
A Social Network-based Process-aware Task

Management System

Seyed Alireza Hajimirsadeghi Hye-Young Paik John Shepherd
Anthony Kosasih

University of New South Wales, Australia
{seyedh,hpaik,jas}@cse.unsw.edu.au,ajkosasih@gmail.com

Technical Report
UNSW-CSE-TR-201320

August 2013

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

In modern society, we are frequently required to perform administrative or busi-
ness processes in order to achieve our personal goals. We call these kinds of ad
hoc processes, carried out towards a personal goal, personal processes. For al-
most all of our personal goals, from applying for a research position in academia
or a job in industry to organising a marriage ceremony or buying a house, we
seek help from social networks. Social networks are the prevalent medium for
sharing notes, documents, images, videos, etc and they also provide the basic
infrastructure for exchanging opinions. However we believe social networks are
not particularly helpful when it comes to personal process management (PPM)
as there remain significant problems in discovering and integrating the sets of
tasks that are typically required in order to achieve many useful outcomes. This
is mainly because social networks do not possess an integrated and structured
framework for sharing “process knowledge”. In this paper, we propose Pro-
cessbook, a social network-based management system for personal processes. A
simple modelling interface is introduced based on ToDoLists to help users plan
towards their goals. We describe how the system can capture a user’s experi-
ence in managing their ToDoList and the associated personal process, how this
information can be shared with other users, and how the system can use this
information to recommend process strategies. We exemplify the approach by a
sample administrative process inside the University of New South Wales.



1 Introduction

In modern society, we are frequently required to perform administrative or busi-
ness processes in order to achieve our goals. Examples could be simple processes
such as planning a party, booking a theatre ticket, or more complicated and long
lasting ones such as planning to get postgraduate admission from a top-ranked
university, applying for a job in computer engineering or planning for immigra-
tion.

While the last decade has seen many of these individual processes codified via
online services, there remain significant problems in discovering and integrating
the tasks that are typically required to achieve useful outcomes. An important
aspect of the problem is that processes frequently span organisational bound-
aries and there are few mechanisms to carry information and outcomes from
processes in one organisation to those in the next organisation. Another major
factor is that it is sometimes difficult to identify precisely which organisations
and which processes within those organisations are required to accomplish a
stated goal.

Discovering which business processes are relevant is frequently achieved ei-
ther by searching on the Web or by being given information from friends who
have previously accomplished these goals. As a consequence, each individual
needs to integrate the heterogeneous sources of information themselves to ob-
tain a useful set of tasks to reach their goal.

Integrating a collection of unfamiliar processes to achieve a goal causes many
difficulties. First, it may be difficult to determine all the tasks required to
complete the whole process. Second, finding out the dependencies between tasks
is time consuming and potentially error prone. Third, people cannot generally
predict how a particular task will affect the overall process of achieving the final
outcome. Finally, tracking and managing on-the-fly changes in organisations’
policies and procedures is difficult for individuals. Many of these problems stem
from the fact that process and data are spread over multiple business units and
the required knowledge to proceed with the whole process is not stated formally
in the documents or in the guidelines from either of those business units. By
contrast, overall knowledge about the process is often available in the minds of
those who have previously gone through the process steps.

A personal process is made up of a number of tasks which need to be carried
out in order to achieve a goal; a task may be as simple as one individual activity
or may be as complex as a complete business process. Personal processes often
require an integration of so-called “long tail” business processes from one or
more organisations. The knowledge of such integration and consequently the
knowledge of achieving a goal is referred to as process knowledge in this paper.

Our goal is to provide support for individuals to manage their personal
processes. One possible approach for this would be to convert all personal
processes into codified business processes, but this is neither plausible nor cost-
effective [17]. Instead, we aim to assist users in discovering the tasks they
have to do to reach their goals, the order they need to do the tasks and the
sets of constraints and rules they should follow in doing those tasks. This is
accomplished in a context where other users have already successfully carried
out the processes and have recorded the method by which they did so.

Our system to support this (Processbook) adopts a social-based approach,
aimed at non-expert users, who describe their personal processes via ToDoLists.

1



Processbook collects, manages, merges and shares process descriptions and allows
users to follow other users who are carrying out similar tasks. It can also
recommend future steps in a given process based on how others users previously
achieved the same goal.

In Section 2, we elaborate the problem area with examples. Section 3 de-
scribes related work in the space of personal processes and using social software
in business process management. Section 4 gives an overview of Processbook
framework highlighting its main components. Section 5 presents the details of
Processbook concentrating on how process knowledge is captured and then rec-
ommended to users. In Section 6 we investigate the implemented tool with an
example in academic domain. Finally we conclude the paper in Section 7 with
future work.

2 Motivating Scenario

We consider the problem of carrying out personal processes via an example: Ali,
a student from a non English-speaking country, wishes to study for a PhD in
one of the top eight Australian universities (known as the Go8). Ali has two
primary objectives: find a university that would accept him and maximise the
amount of funding to assist his study. Additional constraints and preferences
might include: a PhD topic in the service oriented computing area, a PhD
program commencing after July 2013, a department that has close relationships
with industry, etc.

Figure 2.1a illustrates how Ali plans to reach his goals and what sources
he utilises for his purpose. He first tries to identify universities that satisfy his
constraints by asking friends or by searching on the Web. Once he identifies the
universities, Ali collects and collates information about the entry requirements
and scholarship availability for each university from its official web site. This
might identify further subgoals, documents that need to be provided, timelines
for applications, etc. He might also join relevant communities on popular social
networks such as facebook and twitter to keep up with the latest news and
updates about the institutions he is dealing with.

