
Improving GA-based mapping algorithm of NoC
using a formal model

Vinitha A Palaniveloo1 Arcot Sowmya1

1 University of New South Wales, Australia
{vinithaap,sowmya}@cse.unsw.edu.au

Technical Report
UNSW-CSE-TR-201335

December 2013

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

Abstract

Network on Chip (NoC) is a sophisticated communication infrastructure designed to
interconnect components in a complex system on chip (SoC). NoC provides quality of
service (QoS) guarantee to the applications mapped on it. QoS depends on NoC router
architecture, NoC communication scheme, application traffic characteristics as well as
application mapping strategy.

Applications are mapped to NoC using mapping algorithms that satisfy power/ la-
tency/ bandwidth constraints. The effect of different mapping algorithms on QoS pa-
rameters such as average latency, throughput, power and area is evaluated using NoC
simulators. The suitable QoS parameter for evaluating mapping algorithms that satisfy
bandwidth constraint and minimizes average communication delay is worst-case com-
munication latency. Worst-case latency is a measure of latency upper bound, it provides
insight on the latency guaranteed by NoC to the application. However, it is not possible
to measure worst-case latency using NoC simulator so analytical models are used. The
formal model previously proposed for measuring worst-case latency formally is used
here to improve mapping algorithms constraint to bandwidth and latency.

1 Introduction
Applications may be mapped to NoCs using static or dynamic mapping techniques [1].
In static mapping, the mapping is decided off-line before the application executes. In
dynamic mapping, mapping is performed on-line during the execution of the applica-
tion dynamically during run time. Static mapping is generally used in NoCs to avoid
the excess communication overhead in dynamic mapping.

The static application mapping approaches can be broadly classified into two: (a)
Exact mapping and (b)Search based mapping. Exact mappings are developed either
by using greedy mapping that places cores by considering the cost of placement [2]
or iterative mapping that run iteratively until the design goal is met [2–4]. Search
algorithms however search the mapping space systematically or heuristically for a so-
lution [5]. Genetic algorithms (GA) based mapping is a heuristic search algorithm,
which maps applications by transforming existing mapping solution(s) to arrive at bet-
ter ones [6–10].

Genetic algorithms based mapping techniques converge at a near optimal solution
by using a cost function to select off springs for replacing parents in the next generation
[9]. Generally analytical NoC models are used in the cost function, however, they are
not robust as they abstract architecture specific details in the model [5]. To overcome
this drawback, we propose using a formal NoC model [11] in the cost function. A
model checker estimates worst-case latency in the formal model by exhaustive state
space search traversing all possible scenarios, considering the behaviour of applications
during system execution. The formal model is used in the cost function of a simple
generational GA here, to check if it enables the algorithm to search for a near optimal
solution in fewer generations. A generational GA uses replacement strategy where
offspring replaces the parents.

2 Related Work
Applications may be mapped to NoCs using static or dynamic mapping techniques [1].
In static mapping, the mapping is decided off-line before the application executes. In
dynamic mapping, mapping is performed on-line during the execution of the applica-
tion dynamically during run time. Static mapping is generally used in NoCs to avoid
the excess communication overhead in dynamic mapping.

The static application mapping approaches can be broadly classified into two: (a)
Exact mapping and (b)Search based mapping. Exact mappings are developed either
by using greedy mapping that places cores by considering the cost of placement [2]
or iterative mapping that run iteratively until the design goal is met [2–4]. Search
algorithms however search the mapping space systematically or heuristically for a so-
lution [5]. Genetic algorithms (GA) based mapping is a heuristic search algorithm,
which maps applications by transforming existing mapping solution(s) to arrive at bet-
ter ones [6–10].

Genetic algorithms based mapping techniques converge at a near optimal solution
by using a cost function to select off springs for replacing parents in the next generation
[9]. Generally analytical NoC models are used in the cost function, however, they are
not robust as they abstract architecture specific details in the model [5]. To overcome
this drawback, we propose using a formal NoC model [11] in the cost function. A
model checker estimates worst-case latency in the formal model by exhaustive state
space search traversing all possible scenarios, considering the behaviour of applications

1

during system execution. The formal model is used in the cost function of a simple
generational GA here, to check if it enables the algorithm to search for a near optimal
solution in fewer generations. A generational GA uses replacement strategy where
offspring replaces the parents.

3 Formal NoC model for worst-case end-to-end latency
estimation

A formal model for worst-case latency estimation has been published [11], however
a brief outlined is presented here as a prelude. A formal NoC model was developed
using PROMELA (PROcess MEta LAnguage), the input modeling language for SPIN
(Simple Promela INterpreter) [12] model checking tool. Worst case latency estimation
was posed as the problem of checking the reachability of packet destination states in the
NoC model. A model checker performs verification by exhaustive state space search
traversing all possible scenarios. Hence, the verifier will pass through the path with
worst latency at least once during exhaustive search.

In the formal model, each router is modeled as a one state FSM and the behaviours
of the functional blocks are implemented as events or functions on the state transitions
as shown in Fig 3.1. [P0, ..., P8] are the router processes at routers [R0, ..., R8]. At
each clock tick, the router process reads the status of all the input ports receive R0,
injects packet inject pkt R0, performs packet processing such as routing switch R0 and
contention resolution arbitrate R0, receives packet sink pkt R0 and updates the output
ports transmit R0 before transitioning to the next state.

