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Abstract

Distributed key-value stores (KVSs) have become an important component for
data management in cloud applications. Since resources can be provisioned on
demand in the cloud, there is a need for efficient node bootstrapping and de-
commissioning, i.e. to incorporate or eliminate the provisioned resources as a
members of the KVS. It requires the data be handed over and the load be shifted
across the nodes quickly. However, the data partitioning schemes in the current-
state shared nothing KVSs are not efficient in quick bootstrapping. In this pa-
per, we have designed a middleware layer that provides a decentralised scheme of
auto-sharding with a two-phase bootstrapping. We experimentally demonstrate
that our scheme reduces bootstrap time and improves load-balancing thereby
increasing scalability of the KVS.



1 Introduction

Distributed key-value stores (KVSs) [1, 2, 3] have become a standard component
for many web services and applications due to their inherent scalability, relia-
bility and data availability, even in the face of hardware failures. While KVSs
have been mostly used in data centres, many enterprises are now adopting them
for use on servers leased from Infrastructure-as-a-Service (IaaS) cloud.

IaaS providers offer compute resources in the form of virtual machines (VMs),
which can be provisioned or de-provisioned anytime on-demand. To deal with
increasing workload, new VMs are acquired to improve the system’s capacity
(i.e. scale up). Since IaaS providers normally follow the “pay-as-you-go” pricing
model, redundant VMs can be shut down in the face of declining demand (i.e.
scale down) to save on economic costs . In this paper, the process of incorpo-
rating a new empty VM as a member of KVS is termed as node bootstrapping.
In contrast, the process of eliminating an existing member with redundant data
off the KVS is called node decommissioning.

The storage model of a KVS determines its performance of data movement
during node bootstrapping and decommissioning. In shared storage KVSs, the
persistent data is stored in the underlying networked attached storage or dis-
tributed file system (DFS). The data can be migrated between nodes without
actual data transfer, simply by exchanging the metadata (e.g., identifiers or
ownership) of data blocks in the shared storage [4]. In contrast, shared-nothing
KVSs consist of distributed nodes, each with their own separate storage, coordi-
nated as a distributed hash table (DHT). When a new node joins the system, it
has to obtain data from its peers. This process is slow in the case of KVS with
large data volume. Thus, it is non-trivial to bootstrap or decommission a node
quickly and frictionlessly, i.e. without affecting the online query processing.

The challenge of node bootstrapping in the shared-nothing KVSs lies in
re-distributing the data when a new node is added. Specifically, it requires a
mechanism that partitions the key space of a database and then re-allocates the
partition replicas during node bootstrapping. Moreover, most shared-nothing
KVSs [3, 5] are essentially DHTs, deployed in a completely decentralised archi-
tecture (i.e. peer-to-peer, or P2P). There is a need for decentralised coordination
between the peers to execute data partitioning.

This paper aims at improving the efficiency of node bootstrapping for de-
centralised shared-nothing KVSs. The goal of efficiency is three-fold. First,
the side-effect of data movement (against front-end query processing) should be
minimised. Second, data consistency and availability should be maintained dur-
ing bootstrapping. Third, the load in terms of both data volume and workload
that each node undertakes, should be re-balanced after bootstrapping. Node
decommissioning is also discussed, but it is applied with caution to avoid data
loss.

In this paper, we describe the design of a middleware layer that provides a de-
centralised scheme of data partitioning and placement to improve the efficiency
of node bootstrapping. The main contribution of this paper is a decentralised
auto-sharding scheme, extending from the concept of “virtual node” [6], that
consolidates each partition of data into single transferable replicas to eliminate
the overhead of migrating individual key-value pairs. Through sharding, the
data volume of each partition replica is confined into a bounded range.

We also discuss a related placement algorithm, that evenly re-allocates the
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Figure 2.1: A node joins the key-value store

partition replicas when a node is bootstrapped and decommissioned, with the
objectives of: i) rebalancing the volume of data; ii) maintaining high data avail-
ability; and iii) minimising data movement at startup for quick bootstrapping.
We have also implemented a token ownership mechanism to provide eventual
consistency when a replica is migrated between nodes.

We have implemented these partitioning and placement mechanisms on top
of Apache Cassandra, an open source KVS, to build ElasCass. We present
experimental evaluations, carried out using public IaaS cloud, that demonstrate
that our proposed scheme of data partitioning and placement reduces the time to
bootstrap nodes, distributes data and workload more evenly among the nodes,
and improves throughput of the KVS.

The rest of this paper is structured as follows. In the next section, we discuss
the state-of-the-art in node bootstrapping and replica placement in distributed
databases. The system design is presented in Section 3. The data consistency
issue is discussed in Section 4. We present the experimental evaluations in
Section 5. Finally, we conclude in Section 6.

2 Background and Related Work

The bootstrap process for a KVS executing on IaaS begins with provisioning
a VM as a node and starting a KVS process. The next step is for the node
to acquire a list of key ranges from existing nodes. Finally, the node acquires
the data belonging to the key ranges. At this point, the node is ready to serve
queries. We denote the time between the start of the KVS process and the point
when the node is ready to serve queries as the bootstrap time. The efficiency of
bootstrap is determined by the acquisition of the key ranges and the associated
data. This is determined by the data management - partitioning and placement
- strategies, the state-of-the-art in which is discussed in the following sections.

2.1 Partitioning in Key-value Stores

Figure 2.1 illustrates several approaches for migrating the data during node
bootstrapping, described as follows.