In carrying out the above, questions would arise at each stage for Ali. For
example, the web site at some university might specify that a student needs to
provide an undergraduate transcript and English proficiency test results, but
might not mention the kind of visa that the student requires or how to obtain
such a visa. Other typical questions that might arise are: what step should I
take next, what do I do at each step, which organisation should I deal with, etc.
To find the answers to such questions, Ali would seek answers from his friends,
experts, social networks or other data available in online forums, blogs, etc. Ali
uses a to-do list approach to organise his findings and to write down the tasks he
has to do. He may do so by simply writing on paper, using computer-aided task
management tools or registering in an online task management website where
he is offered more gadgets to organise his tasks.

Getting advice from someone experienced with the specific process would be
extremely useful, but finding such an expert might be difficult. Experts bring
domain and process knowledge, but also need to have your personal circum-
stances communicated to them. A more effective approach might be to have
the process information available online, and have a system that understands

2



(a) Example of a Personal Process Management

(b) Personal Process Management in Processbook

Figure 2.1: From Personal Involvement to Active Social Participation

both the process information and your personal constraints and situation (in
terms of progress through the process), and can offer sufficient information to
enable you to determine how to proceed. In practice, a number of difficult issues
need to be dealt with before such a system can be realised:

Invalid, incomplete or inconsistent data: We may be faced with untrusted
sources of information, or conflicting items of information, or may be
given out-of-date information. Sometimes, we simply do not know certain
parts of the process. In other cases, there may be hidden (or ignored)
pieces of information. For example, Middle Eastern students may face a
wait of up to three months in applying for an Australian student visa.

Individuals as process integrators: Individuals are responsible to collect all the
relevant data and integrate it effectively while planning their goals. This
is a challenging task as the process domain is usually new to individuals

3



and they do not have an overview of the process when progressing step
by step. Heterogeneous data sources and data formats, numerous data
dependencies over multiple organisations and constantly changing policies
and workflows makes it even more difficult to play the role of process
integrator.

Inability to predict task effects: Sometimes it is difficult to know what kind of
effect accomplishing a specific task will have on the process as a whole.
For example, while either of the IELTS and TOEFL English competency
tests are accepted world wide, it is better to have IELTS scores if applying
for Australian universities because they are better regarded.

Isolated individuals: Although people join communities on social networks and
discuss issues with peers in forums and e-how sites, they are ultimately
progressing in an isolated manner regarding the personal process as a
whole. In Figure 2.1a, Igor is a member of some Go8 communities on
Facebook, is contributing on an IELTS message board, and is also reflect-
ing his experiences in his own blog. There is no established way for Ali to
be aware of all Igor’s contributions on the process, to contact him or to
track his progress. People with similar goals and interests may not be able
to find each other easily and each individual’s progress is not necessarily
recorded for future reuse.

In Processbook, we consider merging social software principles with process
management basics to overcome the above issues. Social software is based on
three core principles: social production [2], weak ties [7] and collective deci-
sions [15]. Social production is the creation of artefacts by combining input
from individual contributors without predetermining the way to do this. It
abstains from the top-down planning, enables co-creation and increases innova-
tive contributions. Weak ties are spontaneously established contacts between
individuals that allow identifying competencies in organizations across depart-
mental boundaries. Collective decisions decorrelates errors by aggregating a
large number of independent judgements.

As Figure 2.1b illustrates, people are grouped based on common goals and
their peer contributions are recorded and integrated automatically to produce a
general view of the process pathways to achieve each goal. Finally we are able
to recommend to Ali a path that most likely will guide him to reach his goal.
Moreover we provide a feedback loop that makes each individual’s involvement
reusable and part of the social production.

A major goal of Processbook is to improve the management of personal pro-
cesses by employing the social software principles noted above:

Weak ties: Establishing a goal-based social network removes the isolation
barrier, helping individuals find peers with similar interests more easily.
This way Ali could easily follow and make use of Igor’s progress.

Social production: Users’ knowledge and experience is captured unobtru-
sively while they are planning for their goal via a simple modelling interface
that requires no prior process modelling knowledge. Merging individuals’
knowledge on processes for achieving a certain goal allows new users to
identify the major task flows and data flows while observing how each task
effects the final process outcome.

4



Collective Decisions: Applying users’ votes and feedback on socially pro-
duced process knowledge can be used to recommend process models that
minimize the adverse effect of invalid, inconsistent and incomplete data.

3 Related Work

Personal process management has so far received limited attention from the aca-
demic research community. A vision statement can be found on the blog posted
by Michael Rosemann [12]. Two possible implementations of personal process
management are discussed in [17] and [3]. [17] mainly focuses on sequential and
conditional constraints by introducing a formal personal process modelling lan-
guage. The proposal in [3] is based on parallel executions, tries to simplify BPM
techniques, and pays attention to the role of social aspects of process manage-
ment (such as sharing and assigning tasks). Both works remain at preliminary
level and are yet to realise any significant improvement over personal process
management.

On the other side, a large number of commercial online tools exist for
personal task management. These tools are end-user oriented and provide a
plethora of features including task creation, sharing, social network integration,
notification, etc. However, as [3] notes, none of them is concerned about the
“process” concept; they do not embrace the practices of BPM, thus losing many
beneficial aspects of structuring dependencies and constraints between tasks.

