
Using Column Generation for Solving Large
Scale Concrete Dispatching Problems

Mojtaba Maghrebi1 Vivek Periaraj2 S. Travis Waller3 Claude Sammut1

1 University of New South Wales, Australia
{mojtabam,claude}@cse.unsw.edu.au

2 University of Arizona, USA
vivek.periaraj@gmail.com

3 University of New South Wales and NICTA, Australia
s.waller@unsw.edu.au

Technical Report
UNSW-CSE-TR-201334

November 2013

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

Ready Mix Concrete (RMC) dispatching forms a critical component of the construction
supply chain. However, optimization approaches within the RMC dispatching continue
to evolve due to the specific size, constraints and objectives required of the application
domain. In this paper, we develop a column generation algorithm for Vehicle Routing
Problems with time window constraints as applied to RMC dispatching problems and
examine the performance of the approach for this specific application domain. The
objective of the problem is to find the minimum cost routes for a fleet of capacitated
vehicles serving concrete to customers with known demand from depots within the
allowable time window. The VRP is specified to cover the concrete delivery problem
by adding additional constraints that reflect real situations. The introduced model is
amenable to the Dantzig-Wolfe reformulation for solving pricing problems using a
two-staged methodology as proposed in this paper. Further, under the mild assumption
of homogeneity of the vehicles, the pricing sub-problem can be viewed as a minimum-
cost multi-commodity flow problem (MMCF) and solved in polynomial time using
efficient network simplex method implementations. A large-scale field collect dataset
is used for evaluating the model and the proposed solution method, with and without
time window constraints. In addition, the method is compared with the exact solution
found via enumeration. The results show that on average the proposed methodology
attains near optimal solutions for many of the large sized models but is 10 times faster
than branch-and-cut.