Split-Move Approach. This approach is commonly used in distributed
hash tables (DHTs), and was adopted by Cassandra [5]. Typically, consistent
hashing [7] is used, as it introduces minimal disruption when a hash table (e.g.
a key range or a partition) is resized during node bootstrapping. The key space
is split into a list of consecutive key ranges, each assigned to one node. Thereby,
each node maintains one master replica for its own range, and also stores the
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slave replicas of several other key ranges for high availability. When a new
node joins the KVS, the key space of the database is re-partitioned. One or
several existing partitions are split into two sets of data (e.g. B1 and B2 as
in Figure 2.1). One is retained in the existing nodes. The other set of data is
moved pair-by-pair and reassembled at the new node.

There are multiple drawbacks to this approach. One is the overhead of mov-
ing individual key-value pairs. When a partition is split, the node contributing
the subset has to scan its entire dataset to prepare a list of key-value pairs for
the new node, which, on receiving the data, has to reassemble the key-value
pairs into files. Both scanning and reassembling are heavyweight operations.

The other drawback is that, consistent hashing aims at remapping a min-
imised number of keys when the number of nodes changes. As a result, only a
limited number of nodes can participate in bootstrapping, each undertaking rel-
atively heavy workload. According to Amazon [3], this bootstrapping approach
is highly resource intensive, and is only suitable to run at a lower priority. How-
ever, low priority results in significantly slow bootstrapping, which adapts less
quickly to dynamic load.

Virtual-Node Approach. A virtual node is a consolidated data partition
that is transferable as a single unit. The idea of “virtual node” was introduced
in Chord [6] and other consistent hashing systems, upon which KVSs such as
Dynamo [3], Voldemort 1 and Cassandra [5] are based. Other KVSs, such as
BigTable [1] and PNUTS [2], use the term “tablet” instead.

This approach avoids the overhead of scanning and reassembling as in the
split-move approach. In practice, the key space is over-partitioned, such that
the number of virtual nodes is made much greater than the data nodes. Each
data node is assigned many virtual nodes. Hence, a new node can be boot-
strapped by multiple existing nodes, each offering one or several virtual nodes.
Thereby, each participating node shares a relatively small amount of workload
in bootstrapping.

However, there is a lack of efficient data partitioning schemes for completely
decentralised KVSs. The current-state research efforts [3, 5] use a simplified
partitioning strategy, wherein the key space is split into static key ranges of
equal length, or hashed into buckets with equal capacity. Although this strategy
avoids complex coordination amongst the peer nodes, it leads to data skew for
biased key distributions. Data skew results in some “giant” partitions that are
difficult to migrate because of the large volume of data [2].

One refinement is to re-hash the inserted keys using uniform hash functions,
most of which, however, are not order-preserving, making the support of range
queries more difficult. For those uniform order-preserving hash functions, there
is a fundamental limitation: the key space is discrete and cannot adapt to any
arbitrary application key distributions [8]. Alternatively, PNUTS [2] proposed
to shard the tablets (i.e. partitions) into bounded sizes. However, it relies on a
centralised component that limits the efficiency of partitioning in the KVS.

Metadata-Only Approach. This approach is used by shared storage
KVSs such as BigTable [1], Spanner [9] and HBase 2. The persistent data is not
stored in the nodes of KVSs, but in underlying distributed file systems such as
GFS [10] or HDFS [11]. For this storage model, Das et al. [4] proposed that data

1Voldemort: http://www.project-voldemort.com/voldemort
2Apache HBase: http://hbase.apache.org
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can be migrated by exchanging only the metadata (i.e. identifiers or owner-
ship) of data blocks between the nodes of database systems (or KVSs), while the
persistent data remains unmoved in the shared storage. A centralised controller
is also used for metadata management. Although this approach minimises the
cost of data migration, it is not applicable to decentralised shared-nothing KVSs.

2.2 Data Placement

The data placement problem has been extensively studied in literature. The
common approach in state-of-the-art KVSs to data placement is to manage the
data through coarse grain structures such as buckets or virtual nodes rather
than identifying an optimal placement strategy at the granularity of single data
items [12]. Consistent hashing-based KVSs [3, 5] have typically adopted a ran-
dom placement strategy, in which a random hash function is used to assign
groups of data items (i.e. buckets or virtual nodes) to nodes. This allows
key lookups to be performed locally, in a very efficient manner [3]. Other
KVSs [1, 9, 2] rely on dedicated directory services that provide flexible map-
ping from virtual nodes to physical nodes. Essentially, this approach also uses
random placement strategy. The advantages of this strategy are simplicity and
the effectiveness of load-balancing [3, 1].

There is also extensive work of finding optimal data placement strategies.
Ursa [13] and Schism [14] rely on centralised components to compute the place-
ment and to maintain a location map, which is not applicable to our system.
Others research efforts [15, 16] have proposed distributed replica placement algo-
rithms. However, these efforts only consider the placement of read-only replicas,
while we discuss the ownership management of virtual nodes to support both
read and write operations.

In this paper, we extend the virtual-node approach to confine each trans-
ferable partition into a bounded size, that is enforced by auto-sharding, to avoid
data skew. The novelty lies in executing auto-sharding using decentralised co-
ordination. We also describe a random placement scheme to compliment the
auto-sharding mechanism, in order to achieve fast bootstrap time and load-
balancing.