In terms of requiring flexibility and agility, personal process management is
closely related to the agile BPM field. The need to remain competitive in to-
day’s fast-changing business environment has made enterprises introduce flexi-
bility into their process models. [13] investigates four distinct approaches to gain
flexibility within a Process-Aware Information System (PAIS): flexibility by de-
sign, by deviation, by underspecification and by change. All of these approaches
trade off user support for flexibility. Moreover PAIS suffers from lacking a sys-
tematic approach for reusing and sharing knowledge. [17] also expresses the
need of a new management system for personal processes - business processes
as experienced and described by a single person.

The most notable defect of classical BPM is the so-called “model-reality di-
vide”, the distance between abstract process models and the processes executed
in practice. [5] even states that agile BPM not only requires changes to the BPM
life cycle, but also a paradigmatic change, and suggests that this change can
be realised by applying social software features into business process manage-
ment. [6] argues that more realistic models can be designed by applying social
software features such as self identification, transparency, signing, logging, dis-
cussion and banning to the mechanism of process modelling. [9] contrasts the
work management style in social software and business process modelling sys-
tem(BPMS) and then proposes a set of guidelines suggesting how to use both
in organisations, portrays an ideal modelling framework which eliminates the
conventional hierarchic views of the world, includes more people in designing
models, and removes a priori decisions on process modelling.

There have been some attempts in recent years to accommodate social fea-
tures in the BPM environment. [10] targets the problem of “one person mod-
elling tools” which has brought a general dissatisfaction among business users.
As a solution, it proposes a social-based recommendation system for business

5



process modelling tools which improves the creation of formal process mod-
els. [14] embeds social software features, such as collaboration and wiki-like
features, in the modelling and execution tools of business processes with the
aim of encouraging people participate in the bottom-up design and execution of
business processes. On the other hand [11] concerns of participation of end users
in modelling processes, thus presenting an ad-hoc workflow system that focuses
on non-intrusive capturing of human interactions. [16] takes another perspective
focusing on the execution of business processes in the context of Web 2.0 and
social software in a self-managed and decentralised environment. It examines
the use of status feeds for supporting the execution of non-predictable business
processes. [4] presents a process design methodology for addressing the extension
of business processes with social features. In particular, they extend BPMN 2.0
with social roles, present a gallery of design patterns and finally propose We-
bRatio BPM as a technical framework for generating Social BPM applications
from specifications encoded in Social BPMN.

While most of the existing work in the social BPM area focusses on adding
social features to an existing BPM framework, Processbook intends to create
a flexible personal process management environment within a social network
structure. That is we make use of the BPM process view to be able to handle
dependencies and constraints between tasks on one hand, while realising the
three principles of social software via a goal oriented social network on the
other hand. Our proposed approach can also be seen as an attempt towards
implicitly involving people in processes.

4 Processbook: Towards Social Network-Based
Personal Process Management

Processbook [8] is an architectural framework which introduces principles and
guidelines for managing personal processes within a social network. Processbook
aims to provide a goal-oriented social network whose users actively participate
in the managing and sharing of personal processes. More specifically, (i) it
supports users to, collaboratively, create and carry out personal processes, (ii)
it allows users to utilise various data sources from the web to create process
fragments as constituents of a personal process, (iii) it encourages users to share
the intermediate results with others and receive feedback from them, and (iv) it
creates links between people with similar goals so that they can share experiences
with each other.

Figure 4.1 gives a conceptual overview of the Processbook system. It shows
the different sections of the system and suggests how the social network mod-
ule (top left) is integrated with the process modelling and process execution
modules to form a social BPM framework. Upon registration in Processbook,
users will be given a personal workspace called a process panel where they have
the facilities to create processes and execute them. Once the user defines the
goal/purpose of the process she wants to engage in, and any constraints (e.g.,
“the amount of funding needed to study PhD abroad”), she will be offered the
option to join groups of people working on similar goals. She can now “follow”
or “be followed by” other people, forming links and groups. Processbook asso-
ciates a process line with each goal the user is attempting to acheive; the process

6



Figure 4.1: Processbook Conceptual Overview

line panel shows activity by all of the followed users as they progress towards
their goal.

After the user registers their interest in a goal, the Processbook process mod-
elling task (i.e., defining a personal process) continues with the user receiving a
recommendation package consisting of business pages, web feeds and personal
processes of her group mates. The recommendations are based on the goal and
constraints specified, and the three components in the package are the main
data sources from which the user may derive her own Processbook process. The
bottom half of Figure 4.1 shows the data sources. Processbook users may use a
combination of them to create their own personal process. Through the process
panel (shown top right in Figure 4.1) a user can search through recommended
items to find any process fragments that might be useful to complete her model.
She is also able to browse her process line to figure out what actions other users
have taken to manage their processes. The social network section in the figure
illustrates circles of people in Processbook grouped based on their goal. Lines
between users indicate that they are also following each other’s work. By fol-
lowing a user, recommended items from that user will be prioritised and their
actions could also be tracked in the process line.