1 Introduction
Although Ready Mixed Concrete (RMC) dispatching is a common practical need within
the construction industry, optimization methods continue to evolve within the applica-
tion domain. Often, the previously proposed optimization approaches have pursued ei-
ther:(i) Integer Programming (IP)and Mixed-Integer Programming (MIP) approaches,
which have difficulty with large problem sizes or (ii) meta-heuristic approaches which
can solve larger problems but tend to lack optimality or, at the least, bounding prop-
erties. This paper examines the specific Vehicle Routing Problem (VRP) variation
defined by the RMC dispatching industry, develops a tailored solution method via Col-
umn Generation (CG) with bounding properties, and examines the performance of this
method within the application domain on field data. Specifically, the RMC dispatching
problem consists of delivering a specified amount of concrete to customers from depots
using capacitated trucks. At each location in the transportation network, the trucks are
expected to start and leave within the specified time window that is required to load
and unload the concrete. Further, a penalty is incurred for not delivering concrete to a
customer. In addition, the model presents the added constraints of ensuring that at most
one of the customers is served by the trucks from at most one of the depots. Different
trucks incur the same travelling time between depots and customers. However, there
could be different travel times between the start and depot locations and between cus-
tomer and finish locations. Moreover, the time window constraints are a function of the
location rather than the vehicles, with each vehicle incurring the same service times at a
given location. Assuming all the vehicles can fulfill the demand at a customer location,
the fleet of vehicles can be considered homogenous. A tour of a truck is the sequence
of locations it visits from the start to the finish. A minimally traversing tour consists
of a start, a depot, a customer and a finish location. A single truck could also serve
multiple customers from multiple depots. A set of tours of the trucks in the network is
feasible, however only when the following conditions are met: (i) all locations visited
by a truck are in sequence, (ii) at most one of the customers is served, (iii) at most
one of the depots is used in the delivery and (iv) the time window requirements at all
locations are satisfied. Acquiring a near optimum solution for RMC dispatching prob-
lems is a challenging supply chain issue. In large scale metropolitan areas, the RMC
dispatching problems cannot be solved optimally due to the intractability of the Vehi-
cle Routing Problem (VRP) given the aforementioned constraints and considerations.
In other words, the optimum solution of the problem in a polynomial time is compu-
tationally intractable. To overcome this issue within the domain of RMC, this paper
employs the column generation mathematical technique. Column generation creates
solution iteratively, and then forms convex combinations to achieve feasibility. The
proposed method facilitates the examination of RMC dispatching problems in an op-
timization setting which has not previously been possible for this particular domain.
This paper consists of four sections. In first section, the relevant literature in this area
is reviewed. Section two covers column generation and reformulating steps. In sec-
tion three, the results with the field data set are presented and the proposed method is
compared in practice with the results from branch-and-cut; and in the last section the
achieved results are discussed and conclusions drawn.
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2 Literature Survey
Several attempts have been made to model the dispatching and particularly RMC dis-
patching effectively, such as [1],[8],[19],[22]. It has been proved that an RMC opti-
mization problem is an NP-hard problem [1],[27], [18] . Therefore, to deal with this
problem, heuristic methods have been widely used in the literature such as [3],[5],[9],
[10], [17]. Despite developments in this area, the solution structure among most intro-
duced methods is quite similar, especially in the Genetic Algorithm (GA) based method
where the chromosome structure consists of two merged parts: the first part defines the
sources of deliveries; the second part expresses the priorities of customers. In the liter-
ature, in addition to GA other approaches have also been studied that will be discussed
briefly in the text that follows. [27] introduced a numerical method for solving the
RMC optimization problem by cutting the solution space and incorporating the branch
and bound technique and the linear programming method. [26] used decomposition
and relaxation techniques coupled with a mathematical solver to solve the problem,
and [20] applied Variable Neighborhood Search (VNS) to deal with RMC optimization
problems. [1] made the mathematical modelling much simpler by dividing the depots
and customers into sub-depots and sub-customers. However, Column Generation tech-
niques have not been used particularly when it is coupled with Dantzig-Wolfe. Since
the time Dantzig-Wolfe [6] proposed the principles of the decomposition of linear pro-
grams, the method has been applied to a variety of combinatorial integer programs
with great success. Many of the models found in various applications are amenable
to the Dantzig-Wolfe reformulation. In particular, column generation has been suc-
cessfully applied to different types of vehicle routing problems. [14] applies column
generation and branch and price algorithms for VRP problems in the presence of soft
time window constraints. The pricing problem in their model is a resource-constrained
shortest path problem which is an NP hard problem and a bi-directional dynamic pro-
gramming algorithm was used to solve it optimally. [11] presents a column generation
heuristic for general heterogeneous VRP problems with time windows. Their model
consists of vehicles with different capacities and incurs different travel times between
locations. Several authors discuss methods for obtaining reduced costs in the context of
the Dantzig-Wolfe reformulation of the master problem. [12] proposed a method to de-
rive the reduced cost of the arcs from a path based reformulation of the Dantzig-Wolfe
master problem. In this method, the reduced cost of an arc is computed as the mini-
mum reduced cost of the path the arc uses. The path’s reduced cost can be computed
efficiently using a bi-directional search technique. [25] proposed a method where the
dual variables for the linear relaxation of the compact formulation can be derived start-
ing from the duals corresponding to the last simplex iteration of the master problem
and the pricing sub-problems that are solved subsequently in the same iteration. The
dual variables thus obtained are feasible and optimal to the linear relaxation of compact
formulation as well. Dantzig-Wolfe reformulation also has been used in transportation
particularly for dynamic assessment of traffic such as [16],[15],[4] but in this paper we
only focus on VRP based problems.

3 Methodology
Column Generation (CG) is a common method for solving large-scale integer pro-
grams. First, it must be established that CG is applicable to RMC dispatching problems
specifically. To examine the applicability of CG to RMC dispatching, we can consider
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two principles of column generation. First, a major proportion of the variables are non-
basic at the optimal solution, hence it is required to generate only those columns whose
reduced costs are negative. In the other words, CG deals only with those columns that
are associated with providing the best improvement of the objective. Second, by apply-
ing branch-and-cut to the reduced problem, CG will lead to achieving improvements on
the computing performance compared to applying branch-and-cut to the original prob-
lem. In column generation a sequence of master and pricing problems are solved. The
master problems are the continuous relaxation of the original problem and consist of
only a subset of columns to start with. They are also called restricted master problems.
The pricing problem is the minimization of the reduced costs. The RMC problem can
be viewed as a set of tours made by each truck. In each iteration, the tours that have the
most negative reduced costs are selected and added to the restricted master problems.
This process is repeated until no more columns can be generated or until any of the
termination criteria is met. Then the branch-and-cut is applied to the original prob-
lem with only the generated columns. In this section the RMC dispatching problem is
reformulated via the column generation technique and introduces a method for formu-
lating RMC dispatching problems. The terminology used in this paper for modelling
the original RMC formulation is similar to that of [1] The original RMC formulation
assumes the dispatching problem is a graph in which depots and customers are nodes
and a delivery is depicted by an arc between a depot and a customer. To retain the unity
throughout the formulation and the algorithm, all required parameters are defined in
follow:
C Set of customers
CK Set of customers visited by a truck k
D Set of depots
Dk Set of depots visited by truck k
K Set of vehicles
US Set of starting points
Vf Set of ending points
Su Service time at the depot u
tuvk Travel time between u and v with vehicle k
qk Maximum capacity of vehicle k
qc Demand of customer c
wu Time at node u
βc Penalty of unsatisfying the customer c
M A large constant
γ Maximum time to haul the concrete
xuvk 1 if route between u and v with vehicle k is selected, 0 otherwise
yc 1 if total demand of customer c is supplied, 0 otherwise
zuvk Cost of travel between u and v with vehicle k

