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Abstract

Causal network structure learning methods, e.g., IC*, FCI and MBCS*, are
investigated in recent time but none of them has taken possible time-varying
network structure, such as time-varying dynamic Bayesian networks (TV-DBN),
into consideration. In this paper, notions of relaxed TV-DBN (RTV-DBN) and
causal TV-DBN (CTV-DBN), as well as a definition of causal boundary are
introduced. RTV-DBN is a generalized version of TV-DBN whilst CTV-DBN is
a causal compliant version. CTV-DBN is constructed by using an asymmetric
kernel, versus a symmetric kernel as in TV-DBN, to address the problem of
sample scarcity and to better fit within the causal boundary; while maintaining
similar level of variance and bias trade-off. Upon satisfying causal Markov
assumption, causal inference can be made based on manipulation rule. We
explore spatio-temporal data which is known to exhibit heterogeneous patterns,
data sparseness and distribution skewness. Contrary to a näıve method to
divide a space by grids, we capture the moving objects’ view of space by using
clustering to overcome data sparseness and skewness issues. In our experiments,
we use RTV-DBN and CTV-DBN to reveal the evolution of interesting region
time-varying structure from the transformed data.



1 Introduction

While there is not much previous work done in analyzing the relationships
among network conditions across time, Song et al. [25] outline a time-varying
dynamic Bayesian networks (TV-DBN) to model gene-to-gene interaction net-
works. Causal network structure learning methods, e.g., IC* [20], FCI [28] and
MBCS* [21], are investigated in recent time but none of them has taken possi-
ble time-varying network structure into consideration. In this paper, we extend
TV-DBN to model time-varying network causal relationships. For example, in
the domain of spatio-temporal analysis, by replacing genes with moving objects’
“traffic” conditions from different regions, we will be able to detect region-to-
region interactions, which means, for example, we will be able to tell how the
congestion of some regions will lead to the congestion of other regions with re-
spect to time by applying causal inference. More recently, Dondelinger et al.
[4] propose a non-homogeneous dynamic Bayesian networks for inferring gene
regulatory networks with gradually time-varying structure. Although both pro-
posals can be traced back to a common root of Robinson and Hartemink [23, 24],
Dondelinger et al. work with continuous time data whilst the method proposed
by Song et al. [25] require discretization of the data. The flexibility of the for-
mer method does come with a price. It is more complex and special attention
has been put into the model to avoid over-fitting. For observations sampled
periodically, a model based on discrete-time data is sufficient.

Most observations exhibit unfavorable statistical properties: heterogeneous
patterns, data sparseness and distribution skewness. For example, time-varying
patterns and uneven concentration of data points — data concentrated on cer-
tain regions leaving the other places rarely occupied — are common in the
domain of traffic modeling [15]. We expect that similar problems also appear
in other domains. By using a time-varying model, e.g. TV-DBN, the network
structure learning process will allow us to observe the evolution of region con-
nections and disconnections to address the issue of heterogeneous patterns. To
address data sparseness and distribution skewness, we propose to use density-
based clustering methods to reveal clusters from data directly. The clusters
represent regions for a particular space-time interval from the specific type of
objects’ point of view, allowing for time-varying region relationship modeling
using a time-varying model. Density-based clustering methods [5, 12, 22] are
argued [18] to be the best solution for spatio-temporal clustering due to the
following reasons: 1) they are able to handle clusters with no predefined shape,
e.g. a cluster could be of any shape rather than spherical, 2) they are able to
cope with noises in the data, and 3) one can base on the parameters to fine tune
the methods to fit a particular problem.

In this paper, a notion of relaxed time-varying dynamic Bayesian networks
(RTV-DBN) and a notion of causal time-varying dynamic Bayesian networks
(CTV-DBN) are introduced. RTV-DBN is a generalized version of TV-DBN
which allows a variable at time t to be regulated by all variables at time t−1. In
CTV-DBN, causal Markov assumption [19, 26, 27, 28] is satisfied by considering
causal boundary (B). It is achieved by an asymmetric kernel [16] which limits the
information sharing across time but still allowing suitable information sharing
to address data scarcity while maintaining similar level of variance and bias
trade-off. Asymmetric kernel provides a solution to rectify boundary problem
created by real-world data where they mirror a causal function [16]. Causal

1



inference can be made based on manipulation rule following the assumption of
faithfulness and causal sufficiency [19, 26, 27, 28].

