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Abstract

We consider the problem of data collection from a continental-scale network of
mobile sensors, specifically applied to wildlife tracking. Our application con-
straints favor a highly asymmetric solution, with heavily duty-cycled sensor
nodes communicating with a network of powered base stations. Individual nodes
move freely in the environment, resulting in low-quality radio links and hot-spot
arrival patterns with the available data exceeding the radio link capacity. We
propose a novel scheduling algorithm, κ-Fair Scheduling Optimization Model
(κ-FSOM), that maximizes the amount of collected data under the constraints
of radio link quality and energy, while ensuring a fair access to the radio channel.
We show the problem is NP-complete and propose a heuristic to approximate
the optimal scheduling solution in polynomial time. We use empirical link qual-
ity data to evaluate the κ-FSOM heuristic in a realistic setting and compare its
performance to other heuristics. We show that κ-FSOM heuristic achieves high
data reception rates, under different fairness and node lifetime constraints.



1 Introduction

Recent advances in embedded systems and battery technology have enabled a
new class of large-scale mobile sensing applications. Consider a swarm of micro-
aerial vehicles fitted with a variety of sensors that can achieve fine-grained three-
dimensional sampling of our physical spaces, thus enabling a variety of new
applications such as urban surveillance, disaster recovery and environmental
monitoring [25, 3, 21]. It is now possible to monitor individual movement pat-
terns of wildlife alongside the various aspects of their environment [8, 4, 2, 1, 9].
In a typical mobile sensing scenario, sensor nodes mounted on a carrier (e.g.,
vehicle or animal) collect numerous sensor readings while in transit. The nodes
ultimately arrive back at a known rendezvous point (e.g., command center or
animal pen), often as a large swarm and remain there for an extended period of
time. The data stored on each sensor node is offloaded to a base station (BS)
during this time.

A number of considerations make the data collection non-trivial. First, the
number of nodes are quite large (several hundreds) and while the nodes normally
arrive back in large groups, their exact arrival sequence is often unknown. Sec-
ond, the sensor nodes typically have low residual energy levels after being out
in the field for an extended period and limited bandwidth due to their weight
and size limitations. It is thus critical to maximize the data collection in such
a way that data can be collected from each node before its residual energy is
exhausted. Third, the quality of the wireless channel between each node and
the BS may vary with time. Having a node transmit during instances when
the channel quality is poor is likely to result in packet reception errors, which
in turn would require retransmissions and thus increase energy expenditure.
Fourth, data should be harvested from all the nodes in a fair way. In particular,
the amount of data collected from each node should be greater than a certain
application-specific threshold. This is important to maximize the accuracy of
data analysis, for example, in the context of mobility modeling and population
characteristics for wildlife monitoring. The above considerations suggest the
adoption of a scheduled transmission protocol to enable radio duty cycling at
each node and to reduce the chance of packet collisions (and subsequent retrans-
missions). To the best of our knowledge, the issue of maximizing data collection
while simultaneously considering all of the aforementioned constraints has not
been examined in the context of large-scale mobile sensor network (MSN).

Conventional scheduling such as the one employed in IEEE 802.15.4 [6] are
based on First Come First Served (FCFS), which we refer to as batch processing.
Batch processing has limited performance in real-world conditions with irregular
radio channels and limited bandwidth. Any node with poor link quality occupies
the channel due to retransmissions, while the nodes with higher link quality have
to wait. Finally, batch processing does not support data collection fairness,
potentially downloading a large amount of data from a small subset of nodes.

We consider the scheduling problem in the context of a real-world application
for monitoring flying foxes (also known as fruit bats). Flying foxes typically
swarm out in search of food at night and flock back to roosting camps during the
daytime. A typical roosting camp can consist of hundreds to tens of thousands of
animals [20]. Recent work [10] aims to collect fine-grained spatiotemporal data
about their movement patterns and environmental surroundings by attaching
a sensor collar to these animals. The embedded sensors record the flight and
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biological data such as GPS, temperature and air pressure while the bats are out
and about. The data is offloaded to a BS in the roosting camp when the bats
flock back during the daytime. Fig. 1.1(a) and 1.1(b) depict a typical roosting
camp and the sensor collar attached to the animal.

(a) Roosting Camp (b) Flying fox equipped with the
Camazotz sensor collar

Figure 1.1: Motivating Application: Flying fox monitoring

In this paper, we propose κ-fair scheduling optimization model (κ-FSOM)
to maximize data harvesting in a large-scale MSN. κ-FSOM schedules transmis-
sions based on both the link quality and the residual energy of each node. It also
guarantees that a certain application-specific amount of data is collected from
each node. We first show that this optimization problem is NP-complete. Next,
we propose a heuristic algorithm to optimize the scheduling in linear time. The
κ-FSOM heuristic prioritizes the nodes for scheduling based on a ratio of the
link quality and residual energy. This enables the nodes with the lowest energy
reserves and the best chance of achieving successful transmissions to transfer
their data first. In addition, we develop a states transition model in two steps
to address the fairness criteria and maximize overall network goodput.

While we use the bat monitoring application as a case study, the proposed
optimization model and heuristic are application-agnostic and hence applicable
to a wide variety of large-scale mobile sensing scenarios with delay tolerance.

The rest of paper is organized as follows: Section 2 describes related work
on link scheduling and optimization. We discuss the network configuration and
provide details about the MAC protocol in Section 3. Section 4 formulates the
transmission scheduling optimization model and the associated constraints. In
Section 5, we show that the optimization problem is NP-complete and introduce
the κ-FSOM heuristic algorithm. In Section 6, we show simulation results to
demonstrate the performance of the κ-FSOM heuristic algorithm and compare
it with state-of-the-art. Finally, the paper is concluded in Section 7.
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2 Related Work

In this section, we review the literature on link scheduling and optimization in
wireless networks. To solve different optimization goals, recent work considers
throughput, energy consumption or time delay.