Figure 3.1: On-chip router processes

By using the synchronous modeling already proposed [11], the concurrent opera-
tion of router processes at every global clock tick is replaced by a sequence of processes
at every clock tick as shown below:

Pt0 = P0.P1.P2.P3.P4.P5.P6.P7.P8 (3.1)

Hence, the model of a complete synchronous NoC can be simplified to a single state
process with all the functional blocks of all the routers as events on the state transition,
shown in Fig 3.2.

As a result, the number of processes required to model an NoC is 4 SPIN processes
irrespective of the number of routers in the NoC, overcoming the state explosion prob-
lem in model checking large NoC designs. The model was used to estimate worst-case

2

Figure 3.2: Synchronous model of NoC

latencies for large NoCs using SPIN model checker for various traffic rates [11]. The
model checker performs verification by unfolding the state machine to specified depths
and exploring all the possible paths of execution in the expanded state machine. Since
all the paths from the initial state are traversed, in each run it is possible to obtain the
worst-case latency. The communication latency of the packets for each run is logged
in a file by the verifier, which is used to obtain the worst-case end-to-end latency of all
the execution runs.

4 Motivation
Consider the DSP Filter application shown in Fig 4.1, where each block corresponds to
a functional core and the edges connecting the cores specify the bandwidth demands of
communication between them. The bandwidth demands are in the order of hundreds
of MBytes/s.

Figure 4.1: DSP Filter Application

Mapping generated by NMAP algorithm satisfies bandwidth constraint and min-
imizes the communication delay. The algorithm supports both single-minimum path
routing and split-traffic routing. The mapping of cores is done based on average traf-
fic between the cores. The mapping obtained for the DSP application using NMAP
algorithm [13] is shown in Fig 4.2.

The size of the search space for mapping algorithms explodes as the size of the
application increases. For example, the search space size for mapping an application

3

Figure 4.2: Optimal Mapping using NMAP algorithm

with 6 cores on 2x3 mesh NoC can be calculated using the formula for permutation:

nPr =
n!

(n− k)!
(4.1)

where,’n’ is the total number of items in the sample and ’r’ is the number of items se-
lected from the sample. For n,r = 6 the search space size is nPr = 720. Similarly, the
search space size is 362880 for an application with 9 cores and it increases exponen-
tially to 2.09227x1013 for an application with 16 cores.

The formal NoC model proposed in [14] is used to determine worst-case latency
when DSP application mapped on NoC as shown in Fig 4.2. The application traffic
rate is specified as input to the application traffic model. In the formal model the
peak link bandwidth is assumed 1000 packet/s with one filt in each packet. The DSP
application bandwidths are specified as 200MB/s and 600MB/s for peak link bandwidth
of 1000MB/s in Fig.5, hence they translate to 200packets/cycle and 600packets/cycles
in the formal model, i.e., 20% and 60% packet injection rate for 1000packet/cycle
peak bandwidth. 20% and 60% packet injection rates under uniform traffic scenario
is specified as one packet every 5 clock cycles and one packet every 2 clock cycles
respectively [14].

The worst case latency estimated for mapping solution generated by NMAP map-
ping algorithm is 3.375 clock cycles. The formal model took 0.016 sec to determine
worst-case latency for one mapping solution of the DSP application. As the number of
permutations is 720 it is possible to estimate worst-case latency for all the permutation
to ensure if the solution produced by NMAP algorithm is right.

he average worst-case end-to-end communication latency was obtained for all the
720 mapping permutations in 17 min 42 sec. The lowest average worst-case latency
estimated was 3.375 clock cycles and there were 8 optimal mappings with this lowest
average worst-case latency, the list is shown in Table 4.1.

In the table, the mappings are identified by referring to permutation file name and
R0, R1, R2, R3, R4 and R5 are router numbers to which the functional modules of
the application are mapped in the NoC topology. The mapping solution obtained using
NMAP and the simple mapping heuristic are MAP 391 and MAP 701 respectively. As
it is possible to design different mapping algorithms for the same constraint [13,15,16]
and the solution produced by different mapping algorithms may not be the same, it is
necessary to compare them quantitatively.

As several optimal solutions are available in the design space hence it is necessary
to explore the possibility of finding as many optimal solutions as possible. Hence a
mapping exploration algorithm was developed.

4

Table 4.1: Mappings with lowest worst case latency in 3X2 NoC

Modules MAP
93

MAP
95

MAP
271

MAP
276

MAP
391

MAP
396

MAP
699

MAP
701

Memory R0 R0 R3 R5 R3 R5 R2 R2
Filter R5 R4 R1 R1 R1 R1 R4 R4
IFFT R3 R5 R0 R0 R2 R2 R3 R5
FFT R4 R3 R2 R2 R0 R0 R5 R3
ARM R1 R1 R4 R4 R4 R4 R1 R1
Display R2 R2 R5 R3 R5 R3 R0 R0

Mapping evaluation tool A simple mapping evaluation tool was developed using
PYTHON, consisting of two key modules (a) mapping generation module and (b) la-
tency analysis module. The mapping generation module uses the SPIN model as the
back-end tool to estimate the worst-case latency of a mapping. The architecture of the
mapping tool is shown in Fig 4.3 .