The bottom half of Figure 4.1 shows the data sources. Processbook users
may search the data sources and use a combination of them to create their own
personal process. Raw data sources are either formal organisational workflows
and business process models or informal guidelines that can be found over the
web in blogs, forums, news pages, web sites, etc. Users of Processbook utilise
these sources and create personalised workflows or process model segments re-
spectively. Sources of data utilised in Processbook can be categorised as follows:

7



• Business pages: Organisations, institutions and business owners upload
their business process and workflow models in special pages called business
pages. These models can be downloaded and brought to the user’s process
panel to form part of her own personal process.

• Web feeds: Data spread over the web in blogs, forums, news pages, web
sites provide a useful source of information for the descriptions of personal
processes (e.g., a discussion forum on PhD applications, a university’s
scholarship application page). Processbook makes the data accessible for
users in the form of web feeds. Users can search the feeds, subscribe to
them and, importantly, can extract process fragments out of them and
share them with others.

• Other users’ processes: Instead of searching in raw data in feeds and
business pages, users can rely on their followers or the groups they belong
to, and follow the work of others. If they discover a useful process model
developed by another user, they can extract the whole model or some
parts of it and customise it to fit their own constraints. They can also
integrate process models from two or more users.

4.1 Personal Process Model

The modelling interface of Processbook is based on a simple personal process
model which is defined as a six-tuple (G,C,D, T,M,A), where G is the goal of
the process, C is a set of constraints, D is a set of inputs and outputs (data),
T is a set of tasks, M is a mapping that describes how tasks are connected
and A is a set of annotations associated with the tasks. Each task T is either
a simple activity or is a nested personal process model, thus models may be
re-used in the construction of other larger models. In practice, tasks are drawn
from several different sources in Processbook. Based on this, we can partition
tasks into three sets: T = POW ∪ PMS ∪GFT .

POW contains personalised organisational workflows. Each task in POW
is derived from a standard business process model from one organisation in the
Business Pages. PMS contains process model segments. Each task in PMS
is derived from a source outside any organisational workflow, typically from a
description of a process on a web site. Such tasks are typically found by users
searching the web feeds. GFT , gap-filler tasks, are any other tasks that are nec-
essary to guarantee the completeness of the process model, but are not included
in POW or PMS for they are not part of any of the involved organisations
or they are considered too variant and personal to be included in documents.
Gap-filler tasks include those where the task:

• exists outside any organisation or institution and is also out of the scope
of texts discussing related issues.

• is assumed to be too trivial to be modelled in business workflows or be
mentioned in texts.

• may be handled in so many different ways that it makes the modelling too
complicated or the texts too lengthy.

Later in Section 5.1 we propose a ToDoList model based on the idea of the
personal process model introduced in [8].

8



4.2 Main capabilities of the proposed social network

There are four major capabilities that allow Processbook users to benefit from
personal involvement in its social network: collaborative process modelling,
knowledge capturing and sharing, social network based recommendation and
utilising notifications.

Collaborative process modelling is realised by enabling users to copy process
models created by peers to their process panel and modify them. Modification
of a process model will result in a new version of that model. A set of different
versions of process models which describe a single goal are kept in a pool and
ranked based on the feedback given from users. Feedback is quantified using
social factors such as:

• liking the model

• flagging the model as a faulty or incomplete one

• commenting on the model

• copying the model or its components to their process panel

• modifying the model by adding, deleting, renaming, annotating tasks or
changing the task or data flow

Knowledge capturing and sharing aims to enhance the process management
life-cycle by facilitating information exchange, which in turns speeds up mod-
elling and execution decisions. The key point in information exchange is to find
a method that automatically and non-intrusively captures users’ modelling and
execution experiences and then shares the captured data appropriately. Since
users’ actions are all performed in a web based social network framework, a web
monitoring component in conjunction with a log analyser could provide users
with the needed information. The extracted information could then be posted
by a user and shared according to their preferences.

A built-in recommender system is required to filter the process knowledge
repository and rank process model segments based on user’s goals, preferences
and constraints. An intelligent query processor module will implicitly and non-
intrusively build a query from the user’s goal, soft and hard constraints, past
actions and the process execution state of the user’s personal process model.
Users would specify whether to search all the repository or limit the search to
items shared by the group they belong to or by their friend circles. In addition
to recommending process model elements, the recommender may also suggest
a user to follow other users’ process panels or to subscribe to a web feed or a
business page.

Notification is used to reflect both regular changes in user-defined process
models and policy changes in business environments. When an institution ob-
soletes a workflow, changes its policies or adds new criteria to one of its old
workflows, a notification alarm should be sent to those who either have created
POW s from that workflow themselves or copied an existing POW associated
with that workflow. Similarly when a new PMS is extracted from a web feed or
when an existing PMS is flagged as inappropriate, a notification message will
be sent to those directly involved in creating that PMS and those who copied
it to their process panels. Moreover when the top-ranked PMS in a pool of

9



PMSs - depicting the same goal - changes based on the users’ feedback, it will
be announced to users working on that pool to be aware of the new best practice
PMS. It is also possible to get notification messages directly from one of the
group or circle members stating new updates from her personal model.

5 Capturing and Sharing Personal Processes through
Social Networks

In Section 4, we introduced Processbook as an architectural framework that gives
principles and guidelines for managing personal processes within a social net-
work. Hereafter we concentrate on two of the major capabilities of Processbook
framework: knowledge capturing and sharing and social network-based recom-
mendation.