Extensive studies have been conducted on link scheduling in cellular net-
works. In [19], the link quality is predicted by an application framework which
tracks the direction of travel of mobile phone at the BS. They develop energy-
aware scheduling algorithms for different application workloads such as syncing
or streaming. Some scheduling optimizations which consider multicast [13],
quality-of-service assurance [26] and fair relaying with multiple antennas [12]
are proposed to achieve optimal delay, capacity gain or network utility.

A vast majority of related work has focused on addressing the scheduling
problem in the context of multi-hop networks [28, 11, 18]. However, the notion of
fairness in multi-hop networks focuses on fair allocation of time slots among the
links in each super frame, which is different from the fairness in data collection
of MSN.

A scheduling for maximum throughput-utility in the single-hop networks
with the constraint of network delay is presented in [17]. It establishes a delay-
based policy for utility optimization. The policy provides deterministic worst-
case delay bounds with total throughput-utility guarantee. The author in [16]
proposes an opportunistic scheduling algorithm that guarantees a bounded worst
case delay in single-hop wireless networks. However, those scheduling algorithms
are not applicable in MSNs, because they do not consider the constraints of
energy and fairness of collection. In [23], a sensing scheduling among sensor
nodes is presented to maximize the overall Quality of Monitoring utility subject
to the energy usage. The scheduling algorithm maximizes the overall utility
which is to evaluate quality of sensor readings based on the greedy algorithm.

For body sensor network, Sidharth, et al. focus on polling-based commu-
nication protocols, and address the problem of optimizing the polling schedule
to achieve minimal energy consumption and latency [15]. They formulate the
problem as a geometric program and solve it by convex optimization.

To the best of our knowledge, there is no research focusing on link schedul-
ing optimization for fair data collection in large-scale single-hop MSNs. The
recent work in the literature is not applicable because they do not optimize the
scheduling with the requirements of both energy consumption and data recep-
tion fairness.

The key difference of our work over previous scheduling optimization is that
for a single-hop MSN which includes a large number of nodes, data collection
is maximized in a fair way before they run out of energy. We formulate the
transmission scheduling optimization model in Section 4.

3 Network Configuration and MAC Protocol

In this section, we first provide an overview of the network setup in the context of
the bat monitoring application. Next, we propose extensions to IEEE 802.15.4
MAC protocol to improve its performance under our specific constraints.
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3.1 Network Configuration

As depicted in Fig. 1.1(b), each bat is tagged with a collar that houses the
Camazotz sensor node [10], a custom-designed light-weight sensing platform.
The node embeds a GPS receiver, a three-axis accelerometer, air pressure sensors
and a microphone. The node is powered by a battery and includes a solar panel
for harvesting energy. The node will collect numerous sensor readings while the
bat is in transit. The sensor readings are stored in a Secure Digital (SD) flash
card. The bats are nocturnal hunters and are known to travel long distances
(20 km in one night on average) in search for food. Typically the bats return to
the roosting camps during the day as a swarm and remain there before heading
out again at night. On occasion, individuals are known to be away for several
days (up to several weeks) before returning back to the camp. Thus the total
data payload on each node can vary up to a few MB.

We also deploy a number of powered BSs located at animal congregation
areas. The stored data is offloaded to the BS via single-hop communication.
Both the Camazotz node and the BS use the CC1101 radio, which uses the
915 MHz frequency band for communication. The BS is equipped with 3G
connectivity to transfer the collected sensor readings to a central repository.

3.2 MAC Protocol

While the focus of this paper is on optimizing the data collection process, a
secondary consideration is also the choice of the MAC protocol to be employed.
As a support to κ-FSOM, the proposed MAC protocol gathers the node’s infor-
mation as the input to κ-FSOM at first. Then, the BS informs all the nodes the
optimized scheduling which is output by κ-FSOM. Finally, the node transmits
data in the scheduled time. Rather than reinventing the wheel, we propose to
use a MAC that is heavily influenced by the widely used IEEE 802.15.4 MAC
protocol [6]. In particular, the beacon mode of IEEE 802.15.4 super frame
contains contention access period (CAP), contention-free period (CFP) and in-
active period. Using 802.15.4 super frame the BS needs to transmit a beacon
at the beginning of the frame periodically. The node competes for the channel
to transmit data by random access in CAP after it receives the beacon. The
slots in CFP are allocated to the node which competes the channel successfully
if available. However, 802.15.4 MAC protocol is not feasible for scheduling op-
timization of MSNs. First, at the beginning of super frame, the BS does not
have any information (PRR, energy, data size, etc) about the nodes. Thus, the
time slots allocation in CFP is simply FCFS. However, the information from
the nodes is basic element for κ-FSOM which is presented in Section 4. Second,
the node competes the channel in CAP only when it receives the beacon. If the
node misses the beacon due to the poor link quality, it has to keep radio on in
order to get the beacon in the future frames. The node consumes much energy
on idle listening. Even worse, the node which misses the beacon has no chance
to compete for the channel no matter how small the energy or how good the
link quality is. As a result, IEEE 802.15.4 MAC protocol does not achieve the
fairness of data reception and energy consumption constraints.

The super frame used for κ-FSOM is composed of random channel access
period (RCAP) and scheduled data transmission period (SDTP) (see Fig. 3.1).
The two periods interchange periodically and are synchronized by the BS. Sensor
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nodes do not keep track of the schedule while away from the BS, they only
participate when in the range of the BS. The purpose of RCAP is that the BS
gathers all the nodes’ information (current energy levels and the PRR values)
and makes a schedule for their data transmissions in SDTP. How the BS makes
the transmission schedule is discussed in Section 5.