This paper also includes an application of RTV-DBN and CTV-DBN to
moving object spatio-temporal analysis under the context of moving objects’
territories. The regions in a network are not only regulated by the other regions
at time t−1, but can be regulated by the same regions (at time t−1). However,
such a situation is forbidden in gene-to-gene regulation. In fact, the traffic
conditions between adjacent time-steps of the same region is expected to be
highly correlated by real-life experience.

2 Relaxed Time-Varying Dynamic Bayesian
Networks (RTV-DBN)

Relaxed time-varying dynamic Bayesian networks (RTV-DBN) is a generalized
version of TV-DBN [25], which is built based on the model of dynamic Bayesian
networks (DBN) [17]. Let Xt = (Xt

1, . . . , X
t
r)
> ∈ Rr represents a random vector

(which represents expression level in [25]) of r regions (which represent genes
in [25]) at time t, a dynamic process of such time dependant condition can be
modeled by a first-order Markovian transition model p(Xt|Xt−1) which defines
the probabilistic distribution of variables at time t given those at time t−1. The
probability of observing a scenario from these regions over a period t ∈ {1 . . . T}
can be expressed by:

p(X1, . . . ,XT ) = p(X1)

T∏
t=2

p(Xt|Xt−1). (2.1)

Suppose that the structure of the networks is specified by a set of regula-
tory relations Xt−1

πi
=
{
Xt−1
j : Xt−1

j regulates Xt
i

}
, where i, j ∈ {1 . . . r} and

πi ⊆ {1 . . . r}, we can factorize the transition model p(Xt|Xt−1) over individual
regions. Equation (2.1) can then be rewritten to:

p(X1, . . . ,XT ) = p(X1)

T∏
t=2

r∏
i=1

p(Xt
i |Xt−1

πi
). (2.2)

Let graph Gt = (V, Et) represents the conditional dependence between the
random vectors Xt−1 and Xt, where the vectors represent feature values from
different regions at time t−1 and at time t respectively. Each vertex in V corre-
sponds to a sequence of variables X1

i , . . . , XT
i , and the edge set Et ⊆ V×V con-

tains directed edges from components of Xt−1 to components of Xt. The time
dependent transition model pt = (Xt|Xt−1) is expressed by an auto-regressive
DBN form Xt = AtXt−1 + ε, where At ∈ Rr×r is a matrix of coefficients re-
lating the variables at time t− 1 from all regions to the variables of the regions
in the next time point t, and ε ∼ N (0, σ2I) is an error term. The region time-
varying structure is represented by the non-zero entries (connections) and zero
entries (disconnections) in the estimated matrices Ât at time t. In this model,
the estimation of the strength of dependencies is accomplished by minimizing
a set of squared loss functions with regularization, one for each vertex at each
time point t∗ ∈ {1 . . . T}.
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Assuming that the underlying network structures are sparse and vary
smoothly across time, the model is built with cross time information sharing to
address the problem of sample scarcity. The functions representing the struc-
tures are smooth and with bounded second derivatives, to make it statistically
tractable. We estimate the network by decomposing the problem along the time
(t) and region feature vector (x). We estimate the neighborhood for each region
separately by using linear regression and then join these neighborhoods to form
the overall network. The estimation problem is reduced to set of optimizations
with one for each node i ∈ {1 . . . |V|} for time points t∗ ∈ {1 . . . T}:

Ât∗

i· = argmin
At∗

i· ∈R1×r

1

T

T∑
t=1

wt
∗
(t)(At∗

i· x
t−1 − xti)2 + λ‖At∗

i· ‖1 (2.3)

where λ is a regularization parameter which controls the sparsity of the net-
works, and wt

∗
(t) is the weighting of an observation from time t defined as

wt
∗
(t) = Kh(t−t∗)∑T

t=1Kh(t−t∗) in which Kh(·) is a symmetric and non-negative kernel

function and h is the kernel bandwidth. In our experiments in Section 6, we
have selected x to be the average velocity of trajectory fragments in each region.
The end product of TV-DBN estimation is a set of Ât∗

i· (one per region) which
can be combined to give an estimate of At where t ∈ {1 . . . T}. The non-zero
and zero entries in the matrices Ât represent the time-varying connections and
disconnections between regions over the time period:

Êt = {(i, j) ∈ V × V|Ât
ij 6= 0}. (2.4)

Please note that we are no longer required to restrict that the regions between
two time steps must be different as specified in [25] ( Êt = {(i, j) ∈ V × V|i 6=
j, Ât

ij 6= 0}). In the domain of spatio-temporal analysis, a region in a network
is not only regulated by the other regions at t− 1, but is also regulated by itself
at t− 1.