3 Design

Our system follows the typical decentralised shared-nothing architecture. The
key space of a database is hashed into multiple partitions. Each partition,
denoted as Pi, is replicated to multiple nodes for high availability. The data is
stored in a separate persistent storage volume, each attached to an individual
node. Each node (denoted as ni) serves many partitions for load balancing
purposes. The nodes are organised as peer-to-peer (P2P), similar to DHTs [17,
6]. Each node maintains enough routing information locally so as to route a
request to the appropriate node directly, i.e. in 0-hop [18]. Thus, clients can
connect to any node for query execution.

We have designed a middleware layer that sits between the key space of a
database and the storage of nodes. This middleware was implemented on a KVS
that already has gossip-based [19] membership protocol and failure detection,
hinted handoff [3] to handle node failures, and timestamp based reconciliation to
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Figure 3.1: Data Partitioning

ensure eventual consistency. This section describes the synthesis of decentralised
auto-sharding and replica placement algorithms in this layer that improves the
efficiency of node bootstrapping.

3.1 Data Partitioning for Building Transferable Replicas

Our partitioning algorithm builds on consistent hashing [7], in which the largest
hash value is wrapped around to the smallest to form a ring of key space.
As shown in Figure 3.1(a), when a database is created, a number of tokens,
{Ti : 0 < i ≤ N}, are generated to segment the key space of the database
into N consecutive equal-size key ranges, where N is configurable by the KVS
administrators. Each key range defines one partition of data. Therefore, each
partition Pi can be associated with the token Ti, which defines the upper bound
of Pi. The lower bound is determined by the predecessor Ti−1.

Sharding Operations

The aim of auto-sharding is to confine the actual volume of data in each parti-
tion. Building on the virtual-node approach described in Section 2, we propose
to shard the partitions online to address the problem of data skew. Let Size(Pi)
be the data volume of partition Pi. The maximum size Θmax and the minimum
size Θmin are defined as in Equation 3.1 and Equation 3.2, respectively.

∀i ∈ [1, N ], Size(Pi) ≤ Θmax (3.1)

∀i ∈ [1, N − 1], Size(Pi) + Size(Pi+1) ≥ Θmin (3.2)

The partition Pi is split when Size(Pi) exceeds Θmax. A new token Tnew is
inserted between Ti−1 and Ti, such that the resulting sub-ranges (Ti−1, Tnew]
and (Tnew, Ti] contain roughly equal volumes of data. In contrast, two adjacent
partitions (e.g. Pi and Pi+1) are merged, if their total size is below Θmin. To
merge Pi and Pi+1, the token Ti that sets the boundary of these two partitions
is removed. Thus, the merged key range is (Ti−1, Ti+1].

The challenge of sharding, either split or merge, lies in the consolidation
of each partition replica as a single transferable unit for better performance of
data migration. To consolidate a replica, key-value pairs belonging to different
partitions, are stored in separated files. To execute a sharding, new replicas (i.e.
data files) are created, to store every (and only) key-value pair belonging to the
sharded partition. Hence, rebuilding replicas of the affected partition is the key
operation in sharding.
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In addition, we discuss the need for merging partitions. In practice, there
is less harm in retaining “sparse” partitions that contain small volume of data,
rather than merging them aggressively, since a small-sized partition replica is
easy to move. Nevertheless, in order to reduce the number of sparse partitions
for better performance of query processing, we attempt to merge partitions when
applicable. The extra conditions for the merge operation are as follows. Firstly,
if two adjacent partitions are not stored on the same set of nodes, then they
are not merged. Secondly, we try to maintain a minimum number of partitions
in each key space. If the actual number of partitions is no greater than the
predefined value N , then the merge operation will not be triggered. Lastly, to
avoid oscillation of split and merge, we set Θmax ≥ 2Θmin. Therefore, the size
of a newly-merged partition is not greater than Θmax/2, which is not big enough
to trigger a split. Also, each sub-partition of a newly split partition is not less
than Θmin, which is not small enough to trigger a merge.

Coordinating sharding

The key operation of sharding is rebuilding replicas. However, since each parti-
tion is replicated to multiple nodes, the operation of rebuilding each local replica
is executed by different nodes asynchronously. Thus, coordination is required to
ensure the consistency of the key space and persistent data across the nodes that
participate in sharding. As shown in Figure 3.1(b), sharding in a distributed
KVS is coordinated in four steps:

Step 1: Election. When the data volume of a partition replica reaches
the boundary (Θmax or Θmin), the node that serves the partition initiates the
sharding. A coordinator is elected with a distributed consensus policy. In
this paper, we have leveraged the Chubby implementation [20] for electing the
coordinator. According to Chubby, the coordinator must obtain votes from
a majority of the participating nodes, plus promises that those participating
nodes will not elect a different coordinator for a time interval known as the
master lease, which is periodically renewed. In our implementation, the node
that initiates the sharding retrieves the complete list of nodes that store the
partition. The list is sorted by certain criteria, and the node on top is voted as
the coordinator (for this single operation only). The other participating nodes
also vote for the node on top of the list. Since every node maintains the complete
partition-node mapping locally, the sorted list is unique. The node on top wins
a majority of the vote.

Step 2: Notification. There is a prerequisite before launching the shard-
ing. In the case of split, the coordinator calculates the splitting token Tnew that
will be used by all the participating nodes. In the case of merge, the coordina-
tor examines whether the extra conditions for merging are satisfied. Once the
prerequisite is met, the coordinator notifies that a sharding should be launched.
Then, all the participating nodes start to shard their own replica simultaneously.

Step 3: Synchronisation. The operation of rebuilding replicas is executed
and completed asynchronously by different nodes. When a node finishes, it noti-
fies the coordinator and then waits for further announcement. The coordinator
synchronises this operation until all the participating nodes have finished.