The BS keeps the radio on all the time. The radio of Camazotz is switched
on and off by different duty cycles so that the node wakes up at different time
points to avoid the initial channel access collision. Once a node wakes up in
the RCAP, it turns on the radio to check the channel whether busy or idle
through Carrier Sensing (CS). If the channel is idle, the node transmits the BS
a Hello packet which includes ID of the node, time stamp and current energy. If
collision of Hello transmissions happen or the node detects the channel is busy,
then it backs off in a manner similar to CSMA and turns off the radio during the
backoff period. For the input of κ-FSOM, the BS calculates PRR from the RSSI
of receiving the Hello packet and then replies a HACK which contains a packet
sequence number and time of broadcasting Scheduling ACK (SACK ) packet.
The SACK includes IDs of the nodes which are scheduled to transmit and their
allocated time slots. The schedule bundled in SACK is output by κ-FSOM
which will be presented in the Section 4. After the node receives the HACK
packet for it, it turns off the radio to sleep until the time to receive the SACK.
With a large number of nodes, some of them may fail to communicate with the
BS in RCAP of some frames. However, those nodes consume tiny energy due to
a long sleeping time. In the SDTP, the time is partitioned to a certain number
of slots with the purpose of node’s scheduled transmission without collision.

In RCAP, the schedule which defines a time allocation ∆Ti (∆Ti = Tendi−
Tstarti) for the node’s transmission is sent to all the HACKed nodes through
the SACK message. Note that different nodes can be allocated different trans-
mission length, namely, ∆Ti1 6= ∆Ti2 (∀i1, i2 ∈ [1, N ]). Thus, the node is able
to transmit multiple packets in ∆Ti. After the nodes receive the SACK, they go
to sleep until the time of Tstarti. The nodes sleep permanently once either Ei is
smaller than Etd or they have finished the transmission of all the data packets.
Moreover, we set the guard interval between two nodes’ data transmission time
∆Ti1 and ∆Ti2 to be smaller than the duration of CS, Tendi1−Tstarti2 < TCS .
Any node arriving in SDTP detects the channel is busy, so it backs off the
wakeup.

SDTP is driven by the schedule calculated by the κ-FSOM heuristic. The
nodes find their transmission slot (DATA slot) within the super frame and only
transmit during their scheduled time to prevent interference. The length of the
DATA slots is selected by the scheduler and will typically allow for multiple
packet transmissions. We use guard intervals to prevent packet collisions due to
time-synchronization errors. With a large number of nodes, some of them may
fail to communicate with the BS during RCAP. However, these nodes consume
limited energy due to a long sleeping time during the SDTP.

According to the super frame structure, the node wakes up only when ∆Ti is
its allocated transmission time slots. It sleeps in the others’ time slots. Specif-
ically, this structure avoids the energy consumption on idle listening for the
nodes and reduce the potential transmission collisions.
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Figure 3.1: The timing relationship when five nodes communicate with the BS
in RCAP and SDTP. Tstarti and Tendi stand for the starting and ending time
of node i’s data transmission respectively.

4 Transmission Scheduling Optimization Model

Next, we present an abstract generalizable model of the network, which is used
for the optimization model presented in this section. We assume that there areN
nodes that directly communicate with the BS using single-hop communication.
The nodes typically arrive in large groups but their exact arrival sequence is
unknown. The residual energy of a node i, when it arrives at the camp is denoted
by E0

i . In order to prevent a node from completely depleting its battery, we
assume that a node powers down if the residual energy goes below a certain
threshold Etd.

In this paper, a node in such a state is referred to as a dead node. The wireless
channel between each node and the BS is typically influenced by a variety of
environmental factors and the motion of the node. The channel variability in
turn influences the Packet Reception Rate (PRR) of the node. We estimate the
PRR as a function of empirically collected RSSI traces from a real testbed as
outlined in Section 6.

On the basis of Section 3, the BS aggregates the nodes and channel infor-
mation in the RCAP in order to schedule the transmissions. In this section,
we explain the basic notations and propose the scheduling optimization model
under the constraints of reception fairness and node’s remaining energy. We
formulate the scheduling optimization as an Integer Linear Programming (ILP)
problem.

4.1 Problem Formulation

According to the super frame as shown in Fig. 3.1, we divide the SDTP to a
number of slots S, where, S =

∑N
i=1 ∆Ti. Time slot j (j ∈ [1, S]) is allocated

by the BS to only one node’s transmission for the purpose of avoiding collisions.
Therefore, the allocated time ∆Ti of the node i contains multiple time slots in
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one super frame. κ-FSOM calculates optimal solutions for multiple frames so
that the schedule is optimized globally. F is defined as the total number of
super frames needed for all the nodes to finish their data transmissions. The
sequence number of frame is denoted as f (f ∈ [1, F ]). We assume the residual
energy when node i arrives at the camp is E0

i (i ∈ [1, N ]). The PRR is indicated

by qfi , where qfi ∈ [0, 1]. Additionally, qfi may change from one frame to the

next due to the time-varying channel. We assume qfi does not change during the
super frame since the flying foxes are not highly mobile in the camp. The data
payload stored on each node is represented by λi and the fairness coefficient
is κ where κ ∈ (0, 100%]. Thus, the data reception fairness ensures that the
number of data packets the BS collects from each node is not less than κ · λi.
We define the boolean variable xfij as a transmission indicator for node i ∈ [1, N ]

associated with the slot j ∈ [1, S] in the super frame f ∈ [1, F ]. xfij = 1 means
node i has jth slot reserved for transmission in frame f .