3 Causal Time-Varying Dynamic Bayesian Net-
works (CTV-DBN)

Although Bayesian networks (BN) structure may be directed, the directions of
arrows do not define causal effects as the influence can flow both ways except a
collider (v-structure) is hit, e.g., a directed edge from vertex α to vertex β does
not require that β is causally dependent on α. All of the definitions in BN refer
only to probabilistic properties, such as conditional independence [13]. Hence,
the following BN are equivalent as they impose exactly the same conditional
independence requirements: α → β → γ and α ← β ← γ. Song et al. in their
proposed TV-DBN [25] recognise the same problem – BN does not necessarily
imply causality, but suggest that dynamic Bayesian networks (DBN) bears a
natural causal implication in which TV-DBN is part of this family. The main
reason why they favor DBN over BN is its enhanced semantic interpretability.
Each edge in a DBN only points from time t− 1 to t contributing to a natural
causal implication. However, the network structure established in TV-DBN
basically ignores causal relationships allowing the sharing of information across
the whole time period.
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As we describe in Section 2, a simple form of the transition model p(Xt|Xt−1)
in a DBN is a linear dynamic model Xt = AtXt−1 + ε. The difference between
causal models and probabilistic models arises when we care about interventions
in the model [13]. We would like to establish causal relationships between regions
to allow for causal inference by assigning manipulated probability density to a
region of interest assuming that all attempted manipulations are fully successful
[26]. The condition of causal Markov assumption (CMA) is invoked to make a
BN isomorphic with a causal model [14], where the condition [27] is defined as:
Given a causal graph CG = 〈VCG , ECG ,PCG〉, where VCG is a set of vertices and
ECG is a set of edges between vertices in VCG and PCG is a probability distribution
over the vertices in VCG . CG satisfies CMA if and only if for every v ∈ VCG , v is
independent of {VCG \Descendants(v) ∪ Parents(v)} given Parents(v), where
Parents(v) is the set of parents of v in CG and Descendants(v) is the set of
descendants of v in CG.

If VCG represents regional variables from all time points, i.e.,
{
∪T1 Xt

}
, the

network structure estimated by optimization as defined by Equation (2.3) does
not satisfy CMA. It is because the weighting function wt

∗
(t) considers the time

points in {VCG \Descendants(v) ∪ Parents(v)} given Parents(v), e.g., Ât∗

i· at

time t∗ is not only determined by xt
∗−1
i but also xt

∗−z where z > 1. As a re-
sult, it contradicts CMA. The original idea of using weighting function is based
on the assumption that the structural changes of the network is smooth over
time; and hence, allowing one to gather evidence across time by reweighting
the observations from different time points to alleviate the problem of sample
scarcity. However, in order to comply with CMA, the weighting function should
only be allowed to gather evidence from S = {Descendants(v) ∪ Parents(v)}.
We define causal boundary (B) as a set of points in the closure of S but not be-
longing to the interior of S. As a result, we propose to adopt a causal weighting

function wt
∗

c (t) to fulfil the requirement: wt
∗

c (t) =
Ka

h(t−t∗)∑T
t=1K

a
h(t−t∗) in which Ka

h(·)
is an asymmetric and non-negative kernel function satisfying CMA. Hence, we
rewrite Equation (2.3) to:

Ât∗

i· = argmin
At∗

i· ∈R1×r

1

T

T∑
t=1

wt
∗

c (t)(At∗

i· x
t−1 − xti)2 + λ‖At∗

i· ‖1. (3.1)