Figure 4.3: NoC verifier architecture

The mapping tool contains a configuration file to specify the size of the application
and bandwidth constraint for every functional core in the application. For example,
for functional core T1 the source (SRC), destination (DEST), bandwidth in terms of
% load (LOAD) and type of traffic as uniform (UNIFORM) is specified in the file.
Similarly, the configuration may be specified for all the functional cores T2,Tn in
the application.

The mapping generation module in the mapping evaluation tool generates the map-
ping permutations, for each mapping permutation application traffic specification was
generated using the configuration file which is used by SPIN NoC model to calculate
worst-case latency for the mapping configuration. The worst-case latency was esti-
mated by the SPIN model for each mapping is logged in the file logging.txt. The
latency analyser module sorts and picks the mapping with lowest worst-case latency
from the log file. The log also maintains record of worst case latency estimated on the
individual packet paths for every mapping.

The algorithm underlying the mapping evaluation tool for the DSP filter application

5

is shown in Algorithm 1. The application traffic is specified in the algorithm as P1,
P2,..,Pn, the injection rate of each packet. The list with mapping permutations is
generated in A. For each permutation the mapping configuration files was generated
with traffic details. SPIN model was used to estimate latency and for each mapping the
latency was logged into latencylog.txt file. The suitable mapping was selected from
the log file by the latency analyser.

Algorithm 1 Pseudocode of Mapping generation tool in PYTHON
Input: Application traffic specification
Output: Optimal mappings
P1: N1, N2, 20%, Uniform traffic
P2: N1, N5, 60%, Uniform traffic
A = list(itertools.permutations([’N1’,’N2’,’N3’,’N4’,’N5’,’N6’], 6))
for items ∈ A do

Map applications to routers in NoC SPIN
Generate application traffic file with source and destination address of router
Estimate worst case latency for mapping and log it latencylog.txt

end for
for items ∈ latencylog.txt do

Sort worst case latencies
end for
Output optimal mapping

There are 8 different packet paths in the application. Using the SPIN formal model,
it was possible to estimate the worst case latencies on specific latency paths. The worst
case latencies on specific packet paths for all the solutions in the optimal solution space
are shown in Table 4.2. It was observed that mappings MAP 93, MAP 271, MAP 276,
MAP 699 have similar latencies on the individual paths. Similarly, the mappings MAP
95, MAP 391, MAP 396 and MAP 701 have similar latencies on the individual paths.

Table 4.2: Worst case latency on packet paths for mappings in optimal solution space

Path No MAP
93

MAP
95

MAP
271

MAP
276

MAP
391

MAP
396

MAP
699

MAP
701

P1: ARM to Filter 5 5 5 5 5 5 5 5
P2: ARM to Display 3 3 3 3 3 3 3 3
P3: FFT to Filter 3 4 3 3 4 4 3 4
P4: Filter to FFT 3 3 3 3 3 3 3 3
P5: Filter to IFFT 3 3 3 3 3 3 3 3
P6: Filter to ARM 3 3 3 3 3 3 3 3
P7: IFFT to Filter 4 3 4 4 3 3 4 3
P8: Memory to ARM 3 3 3 3 3 3 3 3

Knowing the latencies on individual packet paths in addition to the average worst-
case latency of NoC facilitates finding optimal mapping solutions with respect to real-

6

time constraints. DSP applications have real-time latency constraint to complete com-
munication within a given time [16], for example, consider a real-time constraint that
packets from FFT must reach Filter in less than 4 clock cycles in addition to the gen-
eral requirement that the average worst case of NoC must be the lowest. Then, from
the table it can be found that MAP 93, MAP 271, MAP 276 and MAP 699 satisfy the
real-time constraint.

An extension of NMAP was proposed to map application traffic can have real-
time constraint [16], for example, packets from ARM must reach Filter as quickly as
possible with maximum throughput. Then the suitable architecture may be selected
by sorting the worst case latencies. The worst case latencies sorted with ARM to
Filter latencies to be the lowest is shown in the Table 4.3. The lowest worst-case
latency that is possible between ARM and Filter is 3 clock cycles. Since, latency is
inversely proportional to throughput, i.e., if the latency is lower then the throughput of
the network is high. NoC mappings with high throughput are MAP 45, MAP 69, AND
MAP 402 as they have lowest worst case latency of 3.875 clock cycles. Hence, the
possible solutions are MAP45, MAP69, MAP402.