The number of data packets received by the BS in a super frame is defined
as γf , where

γf =

N∑
i=1

S∑
j=1

xfij · q
f
i , (f ∈ [1, F ]) (4.1)

Similarly, for all super frames, the data received by the BS from any node i is
defined as αi, where

αi =

F∑
f=1

S∑
j=1

xfij · q
f
i , (i ∈ [1, N ]) (4.2)

The energy consumption of nodes arises from the transmissions in RCAP
and SDTP as shown in Fig. 3.1. In this paper, we let etx−hello, erx−hack and
erx−sack be the energy consumption of transmitting one Hello packet, receiv-
ing one HACK and one SACK of the nodes, respectively. The etx represents
energy consumption of transmitting one data packet. Due to the tiny energy
consumption of carrier sensing compared to transmitting and receiving packets
[5], we neglect the same in our model. The energy consumption of node i in the
RCAP is ĚA, where

ĚA = etx−hello + erx−hack + erx−sack (4.3)

We next define ĚDi as the energy that node i consumes on data transmission
in all super frames, where

ĚDi =

F∑
f=1

S∑
j=1

xfij · etx, (i ∈ [1, N ]) (4.4)
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4.2 Optimization Model

Based on the notations in the problem formulation, we formulate κ-FSOM for
finding the optimal schedules as follows:

maximize

F∑
f=1

γf

subject to : E0
i −

F∑
f=1

(ĚA · ϕf
i )− ĚDi ≥ Etd, (i ∈ [1, N ]) (4.5)

αi ≥ κ · λi, (i ∈ [1, N ], κ ∈ (0, 1]) (4.6)

αi ≤ λi, (i ∈ [1, N ]) (4.7)

xfij ≤ 1, (i ∈ [1, N ], j ∈ [1, S], f ∈ [1, F ]) (4.8)

N∑
i=1

xfij ≤ 1, (j ∈ [1, S], f ∈ [1, F ]) (4.9)

λi −
f∑

g=1

j∑
w=1

xgiw · q
g
i ≥ v

f
ij ,

(i ∈ [1, N ], j ∈ [1, S], f ∈ [1, F ]) (4.10)

vfij ≥ v
f
ij′ , (j′ ≥ j, j ∈ [1, S]) (4.11)

vfij ≥ v
g
ij′ , (g ≥ f, j′ ≥ j, j ∈ [1, S], f ∈ [1, F ]) (4.12)

F−f∑
a=1

ϕf+a
i ≤ vfij , (i ∈ [1, N ], j ∈ [1, S]) (4.13)

xfij ≤ ϕ
f
i , (i ∈ [1, N ], j ∈ [1, S], f ∈ [1, F ]) (4.14)

Objective function of the optimization model is to maximize γf of all super
frames. Constraint (4.5) specifies the minimum remaining energy to be above
Etd. A node stops accessing the channel after all its data has been transmitted
or constraint (4.5) is violated. Consequently, it does not waste energy in RCAP

in subsequent super frames. For this purpose, ϕf
i is defined as an indicator of

RCAP in a super frame for the node. If the node i does not compete for the
channel in the RCAP of frame f , ϕf

i is equal to 0.
∑F

f=1(ĚA ·ϕf
i ) indicates the

energy consumption of the node in the RCAP of all super frames.
Constraint (4.6) guarantees that the BS receives sufficient data packets to

meet the fairness requirement. Constraint (4.7) limits the value of αi by the total
payload λi. Constraints (4.8) and (4.9) specify that at any data transmission
time slot only one node communicates with the BS to prevent transmission
collisions.

The only unknown is the total number of super frames during which a node
is required to transmit. In other words, ϕf

i is not known. To determine ϕf
i , we

define a variable vfij for node i at any slot j of frame f .
Accordingly, constraint (4.10) presents whether node i has stopped the data

transmission or not.
∑f

g=1

∑j
w=1 x

g
iwq

g
i is the total received packets until the

current slot j of frame f . If the amount of data packets received from node
i matches the size of payloads λi, v

f
ij is equal to 0. Constraints (4.11) and
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(4.12) ensure the future slots j′ and frames g have vfij = 0 if λi packets have

been received from node i. Constraint (4.13) guarantees all ϕf
i of the future

super frames is 0 if vfij = 0. As a result, the remaining energy of node i which

is restricted by the RCAP indicator ϕf
i stops decreasing in constraint (4.5).

Constraint (4.14) ensures that the node i stops data transmission if ϕf
i = 0.

5 κ-FSOM Heuristic Algorithm

In this section, we first show that κ-FSOM is NP-complete. Next, a κ-FSOM
heuristic algorithm is proposed to approximate the optimal solution.

Maximizing the collected data presented in κ-FSOM is a typical 0-1 Multi-
ple Knapsack Problem (MKP) [14]. We reduce an instance of a MKP to our
scheduling optimization problem by assigning ∆Ti to each knapsack. Therefore,
the capacity of the knapsack is equal to ∆Ti. The items to be put in knapsacks
are data packets whose size is prorated by qfi . The parameters of the energy
and fairness conditions (constraint (4.5) and (4.6)) are chosen so that they are
satisfied by any placement of items. In this way, optimal placement of items in
knapsacks is reduced to such an instance of our scheduling problem. Since the
problem is obviously an NP problem, this shows that our scheduling problem
presented in the Section 4 is NP-complete.

We propose a heuristic algorithm to approximate the optimal solution of
κ-FSOM. Due to the effect of Ef

i and qfi to the schedule making, a ratio of the

link quality and remaining energy of the node i is denoted as ηfi , where

ηfi =
qfi

Ef
i

,∀i ∈ [1, N ],∀f ∈ [1, F ] (5.1)

Accordingly, Ef
i is obtained by

Ef
i = E0

i −
f∑

f ′=1

(ĚA · ϕf ′

i )−
f∑

f ′=1

S∑
j=1

xf
′

ij · etx (5.2)

The motivation of calculating ηfi is to prioritize the nodes based on both the link
quality and remaining energy. The κ-FSOM heuristic gives a high transmission
priority to the node with larger ηfi . This method achieves large data reception

because for the nodes with the same qfi , the node with the smallest Ef
i gets

higher transmitting priority. Similarly, for the nodes with the same Ef
i , one

with higher qfi has higher priority.
In our heuristic, the node works in three states, Access & Data transmission

(AD), NonAccess (NA) and NonData (ND). In AD state, the node competes
for the channel in RCAP and transmits data in SDTP as shown in Fig. 3.1.
In NA state, the node neither accesses the channel nor transmits data but only
receives the SACK packets for the purpose of saving energy in the super frame.
More importantly, none of the nodes which are in the NA state transmit data
given that no time slots are allocated to them. This helps more nodes achieve
fairness. In ND state, the node does not turn on the radio and remains in sleep
mode.