The use of asymmetric kernel for non-parametric regression can be found
in economic literature [7, 8] but rarely discussed in machine learning. Macken-
zie and Tieu [16] is an example which discusses an application of asymmetric
kernel regression to radial-basis neural networks. The authors mention that
the available real-life data reproduce a causal function; and therefore, are natu-
rally bounded by an interval. Hence, a truncation of a symmetric kernel at the
boundary makes the model suffers from material bias error, known as bound-
ary problem. Although there are several attempts to resolve boundary problem
[11, 29], most of them cannot correct bias without increasing noise level and/or
variance error [16]. Mackenzie and Tieu propose to correct boundary error by
replacing a symmetric kernel with an asymmetric kernel. Apart from the fa-
vorable boundary property [16] – maintaining the same level of variance and
bias trade-off, asymmetric kernel, like gamma distribution function, can also
provide a weighting function which is within causal boundary (B) in S in our
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application. We define Ka
h(·) by using gamma distribution function:

f(t; θ;K) =
1

θKΓ(K)
(t− η)K−1e−(t−η)/θ (3.2)

where t > 0, K is a shape parameter which determines the basic shape of
the function, θ is a scale parameter and η is a location parameter [2]. Under
the scenario of using kernel regression to estimate the functional relationship
between two variables y and t (yi = y(ti) + ε, where i ∈ 1 . . . N , 0 ≤ ti ≤ T and
ε is random noise [16]) by using symmetric Gaussian kernel (KG) with boundary
(KG is the Gaussian density function with mean µ and variance σ2), we obtain
significant bias at the boundary as the odd moments of KG are no longer zero
due to truncation [16], which is:

bias[ŷ(η)] =

{
y(η)

∫ ∞
0

KG(t− η)dt+ y′(η)

∫ ∞
0

(t− η)KG(t− η)dt

+
1

2
y′′(η)

∫ ∞
0

(t− η)2KG(t− η)dt+ . . .

}
− y(η)

where ŷ(η) is a Priestley-Chao estimator [16] of y(η), versus the scenario of no
boundary:

bias[ŷ(η)] =

∫ ∞
−∞

y(ti)KG(η − ti)dti − y(η) ∼=
σ2

2
y′′(η) +

σ4

8
y′′′′(η).

However, the boundary error term is vanished by replacing symmetric kernel
KG by asymmetric Gamma kernel (KΓ) in the case of kernel regression with
boundary:

bias[ŷ(η)] =
σ2

2
y′′(η) +

σ4

3η
y′′′(η) +

σ4

8

{
1 + 2

(
σ

η

)}
y′′′′(η) + . . .

Assigning θ = h = 2, K = 2 and η = 1 gives an asymmetric weighting
function:

Ka
2 (t) =

1

4
(t− 1)e−(t−1)/2 (3.3)

We call it a CMA compliant Gamma kernel (KΓ) with a shape shown in Fig-
ure 3.1(a) versus a typical symmetric Gaussian kernel (KG) displayed in Figure
3.1(b). Alternatively, assuming that the data sparseness and distribution skew-
ness problems are fully addressed by density-based clustering, the necessity to
gather evidence across time could be totally diminished. As a result, we might
be able to simply drop the weighting function from Equation (2.3). Based on
our experimental results on taxi trajectories in Section 6, we are in favour of
using Equation (3.1), which gathers evidence only within the causal boundary
(B) in S. As a result, we transform RTV-DBN to causal time-varying dynamic
Bayesian networks (CTV-DBN) by adopting Equation (3.1) to be our new ob-
jective function for estimating time-varying region structure, while Equations
(2.1) and (2.2) remain applicable to CTV-DBN.

4 Causal inference by CTV-DBN

We now revisit causal graph CG defined in Section 3 to establish manipulation
rule for CTV-DBN.
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(a) Gamma kernel (KΓ) (b) Gaussian kernel (KG)

Figure 3.1: Shape of kernel functions

A probability density PCG(VCG) factors according to CG if and only if

PCG(VCG) =
∏

v∈VCG

PCG(v|Parents(v)) (4.1)

where Parents(v) is the set of parents of v in CG [26].
In a causal Bayesian network and under CMA, assuming n ⊂ VCG with only

non-descendants of m, a manipulation of m ∈ VCG to PCG′(m|n) can be achieved
by replacing PCG(m|Parents(m)) in Equation (4.1) by a manipulated density
PCG′(m|n) to form a manipulation rule:

