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Abstract

Many ITaaS providers, e.g., Amazon Web Services, allow cloud consumers to
define elasticity (or auto-scaling) rules to dynamically allocate and release com-
puting resources on-demand and at per-unit-of-time costs. Modern enterprises
are increasingly deploying their applications, e.g., internet banking and finan-
cial services, on such TaaS clouds so their applications can inherently become
self-elastic to meet its variable workload. Defining elasticity rules for such appli-
cations, however, remains as a key challenge for cloud consumers as it requires
choosing appropriate threshold values to satisfy desired applications and re-
sources metrics. Achieving this empirically is expensive as it requires running
large amount of empirical testing and analysis in real cloud environments. In this
paper we propose novel analytical models that capture core elasticity thresholds
and emulate how elasticity works. The proposed models also approximate pri-
mary metrics including CPU utilization, application’s response time and servers
usage cost for evaluating elasticity rules’ performance. Based on our models, we
develop algorithms that decide when and how to scale-out and scale-in based
on CPU utilization and other thresholds and to estimate servers cost resulted
from scaling actions. We validate the simulation of our elasticity models and
algorithms with different elasticity rules’ thresholds against empirical data re-
sulted from experiments with the same elasticity rules thresholds with TPC-W
application on Amazon cloud. The simulation results demonstrated reasonable
accuracy of our elasticity models and algorithms in approximating CPU utiliza-
tion, application’s response time, number of servers and servers usage costs.



Monitor CPU Utilization (U) every 1 min.

IF U > 80% FOR 7 min.
Add 1 server of small capacity //Scale out
Wait 5 consecutive 1 min. intervals

IF U < 30% FOR 10 min.
Remove 1 server of small capacity //Scale in
Wait 7 consecutive 1 min. interval

Figure 1.1: Example of an Elasticity Rule

1 Introduction

Modern enterprise applications such as internet banking, retail and financial
applications are increasingly provisioned as internet or cloud-based services.
This is realized by deploying such enterprise applications, or parts of its business
processes, on an Infrastructure as a Service (TaaS) cloud such as Amazon’s
Elastic Cloud Compute (EC2) and GoGrid’s Cloud Hosting. The major driving
factor of such IaaS clouds is elasticity or auto-scaling; a service quality that
allows enterprises, or cloud consumers !, to dynamically acquire (scale-out) and
release (scale-in) computing resources (through internet-based self-service) on-
demand and at per-unit-of-time service cost (typically per hour) [1, 2]. The
TaaS Elasticity is crucial as it enables enterprises to make their applications
self-elastic so it can meet its variable workloads and application’s performance
and cost objectives.

1.1 Controlling Elasticity Challenges

Many ITaaS providers enable cloud consumers to control elasticity through
implicit or explicit policies or rule-based mechanisms. For example, Amazon
Auto Scaling 2 allows cloud users to set elasticity rules that define actions to be
executed in response to triggers that are defined by users based on thresholds
over measurable parameters. Similar facilities are provided by Microsoft through
a library called the Windows Azure Autoscaling Block (WASABi ? and by third
party cloud management suites such as Scalr 4.

In such elasticity rules, a number of thresholds, e.g., CPU utilization thresh-
olds, form the basis for the elasticity service to decide when to scale-out or to
scale-in computing resources. Figure 1.1 presents an example of such elasticity
rules. Here, the rule triggers if CPU utilization increases above 80% to scale-out
or decreases below 30% to scale-in. Changing one or more threshold values can
influence when a scale out/in action is triggered and therefore directly influence
application’s and performance and cost requirements [3]. For instance, setting
low value for CPU utilization threshold can improve application performance

1In this context we use the term cloud consumers to refer to those enterprise owners who
deploy their application on a IaaS cloud.

2http://aws.amazon.com /autoscaling/

3http://msdn.microsoft.com/en-us/library /hh680945(v=pandp.50).aspx

4http://scalr.com/



but at the expense of high server usage costs and under-utilized servers [3]. In
contrast, setting high value for the CPU utilization threshold can reduce servers
cost but at the expense of poor application performance due to potential over-
utilization of servers [3]. Both of these can have severe financial consequences
for applications facing dynamic workloads and bound to rigid service-level ob-
jectives. Empirically verifying the thresholds for different types of expected
workloads can also be expensive due to the expenditure involved in leasing
cloud resources.