Table 4.3: Worst case latencies on packet paths of NoCs mappings

Mapping P1 P2 P3 P4 P5 P6 P7 P8 Average
MAP45 3 3 4 3 3 3 5 7 3.875
MAP74 3 3 4 3 7 3 7 3 4.125
MAP69 3 3 5 3 3 3 4 7 3.875
MAP130 3 3 5 5 7 4 8 5 5.000
MAP76 3 3 7 7 3 3 4 3 4.125
MAP124 3 3 8 7 5 4 5 5 5.000
MAP233 3 5 5 5 7 3 8 3 4.875
MAP213 3 5 7 7 3 3 4 3 4.375
MAP402 3 7 4 3 3 3 5 3 3.875
MAP118 4 3 3 3 5 3 6 5 4.000
MAP7 4 3 3 3 5 4 6 5 4.125
MAP50 4 3 3 3 7 3 8 8 4.875
...
MAP93 5 3 3 3 3 3 4 3 3.375
MAP117 5 3 3 3 3 5 4 5 3.875
...
MAP541 7 8 5 5 3 5 3 3 4.875
...
MAP693 8 5 6 5 5 7 5 5 5.750

Inference The case study shows that for any given application, NoC specification
and QoS requirement constraints, there is more than one correct solution. There exists

7

an optimal solution space from which the designer can select a solution based on con-
straints such as power, area and cost. The possible solution space is shown is Fig 4.4.
However, as the application size increases it is not possible to explore the complete
mapping space using SPIN model, as the mapping permutation increases exponentially
with the size of the application.

Figure 4.4: Possible solution space

In order to understand the capability of the proposed mapping evaluation tech-
nique, complete mapping space exploration was done for mapping an application with
9 functional cores onto a 3x3 NOC. For a 3x3 NoC there are 362880 possible mapping
permutations. The complete mapping space was explored and it was found that there
were 30 optimal mapping solutions with lowest worst-case latency. 6 and half days
(148.62 hours) were taken to explore the complete mapping space. However, explo-
ration of entire mapping space is not possible for large application due to exponential
increase in the number of mapping permutations.

But, result confirms two important things (a) it satisfactorily confirms the fidelity
of SPIN model for estimating worst-case latency and (b) SPIN model is suitable for
reason about NoC mapping problem.

As, there is no mapping heuristics in the literature to more than optimal mapping
in the literature, initially the possibility of developing a mapping heuristic to find more
than one solution was carried out. In NMAP algorithm, an exact placement is generated
and then iterated to obtain exact optimal mapping solution. In order to find multiple
optimal solutions, the solutions are generated iteratively by systematically placing the
cores according to bandwidth constraint, retaining all the placements that satisfied the
bandwidth constraint. The proposed mapping algorithm proposed does not terminate
for large applications and the algorithm does not find the complete set of optimal map-
pings. However, it was a partial success so the algorithm and the result are recorded
for reference in the Appendix 8.

Genetic algorithm based mapping mapping algorithms are capable of finding mul-
tiple optimal solution [7, 8]. The possibility of improving GA based mapping using
formal model is explained in the next section.

8

5 Integrating formal model into GA-based mapping al-
gorithm

Genetic Algorithms (GAs) belong to the class of evolutionary algorithms, with heuris-
tics inspired by the process of natural evolution. It is an iterative process for finding
near-optimal solutions for very large and/or multidimensional solution spaces. The
heuristic starts with a population of random solutions called seeds and uses a fitness
function to keep or discard a part of the population. Then mutation and crossover op-
erators are used to generate seeds for the next generation from the first population. We
improve the GA based mapping algorithm is improved by using the formal NoC model
in the fitness function to estimate worst-case latency and select part of the population
with lowest worst-case latencies.

A simple GA based algorithm for finding an optimal mapping is shown below:

A Generate a random population of solutions. The individual member of the popula-
tion is a chromosome, which represents a plan of mapping. Every chromosome
contains a series of genes. Every gene represents an application node and its
position represents the vertex in a mesh topology.

B The fitness function is used to estimate latency for every member in the population.
Using fitness function for estimating worst case latency, the part of the popula-
tion with lowest worst case latency is selected from the old population.

C A new population is generated from the selected population using chromosome
crossover and mutation operators. Both crossover and mutation are used to
converge to the results. Mutation introduces diversity in the population and
crossover operator combines parents to create offspring. Single point crossover
is generated by combining at a single cut.

D Go to Step B and repeat for fixed number of loop iterations called generations.

E The best individual of the last population is the optimal mapping obtained using
genetic algorithm.

Initially in step [A], the GA algorithm generates seeds or initial population with
a plan for mapping randomly. The number of seeds can be initialized, this is called
offspring size. In the next step [B], a fitness function is used to check if the seeds
of the first population are suitable for breeding in order to create the next generation.
The fitness function uses the formal NoC model to estimate worst case latency for
all the seeds, and the seeds with lowest worst-case latency are selected for breeding.
Breeding is done using mutation operator or crossover operator. The number of rounds
of mutation/scheduled flow can be set in the code, this is called the generation size.

The novelty of our approach is the integration of NoC formal model in the fitness
function of the genetic algorithm. The formal model is called as an inline function to
estimate worst case latency. The fitness function selects the offspring with the lowest
worst case latency from the seeds. It is necessary to set the right population size and
generation size to find the optimal solutions. By executing the mapping algorithms with
different population sizes and generation sizes for a simple problem, it was found that
population size = 100 and generation size = 10 are appropriate to find many optimal /
near optimal solutions with formal model in fitness function.

9

6 Experiment
The mapping solution generated by GA based mapping algorithm integrated with for-
mal model is compared with the solution of GA based mapping algorithms with ana-
lytical model, to find if integrating formal model has improved the mapping algorithm.