PCG(VCG ||PCG′(m|n)) = PCG′(m|n)
∏

v∈VCG\{m}

PCG(v|Parents(v)) (4.2)

where the double bar indicates an assignment of probability and PCG′ is a new
probability density. Therefore, based on Equation (2.2), the manipulation rule
for CTV-DBN at time t = ζ (where ζ ∈ {2 . . . T}) and region i = m can be
written as:

p(X1, . . . ,XT ||p(Xζ
m|Xζ−1

πm
)) = p(Xζ

m|Xζ−1
πm

)

p(X1)
∏

t=2...T
t 6=ζ

∏
i=1...r
i 6=m

p(Xt
i |Xt−1

πi
)


(4.3)

By using a CMA compliant CTV-DBN to model the time-varying causal rela-
tionships, predictions can be made based on the manipulation rule by assigning
the conditional probability p(Xζ

m|Xζ−1
πm

). For example, p(Xζ
m|Xζ−1

πm
) could be

equal to p(X20
5 ≤ 20|X19

πm
) looking for the impact to X21 . . .XT if X20

5 has been
significantly reduced from its average value, says a speed of 100km/h.

5 Related work

Dynamic Bayesian networks (DBN) [17] have been used to model sequences of
variables and regarded as a method to overcome the expressive power limita-
tion in Hidden Markov models and Kalman filter models. This is accomplished
by allowing the state-space to be represented in factored form. Although the
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name of DBN may give us an impression that it can model time-varying pro-
cess, the reality is that DBN is in fact a time-invariant model. The structure
of the network is fixed but is capable to model dynamic systems [25]. Non-
stationary dynamic Bayesian networks (NS-DBN) are introduced by Robinson
and Hartemink [23, 24] in recent time. They allow one to model the structure
of a network which is not fixed but to evolve over time. Markov chain Monte
Carlo (MCMC) sampling method is proposed to be used in its structure learn-
ing; however, Song et al. [25] point out that such an approach is unlikely to be
scalable, and it is prone to the problem of over-fitting. In parallel, Grzegorczyk
and Husmeier [9, 10] also developed an alternative approach. Their assumption
of a fixed network structure is deemed to be too restrictive [4], even though the
interaction parameters of the model is allowed to vary with time to cater for
non-stationary systems. Song et al. propose TV-DBN [25] to overcome those
weaknesses.

DBSCAN [5] is one of the popular density-based methods that groups related
objects by using density threshold. OPTICS [1] is an alternative method similar
to DBSCAN but can better handle data with varying densities. A more recent
variant to DBSCAN is ST-DBSCAN [3]. ST-DBSCAN clusters spatial-temporal
data by non-spatial, spatial and temporal attributes, which makes the need to
consider noise objects redundant by assigning density factor to each cluster;
hence, no noise object is required to be detected. The conflicts of borderline
objects are overcome by comparing the average value of a cluster with new
incoming value. Density-based clustering methods are argued to be the best
solution for trajectory clustering [18].

The theory of statistical causal inference developed by Perl [19] and Spirtes et
al. [27] provides a platform allowing for causal relationship to be detected based
on observations. In recent time, Pellet and Elisseeff [21] attempt to provide a
causal structure-learning algorithm for causally insufficient data and show that
their Markov blanket/collidet set (MBCS*) algorithm is in several orders of
magnitude faster than the popular Fast Causal Inference (FCI) algorithm [28].
Another example is Inductive Causation* (IC*) [20], in which both algorithms
IC* and FCI are done based on relaxing the causal sufficiency assumption. CTV-
DBN is different from all of them as it takes the time-varying network structure
into consideration while at the same time satisfying CMA. To the best of our
knowledge, CTV-DBN is the first proposal in causal network learning which
considers time-varying network structure.

6 Experiments - an application to spatio-
temporal analysis

We evaluate our models on spatio-temporal data by using Beijing taxi trajecto-
ries from Complex Engineered Systems Lab, Tsinghua University, China1. The
dataset consists of one month of trajectories of 28,000 taxis in Beijing captured
in May 2009. The trajectories are firstly passed through a spatial filter with a
boundary2 of Beijing city centred at the Forbidden City (city centre) and ex-
tended to its three international airport terminals (top right hand corner). We

1http://sensor.ee.tsinghua.edu.cn/datasets.php
2a rectangle formed by latitude and longitude pairs (40.08200, 116.16054) and (39.75030,

116.62000)
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then apply density-based clustering method DBSCAN on one week (Monday-
Friday) of taxi trajectories at 8am to obtain a driver’s view of regions in the city
as shown in Figure 6.1. Please note that top right hand corner is the location of
the airports (regions 2 and 6), and we can observe an expected region structure
complexity from the city centre to the airports. The trajectory average speeds
within clusters are calculated.