Existing auto-scaling services such as Amazon auto-scaling do not provide
ways to support cloud consumers in evaluating and analysing the impact of
changing elasticity thresholds on performance and cost metrics. Achieving this
empirically is expensive as it requires exhaustive performance-cost testing and
analysis in real cloud production environments. Many research studies ([4, 5, 6,
7, 8]) have focused on proposing dynamic provisioning mechanisms to efficiently
allocate servers and meet application’s performance targets. These techniques
try to minimize server costs of virtualized data centers which are useful for cloud
providers but not for cloud consumers. Other studies, e.g., [9, 10], provide
models for predicting performance and cost of cloud applications. However,
these studies do not consider modeling elasticity rules and the impact of tuning
elasticity thresholds on applications and resource metrics.

1.2 Research Contributions

In this paper we present analytical models, based on queuing theory, that cap-
ture the core elements and emulate the behaviour of elasticity rules at the ap-
plication tier of multi-tier applications deployed on IaaS cloud. Particularly,
our models can approximate the values of crucial elasticity rules’ metrics over
time including CPU utilization, application’s response time, number of servers
and server usage costs. Based on these models, we also develop algorithms
which simulate CPU-based scale-out and scale-in logic, i.e., when and how to
trigger scale out/in actions, based on CPU utilization and other thresholds. In
addition, we develop an algorithm that approximates the cost of server usage
resulted from scale-out and scale-in actions and based on per-unit-of-time cloud
leasing model.

Using this model, we have conducted a number of simulation experiments
with different thresholds for elasticity rule and we analysed its performance in
terms of CPU utilization, application response time, number of used servers and
servers cost. We validated the simulation data against empirical data resulted
from running the same elasticity rules experiments with TPC-W benchmark on
Amazon EC2. Our empirical validation demonstrates reasonable accuracy of
our elasticity models and algorithms in detecting CPU utilization, application’s
response time, number of servers and servers usage costs.

Our elasticity models and algorithms provide a tool that can support en-
terprises to perform performance-cost analysis and define appropriate elasticity
thresholds to meet their resource and application’s performance and costs met-
rics specified within service-level and budget constraints.

The rest of the paper is organized as follows. Section 2 compares and dis-
cusses the related studies to our work. Section 3 introduces the structure of
elasticity rules. Then, it explains our analytical models and algorithms for
CPU-based elasticity. Section 4 describes our experimental methodology and



present the validation results of our simulation experiments against the empiri-
cal ones. Conclusions and future work are discussed in section 5.

2 Related Work

Due to its importance, a number of research studies have addressed elasticity,
or auto-scaling, challenges in cloud environments. Particularly, studies such
as [5, 6, 7, 8] proposed techniques for dynamic server provisioning for multi-tier
internet applications running in data centers. One of the primary objectives of
all these studies is to efficiently allocate servers for different internet applications
hosted on a cloud environment while ensuring application’s response time targets
are satisfied. Xu et. al. [6] and Lama et. al. [5] proposed autonomic self-tuning
resource controller that uses models based on fuzzy logic to achieve optimal
resource allocation that satisfy application’s response time requirements. The
provisioning system proposed by Singhet. al. [7] considers non-stationarity in
internet application workloads and proposed a clustering algorithm to detect
the workload mix. They also used G/G/1 queueing model to determine number
of servers needed to serve workload mix over time. The provisioning proposed
by Malkowski et. al. [8] is based on automated learning and empirical models
that require empirical measurements from previous application runs which are
often hard to obtain. Ghanbari et. al. [11] also addressed the dynamic resource
allocation but in a private cloud. Their focus is on optimal resource allocation
through maximization of resource sharing (to minimize provider’s costs) and
meeting application’s SLA requirements of all clients.

Our elasticity rules modeling share a common objective with these studies;
i.e., when and how to provision and de-provision servers in cloud environments.
Our work also simulates how elasticity rules works using queuing theory. How-
ever, none of these studies [5, 6, 7, 8, 11] considered modeling thresholds and its
impact on performance-cost metrics from cloud consumers perspective. Particu-
larly, our models and CPU-based elasticity algorithm can help cloud consumers
to simulate different elasticity rules and perform off-line cost-performance anal-
ysis to decide on the best elasticity rules’ thresholds.