Sample test application: Mapping algorithms are compared using 7 sample appli-
cations [APP1...APP7], each containing 6, 9, 16, 25, 100, 400, 900 cores with 5, 15, 25,
38, 150, 600, 1349 communication traces respectively. These applications are mapped
on NoCs in 3x2, 3x3, 4x4, 5x5, 10x10, 20x20 and 30x30 mesh topologies respectively.
Routers of NoC are typical HERMES routers [17] with XY routing algorithm, priority
based round robin arbitration logic and unit buffers at input port.

The formal NoC model is used to estimate worst-case latency for the mapping
solutions generated by different mapping algorithms, and they are compared to check if
integrating formal model produced better mapping solution than the mapping algorithm
without formal model.

GA with analytical model: Latency refers to the length of time elapsed for packets
from source node to reach the destination node. Average latency in NoC is depends on
hop count and delay in contention resolution in the network [18]. Latency associated
with hop count depends on interconnect topology and routing algorithm. Contention
latency is impacted by traffic loads and buffers in the router, it is calculated using either
probabilistic models or queuing theory [19]. The basic method of delay estimation by
hop-count does not consider the contention latency. The development of good analyti-
cal model encompassing several design factors such as buffer size, traffic load, routing
algorithm is an open problem.

Generally, mapping algorithms use hop count as cost hence, in this paper the ana-
lytical model for GA based mapped algorithm is developed for basic delay estimation,
i.e., end-to-end latency of packets in NoC is estimated in terms of hop count which
depends on the routing algorithm in the routers. In this case, hop count is calculated
deterministically for any given mapping configurations as the routers are implemented
with XY routing algorithm.

6.1 Compare GA based mapping algorithms with respect to worst-
case latency

The population size is set to 100 and generation size is set to 10, and mapping solu-
tions are generated by GA based mapping algorithms using formal model in the fitness
function and analytical model in the fitness function. The mapping solutions generated
by the algorithms are compared with respect to worst case latencies.

In the genetic algorithms, the offspring is generated using two types of genetic
operators (i) random mutation operator and (ii) single point crossover operator. The
worst-case latency estimated for the mapping solutions generated by using random
mutation and single point crossover in the GA with formal model are shown in the
columns WCL (R FM), WCL (S FM) and for GA with analytical model in the columns
WCL (R AM), WCL (S AM) of Table 6.1.

From the table, it can be seen that all the GA-based algorithms perform equally
well for smaller applications [APP1...APP4]. However, the GA algorithm integrated
with formal model is better than GA with analytical model for larger applications
[APP5...APP7], as the worst-case latency estimated for the mapping solution gener-
ated by GA algorithm with formal model is lower that GA algorithm with analytical
model.

10

Table 6.1: Comparative results for Genetic algorithm: Worst case latencies (cycles)

Application WCL
(R FM)

WCL
(S FM)

WCL
(R AM)

WCL
(S AM)

APP1 3.375 3.375 3.375 3.375
APP2 3.84 3.84 4.384 4.3
APP3 5.32 5.44 5.56 5.56
APP4 6.6 7.4 7.89 8.31
APP5 20.2 20.7 25.14 29.55
APP6 86.45 80.4 121.515 112.47
APP7 203.8 222.1 395.47 271.38

Inference: The worst case latency estimated for mapping solution generated by GA
with formal model using random mutation is on an average 20 % lower than GA with
analytical model using random mutation.

The worst case latency estimated for mapping solution generated by GA with for-
mal model using single point crossover operator is on an average 13 % lower than GA
with analytical model using single point crossover operator.

6.2 Compare results with a simple mapping heuristic
A simple mapping heuristic was developed by simplifying the mapping algorithm op-
timized over several parameters [15] to bandwidth constraint only as shown in Al-
gorithm 2. It uses the application Communication Graph (CG) and the Architecture
Graph (AG) of the NoC as inputs to generate an optimal mapping using bandwidth
constraints.

A Communication Graph CG = (P,E) is an undirected graph, where a ver-
tex/node pk ∈ P . Where P represents a node in the application (e.g., P may be an
IP core such as a processor or a memory unit), and an edge ei ∈ E, represents the
communication trace between vertices pk and pj . Each edge ei is associated with a
communication bandwidth request between vertices pi and pj given in bits per second
(bps), represented by b(ei), which is representative of the rate of packet injection by
the nodes.

An Architecture Graph AG = (T, L) is an undirected graph, where each vertex
ti ∈ T , where T represents a tile and each edge li ∈ L represents the communication
link between tiles tk and tj .

The mapping algorithm M : P → T maps each vertex in the Communication
Graph onto an available tile in the Architecture Graph. M(pi) represents the mapped
tile in AG, where pi ∈ P and M(pi) ∈ T .

The mapping problem is formulated as: given a CG(P, E) representing the commu-
nication traces of an application and an AG(T, L) representing the topology of target
NoC architecture, where |P | ≥ |T |, find a mapping M : P → T which maps all the
vertices in CG onto available routers in AG, such that the nodes have minimal routing
for XY routing algorithm.