minmize
∑
u

∑
v

∑
k

zuvkxuvk −
∑
c

βcyc (3.1)

Subject to:

∑
u∈us

∑
v

∑
k

xuvk = 1 ∨ k ∈ K (3.2)
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∑
u

∑
v∈vf

∑
k

xuvk = 1 ∨ k ∈ K (3.3)

∑
u

∑
v

xuvk −
∑
v

∑
w

xvwk = 0 ∨ k ∈ K, v ∈ C ∪D, (3.4)

∑
u∈D

∑
k

xuvk ≤ 1 ∨ v ∈ C (3.5)

∑
v∈C

∑
k

xuvk ≤ 1 ∨ u ∈ D (3.6)

∑
u∈D

∑
k

qkxuvk ≥ qcyc ∨ c, vv ∈ C (3.7)

−M(1− xuvk) + su + tuvk ≤ wv − wu ∨ (u, v, k) ∈ E (3.8)

M(1− xuvk) + γ + su+ ≥ wv − wu ∨ (u, v, k) ∈ E (3.9)

xuvk ∈ {0, 1} and yc ∈ {0, 1} (3.10)

3.1 Master Problem
The Dantzig-Wolfe decomposition as applied to integer programs is generally known
to provide strong dual bounds as the feasible region of the master problem is a tighter
formulation compared to that of linear relaxation. It’s a well-known result in network
flow theory that an extreme point xuvk ∈ x is also a path pP in the network. The nat-
ural choice for network flow problems is to consider a path based reformulation of the
Dantzig-Wolfe master problem. [23] considers a reformulation of the master problem
for VRP in which multiple vehicles are aggregated into a single problem with an ex-
treme point representing a feasible route any vehicle could cover. In our reformulation
framework, we retain the routes covered by individual vehicles. An extreme point in
our model consists of truck tours and is a unique traversal in the network as governed
by the constraints 3.5 and 3.6 which ensure that at most one of the depots and cus-
tomers is served in the path. Thus, the compact formulation is decomposable by truck
tours. Constraints 3.2, 3.3, 3.4, 3.8, and 3.9have block diagonal structures with respect
to trucks while constraints 3.53.7 are the coupling constraints with variables associated
with all the trucks. Each truck tour can be equivalently expressed as follows:

λk ≤
∑
u

∑
v

xuvk (3.11)

The cost coefficient of each truck tour is defined as the duration of the truck’s tour in
the network path and is expressed as:

zk =
∑
u

∑
v

zuvkxuvk −
∑
c∈Ck

βcyc (3.12)

To achieve the Dantzig-Wolfe restricted master formulation, the compact formulation
can then be reformulated in terms of truck tours as:
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minimize
∑
k

∑
p

zkpλ
k
p (3.13)

Subject to: ∑
k∈Ck

∑
p

λkp ≤ 1 ∨ Ck ∈ C (3.14)

∑
k∈Dk

∑
p

λkp ≤ 1 ∨Dk ∈ D (3.15)

∑
k∈Ck

∑
p

qkλ
k
p ≥ qc ∨ Ck ∈ C (3.16)

∑
p

λkp = 1 ∨ k ∈ K (3.17)

λkp ≥ 0 ∨ k ∈ K, p ∈ P (3.18)

The above formulation is also called the extensive formulation. Each truck tour
xuvk ∈ P can be represented as the convex combination of truck tours through the
convexity constraints (17). In the presence of the linking constraints 3.11 between λpk
and xuvk, the optimal solution of the Dantzig-Wolfe restricted master problem λp∗k can
be used to recover the solution to the compact formulation when {0, 1}. However,
when the linking constraints are removed and λpk is relaxed, the optimal solution of
the Dantzig-Wolfe restricted master problem forms the primal bound for the compact
formulation. From each solution of the pricing problem, an extreme point is added to
the extensive formulation which is indexed as p. We let the duals corresponding to the
constraints 3.14, 3.15 and 3.16 to be π and the dual corresponding to the convexity
constraint of truck k to be σk.