Processbook aims (i) to make personal process management as effortless as
possible for individuals and (ii) to utilise user participation to produce mean-
ingful social collective data. The first step is to engage people to manage their
processes through Processbook. Given that Processbook users are ordinary peo-
ple rather than trained BPM designers or knowledge workers, they posses little
or no knowledge or prior experience in process modelling and management.
Therefore one of the main issues Processbook deals with is to find a way to pro-
vide support for individuals in managing their tasks while simultaneously taking
advantage of their social participation to enrich its support. In Section 5.1 we
propose a simple modelling interface based on the idea of ToDoLists to facilitate
the modelling experience for non-technical users. The second step is to expedite
the transfer of knowledge about processes among users. For this purpose, in
Section 5.2 we propose a method to capture users process knowledge. Then
in Section 5.3 we show how to share the process knowledge in form of process
recommendation.

5.1 Modelling Interface

Traditional business process modelling lacks the required flexibility and agility
when it comes to unstructured or ad-hoc processes. To break the rigidity of
traditional modelling methods and to simplify their syntax for novice users,
we propose a simple modelling approach that resembles the natural planning
model our brain follows. [1] enumerates five steps that our minds go through
to accomplish any task: defining purpose and principles, outcome visioning,
brainstorming, organising, and identifying next actions. Similarly our proposed
planning approach consists of five steps:

• Defining a goal : A goal is any desired result that requires one or more
action steps. It is described in natural language and is mandatory for
each plan e.g “Gain admission to a PhD degree in computer science at
UNSW”

• Defining a set of constraints: Constraints are sets of parameters and crite-
ria that further elaborate goals. They can be global to describe the general
parameters e.g “Application deadline for PhD admission is 1 Dec 2013”
or local to reflect personal visions on the goal e.g “field of study: BPM”.

10



• Gathering all required tasks: Determining the set of required tasks is the
first step towards the desired outcome. A task is a single unit of work in
the boundaries of a particular goal. A goal is achieved when enough of
the right tasks have been performed successfully and some outcomes have
been created that closely enough match the initial vision.

• Elaborating tasks: A short-list of tasks are specified and elaborated by
linking them to local constraints or by adding annotations to them.

• Identifying next task to do: The order in which users want to carry out
their listed tasks is the final planning step and is repeated until all tasks
are carried out or the desired outcome has been achieved.

Formally, we define a simple modelling interface called ToDoList to realise
the idea of natural planning. Users may own one or more ToDoLists, one for
each of their goals. However there is only one ToDoList for each user under a
particular goal.

Definition 1 A ToDoList is a triple (G,T,CG), where

• G is a statement of the goal in natural language

• T is a set of tasks to be done to achieve the goal

• CG is a set of constraints on the goal

Each task gives a natural language statement of one activity to be completed
in achieving the goal. A task is a pair (D,CT ), where D is a description which
can be either a natural language description of an atomic task or a reference to
another ToDoList and CT is a set of constraints on the task.

5.2 Capturing process knowledge

Tasks are first class entities in our proposed ToDoList modelling approach. The
set of tasks chosen by a user to accomplish a goal in conjunction with the order
she carries out them is what we call process knowledge. To be able to capture the
process knowledge, it is important to be aware of task life-cycle in our system.
Figure 5.1 illustrates the task state diagram in Processbook. Each task, at any
given time, could be in one of the “planning”, “carrying out”, “carried out” and
“captured” states.

• Planning Tasks are identified by users themselves or given to them through
a recommendation mechanism (Section 5.3) Once a task is identified, it
will be considered in the planning state. The planning state is similar to
drafting a ToDoList and resembles the brainstorming step of [1].

• Carrying out Tasks are brought to “carrying out” mode on a user’s
decision to perform them. When a user identifies the next action she
wants to take, she can simply mark the task as being in carrying out
mode. The task can be reverted back to planning mode when the user
pauses or stops the execution of the task. Pausing a task will temporarily
prevent it from being executed, meaning that it could be resumed later.
But if the user wants to apply some changes to the task, she has to stop
it first, apply the modification she wants and then start it again.

11



Figure 5.1: Task State Diagram

• Carried out When the user obtains the desired result from the running
task, its completion timestamp is recorded and the task is considered
finalised and in “carried out” mode. The carried out state consists of a
set of completed tasks, ordered by their completion timestamp. Hence
it could be regarded as a trace log for each ToDoList. It is expected
that by the end of the personal planningall of the required tasks for an
achieved goal are found in the carried out mode or more specifically in
TraceLists. Associated with each ToDoList, there exists a TraceList that
is opened after the first task in ToDoList has been carried out and is closed
after the corresponding ToDoList terminates. A TraceList captures the
execution of tasks in a ToDoList.

• Captured Once a user reaches her goal, the trace log will be aggregated
with other users’ traces for the same goal. If the user cancels her plan or
does not achieve her specified goal, her trace log will be deleted. The ag-
gregation of trace logs produces a Goal-Task Graph (GTG), where users’
successful experiences for a particular goal are captured. The GTG cap-
tures the social production for a community of users who share the same
goal.

