y′t 6= yt)

i. mt = mt−1 + 1

ii. F = construct features(B, I,L, {(et, yt)})

iii. Ft = Ft−1 ∪ F

iv. ~xt = feature vector(et, B, Ft)

v. Mt = update(Mt−1, ~xt)

(e) otherwise

i. mt = mt−1

ii. Mt = Mt−1

iii. Ft = Ft−1

5. return 〈Ft,Mt〉

Figure 3.1: Steps of a procedure performing on-line learning from relational
data streams in an infinite-attribute setting. We assume a feature-constructor
function construct features is available—in this paper, this will be provided
by an ILP system. The function feature vector converts the relational data in-
stance into a feature-vector representation using a set of features. The functions
predict and update are as before.

4 Experimental Evaluation

We would like to examine if the procedures in Figs. 3.1 and 3.2 satisfy the
requirements in Section 1, rephrased here in the form of questions for 3 empirical
studies.

4.1 Aims

Time. Do the implementations construct effective discriminatory models in an
efficient manner, from relational data streams? Space. Can the implementa-
tions handle indefinite amounts of relational data? Drift. Can the implemen-
tations track changes in the concept?

From now on, we will refer to the experiments as Time, Space and Drift. For
brevity, we will sometimes refer to the implementations as constructing Infinite-
Attribute models or Fixed-Attribute models. We expect the experiments to
yield insight into the conditions under which models are better.

5



Single-Pass Relational Stream Modelling (Fixed-Attribute Space):

rel model finite attr(B, I,L, S, E0): Background knowledge B; feature constraints
I; language restriction L; a stream S of relational data instances; and a sample
of pre-classified data instances E0

Return: A set of features and a model

1. Let F0 = construct features(B, I,L, E0)

2. Let the initial model be M0

3. for t = 1, 2, . . .:

(a) Get new example et from S and its prediction yt

(b) ~xt = feature vector(et, B, Ft−1)

(c) Predict y′t = predict(Mt−1, ~x′t)

(d) If prediction is incorrect (that is, y′t 6= yt)

i. mt = mt−1 + 1

(e) otherwise

i. mt = mt−1

(f) Mt = update(Mt−1, ~xt)

(g) Ft = Ft−1

4. return 〈Ft,Mt〉

Figure 3.2: Steps of a procedure performing on-line learning from relational data
in a fixed-attribute setting. Here, a fixed set of attributes are constructed before
stream-based modelling commences, using a sample of pre-classified instances.
This could be obtained by sampling the stream S, but we have chosen to provide
it as a parameter E0 to the procedure.

4.2 Materials

Data and Background Knowledge

This breaks down into two categories:
Synthetic. We use the “Trains” problem posed by R. Michalski for con-

trolled experiments. Four datasets of sizes varying from about 100, 000 exam-
ples to 1 million examples are obtained for randomly drawn target concepts (see
“Methods” below). For this we use S.H. Muggleton’s random train generator5

that defines a random process for generating examples.
Real. We report results from uncontrolled experiments conducted using

three real-world datasets: (a) Malaria. This is a Prolog-representation of about
10, 000 anti-malarials, obtained from screening an industrial database. The
task is to discriminate highly active compounds from less-active ones; (b) HIV.
This is a Prolog-representation of the atom-bond structure of molecules in the
NCI-HIV dataset consisting of approximately 50, 000 compounds. The task is
to discriminate active HIV inhibitors from the rest; and and (c) Zinc. This
is a free database of commercially available compounds for virtual screening6.
We use a subset of the “clean-drug-like” dataset. The data contains 1 million
compounds, with the task of discriminating those that target normal proteins

5http://www.doc.ic.ac.uk/~shm/Software/GenerateTrains/
6http://zinc.docking.org/

6



Dataset Examples

Trains 125K 125, 000

Trains 250K 250, 000

Trains 500K 500, 000

Trains 1M 1, 000, 000

Dataset Examples Class Distribution

Malaria ≈ 10, 000 ≈ 15%(+)

HIV ≈ 50, 000 ≈ 4%(+)

Zinc 1, 000, 000 ≈ 42%(+)

Figure 4.1: Synthetic (left) and real (right) datasets used for experimental eval-
uation. Class distributions in the synthetic data vary, since target concepts are
drawn at random.

(called the “usual” compounds in the zinc database) with a pH value in the
range 6–8), from others that target rare or metallo-proteases.

A summary of all datasets used is in Fig. 4.1. There some issues that arise
with the real data sets. For “Malaria’ the costs of misclassification are not
uniform. Misclassification of highly active molecules (+) is more expensive than
that of less active molecules (−). The cost of false negatives is therefore higher
than that of false positives (in [8] this is estimated at about 10:1). The extremely
skewed distribution of the HIV dataset, along with the inherent interest in HIV
inhibition suggests that, once again, the cost of false negatives is higher than
that of false positives. The purpose of testing on the Zinc data is to examine
model construction on real-world data at sizes that have not been routinely
analysed by ILP systems. It is not yet evident that there is, in fact, any model
that can discriminate molecules in the pH 6–8 (+) from molecules outside this
range (−).

In all three cases, the description of a data instance consists of 3 components:
(a) bulk properties of the molecule (like molecular weight); (b) the atoms in
the molecule along with their types; and (c) the bonds between atoms. The
background knowledge provided is of generic definitions of functional groups
(methyl groups, alcohols, and the like), and cyclic structures (aromatic rings,
5-membered rings and so on). Their occurence in any given molecule is then
computed using the usual logical inference machinery employed by the ILP
system.

In addition, we will assume that ILP-specific input information in the form
of domain-specific background knowledge B, feature constraints I and language
restrictions L. Appendix A contains examples of both synthetic and real data
instances and other inputs provided.

Algorithms and Machines

The data generator for controlled experiments uses S.H. Muggleton’s random
train generator. This implements a random process in which each data instance
generated contains the complete description of a relational data object (nomi-
nally, a “train”: see [23]).