3.2 Computation of Reduced Costs
As discussed in the literature review, there have been a few studies related to computing
the reduced costs of the variables in the compact formulation when the Dantzig-Wolfe
decomposition is applied. For instance, [7] proposes a method to formulate an explicit
Dantzig-Wolfe master called Explicit Master that retains the linking constraints 3.11
between the λpk and xuvk. From each solution of Explicit Master to optimality, the
reduced costs for the variables in the compact formulation can be directly obtained from
the optimal duals corresponding to the constraints 3.14,3.15 and 3.16. In our column
generation methodology, the pricing problem is solved in two stages with the stage
1 formulation being a linear program at a reduced dimension relative to the compact
formulation and the stage 2 formulation being a mixed integer program. We obtain a
dual vector of the compact formulation from the optimal dual solutions of the Dantzig-
Wolfe restricted master problem and from the linear relaxation of a newly formulated
problem called the auxiliary restricted master problem. The auxiliary restricted master
problem formulation is identical to that of the compact formulation but consists of only
the generated variables until that point and thus forms the dual bound to the compact
formulation. The duals corresponding to the constraints 3.2, 3.3, 3.4, 3.8, 3.9 and 3.10
obtained from the auxiliary restricted master problem are denoted by µ. If A1 is the
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Figure 3.1: Network Graph

constraint coefficient matrix of the auxiliary restricted master problem and A2 is the
constraint coefficient matrix of the Dantzig-Wolfe restricted master problem, then the
reduced cost of a variable of the compact formulation is computed as follows:

rcuvk = zuvk −A1µ ∨ u ∈ us, v ∈ D, k ∈ K
rcuvk = zuvk −A1µ ∨ u ∈ C, v ∈ vf , k ∈ K
rcuvk = zuvk −A1µ ∨ u ∈ C, v ∈ D, k ∈ K

rcuvk = zuvk −A1µ−A2π ∨ u ∈ D, v ∈ C, k ∈ K
rcuvk = βc −A2π ∨ u ∈ us, v ∈ D, k ∈ K

(3.19)

3.3 Pricing Problem
The pricing problem is solved in two stages. In stage 1, the sum of the reduced costs
of a transformed problem is minimized and in stage 2, the optimal assignments cor-
responding to the original problem are obtained. A small RMC network is depicted
in Figure 1. The RMC model can be considered homogenous with all of the trucks
incurring the same time to travel between depots and customers. The stage 1 network
consists of start nodes, depot nodes, customer nodes and finish nodes. The network is
constructed with the source node connecting to all start nodes, the start nodes connect-
ing to all depot nodes, the depot nodes connecting to all customer nodes, the customer
nodes connecting to all depot nodes and the depot nodes connecting to all finish nodes.
Finally, all finish nodes are connected to a sink (Figure 3.1).

The dummy nodes at the depots (DD) ensure that at most one of the depots is
assigned and the dummy nodes at the customers (DC) ensure that at most one of the
customers is assigned, satisfying constraints 3.5 and 3.6(5) of the compact formulation.
The supply at the source and demand at the sink is set to the number of trucks in the
network. The lower bound and upper bounds on the arcs connecting the nodes are set
to 0 and 1 respectively. The time feasibility at various nodes is maintained by changing
the capacity on the arcs connecting the nodes. If any of the time constraints are not
satisfied on an arc, then the upper bound on the arc’s capacity is set to 0. The cost on
the arc is set to the minimum of the reduced costs of different trucks that use the arc.
Thus, the stage 1 pricing problem can be viewed as a minimum-cost multi-commodity
flow problem (MMCF) where the objective is to find the optimal routes for identical
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trucks in the network that satisfy the flow and demand requirements such that the sum
of the minimum of reduced costs is minimized.