TraceLists are formally defined as follows:

Definition 2 A TraceList is a triple (G,CG, HG) where

• G is a goal

• CG is a set of constraints on the goal

• HG is a set of history records of tasks and their properties

Each history record H ∈ HG is a quadruple (T,CT , ST , ET ):

• T is a task

• CT is a set of constraints on the task

12



• ST is the time when task was started

• ET is the time when task was completed

A ToDoList terminates successfully if all its tasks have been carried out and
the owner of ToDoList confirms that a desired outcome has been reached by
performing those tasks. The TraceList of such a ToDoList execution is called a
complete TraceList. Intuitively a set of complete TraceLists for a certain goal
will give a useful insight on how to achieve that particular goal. We argue that
each TraceList resembles a blog post describing a personal solution to reach the
goal, while the aggregation of TraceLists is analogous to a Wiki that describes
the general solution to reach that goal in different contexts and from different
perspectives. Processbook realizes the concept of social production by merging
all complete TraceLists of a goal into a graph structure called GTG(Goal-Task
Graph).

Definition 3 A GTG is a weighted directed graph GTG(G,V,E,W,C) where

• G is the goal for which complete TraceLists are aggregated

• V is the union of tasks in the complete TraceLists with goal G; the result
set forms the vertices of GTG

• E is the set of edges of GTG; each edge indicates the order of execution
between two tasks

• W is the set of weights associated with the edges in E, indicating the
number of times a particular edge has been followed over all TraceLists of
goal G.

• C is a set of constraints associated with the edges in E, indicating the
circumstances under which a flow of tasks has occurred over all TraceLists
of goal G.

For example, Ti
3,{c1∨c2}−−−−−−→ Tj means task Tj preceded task Ti, three times in

all complete TraceLists with either c1 or c2 mentioned as constraints of Tj in
those complete TraceLists. Procedure 1 demonstrates the procedure of merging
TraceLists into a GTG for goal G. The input of the procedure is a set of
complete TraceLists that have G as their goal. PrepareTraceList orders tasks
in each TraceList by their ET attribute. More complicated metrics could also
be applied to include the ST and CT attributes of history records as well, but
we do not consider this further in this report.

Each precedence relationship between two tasks is then added to the graph
as follows: FindTask(Ti, Tj , GTG) searches the graph for tasks Ti and Tj . If
both tasks and their precedence relationship already exist in the GTG, we only
need to increase the weight and update the constraint attributes of precedence.
Otherwise if both tasks exist but they have not been connected, a new prece-
dence should be added by (AddPrecedence) with its weight and constraints set.
If only one of the tasks exists in GTG, we have to first add the missing task to
the graph (AddTask), then add the corresponding precedence and finally set its
weight and constraint attributes. This is similar to the case where both tasks
are new to the GTG, with the minor difference that we have to add both tasks
first.

13



Algorithm 1 Merging TraceLists to GTG

Input: TRL: A set of complete TraceLists having goal G
Output: GTG for goal G
PrepareTraceList(TRL)
for all tracelists trl in TRL do

for all Ti → Tj in trl do
Let wij = trl weightTi→Tj

Let cij = trl constraintsTi→Tj

found = FindTask(Ti, Tj , GTG)
switch found

case both Ti and Tj were found in GTG
if Ti → Tj exist in GTG then

WeightTi→Tj
+ = wij

ConstraintsTi→Tj
= ConstraintsTi→Tj

∨ cij
else

AddPrecedence(Ti → Tj)
WeightTi→Tj

= wij

ConstraintsTi→Tj
= cij

end if
case only Ti was found in GTG

AddTask(Tj , G)
AddPrecedence(Ti → Tj)
WeightTi→Tj

= wij

ConstraintsTi→Tj
= cij

case only Tj was found in GTG
AddTask(Ti, G)
AddPrecedence(Ti → Tj)
WeightTi→Tj

= wij

ConstraintsTi→Tj
= cij

case neither Ti nor Tj were found in GTG
AddTask(Ti, G)
AddTask(Tj , G)
AddPrecedence(Ti → Tj)
WeightTi→Tj

= wij

ConstraintsTi→Tj = cij

end for
end for

14



Figure 5.2: Realisation of social software principles in Processbook

5.3 Sharing process knowledge

Knowledge of achieving a goal, which we refer to as process knowledge, is cap-
tured when individuals carry out ToDoLists; this information is aggregated in
the GTG. Process knowledge is the main artefact that is shared among users in
Processbook. Process knowledge sharing happens via recommendations to tar-
geted communities. Figure 5.2 shows how such a sharing mechanism is realised
in Processbook. For each goal, a community is created. Users are considered
members of a community once they start towards a goal. These goal-based com-
munities, forming weak ties among users, are then used as a target group for rec-
ommendations. Users start planning their goals in the ToDoList manager. The
executions of their plans are logged by trace logger in the TraceList database.
Secondary data from their involvements that includes votes and comments on
recommended items are also recorded by the event logger. The TraceList merger
performs aggregation of TraceLists (peer products) of a goal into the GTG to
produce social production. Collective decisions are realised by applying users’
votes on TraceLists and providing recommendations.

The recommender system consists of two different modules separated by
the data sources they utilise: (i) the TraceList ranked retrieval module that
makes use of TraceList database and (ii) the process recommender that utilises
the GTG. Ranked retrieval of complete TraceLists could be based on several
different metrics:

• number of tasks in a TraceList; those with less tasks will be ranked higher
implying they need less effort to achieve the goal

• execution time of a TraceList calculated by Max(ET )−Min(ST ); those
with shorter execution time will be ranked higher implying they reach the
desired outcome sooner

• popularity of a TraceList indicated by users’ votes which reflects users’
opinions on the usefulness and effectiveness of a TraceList

15



The Process Recommender uses two slightly different approaches: recom-
mending the next best task or recommending a process path. Both approaches
use the GTG as their data source. The next best task recommender gives users
a task at a time while being dynamically modified as the GTG grows. The
Process Path Recommender, on the contrary, provides the whole set of tasks
needed to reach the goal in the form of a path. It does not reflect GTG changes
unless the user explicitly asks for an updated recommendation. One advantage
of the next best task recommender appears when a user wants to select a task
manually, which is not the necessarily the next best one. In this case the recom-
mender will consider calculating the best remaining path, taking into account
what user has chosen so far. In both cases, the user may fully or partially accept
the recommendation or may completely reject it and continue making her own
plans.