Some research studies [12, 4, 10, 9] proposed analytical models, based on
queuing networks, for performance and cost analysis of multi-tier internet ap-
plications [12, 4, 9] and for ERP applications [10]. Urgaonkar et. al. also
proposed a dynamic provisioning techniques which were used by a server farm
to determine capacity needed to serve application’s workload and to predict the
performance of an application running in certain server farm. In [4] they also
proposed a predictive and reactive server provisioning techniques and analytical
models based on queuing theory to capture multi-tier application’s performance
behaviour. Al-Azzoni et. al. [9] used service demand law and mean value anal-
ysis (MVA) algorithm to model CPU utilization and average response time re-
spectively. They used the models to determine appropriate server capacity for
web application running on Amazon cloud. Our analytical models have similar
purpose of these models [4, 9, 10], to analyse the performance and cost of appli-
cation’s workloads. However, our modeling effort differs in terms of capturing
elasticity metrics and thresholds and its influence on server’s CPU utilization,
application’s response time, the number of servers triggered by an elasticity rule
and servers cost. These studies have not modeled elasticity rules and its key
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Figure 3.1: Queue Model of 3-tier Application Architecture

Monitor <MetricName> every <T>
// Evaluate Elasticity Condition (EC) every <T>

IF <MetricName> {Comparison Operator} <Mgs> FOR <T,>
// Execute Elasticity Action (EA)when EC is satisfied

Change <ResourceName> by <P>

Wait for <T,>

Figure 3.2: Key Elements of an Elasticity Rule

elements and the impact of tuning one or more threshold on the application
performance and server costs.

Ghanbari et. al. [13] proposed an auto-scaling technique based on stochas-
tic model predictive control to allocate and release computing resources in a
way that application performance objectives are met and resource usage costs
are minimized. Our elasticity rules modeling and algorithms are not aimed to
perform auto-scaling at runtime on behalf of cloud consumers. Its main pur-
pose is to support cloud consumers in performing performance-cost simulation
and trade-off analysis with different elasticity rules to choose the best elasticity
thresholds for their application workload.

3 Analytical Models for CPU-based Elasticity

A multi-tier architecture (often 3-tier; web, application and database tiers) is
the most commonly used architecture in practice for web applications. In the
context of our work, we assume that a multi-tier web application is deployed on
a public cloud infrastructure such as Amazon EC2. We assume, as it is common,
that each tier is deployed on separate servers in the cloud. We use queueing
theory to model 3-tier application architecture as shown in Figure 3.1 [14].
Each server is represented as a queue at which requests are served. The web
server balances the incoming requests across a pool of application servers in
the application tier. Each application server sends one or more query to the
database server to serve a request. The research presented in this paper focuses
on modeling the elasticity of the application tier.

The general form of elasticity rules is shown in Figure 3.2. An elasticity
rule consists of two main parts; a condition and action. The condition specifies
a metric (<MetricName >) to be evaluated against a specific threshold value
(Mp). The metric can be any variable that is measurable through monitoring
scripts provided by either by a cloud consumer or provider. In this paper, we
are primarily concerned with monitoring application response time and CPU



utilization metrics as these are the most important measures for determining the
performance of an application. These metrics are measured at regular intervals
(e.g. 1 minute), the length of which is denoted here as Time Interval Length
(T).

Every interval, the measured value of the metric is compared against a user-
defined threshold on the metric (denoted here as Mpy). If this condition holds
for a time window (73, ), the action is triggered. T, must be consecutive time
intervals of length T. The action specifies the change in capacity (P) to be
administered to a resource identified by <ResourceName>. After the action is
executed, the elasticity action also specifies a cool-down time (7.), for which
the system has to wait before the elasticity condition is again evaluated.

We model the application tier as as an M /M /m queue. The M /M /m queue
is a multi-server queuing model that consist of m servers at which the arrival
of jobs (requests) are modeled as a Poisson process and the job service rate are
exponentially distributed. Therefore, the parameters of the model defined with
respect to a particular time interval ¢ is as follows:

o Number of servers (my): is the number of servers at the application tier,
which varies over time as scale-out and scale-in actions are triggered.

e Request arrival rate(A;): is the rate at which requests arrive into the sys-
tem at the web tier. We consider that the requests are equally distributed
among the servers in the application tier. Therefore, the arrival rate at
each server is A\;/m;.

e Mean service rate (u;): the mean service rate which is also equal for all
servers at the application tier as we assume each server to have the same
processing capacity.

e CPU utilization (Uy): is the average CPU utilization of all servers at the
application tier.

e Average response time (R;): is the average response time of all requests
at the application tier.