All experiments here are conducted using the Aleph ILP system7. The latest
version of this program (available from the authors) includes support for on-
line model construction with streaming data. Feature-construction by the ILP

7http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

7



engine is coupled to two different on-line model constructors: Winnow (imple-
mented within Aleph), and Hoeffding Trees [7] (implemented within the MOA
toolbox [3]). For Shift experiments, a variant of Hoeffding Trees designed to
handle concept drift called Adaptive Hoeffding Trees [2] is also investigated. Of
these, only Winnow is used within the infinite-attribute setting, and both Win-
now and Hoeffding Trees are used for model-construction in the fixed-attribute
setting. Aleph-specific implementation details are in Appendix A.

The experiments were conducted on an Intel Core i7 laptop computer, using
VMware virtual machine running Fedora 13, with an allocation of 2GB for the
virtual machine. The Prolog compiler used was Yap, version 6.1.38.

4.3 Method

We distinguish between controlled experiments (“Time”, “Space” and “Drift”)
that use synthetic datasets, and an uncontrolled experiment (“Real Data”) that
use datasets from real-world applications. The former allow us to investigate
the properties of on-line model construction with relational data, by varying
some important problem or data characteristics. Experiments with the latter
give us some evidence on the question of whether we should expect behaviour
observed under controlled conditions with synthetic data to hold in practice.

In all cases, we assume the ability to generate a data stream, in which each
data instance contains sufficient information to describe the relational structure
of the instance. Further, for the fixed-attribute approach, we will assume that
we have access to a set of pre-classified instances, from which the set of features
are constructed (E0 in Fig.3.2).

Experiment 1: Time

To examine whether the methods are able to construct good models efficiently,
we vary the problem and data characteristics along the following dimensions:
Target Concept (Target). We distinguish between simple targets (requiring
1–4 features) and complex targets (requiring 8–12 features); and Data Stream
(Data). We distinguish 4 different data stream lengths, ranging from 125, 000
entries to 1, 000, 000 entries (see Section 4.2). Our method is as follows:

1. Repeat R times:

For each combination of values for (Target,Data) do:

i. Randomly draw a concept C from Target. Generate a

ii. Generate a data stream S using entries in Data. Classify each
data instance as + or − using the target concept.

iii. Construct a model using the on-line procedures in Fig. 3.1 and
3.2 and the stream S

iv. In each case, record the predictive accuracy of the model con-
structed after having processed all elements in the data stream;
and the total time to process all elements in the data stream.

2. Compute average values for predictive accuracy and time for stream data
analysis; and compare performance.

We refer the reader to Appendix A for additional details.

8http://www.dcc.fc.up.pt/~vsc/Yap/

8



Experiment 2: Space

Since on-line learning processes one-instance-at-a-time, we expect storage re-
quirements to be bounded by the maximum complexity of any data instance.
This does not change with the size of the data stream. For the infinite-attribute
setting, the number of features constructed can, however, grow linearly with the
number of instances in the stream (since any one instance can be represented
by up to n features). In addition, the number of features for either infinite-
or fixed-attribute settings can increase with target complexity. We therefore
vary the problem and data characteristics as in Experiment 1, namely: simple
and complex targets (Target); and varying data stream lengths (Data). Our
method for assessing changes in storage requirements is as follows:

1. Repeat R times:

For each combination of values for (Target,Data) do:

i. Randomly draw a concept C from Target. Generate a

ii. Generate a data stream S using entries in Data. Classify each
data instance as + or − using the target concept.

iii. Construct a model using the on-line procedures in Fig. 3.1 and
3.2 and the stream S

iv. In each case, record the number of features constructed after
having processed all elements in the data stream.

2. Compute average values of the number of features and compare perfor-
mance.

We adopt the same procedures and choices as Experiment 1 for generation of
target concepts and refer the reader to the details in Appendix A pertaining to
Experiment 1 for details.

Experiment 3: Drift

To investigate performance when there is concept (and possibly language) drift,
we vary problem and data characteristics along the following dimensions: Tar-
get Concept (Target). As with the Scale experiment, we distinguish between
simple targets (now restricted to 4 features) and complex targets (restricted
to 8 features); and Shift Size (Shift). We distinguish 3 different shifts of the
target concept. Small shift denotes a small change in the target concept (1
literal for simple targets, and 2 literals for complex targets, denoting a Jaccard
similarity of 0.6). A large shift in the target concept denotes a bigger change in
the target concept (2 literals for simple targets, 4 literals for complex targets,
denoting a Jaccard similarity of 0.4). An extreme shift in the target concept
denotes an entirely different target concept (a 4 literal change for simple targets,
and an 8 literal change for complex targets, denoting a Jaccard similarity of 0).

We simulate shifts in the target concept by switching from one concept to
the next. Our method is as follows:

1. Repeat R times:

For each combination of values for (Target, Shift) do:

9



i. Randomly draw a concept C from Target

ii. Obtain a concept C ′ from C by replacing literals determined by
Shift

iii. Let Data consist of 2N instances

iv. Generate a data stream S from entries in Data. The first N
instances are classified as + or − using C and the subsequent N
instances are classified + or − using C ′

v. Construct a model using the on-line procedures in Figs. 3.1 and
3.2 (the details of the data used to obtain features for the latter
are in Appendix A)

vi. In each case, record the predictive accuracy of the model con-
structed after having processed all elements in the data stream.

vii. For each method, if C and C ′ are both identified correctly (or
very closely) then record success otherwise record fail

2. Estimate the probability of concept recovery of each approach using the
proportion of successes

Here N is 1000. That is, for the first 1000 instances, the target concept is C
and for the subsequent 1000 instances, the target concept is C ′. For the purpose
of this experiment, we will assume a target has been correctly identified if the
predictive accuracy is at least 95%.

Experiment 4: Real Data

For uncontrolled experiments, we clearly have no control over the target con-
cept, or the size of the data stream. Our principal focus here therefore is a
straightforward comparison of performance of the two methods of relational
stream modelling. Specifically:

For each real dataset D:

1. Generate a data stream S consisting of the training instances in D,
along with their classifications into + or −

2. Construct a model using the on-line procedures in Fig. 3.1,3.2 using
the B, I and L relevant for D

3. Record the predictions of the on-line models on test data

• Compare the performances of the on-line models

We refer the reader to Appendix A for additional details.

4.4 Results and Discussion

The principal findings from Time, Space and Drift experiments are shown in
Figs. 4.2 and 4.3. Table 4.1 suggests that learned models can be humanly-
comprehensible. Complete tabulations on synthetic data for Time and Space
experiments are in Appendix A (Figs. A.1–A.2).