9



Algorithm 1 κ-FSOM Heuristic Algorithm

1: nodes are in AD state and compete the channel
2: The BS calculates ηfi for the node i, ∀f ∈ [1, F ]

3: The BS sorts the nodes by ηfi , then ηfi ≥ η
f
i′ , (i 6= i′, i′ ∈ [1, N ])

4: The BS schedules the node i to transmit
5: if αi ≥ (κ · λi) then
6: The node i goes to NA state
7: The BS schedules the next one to transmit
8: else
9: The node i remains in AD state

10: end if
11: if every node has αi ≥ (κ · λi) ∀i ∈ [1, N ] then
12: All the nodes transfer to AD state
13: The BS calculates ηfi for each node

14: The BS sorts the nodes by ηfi , then ηfi ≥ η
f
i′ , (i 6= i′, i′ ∈ [1, N ])

15: if Ei ≥ Etd then
16: The BS schedules the node i to transmit
17: else
18: The node i changes state to the ND
19: The BS schedules the next one to transmit
20: end if
21: if αi < λi then
22: The node i remains in AD state
23: else
24: The node i changes state to the ND
25: end if
26: end if

The κ-FSOM heuristic develops two steps to maximize the data reception
with ηfi . It is implemented as shown in Algorithm 1.

At first step, all the nodes work in AD state and the BS schedules the node
i (i ∈ [1, N ]) which has maximum ηfi to transmit data at first in each super
frame. The BS records the number of data packets from the node. Once the
node i meets the fairness of data reception (constraint (4.6)), it transfers the
state from the AD to the NA. The benefit of NA state is to reduce the channel
competitions since the number of nodes competing the channel is decreased.
Certainly, after the first step, all the nodes have at least (κ ·λi) number of data
packets being transmitted successfully and the fair reception of data is achieved.
At the second step, all the nodes change the state from the NA to AD. Then,
the BS schedules the node with largest ηfi to transmit first. To maximize data
reception, the node i works in the AD state until either the constraint of (4.5)
or (4.7) is no longer holds. Moreover, if the constraint of (4.5) or (4.7) is not
fulfilled by the node i, its state is transferred to the ND. By using this approach,
the number of data packets collected by the BS is maximized, meanwhile, the
energy and fairness requirements are both achieved. Operationally, the working
states vary between the two steps. Transition graph is shown in Fig. 5.1.
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Figure 5.1: The working states transition of node i

Table 6.1: Parameters of the nodes
Maximum number of bats N 300
Working temperature TA 25 ◦C
Working frequency Freq 915 MHz
Supply voltage during radio
operation

Vcc 3 V

Transmitting current Itx 35 mA
Receiving current Irx 15 mA
Remaining energy threshold Etd 1.67 mJ
Bit Rate Rb 19.2k bps

6 Simulation and Performance Evaluation

Given optimal schedules from κ-FSOM in AMPL, it is observed how the per-
formance of heuristic algorithm approximates them. Moreover, we study the
performance of the κ-FSOM heuristic algorithm in both static and dynamic sce-
narios which are used to evaluate the behavior of flying foxes by MATLAB. A
series of experiments had been implemented in a previous work within the same
project to obtain the RSSI [10]. The RSSI trace from the Camazotz testbed
attached to the flying foxes is imported to the simulations, which provides an en-
vironment to conduct repeatable simulations based on empirical data. Finally,
we evaluate the impact of the fairness coefficient κ on network performance.

6.1 Simulation Configuration

The data collection network in the simulation is composed of one BS and N
nodes (N ∈ [10, 300]) which are randomly distributed within the open camp.
Based on hardware setup of the Camazotz, the node communicates with the BS
using CC1101 radio transceiver which provides a GFSK communication in the
915 MHz band. According to features of the CC1101 radio [7], configuration of
the nodes is outlined in Table 6.1. A data packet which contains time, GPS and
biological information has 32 bytes. The length of one Hello packet is 10 bytes.
Equally, HACK and SACK have the same length as Hello. Therefore, we have

etx−hello = Vcc · Itx ·
10× 8

Rb
= 0.03mJ (6.1)

erx−hack = erx−sack = Vcc · Irx ·
10× 8

Rb
= 0.01mJ (6.2)
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etx = Vcc · Itx ·
32× 8

Rb
= 0.1mJ (6.3)

According to the energy initialization of sensor nodes in simulations [27], E0
i in

this work is given by a normal distribution with the mean value of 50 Joule. Fig.
6.1 shows the values of E0

i when N = 300 as an example. The actual energy
of Camazotz supports several days. However, in our simulations, the value of
E0

i is given purposely so that some dead nodes which run out of energy will
be observed among different scheduling algorithms. The RSSI trace is recorded
by the Camazotz whose sampling rate is 4 samples per second. Thus, the node
has 14400 RSSI samples for one hour. Fig. 6.2 depicts a 780 seconds segment
which includes 3120 RSSI points. The variation of RSSI is known that most of
samples are between -70 dbm and -85 dbm. A few of them are higher than -70
dbm and smaller than -85 dbm. In this paper, we convert the RSSI to PRR for
the qfi by the experimental results of PRR-RSSI relationship [22].
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Figure 6.1: Initial energy of the nodes
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Figure 6.2: RSSI trace of the node by the Camazotz on the flying fox