3.1 CPU Utilization

The average CPU utilization of m; servers is used to evaluate the elasticity
conditions at every time interval which in turn triggers elasticity actions. The
total number of requests arriving and get served at the application tier during
time interval ¢ is A;T. Therefore, the total busy time of m servers is By = AT/ 1
and the busy time of a server m is:

B, = ML m) (3.1)

my

According to the Utilization law, the CPU utilization of each server during time
interval t is:

By substituting By, in equation 3.2 then we get the average CPU utilization
of the application tier’s server:

(3.3)



Our experiments with different CPU elasticity rules [3] demonstrated that CPU
utilization before triggering any scale-out actions (i.e., m = 1) increase signif-
icantly while request rate increase. This is because of the immediate start of
concurrent user sessions that leads to sharp increases of the workload on the
single server. This effect decreases quickly as soon as new servers are added
by the elasticity rules as the increased workload is distributed between multiple
servers. We capture this behaviour by applying a utilization ramp-up threshold
(Uy, ) which adjusts the approximated CPU utilization value (equation 3.3) as
follows:

Ut+U’r‘97 mye =1
Ut =
Ut, my > 1

The above CPU utilization models form the basis for CPU-based elasticity
rules as it will be used to evaluate elasticity conditions to decide whether to
trigger certain elasticity actions or not. The following illustrates the states in
which elasticity conditions could be:

U, > Uy over-utilization state
U; < Ué under-utilization state
Ué < U <U normal utilization state

(3.4)

3.2 Application’s Response Time

. Response time is a crucial metric for evaluating the performance of elasticity
rules. According to Little’s law, the mean response time during time interval t
can be approximated as shown in equation 3.5.

Tt

R:
t Y

(3.5)
Where n; is the average number of requests in the system during time interval
t. This can be divided into the number of requests being served and the number
of requests queueing, i.e., ny = (ns); + (ng):. This can be further represented
in terms of m, U and probability of queueing as in the following equation:

Usos
1-U;

ng = (tht) + (36)
Where p; is the probability that a request has to wait in a queue during time
interval ¢ and it can be estimated as follows:

(meUy)™
= ————"—_P, 3.7
Where P, is the probability of 0 requests in the system which is estimated as

follows: )
me my—1 n
Py =1+ —mel) 3 (maU)",

mol1—Up) &l



By substituting n; in equation 3.5, we obtain the formula for the average re-
sponse time during time interval ¢:

1 Ot )

p e —Ty) (3.8)

The request mix is the the percentages of requests of different types rela-
tive to the total number of requests at certain time interval. Different request
types (e.g., home page request, execute search request) put different demands
on the CPU as each request has relatively certain execution code. Therefore,
each request requires different processing times and therefore it influences the
expected response times. This is a key factor that affects the performance of the
web application and should be considered in the modeling of response time [7].
We capture the influence of request mix and types on response time as follows:

T, = Z”: D;Ai, (3.9)
i=1

Where T, is the additional time resulted from request mix. D; is the average
demand a request of type ¢ puts on the CPU and n represents the number of
request types. The values of D; can be obtained from real measurements for
each request type. \;, is the average request rate of type ¢ during time interval
t and it can be estimated as follows:

)\’it = )\t Qpi

Where @), is the percentage of request type ¢ relative to all requests. These
percentages by can be defined by classifying the workload profiles. For exam-
ple, the TPC-W industry standard benchmark for web applications classifies
e-commerce into Browsing, Shopping and Ordering profiles in which the per-
centages of request types vary [15].

By adding the time resulted from request mix to equation 3.8

1 Ot -
Ri=—010+—"—7—)+ D)\, 3.10
t L ( mt(l — Ut)) ; t ( )

3.3 Modelling Infrastructure Constraints

The M/M/m model assumes an ideal queue with frictionless elasticity, that
is, servers are provisioned and de-provisioned instantly. However, a scale-out
action involves a delay before a server becomes operational due to the time
required to provision and boot a new server with all required operating system
packages and software applications. For example, it has been shown that AWS
cloud servers require in average about 5 minutes to start a cloud server of small
size (m1.small) [3]. We term this as the server provisioning lag time and denote
it by Ty;. In contrast, the effect of a scale-in or de-provisioning action can be
considered as near instantaneous.

Cloud providers such as Amazon allow cloud consumers to specify a cool-
down interval to take into account the effects of an elasticity action on the
system, such as provisioning lag time and the time needed for a server to start
serving requests, before evaluating elasticity conditions again. This interval is



crucial as it allows appropriate time for a triggered scaling action to take effect
and to see its impact on system performance before triggering a new action. We
denote the cool-down time after a scale-out action as T} and after a scale-in
action as T¢.