The major advantage of the process recommender over the TraceLists ranked
retrieval module is that it better reflects the knowledge of the crowd. This is be-
cause the next task or the process path given by the process recommender comes
from merging different TraceLists and is considered to give the best possible so-
lution from the crowd experience, while in the ranked retrieval system we are
limited to the number of single TraceLists. The advantage of using a retrieval
system based on single TraceLists is that what is finally recommended is already
used by one or more users in real world. In the process recommender, the final
recommendation path might have not necessarily been carried out before.

The basis of the process recommender is to find the minimum weighted path
in the GTG. Weights in the GTG represent the popularity of a task flow but
they have to be normalised so that Dijkstra’s algorithm could be applied and
the minimum weighted path from the starting task to the end task found. We
also elaborate the weights of the GTG by taking into account users’ votes in
addition to the frequency measure. Therefore the final weight for an edge in
GTG between tasks Ti and Tj is calculated as follows:

α× (10− wij

N × 10) + β × (10− vote)

where wij is the initial frequency weight of the edge between Ti and Tj , N is the
number of complete TraceLists merged into the GTG, vote indicates the average
votes for the task flow, ranging from 0 to 10 (with 10 meaning the best), and α
and β (α, β ∈ [0, 1], α+ β = 1) are coefficients for popularity metrics and users’
votes respectively. These coefficients are taken into account so that users would
be able to customise recommended items. Increasing α will bias recommen-
dation towards items which have been appeared more frequently in TraceLists
e.g paths or tasks that majority of users have used. On contrary increasing
β will guide users towards items that have a better average of users’ votes re-
gardless of the number of times they have been appeared in trace logs. While
end-users are allowed to adjust these coefficients, Processbook is also supposed
to find the optimum value for them through a learning mechanism. Design and
implementation of such a mechanism is one of our future work.

It is likely that tasks that have been repeatedly used in complete TraceLists
are excluded from the final recommendation due to existence of some unrealistic
short paths in the graph. To avoid ignoring such tasks and thus improving the
recommendation results, we define the concepts of required tasks and required
ratio. The required ratio for task Ti is calculated by w∗i/N where w∗i is the

16



Figure 6.1: “Applying for UNSW PhD scholarship” TraceLists and GTG

sum of the weights of ingoing edges to task Ti and N is the number of complete
TraceLists merged into the GTG. A threshold for required ratio is set to force
the inclusion of task Ti. Tasks whose required ratio is above the threshold are
called required tasks, implying they are the necessary steps if the process is
to achieve the goal. To take into account required tasks, the recommendation
mechanism should also be modified. To this purpose, the GTG analyser shown
in Figure 5.2 is responsible for marking required tasks in each GTG. The final
recommended paths will be filtered to avoid ignoring required tasks.

6 Implementation and Example

A prototype of the proposed system is implemented as a Java-based Web ap-
plication and is available at our server 1. In this section, we demonstrate our
solution by presenting a simplified version of test cases we have run with Process-
book. We have asked five students in our school to plan for the case “Applying for
UNSW PhD scholarship” through the ToDoList modelling interface of Process-
book. Based on this input, we show how the system generates recommendations
for Ali, who also wants to apply for a PhD scholarship.

Users’ knowledge and experience in planning the scholarship case has been
captured in the TraceList database. Task descriptions, complete TraceLists and
vote statistics are provided in Figure 6.1. Distinct tasks detected in our sam-
ple scenarios are: check eligibility (T1), contact referees (T2), complete referee
report form (T3), pay application fee (T4), proceed with apply online (T5), ap-
ply for admission online (T6), send admission documents to graduate research
school (GRS) via email (T7), complete scholarship form (T8), register in in-
ternational scholarship system (T9), upload scholarship form via international
scholarship system (T10), send supporting document to GRS via email (T11),
accept scholarship offer (T12), complete acceptance form (T13), find potential
supervisor (T14), finalise a PhD topic with the supervisor (T15). Processbook
aggregates TraceLists and builds the GTG shown in Figure 6.1. We assume

1Available at: http://pepe.cse.unsw.edu.au:8080/Processbook

17



(a) Process Path Recommendation

(b) ToDoList Manager

Figure 6.2: Screenshot of Processbook

that votes for each edge by users are equal (e.g 5 out of 10). Moreover since
the effect of constraints is not yet implemented in the recommender system of
Processbook, we ignore the constraint labels of the GTG edges. For simplicity

18



weights are calculated considering coefficients α and β set equally at 0.5.
In terms of number of tasks, John’s TraceList ranks higher; in terms of exe-

cution time, Anthony’s TraceList would be recommended to Ali. However, if Ali
decides to use a process path recommender, he will be offered a new path which
does not exist in either of those TraceLists. The recommended path excludes
T9 which represents a common misunderstanding among applicants. However,
the path shown in Figure 6.1 also excludes T3, T4 and T10, all of which are
mandatory tasks according to UNSW policies. To avoid this undesirable elim-
ination, we have to tune the required threshold to 50%, to enforce inclusion of
such required tasks.After doing this, Processbook filters out the path illustrated
in Figure 6.1 and returns the optimal path as can be seen in an screenshot of
the system in Figure 6.2a. A user may then choose to accept this recommended
path and start managing their ToDoList via the ToDoList manager as shown in
Figure 6.2b.