We evaluate three performance metrics: the total number of data packets
received by the BS (data reception), the number of fair nodes and dead nodes.
Specifically, the fair nodes denote the number of nodes such that node i fulfills
αi ≥ κ ·λi (the fairness constraint (4.6)). At first, we test the κ-FSOM heuristic
based on the amount of data a node gathers during one day. We compare
the performance of heuristic with κ-FSOM optimal solutions when each node
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carries the data payload of 80 KB (daily based). Then, we simulate the κ-FSOM
heuristic algorithm in the static and dynamic scenarios. The performance in
both scenarios provide support to the proposed heuristic. In the static scenario,
we assume all the nodes are in the camp from the start of experiment to the
end. In the dynamic case, the nodes arrive back at the camp at different times.
Since the number of nodes communicating with the BS in a short time is small,
we increase the data payload to 300 KB in order to explore the limits of the
scheduling algorithms. For this reason, a node occupies the channel longer while
more nodes enter the camp in the dynamic scenario.

To evaluate the performance of κ-FSOM heuristic algorithm in the static
and dynamic scenarios, two Greedy scheduling algorithms and FCFS algorithm
are constructed in the numerical investigations. Because two basic elements
used in κ-FSOM are the remaining energy represented by Ef

i and link quality

qfi of node, the Greedy scheduling algorithms are formulated by them. The first
Greedy algorithm is called Low Energy Greedy (LEG), namely, the transmission

schedule is based on the Ef
i of node. Lower Ef

i , higher priority of transmission
at frame f . High PRR Greedy (HPG) is the second algorithm where the node

with higher qfi has higher priority. We compare them with the κ-FSOM heuristic
algorithm with κ = 10%, 50% and 90%.

6.2 Simulation Results

Comparing to optimal schedules

To compare to the optimal schedules shown in κ-FSOM, we assess the perfor-
mance of the κ-FSOM heuristic algorithm when they operates in ten small-scale
networks where the number of nodes is increased from 1 to 10. This initial com-
parison makes us aware of the performance difference between optimal solutions
and heuristic. The node i carries 80 KB data, so λi = 2500. In fact, the com-
parison is not affected by different κ values, thus we choose κ=50% for both
the optimal schedules and heuristic. The optimal schedules achieve a maximum
number of received data packets with the fairness and remaining energy con-
straints. They are constructed using AMPL and a state of the art ILP solver,
Cplex 12.5, in a 2.7 GHz Intel core processor with 8 GB of memory.

Table 6.2 summarizes running time, the number of collected data packets
and fair nodes. It is also found that there is no dead node in all tests. On
data reception, the κ-FSOM heuristic and optimal solution have the maximum
difference which is 719 when N = 9. On average, the number of packets in
our heuristic is less than the AMPL output by around 1.8%. The κ-FSOM
heuristic algorithm guarantees exactly the same number of fair nodes as optimal
schedules.

Static scenario

Fig. 6.3 and 6.4 show the performance of these four scheduling algorithms on the
data reception and fairness. When there are only 10 nodes in the network, they
have pretty similar performance. However, the FCFS, LEG and HPG collect
92.2%, 91.9% and 85.4% less data packets than the κ-FSOM heuristic with the
increase of nodes. The number of fair nodes of our heuristic is more than the
ones of FCFS, LEG and HPG for 174, 170, 147 nodes when κ = 50% and N =
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Table 6.2: Comparison between the optimal solutions and the κ-FSOM heuristic
Number
of nodes

AMPL
(Cplex)

κ-FSOM
heuristic

Collected
data packets

Fair
nodes

Running
time

Collected
data packets

Fair
nodes

Running
time

1 2499 1 1 s 2481 1 0.029 s
2 4999 2 4 s 4969 2 0.097 s
3 7499 3 17 s 7469 3 0.036 s
4 9998 4 50 s 9922 4 0.042 s
5 12498 5 1 m 5 s 12477 5 0.041 s
6 14998 6 5 m 15 s 14340 6 0.041 s
7 17498 7 58 m 47 s 17288 7 0.05 s
8 19997 8 5 h 49 m 19792 8 0.051 s
9 22498 9 17 h 25 m 21779 9 0.055 s
10 24997 10 30 h 5 m 24555 10 0.072 s

300. The reason is that the LEG and HPG make the schedule based on either
the Ef

i or the qfi . The LEG scheduling fails when the low energy nodes have
poor link quality since it schedules them to transmit at first. However, although
the nodes with high PRR are not scheduled because of low priority, they still
consume energy on channel competitions in RCAP. With the HPG algorithm,
the nodes with high PRR occupy the SDTP for multiple super frames until they
finish the transmissions. It gives rise to a number of dead nodes which have low
Ef

i . Nevertheless, those nodes can potentially gain higher data reception. In

contrast, the κ-FSOM heuristic makes the schedule regarding to ηfi . The first
step of our heuristic makes the nodes fulfill fairness constraint (4.6) and the
second step is to maximize the data reception. We have shown that it achieves
better performance than the greedy and nonscheduled ones.

We find the data reception and fair nodes of FCFS, LEG and HPG do not
vary too much from N = 100 to 300. The reason is indicated by Fig. 6.5.
It shows the FCFS, LEG and HPG have more dead nodes starting from N =
50. At the maximum, the difference between them and our heuristic are 171,
154 and 173 nodes. The reason is that most of the node’s energy is consumed
during the RCAP in FCFS, LEG and HPG, however, they are not scheduled to
transmit in the super frames because the high priority nodes have not finished
their data transmissions. The BS fails to collect their data before they die.