Another important aspect that should also be considered in modeling elas-
ticity is a user-specified limit on the maximum and the minimum number of
servers as boundaries that must not be exceeded by elasticity actions. So, a
scale out action will not be executed when a maximum number of servers Sy,qz
is reached. Similarly, a scale in action will not be triggered if a minimum number
of servers Sy, is reached.

3.4 CPU-based Elasticity Algorithms

Algorithm 1 CPU-based Elasticity - Scale-Out
Estimate A;, p¢, Us, Ry
if (T.," <0) & (Ts, <0)) then
if (U; > Up") then
overUtilTime = overUtilTime + T
else
overUtilTime = 0
end if
else
Tag=Tgq—1
T, “=T.," —1
end if
if ((overUtilTime > T,,*)&& (my < Spae)) then
my = My + 1
overUtilTime = 0

T, " =T"

Tslt — 1Lg
else

m¢ = Mi—1
end if

Based on the model presented before, we have developed algorithms that
simulate how CPU-based elasticity works. Listing 1 and 2 describe the logic
of our scale-out and scale-in algorithms respectively. The scale-out algorithm
(listing 1) is executed at each time interval ¢ as follows. The values of request
arrival rate at the application tier ()\:), the mean service rate of each server
(1¢), the average server utilization at the application tier (U;) and the average
response time (R;) are approximated using the equations explained earlier. \;
and p; can be generated from Poisson and exponential distributions respectively.
Alternatively, they can be generated from real workload and benchmarks. It first
ensures that the cool-down time and server provisioning time do not hold. If
these do not hold then it checks if the estimated CPU utilization value at current
time interval is above the upper CPU utilization threshold. If so, it increases a
time counter by one interval. If the estimated utilization goes below the upper
threshold at any time it reset that time counter to zero to start counting again.
If the time counter becomes greater than or equal to the upper monitoring time



Algorithm 2 CPU-based Elasticity - Scale-In
Estimate A\, ¢, Uy, Ry
if (T..,' > 0) then
T.'=T.'—1
else
if (U, < Uy') then
underUtilTime=underUtilTime + T;
else
underUtilTime = 0
end if
end if
if ((underUtilTime < Twl)&&(mt > Siin)) then
me = My — 1
underUtilTime = 0

l l
T, =T,
else
me = mg—1
end if

window (7}%) and the number of servers has not exceeded the maximum limit
then the number of servers are increased. In addition, the cool-down time and
the server provisioning lag time are set the desired values so that no further
scaling actions are taken until both cool-down and server provisioning lag times
elapse.

The scale-in algorithm (listing 2) has similar logic but it does not have server
provisioning lag time (as shutting down a server does not need time to occur).
Another difference is the lower thresholds (e.g., CPU utilization threshold, cool-
down threshold)and parameters (e.g., minimum number of servers) are used
instead of upper thresholds and parameters.

3.5 Estimating Cost of Provisioning

Cloud (TaaS) providers mainly charge users based on the number of servers in op-
eration and the time for which they have been used. Commonly, most providers
charge on an hourly basis. Triggering of elasticity actions leads to changes in the
overall cost of operation due to the provisioning and de-provisioning of servers.
The cost of provisioning can only be calculated considering the entire time from
the application’s first deployment till the present. We denote this time period
as 7 and is the sum of all time intervals t. Max(m) represents the maximum
number of servers that have been provisioned for this application.

The algorithm shown in listing 3 describes the logic for calculating the cost
of servers usage triggered by auto-scaling actions. The first two loops is to fill
the number of minutes for each server in the S,,;ns (i.e., server minutes array)
with dimensions maximum number of servers (Maxz(m)) and measurement time
7. For each server column a value of 0 or 1 is assigned depending wether that
server is provisioned or not (the change in m over time determine here when a
server is provisioned or de-provisioned). In the S5 array a value 1 indicates
that server is used for 1 time interval (e.g., 1 minute). The second loop block
use server minutes array to compute the the total number of hours (rounded