7 Conclusion and Future Work

Our proposed solution for personal process management is to create a flexible
process management environment within a social network structure. We main-
tain the process awareness of traditional BPM to be able to handle dependencies
and constraints between tasks, but at the same time we follow the principles of
social software: we have established weak ties in Processbook goal-based com-
munities to break the top-down management paradigm of traditional BPM, we
have facilitated social production to allow innovative solutions to appear, and
we have utilised collective decisions to minimize the risks in choosing those
solutions. To realise all of these, we have proposed a novel method for mod-
elling personal processes based on the idea of ToDoLists and have implemented
a mechanism to unobtrusively capture users’ experience separately and then
aggregate them in a graph structure that can be used as a source for process
recommendation.

Our future work includes: (i) enabling context-aware process recommenda-
tion, (ii) enforcing trustworthy recommendation by utilising more social software
features and (iii) enriching our capturing mechanism by enabling parallelism in
task flows. As well, we intend to evaluate Processbook in real world scenarios
by conducting comprehensive user studies. We believe that Processbook can be
employed in many knowledge intensive domains in addition to personal process
management.

Bibliography

[1] David Allen. Getting things done. penguin books, 2001.

[2] Yochai Benkler. The wealth of networks : how social production transforms
markets and freedom. Yale University Press, 2006.

[3] Marco Brambilla. Application and Simplification of BPM Techniques for
Personal Process Management. In Marcello Rosa and Pnina Soffer, editors,
Business Process Management Workshops, volume 132 of Lecture Notes in

19



Business Information Processing, pages 227–233. Springer Berlin Heidel-
berg, 2013.

[4] Marco Brambilla, Piero Fraternali, and Carmen Vaca. BPMN and De-
sign Patterns for Engineering Social BPM Solutions. In Business Process
Management Workshops (1), pages 219–230, 2011.

[5] Giorgio Bruno, Frank Dengler, Ben Jennings, Rania Khalaf, Selmin Nur-
can, Michael Prilla, Marcello Sarini, Rainer Schmidt, and Rito Silva. Key
Challenges for Enabling Agile BPM with Social Software. Journal of Soft-
ware Maintenance, 23(4):297–326, 2011.

[6] Selim Erol, Michael Granitzer, Simone Happ, Sami Jantunen, Ben Jen-
nings, Paul Johannesson, Agnes Koschmider, Selmin Nurcan, Davide Rossi,
and Rainer Schmidt. Combining BPM and Social Software: Contradiction
or Chance? Journal of Software Maintenance, 22(6-7):449–476, 2010.

[7] M.S. Granovetter. The Strength of Weak Ties. The American Journal of
Sociology, 78(6):1360–1380, 1973.

[8] SeyedAlireza Hajimirsadeghi, Hye-Young Paik, and John Shepherd. Pro-
cessbook: Towards social network-based personal process management. In
Marcello Rosa and Pnina Soffer, editors, Business Process Management
Workshops, volume 132 of Lecture Notes in Business Information Process-
ing, pages 268–279. Springer Berlin Heidelberg, 2013.

[9] Paul Johannesson, Birger Andersson, and Petia Wohed. Business Process
Management with Social Software Systems - A New Paradigm for Work
Organisation. In Business Process Management Workshops, pages 659–
665, 2008.

[10] Agnes Koschmider, Minseok Song, and Hajo A. Reijers. Social Software for
Modeling Business Processes. In Business Process Management Workshops,
pages 666–677, 2008.

[11] David Martinho and António Rito Silva. Non-intrusive Capture of Business
Processes Using Social Software - Capturing the End Users’ Tacit Knowl-
edge. In Business Process Management Workshops (1), pages 207–218,
2011.

[12] Michael Rosemann. Personal Process Management. Rosemanns blog, 2011.
http://www.michaelrosemann.com/uncategorized/113/.

[13] Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil
M. P. van der Aalst. Process Flexibility: A Survey of Contemporary Ap-
proaches. In EOMAS, pages 16–30, 2008.

[14] António Rito Silva, Rachid Meziani, Rodrigo Magalhães, David Martinho,
Ademar Aguiar, and Nuno Flores. AGILIPO: Embedding Social Software
Features into Business Process Tools. In Business Process Management
Workshops, pages 219–230, 2009.

[15] Don Tapscott and Anthony D. Williams. Wikinomics: How Mass Collab-
oration Changes Everything. Portfolio Hardcover, 2007.

20



[16] Simon Vogt and Andreas Fink. Using Status Feeds for Peer Production
by Coordinating Non-predictable Business Processes. In Business Process
Management Workshops (1), pages 253–265, 2011.

[17] Ingo Weber, Hye-Young Paik, and Boualem Benatallah. Forms-based ser-
vice composition. In Service-Oriented Computing, pages 627–635. Springer
Berlin Heidelberg, 2011.

21