10



Figure 4.2: Results from the Time and Space experiments. The graphs show the
principal performance trends of in the fixed- and infinite-attribute settings. Here
“(W)” denotes the Winnow-based model constructor, and “(H)” the Hoeffding-
tree based model constructor. The features for both Winnow and Hoeffding-
based model constructors are the same in the fixed-attribute setting. So the
results from the Space experiments are simply labelled “Fixed” and “Infinite”.
The values plotted are averages over 10 repetitions. The complete tabulations
are in Appendix A.

Table 4.1: A subset of features and their weights learned on a synthetic data
set. Shown are some of the top-ranked weights from a Winnow model; here the
first feature matches the target concept. Other features with positive weights
≥ 2 are partly correct.

Feature No. Weight Feature

35 64.0 class(A,B):-has car(A,C),shape(C,ellipse),load(C,rectangle,2)

1 32.0 class(A,B):-has car(A,C),load(C,rectangle,1)

2 32.0 class(A,B):-has car(A,C),load(C,rectangle,1),has car(A,D)

5 16.0 class(A,B):-has car(A,C),closed(C),load(C,rectangle,1)

21 16.0 class(A,B):-has car(A,C),load(C,utriangle,3)

. . .

7 8.0 class(A,B):-has car(A,C),long(C),load(C,rectangle,1)

. . .

4 4.0 class(A,B):-has car(A,C),short(C),load(C,rectangle,1)

. . .

11



Model Recovery Probability

Simple Targets Complex Targets

Small Large Extreme Small Large Extreme

Fixed 0.6 0.2 0.1 0.5 0.1 0.4

Hoeffding (0.2) (0.1) (0.1) (0.2) (0.1) (0.2)

Adaptive 0.7 0.2 0.2 0.5 0.1 0.4

Hoeffding (0.1) (0.1) (0.1) (0.2) (0.1) (0.2)

Fixed 0.2 0.1 0.6 0.1 0.4 0.6

Winnow (0.1) (0.1) (0.2) (0.1) (0.2) (0.2)

Infinite 1.0 1.0 1.0 1.0 1.0 1.0

Winnow (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

(a)

Shift Feature Increase

Small 29

Large 50

Extreme 66

(b) Simple targets

Shift Feature Increase

Small 38

Large 51

Extreme 75

(b) Complex targets

(c)

Figure 4.3: Results from the Drift experiments. Table (a) has estimates of the prob-
ability of recovery from a concept-shift. Concept-shifts range from small to extreme
(the quantity in braces is the associated standard error). By definition, recovery is
said to occur if the learner, having learned the original concept also learns the new
concept. Here a concept is taken to be “learnt” if the accuracy on a holdout set—the
predictive accuracy—is at least 95%. The fraction tabulated is the average value of the
probability of recovery, estimated from 10 repetitions. Adaptive Hoeffding refers to a
version in the MOA toolbox specifically designed to address concept-drift. Table (b)
shows the median increase in the number of features for the infinite-attribute setting
in order to achieve concept recovery. The graphs in (c) show an example of recov-
ery by the on-line models. The X-axis are ordinals simply representing progressively
greater numbers of data instances (the values {1, 2, 3, 4} span 1000 data instances, as
do the values {5, 6, 7, 8}). A shift in the concept occurs at x = 5 resulting in a drop in
predictive accuracy. In the example shown, the model-builder recovers by x = 8 (the
graphs shown use the Winnow-based model constructor).

12



The main aspects from the graphs and tabulations are these:
Time. For both fixed- and infinite-attribute settings the time taken ap-

pears to increase linearly with data-size. For the fixed-attribute setting this
includes the time taken to construct features9. Actual values for the fixed-
attribute setting are lower than those for the infinite-attribute setting (that is,
the fixed-attribute setting appears to have a lower scaling constant than the
infinite attribute setting). Our results appear to indicate that models with
Hoeffding trees are constructed faster than Winnow-based models.10

Space. Space requirements, measured in terms of the number of features
needed, appears to be constant with increases in data-size for both fixed- and
infinite-attribute settings (provided there is no concept-drift: see below). The
actual value again appears to be lower for the fixed-attribute setting.

Drift. Only the infinite-attribute setting appears to recover reliably from
shifts in target concepts on these data sets. The price to pay is an increase in
the number of features (that is, constant space can no longer be guaranteed).

We note that given the design of the experiments, we can expect results
to hold only on comparable hypothesis spaces. The results do not tell us, for
example, that a data stream of 2N instances classified by a complex target
would take twice as long to model as a data stream of N instances classified
by a simple target. These observations lend empirical support to the following
claims:

– When there is no concept-drift: There exist on-line learners within
both the fixed- and infinite-attribute settings that can use ILP-constructed
features to identify models with high predictive accuracy in an efficient
manner (that is, with time complexity that scales linearly with the number
of instances processed);

– When there is concept-drift: There exists at least one on-line learner
within the infinite-attribute setting that can use ILP-constructed features
to identify models that reliably track changing concepts.

The reader may be concerned at this point whether the synthetic problems
are “too simple”. That is, large-sized data streams may be irrelevant for the
Trains problems, since targets could possibly be identified with substantially
smaller subsets of the data. This is indeed so, but only under some specific
circumstances. First, the representation language (here, Boolean functions of
the features) must include the target concept. Secondly, the data must not be
generated by an adversary. If features are identified inductively (as is done here)
then the first condition cannot be guaranteed. If the data generation process is
not under the experimenter’s control (as is the case with observational data),
then the second condition cannot be guaranteed. It is quite possible therefore
for the Trains to pose substantial difficulties.

To see this, assuming that the target concept is in the hypothesis space
(the first assumption above), we are able to quantify the difficulty that can

9Includes in all cases the time to evaluate the features and to construct the model.
10Some caution has to be adopted here, since the two implementations are on significantly

different platforms (Fixed Winnow and Infinite Winnow are Prolog-based implementations
within the Aleph ILP engine; Fixed Hoeffding and Adaptive Hoeffding are hybrid imple-
mentations, in which feature-construction is done by Aleph, and model-construction by an
implementation in the MOA toolbox, written in Java).