Initially, the application nodes pk in the communication trace graph CG(P,E) with
maximum outgoing links is found and appended to the to be routed list and routers

11

ti in the topology graph AG(T, L) with 4 outgoing links are found and appended to
available routers list. Mapping is done by placing nodes in to be routed list to
routers in available routers list. The mapped routers are appended to routed node
list. If the length of to be routed list is greater than available routers, it will be
placed in the next round. The nodes attached to nodes in ’routed-node’ list are found
and the one with the highest bandwidth is placed to router on ’x’ co-ordinates of the
placement. This is done to satisfy the bandwidth constraint as well as minimize com-
munication latency. Similarly all the nodes attached to the nodes in routed node list
are placed. The process is repeated all for application nodes with outgoing links greater
than or equal to 3, then 2 and 1. Finally any unplaced node is mapped.

Algorithm 2 Map(CG(P,E),AG(T, L))
Input: CG(P,E), AG(T,L)
Output: Mapping M : P → T
NUM LINKS = 4 /*Max. fanout in mesh topology is 4*/

4: to be routed, available routers, routed node = ∅
while len(routednode) ≤ len(CG) do
∀ pk ∈ P of CG = (P,E) with maximum outgoing links ⇒ to be routed ∪
{pk}
∀ tk ∈ T of AG = (T,L) with fanout ≥ NUM LINKS ⇒ available routers∪
{tk}

8: ∀ pk ∈ to be routed and tk ∈ available routers map pk to tk ∈ AG and
routed node ∪ {pk}, available routers \ {tk}, to be routed \ {pk}
for all pk ∈ routed node do
∀ pk → eipn for pk ∈ CG ⇒ to be routed ∪ {pn}
for all pn ∈ to be routed do

12: pos = position(pn ∈ AG) with highest b(en)
pos → litm for tm ∈ AG is not mapped ⇒ available routers ∪ {tm}
∀ pk ∈ to be routed and tk ∈ available routers map pk to tk ∈ AG and
routed node ∪ {pk}, available routers \ {tk}, to be routed \ {pk}

end for
16: to be routed, available routers = ∅

end for
NUM LINKS = NUM LINKS − 1

end while

First, the mapping heuristic is used to map applications on NoCs optimally. The
time taken to obtain mapping solution using simple mapping heuristics is 16ms for 3x2,
3x3, 4x4, 5x5 NoC, 0.5 sec for 10x10 NoC, 1.8 min for 20x20 NoC and 43 minutes for
30x30 NoC. The worst-case latency estimated using the formal model for the mapping
solutions generated mapping heuristic is shown in Table 6.2. The worst-case latency
for solutions generated mapping heuristic is shown in the column WCL(Heuristic), it
is measured in number of clock cycles.

The processing time, memory and size of state vector used to estimate worst case
latency using formal model for large NoCs is also shown in Table 6.2. State vector
denotes the number of bytes of memory (per state) required for complete description
of a global system. It is seen that the memory usage increases with the state vector
size, which in turn increases with NoC size and number of communication traces in
the application. As the size of physical memory available for computing has become
vast with the new VLSI technologies, any large NoC can be modeled and verified using

12

Table 6.2: Worst case latency (WCL) for large applications using mapping heuristic

Expt
No.

NoC
Size

Total
traces

WCL
(Heuris-
tic)

Time
(sec)

State
Vector

Memory
(MB)

APP1 3x2 8 3.375 0.016 940 6.3
APP2 3x3 13 4.0 2.73 1408 43.9
APP3 4x4 25 7.91 4.52 2376 45.39
APP4 5x5 38 27.1 6.74 3620 46.34
APP5 10x10 150 35.54 19.1 14076 241.28
APP6 20x20 600 210.72 189 55972 4942.68
APP7 30x30 1349 295.65 896 125716 24926.9

formal model depending on available memory.

Compare algorithm execution time: The time taken to generate the mapping solu-
tions by the GA algorithm for large applications are shown in Fig 6.1 for comparison.

Figure 6.1: Comparison of time taken for different mapping algorithms

GA with formal model using random mutation operator generates better mapping
solution than GA with formal model using single point crossover as mutation operator
introduces diversity in the population, as a result the solution converges closer to op-
timal solution quickly. However, the mapping algorithms with single-point crossover
operator are faster than random mutation operator.

Hence, it is can be concluded that GA algorithm with formal model is more effec-
tive than GA algorithm with analytical models in this case. However, better analytical
model might enable GA algorithm with analytical surpass GA algorithm with formal
model.

13

7 Conclusion and Future Work
This technical report shows that formal methods based models are more than just tools
for functional verification. A formal NoC model was used to improve mapping algo-
rithms that are constrained to latency. As part of future work, formal models may be
stretched to estimate other QoS parameters, thereby improving NoC design decisions.

8 Appendix : Optimal mapping space generation heuris-
tic

The mapping algorithm uses communication graph of the application and topology
graph of NoC architecture as input to generate optimal mapping based on application
bandwidth specification and minimizing latency. The communication pattern between
the nodes in an application is described by a Communication Graph (CG). The topol-
ogy of the NoC architecture is described by a Architecture Graph (AG).

A Communication Graph CG = (P,E) is an undirected graph, where a ver-
tex/node pk ∈ P , where P represents a node in the application (IP core such as a
processor or a memory unit, etc.), and an edge ei ∈ E, represents the communication
trace between vertices pk and pj . For each edge ei, is associated with a commu-
nication bandwidth request between vertices pi and pj given in bits per second (bps),
represented by b(ei). b(ei) is representative of the rate of packet injection by the nodes.