Algorithm 3 CPU-based Elasticity - Servers Cost

Smins(Max(m),7) =0
for i+ 1,7—1do
if (mt+1 > mt)||(mt+1 < mt) then
mCount = my41
else
mCount = my
end if
for i + 1, mCount do
Smins(i7t) =1
end for
end for
for i < 1, Maxz(m) do
totalMins =0
fort + 1,7 do
total Mins = total Mins + Spins(i,1t)
end for
Se =S¢ + ([total Mins/60] * S,.) return S,
end for
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Figure 4.1: TPC-W Workload Used in all Experiments

to the next hour) each server is used. The number of hours is then used to
compute the servers cost by multiplying total number of minutes with server
charges (S,) for each server and add the cost to the total cost of provisioning

(Se)-

4 Validation

We have validated our elasticity models and algorithms empirically and by sim-
ulation. In this section, we first describe the design and methodology of our
empirical and simulation environments (Section 4.1). We then compare and
discuss the results of the empirical and simulation experiments in terms of CPU
utilization, application’s response time, number of servers and server costs (Sec-
tion 4.2).
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Table 4.1: Elasticity Thresholds Used in all Experiments
| Rule/Threshold | Upy" | T, | Uy’ | T

CPU75 75% | 5 min | 30% | 10 min
CPUS80 80% | 5 min | 30% | 10 min
CPUS85 85% | 5 min | 30% | 10 min
CPU90 90% | 5 min | 30% | 10 min

4.1 Experimental Design and Methodology

In this section we describe the experimental setup and methodology for our
(1) empirical experiments with TPC-W benchmark on Amazon EC2 and (2)
simulation experiments in Matlab.

The Empirical Experiments

We have chosen TPC-W, an industry standard for transactional Web bench-
mark [15], as a representation of online retail applications. TPC-W has been
widely used in cloud-related performance studies [3, 7, 9]. Based on 14 different
web interactions, TPC-W specifications differentiate between three workload
profiles; Browsing, Shopping and Ordering profiles. These profiles vary based
on the percentage of each interaction in the Browse (read operations) and Or-
der (write operations) groups. In all experiments we used Browsing profile as it
stresses the application tier(i.e.,95% read operations and 5% write operations)
which is the focus of our elasticity performance modeling. We have generated
the workload using TPC-W user emulation software with Browsing profile as it
stresses the application tier. The number of concurrent users and inter-arrival
times have been generated from power-law (Zipf) and Poisson functions respec-
tively. The resulting workload is shown in Figure 4.1.

We have used the open source Java implementation developed by Hor-
vath [16]. We have deployed it on Amazon cloud as a 3-tier architecture; a
typical architecture that is used for internet applications [4, 7, 9, 3]. The ap-
plication tier consists of a pool of Amazon’s Linux servers (mI.small instance).
We installed JBoss2.3.2 and deployed the TPC-W bookstore application logic
on each server. We configured the application tier as an auto-scaling group to
scale out and scale in based on elasticity rules that can be configured by cloud
consumers. We deployed the bookstore database on a separate Linux server
(m1.zlarge instance) which runs MySQL5.1.92. We populated the database
with 10000 books generated randomly according to TPC-W specifications [15].
We used Amazon’s Elastic Load Balancer to distribute user requests among the
pool of instances at the application tier. The TPC-W user emulation appli-
cation was deployed on a separate Linux server (mi.zlarge) instance. All the
servers were located in the same Amazon geographic region, US East (Virginia),
to ensure reducing network overhead between servers at different tiers.

Using the above experimental setup we carried out 4 experiments each of
which with different elasticity rules’ thresholds as shown in Table 4.1. The
naming of the rules is based on the upper CPU threshold (e.g., CPU75, CPUS0).
For all the elasticity rules the other parameters have been set as follows: T.“=5
minutes, T.'=5 minutes, Spin=1 and Sy,qz=20.
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In all experiments, we have configured Amazon CloudWatch ! and we imple-
mented a Java application to continuously collect measurements of important
metrics including:

e CPU Utilization: the average CPU utilization of all servers at the appli-
cation tier every minute interval.

e Response Time: the average response time of all requests at the applica-
tion tier every minute interval.

e Number of Servers: the number of servers at the application tier every
minute interval.

e Servers Cost: the usage cost of the servers at the application tier based
on Amazon hourly charges ($0.08 for N.Virginia small instances).

We represented the CPU utilization and response time measurements using box
plot as it provides useful statistics which can help analysing and comparing data
points at glance. These statistics are; the mean, the median, the 1%, 25t 75"
and 99" percentiles as illustrated in Figure 4.2(c).