We go through the RTV-DBN and CTV-DBN structure estimation to come
up with network structures as shown in Figure 6.2 for t = 20 (8:20am) and t = 30
(8:30am) by using different methods and kernels, where the cells filled with
black colour represent connections and blank otherwise. Shooting algorithm [6]
is used to speed up the optimization calculation in which the cost function is
transformed into a standard `1-regularized least squares problem by pushing in
the weighting function into the squared loss function. A nil smoothing approach
of CTV-DBN with no kernel produces a rigid and discontinuous structure as
observed in Figures 6.2(e) and 6.2(f). Although they might not be useful at
first sight but we can clearly identify regions 3, 6, 11, 16, 22, 23, 24 and 28
(example region list) are the ones heavily depending on nearly all regions in the
city. Apart from region 16, all the other regions are between the city centre and
the airports.

On the other hand, because of truncation at causal boundary (B), the
method of CTV-DBN with truncated KG suffers from bias as well as infor-
mation loss (Figures 6.2(c) and 6.2(d)) and it is confirmed when comparing
with the results from RTV-DBN with KG (Figures 6.2(a) and 6.2(b)), although
a subset of the structure can be recognised. Finally, the method of CTV-DBN
with KΓ not only comes with a theoretical strength of low bias at the causal
boundary (B) and complies with CMA, it also reveals more details of causal
relationships between regions. Based on the same λ, regions with insufficient
causal connections are eliminated in CTV-DBN (versus RTV-DBN) and addi-
tional connections are added based on the evidence within causal boundary (B)
in S. The structural difference between CTV-DBN with KΓ and RTV-DBN
with KG are mainly from the enforced causal relationship in the former. Out of
the example region list above, only regions 3, 24 and 28 are the top 3 regions
causally impacted by most of the regions and they are all located along the
Beijing Airport Expressway (S12)3 between the city and the airports, in which
traffic jam is common4. Since the three regions are located just at or before
ring roads5 which diverge traffic to all major districts in the city, any conges-
tion in the other regions would have ultimate impact to these three regions
(major artery between the city and the airports). These findings have also been
confirmed by numerous published facts such as 1) a report by China Central
Television6 and 2) a discussion (section 3.3.1) in Papers in Regional Science7,
about the relationship between ring roads and other districts in the Beijing city.

3http://en.wikipedia.org/wiki/Airport Expressway (Beijing)
4http://wikitravel.org/en/Beijing, http://www.bjjtgl.gov.cn/publish/portal1/
5http://en.wikipedia.org/wiki/Ring roads of Beijing
6http://www.cctv.com/lm/124/41/90128.html
7The impact of urban growth on commuting patterns in a restructuring city: Evidence

from Beijing, 2011
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Figure 6.1: Regions drawn by Voronoi diagrams at peak hour (8am) based on
one week (Monday-Friday) of Beijing taxi trajectories

7 Conclusion

This paper presents notions of relaxed time-varying dynamic Bayesian networks
(RTV-DBN) and causal time-varying dynamic Bayesian networks (CTV-DBN),
as well as defines causal boundary (B). In CTV-DBN, causal Markov assump-
tion (CMA) is satisfied by replacing a symmetric Gaussian kernel (KG) with an
asymmetric Gamma kernel (KΓ). KΓ does not only fit well within the causal
boundary (B) in S as defined in Section 3, but also provides low bias in deal-
ing with boundary problem, that would be significant if a symmetric kernel
is used due to truncation. Upon satisfying causal Markov assumption, causal
inference can be made based on the manipulation rule derived in this paper.
We apply RTV-DBN and CTV-DBN on spatio-temporal data by combining the
model with the techniques of density-based clustering, Voronoi diagram, etc.
By learning the time-varying region structures using moving objects’ view of
territories, causal relationships among regions are captured and available for
causal inference. The findings learnt from real-life Beijing taxi data using the
proposed method are consistent with the known facts as discussed in Section 6.
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