13



be posed by the Trains to a Winnow-like learner. It has been shown that
the number of examples needed for PAC-identification of a target concept is
M
ε ln(Mδ ). Here M is the theoretical mistake bound computed for the learner,

and PAC identification ensures that it will identify a concept with accuracy A
of at least (1− ε)× 100 (%) with probability P at least (1− δ).

Experimental results shown in Fig. A.4 in Appendix A yield estimates of
M = 24 and M = 129 for simple and complex targets respectively. The number
of instances needed in the worst case for almost certain identification (P ≥
0.999) of a very nearly correct identification (A ≥ 99.9%) is approximately
240, 000 for simple concepts and approximately 1.5 million for complex concepts.
This gives some indication of the true nature of the difficulty of the synthetic
problems, when no assumptions are made about the ordering of the examples.

How might the on-line ILP engine perform in real-world settings? Fig. 4.4
show the performance on the real datasets used here. We only tabulate the
results obtained with the fixed-attribute setting here, since the experiments
with synthetic data suggest that this may be the most effective approach if
there is no concept drift. As described elsewhere in the paper, we focus on the
true-positive rate since false negative errors are costlier than false positives. The
values shown are true-positive rates on an independent test-set. For Hoeffding
trees, the results are from a greedy search for good parameter values for model-
constructors.

The results confirm that both kinds of model constructors are able to find
models that perform better than a predictor that simply returns the majority
class. As with the synthetic data, Hoeffding Tree models are constructed faster
(the same caveat expressed there applies here). The Winnow models appear
to construct models with better true-positive rates; however, this may be an
artifact of the search procedure for parameter values employed when construct-
ing Hoeffding Trees. We caution against a misinterpretation of the runtimes
reported across the real datasets in Fig. 4.4. On face-value, it appears that the
runtimes do not reflect the 1:5:100 scaling in the sizes of the real datasets. How-
ever, this is due to the incomparable hypotheses-spaces of the three real-world
tasks (what we can expect is linear scaling within each task.)
We turn now to some less obvious questions.

Small streams. There is nothing in the streaming data model that restricts
it to large numbers of data instances. Does the claim continue to hold with
small relational data streams? Again, the answer is “yes”, although the relative
performances are somewhat different. From Fig. A.3 (Appendix A), it is evident
that it is still possible to obtain good theories in an efficient manner. However,
now the superiority of the fixed-attribute setting is less apparent, since predictive
accuracy gains are marginal, and time for model construction is substantially
more (in the fixed-attribute setting, the time to construct features dominates the
time to update the model). Thus, if time is a constraint, the infinite-attribute
setting may be better for small streams.

Mistake bounds. Does the hybrid ILP-Winnow engine satisfy the mistake
bounds (maximum number of mistakes) predicted for the Winnow algorithm?
We note first that an upper bound on the number of mistakes made by Winnow
for a concept defined by a disjunction of r features (as is done here) is 2+3r(1+
log(n)), where n is number of features used to describe a data instance . A proof
of this for a fixed-set of attributes is in [19] and for the infinite-attribute setting
is in [4]. However, it is not evident that this bound holds when features are

14



Model True-Positive Rate (%)

Malaria HIV Zinc

Fixed 22.2 96.7 24.9

Hoeffding (80.4) (95.2) (60.0)

Fixed 54.2 100.0 60.5

Winnow (63.6) (95.2) (52.9)

Majority 16.6 3.0 42.5

Class (83.4) (97.0) (48.5)

(a) Predictive accuracies

Model Time (s)

Malaria HIV Zinc

Fixed 2872 166 4846

Hoeffding

Fixed 2876 199 9126

Winnow

Majority – – –

Class

(b) Time

Figure 4.4: Results from the Real experiments. In (a) the number in braces is
the overall accuracy. “Majority Class” is the classifier that predicts the major-
ity class (here, the negative class). In (b), the number in braces denotes the
actual time taken to construct a model (for the Hoeffding tree, this includes
the times for constructing a feature-vector table). The ratio of the data sizes is
approximately 1:5:100.

constructed inductively, as is done here. For both fixed, and infinite-attribute
settings, the analysis assumes that the final set of features will contain the
r features that define the target concept. When good features are identified
from data, this cannot be guaranteed. It is therefore possible for the ILP-
Winnow engine to make more mistakes than the theoretical bound. Fortunately,
it appears that this may not be routine phenomenon. The tabulation in Fig. A.4
in Appendix A shows the predicted and actual mistakes for each repetition with
the largest data stream (Trains 1M) with fixed-attribute model construction.
From these data, it appears that the probability of exceeding the Winnow bound
may be no more than 1 in 10 (for simple or complex concepts).

Fixed and Variable Costs. In both the fixed- and infinite-attribute set-
tings, we can distinguish 3 distinct tasks: (1) feature-construction; (2) feature-
testing, or conversion of relational data into a feature-vector; and (3) model-
construction. In addition, it is useful to partition the overall time for stream-
processing into: fixed costs, that are once-off; and variable costs, that depend on
the size of the data stream. For the fixed-attribute setting, feature-construction
time is a fixed cost, feature-testing and model-construction times are variable
costs. For the infinite attribute setting, there are no fixed costs, and all three
tasks contribute to the variable cost. It may be important keeping these distinc-
tions in mind when examining runtimes. It is possible, for example, for fixed
costs to dominate variable costs in the fixed attribute-setting. If this happens,
the scaling of runtime with data size will only be observed if the fixed-costs are
discounted (this happens with the Hoeffding trees: see Fig. 4.5).

5 Related Work

As noted above, streams as a model for data and computation has early roots [17].
Hence it is not surprising that there is an extensive literature on learning from
data streams [1, 10]. Learning from potentially infinitely many examples, where
the target concept and its representation may be evolving, and accurate predic-

15



Figure 4.5: Scaling with and without fixed costs. With the use of Hoeffding-
tree model constructors, fixed costs (the cost for feature-construction) dominate.
This means that the scaling of runtime with data size will only be observed if
fixed costs are discounted. Here data sizes are progressively doubled (from
125,000 to 1,000,000 instances), and this is reflected once the fixed-cost effects
are removed.

tion may be required at any time, presents challenges that have been addressed
in a number of different ways that relate to our work.