Stage 1 Formulation

The MMCF pricing problem can be formally stated as follows. Given a flow network
G(V,E), where edge (u, v) ∈ E has capacity Cuv , there are k identical commodities,
defined by K = (s, t, d) where s and t are the source and sink of commodity and d is
the demand. The flow of a commodity along edge (u, v) is fuv .

minimize
∑

auvfuv (3.20)

Subject to:

fuv ≤ cuv ∨ cuv (3.21)

fuv −
∑
w∈V

fwu = 0 ∨ u ∈ V, v ∈ V, u, v /∈ s, t (3.22)

∑
w∈V

fuv =
∑

w ∈ V fwt = d (3.23)

cuv = 1 ∨ u ∈ V, v ∈ V, u /∈ s, /∈ t (3.24)

cuv = 0 ∨ u ∈ V, v ∈ V, and if E(u, v) is not feasible (3.25)

auv =MIN︸ ︷︷ ︸
k∈K

rcuvk (3.26)

asw = awt = 0 ∨ w ∈ V (3.27)

In network flow problems, the basic solutions are computed without any multipli-
cation or division and the following theorem arises from this property. The theorem
states that for flow problems with integer supplies and demand, every basic feasible
solution and every basic optimal solution assigns integer flow to every arc [24]. If
the objective function of a minimum cost flow problem is bounded from below on the
feasible region, the problem has a feasible solution, and if the vectors b, l and u are
integers, then the problem has at least one integer optimum solution.

Minimize {cx : Ax = b, l ≤ x ≤ u} (3.28)

Since the demand and the lower and upper bound on the capacity of the arcs in the
MMCF network are integers, the solution from the MMCF pricing problem is also inte-
ger. The MMCF pricing problem is solved using the primal network simplex method.
Efficient implementation of the network simplex method is known to have polyno-
mial time complexity. If m is the number of arcs in the network, n is the number of
nodes in the network, C is the maximum cost on the arcs in the network and U is the
maximum capacity on the arcs in the network, then the time complexity of a generic
implementation of the network simplex method [13] is given by ((m + n)mnC2U).
The time complexity of the MMCF problem as applied to the RMC network is given by
((m + n)mnC2). Table 4.2 lists average solution times of the pricing problem across
different instances.
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Stage 2 Formulation

The solution obtained from the MMCF pricing problem (C∗, D∗) is transformed to
the original problem dimension by solving a mixed integer program that optimizes the
assignments across different trucks. While the MMCF pricing problem may result in
tours that are infeasible with respect to the demand constraints 3.7 in particular, the
stage 2 pricing formulation ensures that the final tours are feasible with respect to all
the constraints of the compact formulation. Each feasible solution thus obtained from
the stage 2 pricing problem forms an extreme point to the compact formulation.

minmize
∑
u

∑
v

∑
k

rcuvkxuvk +
∑
c∈C

rccyc +
∑
k∈K

σk (3.29)

Subject to:

∑
u∈us

∑
v

∑
k

xuvk = 1 ∨ k ∈ K (3.30)

∑
u

∑
v∈vf

∑
k

xuvk = 1 ∨ k ∈ K (3.31)

∑
u

∑
v

xuvk −
∑
v

∑
w

xvwk = 0 ∨ k ∈ K, v ∈ C ∪D, (3.32)

∑
u∈D

∑
k

xuvk ≤ 1 ∨ v ∈ C (3.33)

∑
v∈C

∑
k

xuvk ≤ 1 ∨ u ∈ D (3.34)

∑
u∈D

∑
k

qkxuvk ≥ qcyc ∨ c, vv ∈ C (3.35)

−M(1− xuvk) + su + tuvk ≤ wv − wu ∨ (u, v, k) ∈ E (3.36)

M(1− xuvk) + γ + su+ ≥ wv − wu ∨ (u, v, k) ∈ E (3.37)

xuvk ∈ {0, 1} and yc ∈ {0, 1} (3.38)

0 ≤ xuvk ≤ 1, if ∨ u ∈ D∗, v ∈ C∗, k ∈ K (3.39)

0 ≤ xuvk ≤ 1, else if ∨ u ∈ C∗, v ∈ D∗, k ∈ K (3.40)

0 ≤ xuvk ≤ 1, else if ∨ u ∈ us, v ∈ D∗, k ∈ K (3.41)

0 ≤ xuvk ≤ 1, else if ∨ u ∈ C∗, v ∈ vf , k ∈ K (3.42)

0 ≤ xuvk ≤ 0, otherwise (3.43)
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Multiple Column Generation