Step 4: Announcement. Once the coordinator has received the notifica-
tion of Finish from all the participating nodes, it announces globally that the
key range of the affected partition should be updated to the new range. On
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receiving this final announcement, every node in the KVS updates the query
routing information, and each participating node replaces the old replicas with
the newly-built replicas asynchronously. In this way, a sharding operation is
completed.

Failover During Sharding

Based on the four-step coordination as described, we discuss how to handle node
failures during a sharding operation. Figure 3.2, extended from Figure 3.1(b),
depicts the failure recovery.

The failure detection in our system is gossip-based [19]. We assume detection
error exists, since a failure detector is not always completely accurate. A detec-
tion error, when caused by message loss, is false-positive, in which case a node is
not dead, but detected as dead. In contrast, in a false-negative detection error,
due to the delay in detection, a node is actually dead but considered as still alive.
In our design, the communication between a coordinator and a non-coordinator
follows the typical handshake policy. Hence, the false-negative error can be
easily corrected. Therefore, we focus on addressing the false-positive detection
error.

This failover scheme focuses on two scenarios: i) if only one participating
node fails during the process, the sharding can succeed with or without the failed
node’s resurrection; ii) if more than one participating node fail, the sharding
can be aborted and rolled back without data loss. We discuss the failover when
a participating node is detected as failed (by gossip) before, during, or after the
execution of rebuilding replicas of Pi. In the following, Tpause is defined as a
time period that is longer than twice the end-to-end gossip broadcast delay.

Before the execution, if a participating node is detected as failed, the shard-
ing procedure is paused for Tpause, to await whether the failed node can resurrect
(e.g., due to false detection). If it is the coordinator node that fails, a differ-
ent coordinator should be elected following the pause, even when the previous
coordinator resurrects. After the pause, the sharding continues if at most one
node fails, or is aborted (by any participating node) if there are more than one
node failures. Nodes resurrecting after Tpause can no longer serve Pi.

During the execution, every participating node maintains the complete list
of nodes that are sharding Pi. Whenever more than one participating nodes
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are detected as failed, and remain dead for a period of Tpause, any participating
node that detects this event can abort the sharding via broadcast. Otherwise,
if only one node (even the coordinator) fails, every other participating node
continues the operation of rebuilding replicas regardlessly.

After all the living nodes have finished the execution, if there is one failed
node, the sharding procedure is paused for Tpause to await the node’s resurrec-
tion. If the node resurrects within Tpause, the other nodes should await until the
resurrected node finishes the sharding. Otherwise, the failed node is announced
dead and then removed. In addition, if the dead node is the coordinator, a new
coordinator is elected amongst the living nodes. Finally, the (new) coordinator
announces that the sharding is successful. Similarly, nodes resurrecting after
Tpause cannot serve Pi, so their replicas of Pi are invalidated. Nevertheless,
these nodes can replicate the partition from the other successful nodes.

The sharding can be aborted, whenever more than one node failures are de-
tected, or any other unexpected events occur. Such abortion does not incur any
data loss, since the original partition replicas are in use before the announce-
ment of success. The details of maintaining data consistency are discussed in
Section 4.1. The aborted sharding will be reinitiated after a long pause.

Thus, our partitioning algorithm consolidates partitions that are suitable
for efficient data migration. Based on such consolidated replicas, we discuss the
data placement strategy for node bootstrapping (and decommissioning).

3.2 Selecting Partition Replicas for Bootstrapping

The aim of replica placement is to achieve load balancing and quick node boot-
strapping. When a new empty node is to be bootstrapped, it selects and pulls
a list of partition replicas from the existing nodes based on a set of rules.

Rule 1: Complexity Reduction. Partition reallocation and sharding
are mutually exclusive. That is, partitions that are being sharded will not be
selected for replication, and partitions that are being reallocated will not be
sharded. Hence, we reduce the complexity of coordinating data reallocation
and sharding.

Rule 2: High Availability. Each partition Pi has νi replicas allocated
in νi different nodes. We defined the replication number K, such that ∀i ∈
[1, N ], νi ≥ K, wherein N is the number of partitions. If a partition has less
than K replicas (e.g. due to node failure), a replica is duplicated to the new
node.

Rule 3: Load Balancing. The nodes with higher workloads have higher
priority to offer replicas. Hence, heavily loaded nodes have the priority to move
out more replicas (thus shifting the workload) to the new node.

Rule 4: Data Balancing. Since each partition replica is confined into
bounded sizes by sharding, balancing the number of partition replicas can re-
sult in balancing the volume of data stored in each node. Let R be the average
number of replicas each node has. Before bootstrapping, the new node recal-
culates R =

∑N
i=1 νi/(n + 1), in which n is the number of existing nodes. The

new node can obtain no more than R replicas, while an existing node can offer
(i.e. move out) replicas as long as it has more than R replicas.

To achieve quick bootstrapping, we propose a two-phase data migration
strategy. In the pre-bootstrapping phase, the new node aims at maintaining
high availability (referring to Rule 2) and alleviating the nodes that are under
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heavy workloads (Rule 3). Each heavily loaded node is requested to move out
a small portion, e.g. 10%, of its replicas. Once the new node receives these
replicas, it completes bootstrapping and starts serving queries as a member
of the KVS immediately. In our implementation, we used the CPU usage to
estimate the workload each node undertakes. The CPU usage is piggybacked
on the heartbeat gossip message, sent by each living node periodically and
cached by every other node. Therefore, a new node can download the complete
workload information from any existing node. A node is marked (by the new
node) as heavily loaded, if its CPU usage is over 50% and reasonably (e.g. 20%)
greater than the average of all the nodes. The threshold for identifying a heavily-
load node is configurable by the system administrators.