Many early machine learning systems were incremental, assuming that ex-
amples were given one-at-a-time, and this was also the case for ILP. For example,
the two earliest implemented approaches to learning within a Logic Program-
ming formalism [29, 31] used a strategy of generalising or specialising the theory
being learned in response to a succession of input data, that is, a stream. In
the case of Marvin [29], this was partly due to motivations from cognitive psy-
chology [6], whereas MIS [31] was developed within the framework of Inductive
Inference [11], which is inherently incremental. However, ILP moved towards
batch learning as a way to obtain increased efficiency, in order to handle larger
datasets—at the time, in the hundreds of examples [24, 28]. This move was a
recognition that incremental learning operators, often requiring large amounts
of search which was largely repeated for successive examples, were too com-
putationally expensive for large streams. An additional advantage of efficient
batch learners was to enable the adoption of probabilistic data-driven evalua-
tion functions for generalisation or specialisation searches [28, 27], rather than
ad hoc heuristics as typically had been adopted for incremental theory-driven
approaches. These aspects of ILP search and evaluation remain in our ap-
proach to relational feature constuction, but within an online learning setting
where they can be more tightly controlled.

Algorithms that learn using some form of gradient descent update rule can be
used for online learning by adopting the incremental or stochastic version of this
approach, making adjustments to their parameters in response to feedback on
prediction of a stream example by the current model. Although these algorithms
are able, under certain conditions, to arbitrarily closely approximate the model
that would be learned by the corresponding batch method [5], they assume
that examples are randomly sorted and are not designed to handle concept
drift. However, guarantees can be obtained for multiplicative weight update
algorithms [19, 9] for online learnability.

Beyond ILP it had become clear more broadly in machine learning that,
in addition to large numbers of instances, large numbers of attributes were

16



becoming common in real-world applications. This led to the development of
attribute-efficient learners [19, 37] in computational and statistical learning the-
ory. While both settings are attractive due to their sound theoretical basis, most
attention was focused on kernel methods [30], Unfortunately, since these solve
an optimization problem in the dual of the feature space they do not scale well
to datasets with large numbers of instances.

Online learners such as Winnow [19] are inherently scalable to large datasets,
and when extended to the infinite attribute setting [4] are scalable to very high
dimensionality data as well. They also have theoretical guarantees of learning
many concept classes within a bounded number of prediction errors or “mis-
takes”, and often these bounds translate to PAC results. The algorithm can
adapt to changes in the target concept, that is, concept drift, by demoting
previously used features.

Valiant’s proposal for robust logic [36], where first-order rules are comprised
of features in a linear model learned using multiplicative weight updates, is
perhaps the work that is closest to ours; however, the propositional learning
stage applies to vectors of features denoting literals rather than clauses defined
relative to background knowledge. The general framework has been used in
applications to large-scale data such as text-mining [22] on a natural language
corpus of half a million sentences.

As an alternative to learners using the linear models formalism for online
learning, a tree-based approach was introduced by Domingos and Hulten [7] that
uses sampling to enable efficient incremental learning. An important advantage
of this approach is that by application of Hoeffding bounds the trees learned
can be guaranteed to asymptotically closely approximate a tree learned by a
batch approach. This representation was lifted to first-order trees for both
classification [20] and regression [21]; the latter shows that the same asymptotic
properties will hold for first-order trees as in the propositional setting. However,
a technical difficulty prevents a direct empirical comparison to the techniques
reported here. The implementation in [20], although designed for stream-based
learning, uses the machinery provided by the ACE system11, which requires
all examples to be stored in main memory. This is in conflict with one of the
driving motivations of this paper. Nevertheless, the encouraging results in [20]
and our own findings here with use of Hoeffding trees suggests a promising way
forward. The Hoeffding tree approach [7] has been generalised to the multi-
relational learning task where the algorithm is given an extensional database
and can learn attributes representing queries that are relevant to classifying
instances of the target [13]. This does not, however, allow the use of general
background knowledge for feature construction, in the manner we have done
here.

6 Concluding Remarks

Can an ILP system analyse millions of data instances effectively and efficiently?
The experiments we have reported in this paper suggest that an on-line ILP
system that uses a simple multiplicative-update algorithm can answer this ques-
tion in the affirmative. Whether a fixed- or infinite-attribute setting should be

11http://dtai.cs.kuleuven.be/ACE/

17



employed depends on whether or not there is concept-drift. The results also sug-
gest that if there is no concept-drift, an ILP-based system that builds tree-based
models using on probabilistic sample bounds will also work well. The technique
we have employed is in principle, applicable to indefinitely large datasets, and
can be extended to perform unsupervised learning and the analysis of time-
series.

There are a number of ways in which the work here can be extended. Re-
newed interest on on-line learning has resulted from the discovery of stochastic
gradient descent (SGD) methods. This has allowed the development of efficient
update rules for a number of classification, regression and clustering methods
that perform some kinds of convex optimisation. It is now possible, for exam-
ple, to devise very fast on-line variants of techniques like logistic regression and
support-vector machines. The development of a general-purpose technique to
allow theincorporation of SGD into on-line ILP systems will thus allow us to
address a broader range of problems using more model-construction tools.

On the extension of existing methods, we can see three possibilites immedi-
ately. First, we have already mentioned the work of [20]: it should be possible
also to devise a true on-line version of this, which will effectively allow the con-
struction of first-order Hoeffding trees in an infinite attribute space. Second,
support-vector ILP has already been examined within the ILP setting [25]: it is
of interest to see how to obtain an on-line version of this, perhaps by employ-
ing SGD. Thirdly, and somewhat tangentially, we see a straightforward role for
techniques like MapReduce for the parallel construction of feature-vectors. The
use of MapReduce in [33] did not look at its use in ILP-based feature evaluation.

Finally, by demonstrating the feasibility of analysing large datasets like Zinc,
we hope to open the ‘big data’ door for ILP-based methods. This will only
happen if even larger problems are addressed, in which important advantages of
ILP like the use of background-knowledge and discovery of relational features
are found to be beneficial. We believe the empirical investigation of the kind
reported here will help clarify directions for future work of this nature.

Bibliography

[1] C. Aggarwal. Data Streams: Models and Algorithms. Springer, New York,
2007.