According to the κ-FSOM heuristic algorithm, we know that κ is a crucial
variable which affects the states transition of node i. The performance of our
heuristic varies with different κ value. As shown, they are similar for κ = 10%,
50% and 90% when N is 10. From N = 50 to N = 300, κ = 10% performs
better than 50% and 90%. The reason of this difference is that any node which
is scheduled to transmit occupies more super frames when κ is increased due to
the fairness constraint (4.6). It makes the other nodes compete the channel in
RCAP repeatedly and waste much energy.
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Figure 6.3: The data packets collected by the BS

0 50 100 150 200 250 3000

50

100

150

200

250

300

Number of nodes

T
h
e

n
u
m

b
er

o
f

fa
ir

n
o
d
es

 

 

FCFS
Low Energy Greedy
High PRR Greedy
FSOM−Heuristic, k = 10%
FSOM−Heuristic, k = 50%
FSOM−Heuristic, k = 90%

Figure 6.4: Number of fair nodes

Dynamic scenario

In this set of experiments, we test the scheduling algorithms when nodes fly back
as a swarm. Since the arrival pattern of flying foxes in real world is not known,
we assume the inter-arrival time of nodes is exponentially distribution which
used to model situations involving the random time between arrivals to a service
facility [24]. The node has data payload of 300 KB which has been illustrated
in the network configuration. From Fig. 6.6, we find that the κ-FSOM heuristic
has up to 37.1 times as many collected data packets as FCFS and HPG schedules
at most. It outperforms LEG by 5 times as well. The reason is explained by
Fig. 6.7 and 6.8. The FCFS, LEG and HPG have less fair nodes and more dead
nodes than our heuristic, which means the incoming nodes fail to transmit since
the previous node have not finished the transmission. It causes their energy
to be depleted very soon. Moreover, in Fig. 6.7, we observe the difference of
fairness which is achieved by different κ is smaller. That is because the BS
schedules a smaller number of nodes in one super frame in dynamic scenario
than the nodes in static scenario. The first step of heuristic is completed faster,
hence more nodes achieve fairness constraint in dynamic scenario. Likewise, the
number of dead nodes in our heuristic has small difference in Fig. 6.8. Due to
the increase of λi in this scenario, there are 16 dead nodes with the κ = 90% in
the κ-FSOM heuristic at the maximum.
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Figure 6.5: Number of dead nodes
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Figure 6.6: The data packets collected by the BS

6.3 Effect of Fairness coefficient κ

Based on the preceding simulations, it is observed that different κ affects the
performance of our heuristic. Essentially, the κ decides the fairness level in κ-
FSOM. In this experiment, we analyze the impact of κ in the static scenario with
300 nodes. Specifically, the κ is varied from 10% to 100%. The performance of
data packets reception, fair nodes and dead nodes are shown in Fig. 6.9, 6.10
and 6.11 respectively.

As it can be seen in Fig. 6.9 the collected data packets do not have too
much variation with κ from 10% to 40%. This is because all of the nodes fulfill
the fairness constraint (4.6) which is decided by κ in the first step of heuristic.
The data reception is maximized in the second step. However, starting from κ
= 50% to κ = 100%, the data reception at the BS drops. From Fig. 6.10 and
6.11, we find the number of fair nodes decreases and the number of dead nodes
increases at the same time. That means the node has to transmit more data
packets as the fairness level is raised. It causes a number of nodes death due to
the ĚA. The number of fair nodes is reduced correspondingly.

Generally, we find that the scheduling with smaller κ achieves larger number
of fair nodes. However, since the BS gives higher priority to the larger ηfi node
after all nodes satisfy fairness constraint, it does not guarantee most of data
can be collected from each node. Therefore, κ changed from 40% to 50% keeps
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Figure 6.7: Number of fair nodes
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Figure 6.8: Number of dead nodes

a balance between the data reception from each node and total number of dead
nodes.

7 Conclusion and Future Work

In this paper, we have proposed and evaluated κ-FSOM which is a fair link
scheduling optimization model with the objective of maximizing the data re-
ception in the energy-aware data collection of MSN. The super frame structure
is developed for the BS to collect data from the nodes. We have proved that
the scheduling optimization of κ-FSOM is an NP-complete problem. There-
fore, the κ-FSOM heuristic algorithm is proposed to approximate the optimal
solution in polynomial time. The κ-FSOM heuristic algorithm schedules the
transmissions of data senders with the ηfi and three working states in two steps.
With the application of flying foxes monitoring, we have shown the numerical
performance of heuristic algorithm based on the RSSI traced by the Camazotz
testbed. We have compared the κ-FSOM heuristic with the optimal schedules
of κ-FSOM and presented extensive simulations incorporating both static and
dynamic scenarios. Specifically, κ-FSOM provides an optimal scheduling to the
data collection in MSNs.

For future work, we plan to investigate the constraint of relative fairness

17



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

1.5

2

2.5

3

3.5x 105

Fairness index

T
h
e

to
ta

l
n
u
m

b
er

o
f

re
ce

iv
ed

d
a
ta

p
a
ck

et
s

Figure 6.9: The data packets collected by the BS with κ
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Figure 6.10: Number of fair nodes with κ

for data collection of MSNs. The relative fairness which signifies the margin
of collected data volumes among the nodes. Meanwhile, we will continue the
data collection experiments by using κ-FSOM with the Camazotz for the flying
foxes.

Acknowledgment

This work was supported by the Australian Research Council Discovery Grant
DP110104344 and the Batmon Project in CSIROs Sensor and Sensor Networks
Transformation Capability Platform. The authors thank Dr. Andreas Rein-
hardt for his constructive comments for this paper.

Bibliography

[1] D. Chabot. Systematic evaluation of a stock unmanned aerial vehicle
(UAV) system for small-scale wildlife survey applications. PhD thesis,
MCGILL UNIVERSITY, 2010.