The column generation scheme we adopt generates many columns in each solution
of the master and pricing problems. Traditionally, the approach has been to generate
and add a single column with the most negative reduced cost to the restricted master
problems. [7] discuss a scenario of multiple column generation when the constraints
of the master problem are nicely structured. The constraints 3.14,3.15 and 3.16 of
our master problem are consistent with the multiple column generation approach. Our
motivation behind this scheme is also to ensure that the columns that are generated form
feasible truck tours. This can be viewed as generating the best cost improving truck
tours out of many possible ones. From each pricing problem solution, truck tours with
a column that satisfies the minimum reduced cost threshold are generated in addition
to including an extreme point to the Dantzig-Wolfe restricted master problem. This
scheme also has the added advantage of exploiting many of the solution improving
heuristics that are available with most of the modern branch-and-cut solutions. Some
of these heuristics employ methods which make minor changes to the solution vector
in order to attain vastly improved solutions in a short time. This is especially effective
in routing problems where a swap of nodes between the routes could result in a better
solution. The master problems are again solved to optimality whose duals are used in
the next pricing problem solution. This process is continued until no more negative
reduced cost tours can be generated or when any of the termination criteria is met.
Due to the potentially large time required to reach the zero reduced cost threshold for
larger models, the column generation phase is terminated within the specified number
of iterations. The column generation is also terminated when the optimal solution of
the Dantzig-Wolfe restricted master problem (the primal bound) is within the specified
tolerance of the optimal solution of the auxiliary restricted master problem (the dual
bound). In the final phase, branch-and-cut is applied to the original problem with only
the generated columns from the column generation phase.

4 Results
The proposed column generation algorithm was tested on actual field instances of wide
ranging transportation networks delivering to up to 197 customers per day. Note,
smaller networks were used to test the theoretical convergence properties. The field
data that was used here belongs to an active RMC network in Adelaide (Australia). 9
instances were selected randomly from the available database which characterizes the
selected instances as given in (Table. 4.1). The algorithm was developed in C++ and
tested on a RedHat(R) CentOS(R)5.9 Linux server with 8 3.60GHz Intel(R) Xeon(R)
CPUs and a 188 GB physical memory. The IBM CPLEX version 12.5.0.0 with parallel
optimizers using up to 8 threads was used in the study. We found the solution polishing
heuristics [21] available with the CPLEX mixed integer optimizer to be particularly
effective in finding improved solutions for larger sized models with time window con-
straints. The heuristic was applied to the best solution attained from branch-and-cut
which was terminated when the EP gap of 1% was achieved or when the time limit was
reached. The EP gap was calculated according to 4.1.

EP =
|Best Integer Solution−Best Dual Bound|

10−10 + |Best Integer Solution|
(4.1)

’Barrier/Dual’ [2] is selected to solve the Dantzig-Wolfe restricted master prob-
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Table 4.1: Problem data attributes

lem and auxiliary master problem for models with and without a time window. ’Bar-
rier/Dual’ is the hybrid optimizer with barrier as the primary LP solver with dual sim-
plex used for crossover. ’Barrier’ is the LP solver without crossover. ’Primal’ is the
primal simplex LP solver. Column Generation is terminated when: (i) no more tours
with negative reduced cost column are found or (ii) the difference between the primal
and dual bound is within the tolerance or (iii) the maximum number of iterations is
reached. The termination criteria for B&C of the compact formulation with generated
columns and IP/MIP is E-06. In addition, the starting criteria for polishing in B&C of
the compact formulation with generated columns and MIP is 1.00E-2 which is applied
to instances with more than 100 deliveries. (Table 4.2) compares the solution times of
the stage 1 and stage 2 pricing sub-problems for models with and without time window
constraints. In (Table 4.3) the achieved results from the proposed Column Generation
model are compared with MIP when the time window is allowed. Similarly (Table
4.4) shows this when the time window is not permitted. Ade 197, which is the largest
instance with MIP, is not solvable with the given computational resources; therefore
the relevant cells in (Table. 4.3) are filled by NA (Not Applicable). From the evalua-
tion data, it was found that the compact formulation consists of demand constraints and
there were situations where the tours that were generated from the stage 2 pricing prob-
lem were infeasible with respect to demand constraints. A reformulation of the master
problems that eliminated variables Yc was found to be effective in pricing tours that are
feasible with respect to demand constraints. In addition, out of all the instances evalu-
ated, the assumption of homogeneity of vehicles held well for the majority of them. To
cite one particular test case (Ade 53), the model consisted of two customer locations
(c11 and c12) with a demand of 11 tonnes each and could only be served by one truck
(t23) of capacity 11 tonnes. The algorithm was successful in pricing a tour that served
both these customers using the same truck, thus leading towards the optimal solution.