An Architecture Graph AG = (T, L) is an undirected graph, where each vertex
ti ∈ T , where T represents a tile and each edge li ∈ L represents the communication
link between tiles tk and tj .

A mapping algorithm M : P → T was developed to map each vertex in the Com-
munication Graph onto an available tile in the Architecture Graph. M(pi) represents
the mapped tile in AG, where pi ∈ P and M(pi) ∈ T .

The mapping problem is formulated as: Given a CG(P, E) representing the commu-
nication traces of an application and an AG(T, L) representing the topology of target
NoC architecture, where |P | ≥ |T |, find a mapping M : P → T which maps all the
vertices in CG onto available routers in AG, such that the nodes have minimal routing
for XY routing algorithm.

8.1 Mapping algorithm to find all the optimal solution
The mapping algorithm to find all the optimal solution is shown in Fig. 3. The inputs
to mapping algorithms is communication graph CG(P, E) and architecture graph AG(T,
L). The output of mapping algorithm is list of optimal mapping solutions.

The mapping algorithm is implemented in 3 steps: firstly, mapping nodes with high
bandwidth requirements, secondly, mapping nodes connected to previously mapped
nodes and finally mapping rest of the nodes. Every time mapping is generated by
generating permutations for the available routers. The available routers are selected
based on the routers that have maximum outgoing links.

Step 1: From the communication graph (CG) the functional cores with maximum
outgoing edges is found and appended to the list ’keynodeap’ . The nodes in ’keyn-
odeap’ are mapped first on the nodes in architecture graph (AG) with maximum out-
going links. The nodes with maximum outgoing links in AG are found and appended
to the list ’keyrouter’. If there are more functional core with maximum outgoing edges

14

Figure 3 Map all opt sol(CG(P,E),AG(T, L))
Input: CG(P,E) graph of communication trace of application, AG(T,L) graph of
NoC topology
Output: Route packet to an appropriate output port
find initial key nodes of the application and generate mapping permutation

4: initialize ’mapping graph’ to ’AG(T, L)’
for all p ∈ ’CG(P,E)’ do

Find nodes with maximum number of edges and append to ’keynodeap’
end for

8: Find routers with maximum number of edges and append to ’keyrouter’
for all q ∈ ’AG(T, L)’ do

Find routers with maximum number of edges and append to ’keyrouter’
if len(keynodeap) > len(keyrouter) then

12: Append additional routers on x axis of ’keyrouters’ as XY routing is used
end if

end for
Map nodes in CG to routers in AG

16: for all nds ∈ ’keynodeap’ and rts ∈ ’keyrouter’ ∈ mps in ’mapping graph’ do
Generate mapping permutations and append to ’mapping graph’
Append to nds ’routednode’

end for
20: for all x ∈ mapping graph do

Remove items from ’mapping graph’ that contain previously mapped router as
available
if x contains rts ∈ ’keyrouter’ then

Remove items from ’mapping graph’
24: end if

end for
find next level of keynodes and generate mapping permutation
while len(keynodeap) ̸= 0 do

28: re-initialize ’keynodeap’ to null
find nodes with high bandwidth requirement attached to nodes in ’routednode’
and append to nds ’keynodeap’
find available routers to map node in ’keynodeap’ to ’mapping graph’
for all p ∈ ’routednode’ do

32: Find nodes with with high bandwidth requirement and append to ’keynodeap’
end for
Mapnode(mapping graph,routednode,keynodeap,keyrouter)

end while
36: find the remaining unmapped nodes and map it

re-initialize ’keynodeap’ to null
find nodes of CG not in ’routednode’ and append to ’keynodeap’
find available routers to map node in ’keynodeap’ to ’mapping graph’

40: Mapnode(mapping graph,routednode,keynodeap,keyrouter)

15

than nodes available in AG in i.e., length if ’keyrouter’ is less that ’keynodeap’ addi-
tional keynodes are added to ’keyrouter’ list. XY routing algorithm is used in the NoC
where the X axis are touted first. Hence the nodes adjacent to nodes with maximum
outgoing links on x-axis are found and appended to ’keyrouter’ list. Since, there may
be more than one node in AG with maximum outgoing links, permutation of mapping
is made and appended to mapping graph list for every nodes with maximum outgoing
links in architecture graph (AG). The nodes in ’keynodeap’ that are having been routed
are finally appended to ’routednode’ list. The combination list in mapping graph is
cleaned up by removing redundant items and removing items containing router address
that have been already mapped. The routers that are already mapped are in ’keyrouter’
list.

Step 2: After the initial mapping of nodes with maximum outgoing edges. The
nodes connected to initially mapped nodes are mapped next. The nodes to be mapped
next are identified based on the bandwidth. The nodes with higher bandwidth is mapped
first. The nodes to be mapped are appended to ’keynodeap’ list The mappings on AG
in the mapping graph list is performed using mapping function in Fig 4. The mapping
is done till all the nodes attached to keynodes are recursively mapped. The inputs to
mapping function are the mapping graph, the available routers for each item in map-
ping graph and appended to ’keyrouter’ based on number of outgoing links. More
routers are added if the number of nodes to be router is more. The combination of
mappings are generated are appended to mapping graph and the routednode list is up-
dated.