In the post-bootstrapping phase, as long as Rule 4 is satisfied, the newly joined
node continues to pull in more replicas from a list of nodes sorted according
to Rule 3. This process is run in a background thread, with data transfer
rate throttled, such that the side-effects towards front-end query processing are
minimised. In this two-phase procedure, the new node receives the majority of
its replicas in the post-bootstrapping phase, since in the pre-bootstrapping phase
there are limited number of heavily loaded nodes, each offering only a small
number of replicas. Therefore, the new node completes the pre-bootstrapping
phase in a timely manner, i.e. quick bootstrapping.

There are also considerations on how to select partition replicas when an
existing node is requested (e.g. by the new node) to offer data. Each node
maintains an exponential moving average (EMA) of the local hit count for each
replica, which is updated periodically as in Equation 3.3. The moving average
hit count of partition Pi at time t is denoted as Hi,t, and the actual hit count
of Pi between time t− 1 and t is denoted as hi,t−1. The coefficient α represents
the degree of weighting decrease.

Hi,t = αhi,t−1 + (1− α)Hi,t−1 (3.3)

To select a replica to move out, the node sorts its own replicas by the EMA
of hit count. We avoid the greedy heuristic (i.e. move the hottest or coldest
replica), since it may destabilise the system by causing more data movement.
Instead, the node traverses the list starting from the middle, until it finds the
first replica that does not exist in the destination node.

3.3 Node Decommissioning

We have also designed a replica placement scheme for node decommissioning.
There are circumstances when node decommissioning is necessary: i) a living
node is misbehaving, e.g. it is failing more often than it should or its per-
formance is noticeably slow. ii) there are redundant compute resources, e.g.
none of the living nodes is heavily loaded and there exists nodes that receive less
queries than expected. In any case, the decision to decommission a node is made
by the KVS administrators. In this paper we only discuss how to reallocate the
replicas when node decommissioning is requested.

The node to be decommissioned moves out its replicas one by one to the
other living nodes. It can safely leave the KVS when there is no more replica
under its ownership. To choose a destination node for a replica (e.g. Pi), the
node retrieves a list of living nodes that do not own Pi. Then it selects the least
loaded node from the list as the destination. We prefer to balance the query
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workload (i.e. CPU usage) rather than the data volume, since storage is rarely
the bottleneck in the cloud. Note that the workload information is gossiped
periodically. Each time when the node attempts to move out a replica, it may
choose a different node as the destination. In this way, the decommissioning
node distributes its own replicas to the peers, and then leaves the KVS without
data loss.

4 Data Recovery and Consistency

As our implementation builds on the Apache Cassandra project, we have lever-
aged hinted handoff [3] implemented in Cassandra to recover the data for node
failure. When a replica node for the key is down, a hint is written to the coor-
dinator node of the related partition. The coordinator node is chosen with the
same election policy as in auto-sharding. However, unlike Cassandra, wherein
users can define a consistency level for each individual query, we proposed to en-
force each write to be saved in every replica of the targeted partition. Therefore,
our consistency strategy caters for read-intensive workloads. The consistency
issues during partition sharding and replica movement are discussed as follows.

4.1 Data Consistency During Sharding

While the replicas of a partition is being rebuilt during sharding, there are two
sets of replicas (i.e. data files) coexisting in each participating node. One set
belongs to the original partition, and the other set of data files belongs to the
future partition (i.e. after sharding). Reads and writes of a key-value pair are
treated differently to maintain data consistency.

Writes (i.e. update or delete) are saved in the data files of the future parti-
tion. If the sharding is completed successfully, the files of the original partition
can be abandoned safely. Otherwise, if the operation fails, the key-value pairs
written to the future partition are merged back to the original partition. In the
extreme case where the sharding fails very often, writes are enforced in “dual
play”, i.e. saved in both the original and future partitions. Thereby, the data
files of the future partition can be safely discarded whenever a sharding fails.

Reads are dealt with depending on how writes are processed. If writes are
enforced in “dual play”, the data value can be retrieved directly from the repli-
cas of the original partition. Otherwise, if writes are saved to the replicas of
the future partition only, the node retrieves the data value from both the orig-
inal and future partitions. We have leveraged timestamp-based reconciliation
in Dynamo [3] to allow multiple versions of an object to be present in the sys-
tem. The timestamps of multiple collided values are compared, and the latest
value “wins”. Thereby, we maintain eventual consistency across different sets
of replicas.

At the end of sharding, after the operation is announced successful, the file
handlers of the partition replica is replaced in an atomic operation within each
participating node, independently and asynchronously from other nodes. Thus,
data files of the original partitions are deleted safely from all the nodes.
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Figure 4.1: Switching token values during replica migration for data consistency

4.2 Data Consistency When Moving Replicas

We have implemented a token ownership policy to ensure data consistency for
partition replicas that are being moved or duplicated. As discussed, a list of
tokens {Ti} split the key space into consecutive key ranges. Each partition
Pi is associated with one token Ti. For query-execution purpose, every node
maintains two boolean values for each Pi: one readable token Ti,r, and one
writable token Ti,w. The nodes that own the positive value of Ti,r or Ti,w are
entitled to serve reads or writes from Pi, respectively.