The Simulation Experiments

We implemented our CPU-based elasticity models and algorithms using Mat-
lab. The key inputs to the simulation are the application workload A and the
threshold values of the elasticity rules to be evaluated. In all simulation ex-
periments, we used the same workload traces that has been resulted from the
empirical experiments(Figure 4.1). In this workload, T" is 1 minute and 7 is 573
minutes and therefore the workload was divided into 1-minute time intervals.
Using this workload, we ran the same empirical experiments with the same
elasticity rules thresholds described in the previous section and in Table 4.1.
The measurements of all metrics are approximated using the CPU-based mod-
els and algorithms implemented in the simulation. Similarly, we collected these
measurements we represented it in box plots statistics to compare it with the
empirical box plot statistics.

4.2 Experimental Results

In this section we analyse and discuss the results of the empirical and simulation
experiments in terms of CPU utilization, application’s response time, number
of servers and servers usage costs at the application tier.

CPU Utilization

Figure 4.2(a) shows the box plots of CPU utilization of all elasticity rules re-
sulted from the simulation and the empirical experiments. We have used the
CPU upper threshold as a naming convention followed by character "M’ refer-
ring to results from the models simulation experiments or 'E’ referring to results
from the empirical experiments. As can be seen from Figure 4.2(a), the CPU
utilization resulting from our simulation experiments is close to that resulting

Thttp://aws.amazon.com/cloudwatch/
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Figure 4.2: Experimental Results of all Evaluated Elasticity Rules using Our
Model and Empirically

from the corresponding empirical experiments. For example, the difference be-
tween mean CPU utilization obtained via simulation and that obtained from
empirical experiments ranges between 1.5% and 6.8%.

The raw data from the empirical experiments displays a spike in the CPU
utilization within the first 80 minutes as shown in Figure 4.3(a). This pattern
occurs in all elasticity rules experiments but the magnitude of such spike increase
as the upper CPU threshold increase. As is illustrated in Figure 4.3(a), our
CPU-based elasticity models have not precisely approximated such spikes. Such
spikes occurred because of the continuous increase in request rate while one
server was serving all incoming requests and before the first scale-out action was
triggered [3]. Modeling workload spikes and its effect on CPU utilization require
considering other system’s factors. However, in a production environment, this
effect is sensitively captured as all factors that could influence performance can
naturally cause such effects. We can see that such spikes gradually disappear as
the number of servers increase because of triggered scale-out actions over time.
As shown in Figure 4.3(a), the CPU utilization data points of the simulation
and empirical experiments have converged as the number of servers increase
over time. This is because the increase in request rate was distributed between
a number of servers instead of being handled by one server.

Another important observation from the CPU utilization results (Figure 4.2(a))
is that, under the same workload, the model has exhibited the same trend as the
empirical results regarding the relationship between CPU upper threshold (Ug')
and the mean and median CPU utilization. Particularly, the mean and median
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Figure 4.3: CPU Utilization and Response Time Spikes of CPU90 Experiments

CPU utilization resulted from the simulation experiments increase as the upper
threshold increases. Predicting such relationships will help cloud consumers in
understanding the effect of changing thresholds on important metrics such as
CPU utilization.

Response Time

Figure 4.2(b) shows the box plot statistics of all elasticity rules resulted from
the empirical and simulation experiments. As shown in this figure, our model
simulation approximated response times with average and median close to the
empirical mean and median response times. The difference in mean response
time between simulation and empirical results ranges between 11 milliseconds
and 34 milliseconds. We can see some variation in terms of other statistics
though. We believe such variations are due to the CPU utilization spikes which
has been discussed above. Figure 4.3(b) shows the mean response times data
points resulted from empirical and simulation experiments with elasticity rule
CPU90. As shown in this figure, it is clear that the CPU utilization spike in-
fluenced response time by causing a spike in response time. This effect is also
found in experiments involving all other elasticity rules but with a magnitude
that increases as the upper CPU utilization threshold is increased. This effect
has not been precisely approximated by our models as it does not consider sit-
uation under which such spikes could occur, i.e., fairly high increases in request
rates over time while one server is serving requests and before other servers are
added by scale-out actions. As shown in Figure 4.3(b), the response time spike
effect had not hold when the number of servers is increased. Accordingly, the
response time data points of the simulation experiments have converged and
have become reasonably close to the empirical response time data points (see
Figure 4.3(b)).