[2] Peter Corke, Tim Wark, Raja Jurdak, Wen Hu, Philip Valencia, and Darren
Moore. Environmental wireless sensor networks. Proceedings of the IEEE,
98(11):1903–1917, 2010.

18



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

50

100

150

200

250

300

Fairness index

T
h
e

n
u
m

b
er

o
f

d
ea

d
n
o
d
es

Figure 6.11: Number of dead nodes with κ

[3] Karthik Dantu, Bryan Kate, Jason Waterman, Peter Bailis, and Matt
Welsh. Programming micro-aerial vehicle swarms with karma. ACM Sen-
Sys, pages 121–134, 2011.

[4] Vladimir Dyo, Stephen A Ellwood, David W Macdonald, Andrew
Markham, Cecilia Mascolo, Bence Pásztor, Salvatore Scellato, Niki Trigoni,
Ricklef Wohlers, and Kharsim Yousef. Evolution and sustainability of a
wildlife monitoring sensor network. ACM SenSys, pages 127–140, 2010.

[5] Sinem Coleri Ergen. Zigbee/ieee 802.15. 4 summary. UC Berkeley, Septem-
ber, 10, 2004.

[6] IEEE 802 Working Group et al. Standard for part 15.4: Wireless medium
access control (mac) and physical layer (phy) specifications for low rate
wireless personal area networks (lr-wpans). ANSI/IEEE 802.15, 4, 2003.

[7] Texas Instruments, April 2013.

[8] M. Israel. A uav-based roe deer fawn detection system. In Proceedings
of the International Conference on Unmanned Aerial Vehicle in Geomatics
(UAV-g)(H. Eisenbeiss, M. Kunz, and H. Ingensand, eds.), volume 38,
pages 1–5, 2011.

[9] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan
Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife track-
ing: Design tradeoffs and early experiences with zebranet. ACM Sigplan
Notices, 37(10):96–107, 2002.

[10] Raja Jurdak, Philipp Sommer, Branislav Kusy, Navinda Kottege, Christo-
pher Crossman, Adam Mckeown, and David Westcott. Camazotz: multi-
modal activity-based gps sampling. ACM IPSN, pages 67–78, 2013.

[11] Mathieu Leconte, Jian Ni, and Rayadurgam Srikant. Improved bounds
on the throughput efficiency of greedy maximal scheduling in wireless net-
works. Networking, IEEE/ACM Transactions on, 19(3):709–720, 2011.

[12] Yicheng Lin and Wei Yu. Fair scheduling and resource allocation for wire-
less cellular network with shared relays. Selected Areas in Communications,
IEEE Journal on, 30(8):1530–1540, 2012.

19



[13] Tze-Ping Low, Man-On Pun, Y-WP Hong, and C-CJ Kuo. Optimized
opportunistic multicast scheduling (oms) over wireless cellular networks.
Wireless Communications, IEEE Transactions on, 9(2):791–801, 2010.

[14] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and com-
puter implementations. John Wiley and Sons, Inc., 1990.

[15] Sidharth Nabar, Jeffrey Walling, and Radha Poovendran. Minimizing en-
ergy consumption in body sensor networks via convex optimization. Inter-
national Conference on Body Sensor Networks (BSN), pages 62–67, 2010.

[16] Neely. Opportunistic scheduling with worst case delay guarantees in single
and multi-hop networks. IEEE INFOCOM, pages 1728–1736, 2011.

[17] Michael J Neely. Delay-based network utility maximization. IEEE INFO-
COM, pages 1–9, 2010.

[18] Katerina Papadaki and Vasilis Friderikos. Approximate dynamic program-
ming for link scheduling in wireless mesh networks. International Journal
of Computers and Operations Research, 35(12):3848–3859, 2008.

[19] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pral-
had Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N Pad-
manabhan. Bartendr: a practical approach to energy-aware cellular data
scheduling. In Proceedings of the sixteenth annual international conference
on Mobile computing and networking, pages 85–96. ACM, 2010.

[20] Louise A Shilton, Peter J Latch, Adam Mckeown, Petina Pert, and David A
Westcott. Landscape-scale redistribution of a highly mobile threatened
species, pteropus conspicillatus (chiroptera, pteropodidae), in response to
tropical cyclone larry. Austral Ecology, 33(4):549–561, 2008.

[21] Arpita Sinha, Antonios Tsourdos, and Brian White. Multi uav coordination
for tracking the dispersion of a contaminant cloud in an urban region.
European Journal of Control, 15(3):441–448, 2009.

[22] K Srinivasa and P Levis. Rssi is under appreciated. The Third Workshop
on Embedded Networked Sensors (EmNets), 2006.

[23] ShaoJie Tang and Lei Yang. Morello: A quality-of-monitoring oriented
sensing scheduling protocol in sensor networks. IEEE INFOCOM, pages
2676–2680, 2012.

[24] Daniel Willkomm, Sridhar Machiraju, Jean Bolot, and Adam Wolisz. Pri-
mary user behavior in cellular networks and implications for dynamic spec-
trum access. Communications Magazine, IEEE, 47(3):88–95, 2009.

[25] Robert Wood, Radhika Nagpal, and Gu-Yeon Wei. Flight of the robobees.
Scientific American, 308(3):60–65, 2013.

[26] Dapeng Wu and Rohit Negi. Downlink scheduling in a cellular network for
quality-of-service assurance. Vehicular Technology, IEEE Transactions on,
53(5):1547–1557, 2004.

20



[27] Debdhanit Yupho and Joseph Kabara. The effect of physical topology on
wireless sensor network lifetime. Journal of Networks, 2(5):14–23, 2007.

[28] Yaqin Zhou, Xiang-Yang Li, Min Liu, Zhongcheng Li, Shaojie Tang, Xufei
Mao, and Qiuyuan Huang. Distributed link scheduling for throughput
maximization under physical interference model. IEEE INFOCOM, pages
2691–2695, 2012.

21