Figure 4.1 depicts when and how to switch the values of Ti,r and Ti,w, when
a replica of the partition Pi is moved from na to nb. The time intervals between
(t0, t1), (t2, t3) and (t3, t4) are longer than the end-to-end gossip broadcast de-
lay, so that every updated value is well propagated. Before and during data
migration, the source node na, which is serving Pi, owns the positive Ti,r and
Ti,w. The destination nb, which does not serve Pi initially, owns the negative
tokens. Before the data is transferred, nb switches its Ti,w to positive at t0, so
that nb is entitled to receive the latest updates destined for Pi. After the data
is transferred, nb switches its Ti,r to positive at t3, since nb is now eligible to
serve reads from Pi. After nb has taken over Pi, na resets both its tokens to
negative at t4. In the end, the replica of Pi in na is discarded.

The operation of duplicating replicas (e.g. from na to nb) is very similar to
moving replicas. The only difference is that, in duplication, the source node na
owns the positive Ti,r and Ti,w at all times. Thus, na neither resets tokens to
negative at t4, nor deletes replicas at the end of data transfer.

5 Evaluation

We have evaluated ElasCass against Apache Cassandra (version 1.0.5) that uses
split-move as discussed in Section 2. Thus, this section evaluates the efficiency
of the proposed approach against the split-move approach for node bootstrap-
ping. Hence, the experimental results of Cassandra are labeled as split-move.

5.1 Experimental Setup

The experiments were conducted on Amazon EC2. Each VM runs as one node
of the KVS. All of the VM instances are based off a common Linux image. The
compute capacity is shown in Table 5.1. For performance reasons, the persistent
data of the KVS was stored on the 400 GB ephemeral storage of the VM, rather
than on an Elastic Block Storage (EBS) volume. This is consistent with known
production deployments of Cassandra on EC2 [21]. The I/O performance of
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Table 5.1: Compute capacity of VMs in experiments
Name Value

OS Ubuntu 12.04, 3.2.0-29-virtual, x86 64

File system ext3

Instance Type m1.large

Memory 7.5 GB

CPU 2 virtual cores with 2 EC2 Compute Units each

Storage 2 ephemeral storage with 420GB each

Disk I/O High

Table 5.2: Parameters configured in YCSB
Name Value

records size = 1KB, count = 100 million

insert order hashed with 64-bit FNV

read/update ratio 50/50 for write-intensive, 95/5 for read-intensive

request distribution zipfian (constant = 0.99)
hotspot (80% of requests targeting at 20% of
data)

ConsistencyLevel write: ALL; read: ONE

this ephemeral storage is categorised as “High”. According to Amazon1, High
I/O instances can deliver in excess of 100,000 random read IOPS and as many
as 80,000 random write IOPS.

The YCSB benchmark (version 0.1.4) [22] was used in this experiment with
parameters configured as shown in Table 5.2. The dataset is generated by the
YCSB client in the loading section. The total size is approximately 100GB.
The inserted keys are hashed with the 64-bit FNV function2, so the hotspot
data is scattered onto many partitions. Both write-intensive and read-intensive
workloads were generated using YCSB. Each workload was generated with two
different request distributions, i.e. zipfian and hotspot. The consistency level3 is
set as ALL for write operations, and ONE for read operations. This parameter
specifies how many replicas must respond before a result is returned to the
client. It tunes response time versus data accuracy, but does not affect the
eventual consistency in key-value stores.

To evaluate load balancing, an imbalance index IL is defined to indicate the
imbalance in load {Li}ni=1 across a group of n nodes. Let IL = σL/L, where L
is the average value of all the loads {Li}ni=1, and σL is the standard deviation of
{Li}ni=1. This index shows the proportion of the variation (or dispersion) from
the average. A smaller value of IL indicates better load balancing. We have
evaluated the balancing of both the data volume and the query workload.

In addition, the average CPU utilisation is used to quantify the workload
per node. We monitored the CPU usage periodically using the linux command

1http://aws.amazon.com/ec2/instance-types/
2FowlerNollVo is a non-cryptographic hash function created by Glenn Fowler, Landon Curt

Noll, and Phong Vo.
3http://www.datastax.com/docs/1.0/dml/data consistency
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“sar -u 5 2 ”, which reports the average CPU usage every 10 seconds.

5.2 Node Bootstrapping

In this experiment, we demonstrate the effects of bootstrapping nodes one after
another, in a relatively short time, in each KVS. Apart from the bootstrap
time, we measure the volume of data acquired by a node at bootstrap (bootstrap
volume). Ideally, the ith node should share 1/i of the total volume of data in
the system (BalanceVolume). However, this is affected by the partitioning and
placement strategies employed. Therefore, we also measure the imbalance index
of data distribution across the nodes.

Both ElasCass and the original Apache Cassandra were initialised with one
node. The 100GB data was loaded on to the first node, with Θmax=2GB and
Θmin=1GB in ElasCass. The replication level of both systems is configured
as K = 2. Therefore, when the next node was added, the 100GB data was
automatically replicated to the second node fully. From two nodes onwards,
one empty node was added at each time. The data was reallocated according
to different strategies in these two systems.

During the whole process of node bootstrapping, both systems were sub-
jected to a read-intensive background workload that followed the hotspot dis-
tribution (Table 5.2). Each time before a new node was initiated, we made sure
that every existing node had been serving queries for at least 15 minutes as
a normal member of the KVS. Then, we tuned the number of threads in the
YCSB client, such that the CPU usage of the most loaded node was less than
80%, while the average CPU usage of all the existing nodes fluctuated around
50%. Therefore, both systems were moderately loaded before a new node was
added.