[2] A. Bifet and R. Gavaldà. Learning from Time-Changing Data with Adap-
tive Windowing. In Proc. of the Seventh SIAM Intl. Conference on Data
Mining, pages 443–448, 2007.

[3] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online
Analysis. Jnl. Mach. Learn. Res., 11 (2010):1601–1604, 2010.

[4] A. Blum. Learning Boolean Functions in an Infinite Attribute Space. Ma-
chine Learning, 9:373–386, 1992.

[5] L. Bottou. Online Learning and Stochastic Approximations. In D. Saad,
editor, Online Learning in Neural Networks, pages 9–42. Cambridge Uni-
versity Press, Cambridge, 1998.

18



[6] J. S. Bruner, J. J. Goodnow, and G. A. Austin. A Study of Thinking. John
Wiley and Sons, New York, 1956.

[7] P. Domingos and G. Hulten. Mining High-Speed Data Streams. In
KDD2000: Proc. of the Sixth ACM SIGKDD Intl. Conference on Knowl-
edge Discovery and Data Mining, pages 71–80. ACM, 2000.

[8] T. Faruquie, A. Srinivasan, and R. King. Topic Models with Relational
Features for Drug Design. In F. Riguzzi and F. Železný, editors, Proc. of
the 22nd Intl. Conference on Inductive Logic Programming, number 7842
in LNAI, pages 45–57, Berlin, 2013. Springer.

[9] Y. Freund and R. Schapire. A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997.

[10] J. Gama. Knowledge Discovery from Data Streams. CRC Press, 2010.

[11] E.M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[12] D. Hand, F. Daly, A. Lunn, K. McConway, and E. Ostrowski. A handbook
of small data sets. Chapman and Hall, 1994.

[13] G. Hulten, P. Domingos, and Y. Abe. Mining Massive Relational
Databases. In Proc. of IJCAI-2003 Workshop on Learning Statistical Mod-
els from Relational Data, pages 53–60, 2003.

[14] S. Joshi, G. Ramakrishnan, and A. Srinivasan. Feature Construction Us-
ing Theory-Guided Sampling and Randomised Search. In F. Železný and
N. Lavrac̃, editors, Proc. of the 18th Intl. Conference on Inductive Logic
Programming, number 5194 in LNAI, pages 140–157, Berlin, 2008. Springer.

[15] I. Katakis, G. Tsoumakas, and I. Vlahavas. Dynamic feature space and in-
cremental feature selection for the classification of textual data streams. In
Proc. of the ECML/PKDD-2006 Intl. Workshop on Knowledge Discovery
from Data Streams, pages 107–116, 2006.

[16] J. Kelly and S. Hamm. Smart Machines: IBM’s Watson and the Era of
Cognitive Computing. Columbia University Press, New York, 2013.

[17] P. Landin. A correspondence between ALGOL 60 and Church’s lambda
notation. Communications of the ACM, 8(2):89–101, 1965.

[18] J. Langford, L. Li, and T. Zhang. Sparse Online Learning via Truncated
Gradient. Journal of Machine Learning Research, 10:777–801, 2009.

[19] N. Littlestone. Learning Quickly When Irrelevant Attributes Abound: A
New Linear-Threshold Algorithm. Machine Learning, 2:285–318, 1988.

[20] C. Lopes and G. Zaverucha. HTILDE: Scaling Up Relational Decision
Trees For Very Large Databases. In Proc. 24th Annual ACM Symposium
on Applied Computing (SAC 2009), pages 1475–1479. ACM, 2009.

19



[21] G. Menezes. HTILDE-RT: Um Algoritmo de Aprendizado de Árvores de
Regressão de Lógica de Primeira Ordem Para Fluxos de Dados Relacionais.
Master’s thesis, Universidade Federal do Rio de Janeiro, 2011.

[22] L. Michael and L. Valiant. A First Experimental Demonstration of Massive
Knowledge Infusion. In KR-08: Proc. Eleventh Intl. Conference on Prin-
ciples of Knowledge Representation and Reasoning, pages 378–388, 2008.

[23] R. S. Michalski. A theory and methodology of inductive learning. In
R. Michalski, J. Carbonnel, and T. Mitchell, editors, Machine Learning:
An Artificial Intelligence Approach, pages 83–134. Tioga, Palo Alto, CA,
1983.

[24] S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Mug-
gleton, editor, Inductive Logic Programming, pages 281–298. Academic
Press, London, 1992.

[25] S. Muggleton, H. Lodhi, A. Amini, and M. Sternberg. Support Vector
Inductive Logic Programming. In D. Holmes and L. Jain, editors, Inno-
vations in Machine Learning, volume 194 of Studies in Fuzziness and Soft
Computing, pages 113–135. Springer, Berlin, 2006.

[26] S. Muggleton and D. Michie. Machine Intelligibility and the Duality Prin-
ciple. In H. Nwana and N. Azarmi, editors, Software Agents and Soft Com-
puting, volume 1198 of Lecture Notes in Computer Science, pages 276–292.
Springer, 1997.

[27] S. Muggleton, A. Srinivasan, and M. Bain. Compression, Significance and
Accuracy. In D. Sleeman and P. Edwards, editors, ML-92: Proc. of the
Ninth Intl. Workshop on Machine Learning, pages 338–347, San Mateo,
CA, 1992. Morgan Kaufmann.

[28] J. R. Quinlan. Learning logical definitions from relations. Machine Learn-
ing, 5(3):239–266, 1990.

[29] C. Sammut. Learning Concepts by Performing Experiments. PhD thesis,
Department of Computer Science, University of New South Wales, Sydney,
Australia, 1981.

[30] B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, Cambridge,
MA., 2002.

[31] E. Shapiro. An Algorithm that Infers Theories from Facts. In A. Dri-
nan, editor, IJCAI-81 :Proc. of the 3rd Intl. Joint Conference on Artificial
Intelligence, pages 446–451, Los Altos, CA., 1981. Morgan Kaufmann.

[32] S.Kramer, N. Lavrac, and P. Flach. Propositionalization approaches to
relational data mining. In Relational Data Mining, pages 262–286. Springer-
Verlag, New York, 2001.

[33] A. Srinivasan, T. Faruquie, and S. Joshi. Data and task parallelism in ILP
using MapReduce. Machine Learning, 86(1):141–168, 2012.