Another important observation about response time data is that the simu-
lation results showed a relationship with the upper CPU utilization threshold
(Ug"); specifically as U} increases, the average response time either increases or
remains constant. We noticed that this trend is consistent with the same trend
that occurred with the empirical response time results. This demonstrates that
cloud consumers can rely on our CPU-based elasticity simulation as a tool for
predicting such trends when evaluating the performance of different elasticity
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thresholds.

Number of Servers and Cost of Provisioning

As demonstrated in Figure 4.2(d), both the simulation and the empirical exper-
iments of all elasticity rules have resulted in the provisioning of similar number
of servers. But, in all elasticity rules, the model produces an extra server over
the number provisioned during actual experiments. In addition, the pattern
in the number of servers resulted from the simulation experiments while U} .,
increasing is consistent with the number of servers pattern resulted from the
empirical results.

Also, Figure 4.2(d) shows that the time when our simulation triggered scale-
out actions (i.e., adding servers) does not match the time when scale-out actions
happened empirically, especially in the first scale-out actions of all elasticity
rules experiments. We believe both these effects are due to our models not
being able to approximate the CPU utilization spikes which has caused trig-
gering scale-out actions in the early stage of the experiments. This has led to
delays in satisfying scale-out conditions in all elasticity rules in our simulation
experiments.

Although the simulation has not approximated the exact number of servers
and time of triggering servers, this does not have a significant impact on estimat-
ing provisioning costs as shown in Figure 4.2(e). The approximated provisioning
cost resulting from the model for all elasticity rules, are very close to the costs
resulting from the corresponding experiments. This is because the costs of pro-
visioning are calculated based on the total server hours during which servers
were utilized.

Figure 4.2(e) also reveals another important observation that relates U and
provisioning cost. Particularly, the server costs of the simulation experiments
follow the trend of provisioning costs in the empirical experiment; i.e., as Ug
increases the provisioning costs decrease.

5 Conclusions and Future Work

Modern enterprises are increasingly deploying their applications on IaaS cloud so
it inherently become self-elastic to meet its variable workload and performance-
cost metrics. Many IaaS providers such as Amazon Web Services provide mecha-
nisms to configure elasticity service based on a number of metrics and thresholds.
However, defining appropriate elasticity thresholds that can lead to satisfaction
of resource and application metrics remains as a primary challenge for cloud
consumers.

In this paper we have presented analytical models, based on queuing theory,
that emulate the behaviour of elasticity rules at the application tier of multi-tier
applications deployed on TaaS cloud. These models capture the key parameters
and thresholds of elasticity rules such as CPU utilization thresholds, monitor-
ing time windows and cool-down time. In addition, our models approximate a
number of metrics that are important for analysing the performance of elasticity
rules. These metrics include CPU utilization, application’s response time, num-
ber of servers triggered by elasticity and cost of servers usage. Based on these
models, we have also presented our CPU-based elasticity algorithms; scale-out
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and scale-in algorithms which simulates when and how to trigger scale-out and
scale-in actions and cost algorithm which estimate servers usage cost resulted
from those scale-out and scale-in actions. We have also implemented these
models and algorithms in Matlab and used them to evaluate different elasticity
rules.

Using the proposed elasticity models and algorithms, we conducted simula-
tion experiments with a number of elasticity rules with different CPU utilization
thresholds. We have validated the resulting metrics against the same metrics
that have resulted from the corresponding experiments we have conducted with
the same elasticity rules with TPC-W application on Amazon EC2. The sim-
ulation results demonstrated reasonable accuracy of our elasticity models and
algorithms in approximating CPU utilization, application’s response time, num-
ber of servers and servers usage costs. It has shown ability in emulating the
trends and relationship between changing CPU utilization thresholds and these
metrics with acceptable variations.

The simulation of our elasticity models and algorithms provides a tool that
can be used by aid enterprises to define appropriate thresholds for their appli-
cation’s workloads. Therefore, cloud consumers analyse the impact of changing
elasticity thresholds on certain performance-cost metrics that are important to
satisfy.

The research we have done has opened interesting future work. One future
item is the modeling of CPU utilization and response time spikes before trig-
gering any scale-out actions. This would help in improving the precision of our
analytical models and algorithms for approximating elasticity and its key per-
formance metrics. Another important future work is developing optimization
models for elasticity thresholds. In this direction, we see the need for develop-
ing optimization models that allow cloud consumers to specify performance and
costs objectives as functions so that an algorithm can finds the combination of
elasticity threshold values that meet these objectives.
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