Figure 5.1(d) shows the bootstrap times for ElasCass and original Cassandra
with increasing number of nodes. The bootstrap time for ElasCass is bounded
while Cassandra, following the split-move approach, starts with a high bootstrap
time (over 100 minutes) that reduces with the number of nodes. This can be
explained by the bootstrap volume as shown in Figure 5.1(a). At all scales from
three nodes onwards, ElasCass managed to transfer less than 10GB of data
constantly at bootstrap, as the remaining replicas were migrated in the post-
bootstrapping phase. In contrast, with the split-move approach, the volume
of data migrated decreases from over 80GB to merely 1GB. Specifically, from
seven nodes onwards, the split-move approach did not migrate enough data as
ElasCass did, thus requiring less time for bootstrapping. The penalty is that
split-move suffered from load imbalance issue, revealed in Figure 5.1(e).

Figure 5.1(b) depicts the volume of data transferred in ElasCass during and
after bootstrap. As shown, the total volume of data transferred in both phases
is roughly equal to BalanceVolume at each scale. Figure 5.1(c) demonstrates
the same result in the form of numbers of partition replicas moved. The total
number of replicas moved is exactly equal to the average number of replicas
each node owns. This means that the data distribution in ElasCass is closer to
the ideal than that produced by the split-move approach.

With the split-move approach, the data volume drops exponentially as the
system scales up. The reason is that, when a key range of data is moved to the
new node, the persistent data is retained in (but no longer served by) the source
node, until the files are re-compacted, so as to avoid the loss of data and the
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(a) Bootstrap volume comparison (b) Data acquisition in ElasCass

(c) Number of partitions selected at boot-
strap

(d) Bootstrap time

(e) Imbalance index for data (f) Disk usage at each scale

Figure 5.1: Performance of bootstrapping one node with different nodes

overhead of deleting large amounts of individual key-value pairs. However, since
file compaction is a heavyweight operation, it is rarely triggered when serving
read-intensive workloads. As a result, during the evaluation, all the new nodes
chose the same node (i.e. the node with the most data on disk) as the data
source. Even worse, each time the chosen node had to offer half of its remaining
key range, which was reduced exponentially as new nodes were added.

Figure 5.1(e) backs this up by comparing the imbalance indices for both
ElasCass and the split-move approach. The imbalance index of ElasCass is
low, which indicates that the data is evenly distributed. In contrast, in the
split-move approach, the data is less balanced when more new nodes are added.
Figure 5.1(f) shows the average volume of data stored on disk in all the nodes.
The split-move approach occupies more storage because the source node that
offers data at bootstrap tends to retain the invalid data on disk.

Overall, this experiment demonstrates that, as the system scales, ElasCass is
able to: i) bootstrap an empty node within a relatively short time (i.e. 10 min-
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(a) Write-intensive Throughput (b) Read-intensive Throughput

Figure 5.2: The performance of query processing with zipfian distribution

utes), by limiting the number of partition replicas transferred pre-bootstrapping;
ii) distributes the data more evenly amongst the nodes in the post-bootstrapping
phase; and iii) occupy less storage than the split-move approach.

5.3 Performance of Query Processing

We focussed on the improvement of workload throughput as the system scaled.
In order to measure the steady-state throughput, we set an upper-bound for
the average read latency as 100 milliseconds. Before each test, we tuned the
number of threads in the YCSB client, such that the average read latency is
one-step below this bound. Based on this latency, we tuned the operation
count (i.e. number of requests), so that the test can last long enough (at least
1000 seconds). Therefore, in all the tests presented, the average read latency is
slightly less than 100 ms, and each run lasts at least 1000 seconds.

Apart from workload throughput, we also measure the CPU utilisation to
quantify the workload each node undertakes. We calculate the average CPU us-
age per node to indicate resource utilisation, and the imbalance index (defined in
Subsection 5.1) of the CPU usage of all the nodes to evaluate load balancing in
the system. The experimental results for the workload following the zipfian dis-
tribution are extremely similar to the results for the hotspot distribution. Due
to space limits, we present the experimental results for the zipfian distribution
only in this section.

Figure 5.2 depicts the throughputs of query processing in Cassandra (using
split-move) and ElasCass against increasing number of nodes. As can be seen
in Figure 5.2(a), when the system is subject to write-intensive workloads, the
throughput of the KVS using split-move stops improving after adding the 5th

node, while in ElasCass, the throughput increases linearly with the number of
nodes. Figure 5.2(b) depicts a similar trend. ElasCass continues to demonstrate
better scalability than split-move under read-intensive workloads.

Moreover, if we compare Figure 5.2(b) with 5.2(a), it can be seen that both
systems have higher throughputs under write-intensive workloads than read-
intensive. This is because write operations are buffered in memory and written
in batch mode, while read operations require random disk I/Os, which are con-
fined by the I/O performance.

The reason why ElasCass outperformed the KVS using split-move by such an
extent is due to the imbalance in data distribution in the latter (Figure 5.1(e)).
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(a) Average CPU usage per node (b) Imbalance Index of CPU usage

Figure 5.3: How the workload is balanced across nodes under read-intensive
workloads following the zipfian distribution

Due to the lack of data moved to the new nodes, the split-move approach was
not able to scale properly. In practice, a compaction can be launched manually
before bootstrapping a node. Compaction will update the information about
the data volume on each node, so that a new node can choose source nodes
more appropriately. However, this evaluation was designed to demonstrate how
the system will behave without human intervention. The KVS using split-move
was not able to complete a file compaction during the evaluation, which makes
it unadaptable in the scenario where new nodes are added one after another in
a relatively short time. In contrast, ElasCass is able to move a small portion
of partitions from heavily loaded nodes during the pre-bootstrapping phase for
quick bootstrapping, and then retrieves a large volume of data in the post-
bootstrapping phase to achieve the balancing of workload and data volume.