20



[34] A. Srinivasan, R. King, S. Muggleton, and M. Sternberg. Carcinogenesis
Predictions Using ILP. In N. Lavrac and S. Dzeroski, editors, ILP-97:
Proc. 7th Intl. Workshop on Inductive Logic Programming, volume 1297 of
Lecture Notes in Computer Science, pages 273–287. Springer, 1997.

[35] A. Srinivasan, S. Muggleton, M. Sternberg, and R. King. Theories for
mutagenicity: a study in first-order and feature-based induction. Artificial
Intelligence, 85(1–2):277–299, 1996.

[36] L. Valiant. Robust logics. Artificial Intelligence, 117(2):231–253, 2000.

[37] V. Vapnik. Statistical Learning Theory. Wiley, New York, NY., 1998.

21



A Experimental Details

A.1 Implementation

Both the infinite and fixed-vector approaches to on-line model construction can be
implemented within the streaming mechanism provided by the Aleph ILP system. The
principle technique employed by Aleph is to call a user-defined predicate aleph stream/1
with each each element of the data stream. Here is an implementation of the infinite-
stream setting using this predicate:

aleph_stream(Example):-

process(Example).

process(Example):-

correctly_predicted(Example), !.

process(Example):-

induce(features), % construct new features

induce(model). % update model

We can introduce a measure of control into the generation of new features. For ex-
ample, we may only want to construct new features if we are fairly sure of a shift in
concept. The Page-Hinkley test is one way to detect such a change [10], which can
be incorporated as a guard on the induction of features. More generally, we envisage
a set of constraints that have to be satified before initiating feature-discovery. The
second clause for process/1 can be rewritten as:

process(Example):-

focus(Example), !, % constraints eg. Page-Hinkley test satisfied by the example

induce(features), % construct new features

induce(model). % update model

process(Example):-

induce(model). % only update the model (do not construct new features)

Assuming a fixed set of features have already been constructed beforehand, the
fixed-attribute setting follows by removing the induce(features) call in the definition.
Here, for example, is a definition that allows a invoking an external model-constructor
(like MOA) with a set of features already known to Aleph:

:- set(model_type,user). % calls aleph_model/1 to construct model

aleph_stream(Example):-

process(Example).

aleph_model(Model):-

[statements to invoke external model constructor]

process(end_of_file):-

!,

induce(model). % construct model, here by calling aleph_model/1

process(Example):-

correctly_predicted(Example), !.

process(Example):-

write_feature_vector(Example). % write feature-representation of instance

22



Using mechanisms within Aleph for customised model- and feature-construction, we
are able to specify several different ways of stream-processing in a (reasonably) declar-
ative manner. It is possible, for example, to perform sliding-window computations
over dependent instances in the following manner:

:- set(model_type,user). % calls aleph_model/1 to construct model

process(Example):-

join_queue(buf,Example), % store instance at the end of a queue (buf)

induce(model), % construct model, here by calling aleph_model/1

serve_queue(buf,_). % remove first element from queue (buf)

aleph_model(Model):-

queue_to_list(buf,Examples), % get all instances in a queue (buf)

compute_model(Examples,Model), % user-defined computation (eg. median)

update_model(model,Model). % store model for any-time prediction

23



A.2 Method

The following additional details are relevant for Experiments 1 and 2 (Time and Space):

1. For experiments here, the number of repetitions R is 10.

2. For simple targets, the number of features K is chosen randomly from the range
1 to 4. For complex concepts, the number of features K is randomly chosen
from the range 8 to 12. K features are then randomly constructed using the
ILP engine, and their disjunction constitute the target concept.

3. The ILP engine allows either a random or systematic strategy for generating
features [14]. We use a random strategy. The ILP engine also allows the spec-
ification of the kind of features (see [14]). We specify this to be the definite
category, which is most general possible.

4. For the infinite-attribute setting, at most 25 new features are allowed for each
data instance. This choice has no specific theoretical basis. The thresholds
for the weighted linear combination of features is correspondingly equal to the
number of features allowed for each data instance (that is, 25).

5. For the fixed-attribute setting a fixed set of features are obtained using a strati-
fied sample of 500 instances each from the “positive” and “negative” class. From
these, the ILP engine constructs at most 5000 features. These features are then
used to construct models using Winnow and on-line Hoeffding Tree builders in
the MOA toolbox.

6. For either setting, the effectiveness of model construction is estimated by its
predictive accuracy, and efficiency by the time taken to process all instances
in the data stream. These estimates are average values of these quantities
over the R repetitions. The predictive accuracy is measured on a “test set”
of 1000 pre-classified data instances that are different to ones in the data stream
(this is the hold-out performance [10]). Thus, for each assignment of values to
(Target,Data), we will denote performance by the pair (A, T ), denoting the
estimated accuracy and time taken for that assignment. Performance (A1, T1)
will be said to be better than (A2, T2) if A1 > A2; or A1 = A2 and T1 < T2.
In practice, we will take > to mean “significantly greater”, and = to mean
“approximately equal”.

The following supplementary details are relevant to Experiment 4 (Real Data):

1. As with the synthetic data, E0 will consist of 1000 instances consisting of strat-
ified samples of 500 instances each of positive and negative instances. Settings
for feature construction are the same as that used for synthetic data.

2. It has been a common practice in similar ILP applications (for example, the
mutagenesis or carcinogenesis datasets: [35, 34]) to pre-compute for each data
instance e all elements of the Herbrand base that are entailed by the background
knowledge B and the instance e (in effect, a form memoing or caching, used for
efficiency). We continue to do this here, although we note that this is impractical
for data streams with very large numbers of instances. Pre-computation can
however be done for instances in E0, if this is small (as is the case here): this
may benefit the construction of fixed-attribute models.

3. For simplicity, in all cases, a misclassification cost ratio of 10:1 is used for the
ratio of costs of false negatives to false positives. While the motivation for this
for Malaria and HIV have already been noted, it is not evident that it is needed
for Zinc. We take the position with the Zinc data that it is more important
to classify correctly molecules that bind to usual targets. The misclassification
cost is communicated to the on-line learner using a ratio of 10:1 of Winnow
promotion and demotion rates. For the Hoeffding Trees, we employ a search

24



procedure through a discretised space of its parameters to estimate the settings
that will yield the highest true-positive rates.