The performance of the algorithm is evaluated according to the solution times and
the quality of the final solution attained in the branch-and-cut phase. The metrics com-
pared the branch-and-cut on the compact formulation with the generated columns and
branch-and-cut. Both of these were run with identical parameter settings to the solver.
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Table 4.2: Pricing problem solution times

In addition to comparing the final primal solution attained between the runs, the fi-
nal dual bounds (inclusive of the cutting planes generated on the linear relaxation of
the branch-and-cut tree) were compared between the runs. The bound attained from
IP/MIP (B&C dual bound, B&C solution) and Column Generation (B&C dual bound,
B&C solution) are almost the same with minor variations. These dissimilarities are em-
bedded in (Table 4.5). The summary of results is in (Table 4.6). This table shows the
time and cost (distance) improvements when the proposed column generation method
is used by comparing the CG model against the IP and MIP model. The proposed al-
gorithm attains a true optimum for many of the smaller sized networks. For the models
with time window constraints, the primal bound (the objective of the Dantzig-Wolfe
master problem) was within 0.94 % of the dual bound (the objective of the auxiliary re-
stricted master problem). In a few instances, the algorithm terminated when the primal
bound was within a tolerance of E-05 of the dual bound, where the optimal solution
to the model was equal to the primal and the dual bounds. Through empirical exper-
iments that were based on the tailing-off effect of the duals, an iteration limit of 250
was found to be effective in pricing a sufficient number of columns and was chosen for
many of the instances. On average, for models with time window constraints, the algo-
rithm generated about 1.77% of columns and achieved solutions within 0.03% of those
of the branch-and-cut solvers. With respect to solves times, the algorithm achieved up
to 15.15 times improvement over the branch-and-cut solvers. On average, for models
without time window constraints, the algorithm generated about 1.12% of columns and
achieved solutions within 0.00% of those of the branch-and-cut solvers. With respect
to solve times, the algorithm achieved up to 2.21 times improvement over the branch-
and-cut solvers. (Figure. 4.1) and (Figure. 4.2) reflect a deeper investigation into the
behaviour of the proposed model over iterations. (Figure. 2) plots the primal bound
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and dual bound for all instances when a time window is not permitted; similarly, (Fig-
ure. 4.2) does the exact same job as (Figure. 4.1) but for a model with a time window.
In (Figure 4.1), and for models 30, 40, 47 and 63, the primal bound at termination was
within 0.00% of the dual bound; this value for models 53, 93, 112 and 153 is within
1.17% of the dual bound, and for model 197 the primal bound at termination was within
1.74% of the dual bound. Moreover, for models 53 and 197, dual stabilization tech-
niques were employed to counter the heading-in effect of duals commonly observed in
column generation. We can perceive the terminations of models with a time window
from (Figure. 4.2) where for models 30, 40, 47, 53 and 63, the primal bound at termi-
nation was within 0.85% of the dual bound, and for models 93, 112 and 153 where it
was within 1.44% of the dual bound, and for the largest instance (Ade 197) where the
primal bound at termination was within 4.55% of the dual bound.
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Table 4.6: Comparing the CG model with IP and MIP models
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5 Conclusion
This paper proposed a mathematical model based on the Column Generation technique
to solve Ready Mixed Concrete (RMC) dispatching problem with and without a time
window. The Dantzig-Wolfe method was used for reformulating the problem and then
to provide solutions within a two-stage procedure. The proposed method was com-
pared with integer programming and mixed-integer programming. For evaluation, a
real database belonging to an active Ready Mixed Concrete (RMC) was used, and from
the available data nine instances of different sizes were chosen randomly. The number
of unassigned customers by the proposed method in situations both with and without
time window is zero. Moreover, when a time window is not allowed, the distances
acquired by the proposed method and IP are exactly the same; however, on average,
column generation converges 30% more quickly than IP. The MIP solution for large
scale instances (such as Ade-197) is intractable when the proposed method converges.
Despite this issue, among the instances in which the MIP solution exists, on average
the column generation method attained results around 10 times faster than MIP with
around 1% increase in distance.
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