Figure 5.3 shows the average CPU usage of all the nodes during the tests
under the read-intensive workloads. The results for the write-intensive work-
loads show a similar trend, so they are not presented due to page limit. As
seen, the average CPU usage of ElasCass remains above 70%. However, in the
KVS using split-move, the CPU usage declines gradually as the system scales
up. The results indicate that ElasCass is able to fully utilise the provisioned
compute resources at different scales for serving queries, while in Cassandra the
newly added nodes were not efficiently incorporated into query processing.

Figure 5.3(b) presents the imbalance index of the CPU usage. With the
split-move approach, the imbalance index climbs up as the system scales. From
the scale of eight nodes onwards, the index even goes beyond 1.0, which means
that the standard deviation of the CPU usages is even greater than the average
usage. The results indicate that some nodes are heavily loaded, while the others
remain idle. The workload was not balanced with split-move. However, this
index in ElasCass remains below 0.2 in all the tests. A small value of imbalance
index indicates that the workload is well balanced in ElasCass.

Overall, this set of experiments demonstrates that, due to better balancing
of data volume in ElasCass, it outperforms the KVS using split-move in query
processing by a large extent in terms of scalability and load balancing.

5.4 Data partitioning

In this experiment, we demonstrate how the maximum size Θmax and the min-
imum size Θmin (defined in Equation 3.1 and 3.2) can affect the partitioning
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(a) Number of partitions (b) Data volumes

(c) Fullness of partitions

Figure 5.4: Partitioning 100GB of data under different sharding threshold

results with our sharding strategy. We used the same setting for the YCSB client
to generate the 100GB dataset (Table 5.2), but the dataset was loaded indepen-
dently in each test with different values of Θmax and Θmin. There are six tests,
in which the maximum size Θmax increases from 1GB to 32GB exponentially.
The minimum size is set as one half of the upper, i.e. Θmin = Θmax/2.

Given different values of Θmax, Figure 5.4(a) shows the total number of
partitions generated, while Figure 5.4(b) shows the volume of data stored in
the partitions. As can be seen, as the value of Θmax increases, the resulted
number of partitions decreases inversely, whilst the average volume of data in
each partition grows linearly with Θmax.

Different settings of Θmax can affect the system’s performance. If Θmax is
too small, partitions are sharded very frequently, which increases the overhead of
building replicas. In addition, small Θmax results in a large number of partitions,
which increases the complexity of partition reallocation. On the other hand, if
Θmax is too large, the resulted partitions will contain a large volume of data.
Moving a large-size partition replica may end up in overwhelming the node that
takes it over. Moreover, it takes substantially long time to reallocate a large-size
replica, which is not efficient. Therefore, in the remaining evaluations, we set
Θmax=2GB and Θmin=1GB.

In Figure 5.4(c), we use the term “fullness” to compare the data volume
shown in Figure 5.4(b). The value of fullness is calculated as the data volume
of the partition divided by Θmax. In other words, the fullness indicates how
full the partition is before it reaches the maximum capacity. Figure 5.4(c)
shows that the average fullness of the partition ranges between 60% and 80%,
and the standard deviation of fullness is consistently below 20% given different
Θmax. The results indicate that the dataset is effectively segmented into a list of
partitions that are of roughly equal sizes, without sparse partitions (i.e. having
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little data) generated. In addition, there is a trend that larger values of Θmax

tend to result in greater fullness. This is because smaller upper bounds increase
the frequency of partition splitting. Note that when a partition is split, the data
volume of the resulting partitions is only half of Θmax, i.e. the fullness is 50%.

6 Conclusion

Efficient node bootstrapping is an important feature for distributed KVSs run-
ning on IaaS. We have presented a decentralised scheme of data partitioning
and placement to efficiently bootstrap nodes in shared nothing KVSs. Our
auto-sharding scheme, extended from the virtual-node based data management,
improves the efficiency of data movement at bootstrap, by consolidating each
partition into single transferable units without data skew. Using a two-phase
placement strategy, we minimise the data movement during bootstrap to achieve
fast bootstrapping, while populating the newly-added nodes after bootstrap to
achieve well balanced workload and data distribution.

We have implemented the proposed scheme in Apache Cassandra [5] that
follows the split-move strategy, to present ElasCass. We evaluated our scheme
against the split-move approach, by experimentally evaluating ElasCass against
Cassandra using YCSB on public IaaS. We demonstrated that ElasCass was
capable of incorporating new empty nodes consecutively in a relatively short
time, with ideally balanced data distribution and much better balanced work-
load than Cassandra. As a result, ElasCass exhibited better resource utilisation
in compute and storage, and outperformed Cassandra in scalability by a large
extent under the biased workloads. We also demonstrated the capability of our
auto-sharding scheme to confine each partition into a bounded size, without
data skew or sparse partitions.

In the future, we plan to augment this scheme with the control logic that
determines when and how many nodes should be bootstrapped or decommis-
sioned. This control logic along with the ability to add and remove nodes
efficiently, form the basis for autonomous elasticity in shared nothing KVSs on
IaaS platforms.
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