4. As before performance will be denoted by the pair (A, T ). Given the strong
emphasis we have adopted on avoiding false negatives, we will take A to be the
model’s true-positive rate (sometimes also called the recall or sensitivity of the
model). For completeness, we will also provide the model’s overall accuracy.

25



A.3 Results

The remainder of this appendix includes additional results from the empirical evalua-
tion.

Runtimes. In Figure A.1 we give runtimes on the controlled experiments for the
fixed-attribute setting (both Winnow and Hoeffding trees), and the infinite-attribute
setting (Winnow only); normalised times show the relative performance on both simple
and complex target concepts.

Additional features. In Figure A.2 we tabulate the increase in features that
occurs in the infinite-attribute setting as Winnow learns to adjust to the drift in the
target concept, for both simple and complex targets under three sizes of drift.

Small streams. In Figure A.3 we provide the results for the experiments discussed
above on small streams.

Predicted and actual mistakes. In Figure A.4 we compare the theoretical
mistake bounds for Winnow with the actual results obtained.

26



Model Data Accuracy Time Normalised

(%) (s) Time

125K 100.0 10.9(2.9) 1.0

Fixed 250K 100.0 13.3(3.0) 1.2

Hoeffding 500K 100.0 18.1(3.9) 1.7

1M 100.0 27.7(5.5) 2.5

125K 100.0(0.0) 22.3(3.9) 1.0

Fixed 250K 100.0(0.0) 36.2(6.0) 1.6

Winnow 500K 100.0(0.0) 64.7(10.5) 2.9

1M 100.0(0.0) 119.9(21.1) 5.4

125K 100.0(0.0) 28.9(18.9) 1.0

Infinite 250K 100.0(0.0) 56.0(36.4) 1.9

Winnow 500K 100.0(0.0) 110.4(74.0) 3.8

1M 100.0(0.0) 212.7(135.8) 7.2

(a) Simple targets

Model Data Accuracy Time Normalised

(%) (s) Time

125K 99.8(0.8) 14.5(5.5) 1.0

Fixed 250K 99.8(0.8) 19.6(4.6) 1.4

Hoeffding 500K 99.8(0.8) 29.9(5.5) 2.1

1M 99.8(0.8) 50.1(10.4) 3.5

125K 99.8(0.8) 34.6(5.5) 1.0

Fixed 250K 100.0(0.0) 59.9(11.2) 1.9

Winnow 500K 100.0(0.0) 109.4(24.2) 3.1

1M 100.0(0.0) 208.6(49.9) 6.0

125K 100.0(0.0) 52.3(8.8) 1.0

Infinite 250K 100.0(0.0) 107.1(12.1) 2.1

Winnow 500K 100.0(0.0) 228.2(28.1) 4.4

1M 100.0(0.0) 424.8(77.4) 8.1

(b) Complex targets

Figure A.1: Results on synthetic data of using on-line model construction with
ILP-constructed features. Models employ either the fixed- or infinite-attribute
setting. In the former, an ILP system constructs a fixed number of features from
a pre-classified sample of data instances. In the latter, features are constructed
“on-demand” as and when instances are misclassified with the existing set of
features. An entry N in the Data column refers to the dataset Trains N, as listed
in the paper. In all cases, accuracy is measured on an independent test set.
Times reported for the fixed-attribute setting include time taken for: feature-
construction, feature-testing and model-construction. The numbers tabulated
are average values obtained from 10 repetitions. Standard deviations are in
braces.

27



Shift Feature Increase

Small 25(21)

Large 48(22)

Extreme 72(16)

(a) Simple targets

Shift Feature Increase

Small 34(24)

Large 54(17)

Extreme 61(35)

(a) Complex targets

Figure A.2: Mean increase in the number of features with shift in concepts. The
results are for models in the infinite-attribute setting. The quantity in brackets
is the standard deviation. The mean is affected by some extreme values, and
the changes are better represented by the median. Here the median values are:
29, 50, 66 (simple targets); and 38, 51, 75 (complex targets).

28



Model Data Acc. (%) Time (s)

Trains 125 99.5(0.7) 8.4(2.7)

Fixed Trains 250 99.7(0.7) 8.4(2.7)

Winnow Trains 500 99.9(0.2) 8.4(2.7)

Trains 1K 100.0(0.0) 8.5(2.7)

Trains 125 97.5*5.4) 0.20(0.2)

Infinite Trains 250 99.2(1.7) 0.20(0.2)

Winnow Trains 500 99.4(0.9) 0.30(0.3)

Trains 1K 99.9(0.1) 0.40(0.3)

(a) Simple targets

Strategy Data Acc. (%) Time (s)

Trains 125 99.2(1.0) 9.3(5.9)

Fixed Trains 250 99.7(0.4) 9.3(5.9)

Winnow Trains 500 99.8(0.3) 9.3(5.9)

Trains 1K 99.9(0.1) 9.5(5.8)

Trains 125 92.4(7.4) 0.4(0.1)

Infinite Trains 250 95.5(6.9) 0.5(0.3)

Winnow Trains 500 97.7(2.0) 0.7(0.3)

Trains 1K 99.2(1.0) 1.0(0.4)

(b) Complex targets

Figure A.3: Results with small data streams. Here the suffixes “125, 250, 500,
1K” stand for 125, 250, 500 and 1000 data instances respectively. As before,
accuracies are on an independent test set, and standard deviations are in braces.

29



Trial (R) Pred. Act.

1 18 2

2 26 5

3 25 5

4 11 8

5 29 6

6 14 5

7 10 3

8 20 6

9 58 4

10 20 2

(a) Simple targets

Trial (R) Pred. Act.

1 110 5

2 98 4

3 102 12

4 119 5

5 132 139 (*)

6 127 7

7 110 39

8 112 9

9 196 20

10 178 13

(b) Complex targets

Figure A.4: Comparison of the mistake-bound predicted by theoretical analysis
for Winnow and the actual mistakes made by the ILP-Winnow engine. The data
stream consists of the 1 million instances denoted “Trains 1M”; and the values
shown are for the ILP-Winnow engine in the fixed-attribute setting. The row
marked with a “*” denotes an instance where the Winnow bound is exceeded.

30