Figure 4 Mapnode(mapping graph,routednode,keynodeap,keyrouter)
for all q ∈ ’mapping graph’ do

For each item in ’mapping graph’ find the available router
For the available router find routers with maximum outgoing links and append
to ’keyrouters’

4: if len(keynodeap) > len(keyrouter) then
Append additional routers on x axis of ’keyrouters’ as XY routing is used

end if
generate mapping permutation

8: for all nds ∈ ’keynodeap’ and rts ∈ ’keyrouter’ do
if nds /∈ ’mapping graph’ then

Generate mapping permutations and append to ’mapping graph’
Append to nds ’routednode’

12: end if
end for

end for
for all x ∈ mapping graph do

16: Remove items from ’mapping graph’ that contain previously mapped router as
available
if x contains rts ∈ ’keyrouter’ then

Remove items from ’mapping graph’
end if

20: end for

Step 3: The last step of mapping is to place the remaining nodes at the available
routers. The mappings on AG in the mapping graph list is performed using mapping
function in Fig 4 as explained above.

16

The output of this algorithm produces a list of optimal mapping. The worst-case
latencies of all the mappings is estimated and mappings with lowest worst-case latency
is obtained.

Results Using the above algorithm all the mapping solutions for applications with 6
nodes and 9 nodes were found. However, the mapping algorithm does not terminate
for 16 node application. This may be due to the number of permutations. For 6 node
application mapped to 2x3 NoC 48 solutions were found. The worst case latencies
of the mappings were found using SPIN. The worst case latencies found were 3.375
cycles, 4.0 cycles, 4.125 cycles and 5.25 cycles. All the 8 optimal mappings with
worst-case latency of 3.375 clock cycles were found.

For 9 node application mapped to 3x3 NoC 1152 solutions were found. The worst
case latencies were estimated using SPIN model The worst-case latencies range from
3.9 clock cycles to 7.4 clock cycles. 6 optimal mappings with worst-case latency of
3.9 clock cycles were found. However, 30 optimal mapping were identified during
complete mapping space exploration.

Bibliography
[1] P. K. Sahu and S. Chattopadhyay. A survey on application mapping strategies for

network-on-chip design. Journal of Systems Architecture, 2013.

[2] Chen-Ling Chou and R Marculescu. Contention-aware application mapping for
network-on-chip communication architectures. In ICCD’08.

[3] J. Hu and R. Marculescu. Energy- and performance-aware mapping for regular
noc architectures. IEEE Trans. on CAD of Integrated Circuits and Systems, 2005.

[4] C. Marcon, A. Borin, A. Susin, L. Carro, and F. Wagner. Time and energy efficient
mapping of embedded applications onto nocs. ASP-DAC ’05.

[5] S. Mohalik, A. C. Rajeev, M. G. Dixit, S. Ramesh, P. V. Suman, P. K. Pandya,
and S. Jiang. Model checking based analysis of end-to-end latency in embedded,
real-time systems with clock drifts. DAC ’08.

[6] A. Giuseppe, C. Vincenzo, and P. Maurizio. A multi-objective genetic approach
to mapping problem on network-on-chip. j-jucs, 2006.

[7] S. Tabandeh, C. Clark, and W. Melek. A genetic algorithm approach to solve for
multiple solutions of inverse kinematics using adaptive niching and clustering. In
IEEE Evolutionary Computation, CEC 2006.

[8] P. A. Turner. Genetic algorithms and multiple distinct solutions. Technical report,
University of Edinburgh, 1993.

[9] P. Mesidis and L. S. Indrusiak. Genetic mapping of hard real-time applications
onto noc-based mpsocs - a first approach. In ReCoSoC’11.

[10] Tang Lei and S. Kumar. A two-step genetic algorithm for mapping task graphs to
a network on chip architecture. In DSD’03.

[11] D. Bui, A. Pinto, and E. A. Lee. On-time network on-chip: Analysis and archi-
tecture. Technical Report UCB/EECS-2009-59, 2009.

17

[12] G. Holzmann. Spin model checker, the: primer and reference manual. Addison-
Wesley Professional, 2003.

[13] S. Murali and G. De Micheli. Bandwidth-constrained mapping of cores onto noc
architectures. In DATE 2004, volume 2, pages 896 – 901 Vol.2.

[14] xxxx. xxxx. XXXX.

[15] X. Wang, M. Yang, Y. Jiang, and P. Liu. A power-aware mapping approach to
map ip cores onto nocs under bandwidth and latency constraints. ACM Trans.
Archit. Code Optim., 2010.

[16] S. Murali, L. Benini, and G. de Micheli. Mapping and physical planning of
networks-on-chip architectures with quality-of-service guarantees. In ASP-DAC
2005, volume 1, pages 27 – 32 Vol. 1.

[17] F. Moraes A. Mello, N. Calazans, L. Moller, and L. Ost. Hermes: an infrastructure
for low area overhead packet-switching networks on chip. VLSI Journal, 38(1),
2004.

[18] N. Nikitin, J. de San Pedro, J. Carmona, and J. Cortadella. Analytical perfor-
mance modeling of hierarchical interconnect fabrics. NOCS ’12.

[19] A. E. Kiasari, Z. Lu, and A. Jantsch. An analytical latency model for networks-
on-chip. IEEE Trans. VLSI Syst., 2013.

18

