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Abstract—! The IT industry needs systems management 
models that leverage available application information to detect 
quality of service, scalability and health of service.  Ideally this 
technique would be common for varying application types with 
different n-tier architectures under normal production conditions 
of varying load, user session traffic, transaction type, transaction 
mix, and hosting environment. 

This paper shows that a whole of service measurement 
paradigm utilizing a black box M/M/1 queuing model and auto 
regression curve fitting of the associated CDF are an accurate 
model to characterize system performance signatures.  This 
modeling method is also used to detect application slow down 
events. The technique was shown to work for a diverse range of 
workloads ranging from 76 Tx/ 5min to 19,025 Tx/ 5min.  The 
method did not rely on customizations specific to the n-tier 
architecture of the systems being analyzed and so the 
performance anomaly detection technique was shown to be 
platform and configuration agnostic. 

Keywords—application performance; anomaly detection; whole 
of system model; application performance signature; black box 
M/M/1 queuing model; nonlinear parametric regression; service 
time cumulative distribution function; CDF 

I.  INTRODUCTION 
Commercial system management is enhanced via 

simplification and standardization of people training, 
processes, and technology solutions.  It is therefore preferable 
to have a common measurement mechanism that can be used to 
manage availability SLAs (Service Level Agreements), 
performance SLAs, scalability OLAs, detection of anomalies 
and automated resource provisioning in the plethora of possible 
hosting environments available commercially. Accordingly, it 
is desirable to have a performance anomaly detection technique 
that is not specific to any particular platform or “n”-tier 
arrangement.  This platform and configuration agnostic 
technique needs to prove itself capable of detecting 
performance anomalies on varying application types under 
normal production conditions of varying load, user session 
traffic, transaction type, transaction mix, and hosting 
environment.   

Managing the stability and performance of the end-user 
experience using high level reliable information models is 
critical to enterprises and has a direct bearing on productivity 
and effectiveness of business processes.  Most large enterprises 
have private data center arrangements with varying degrees of 

infrastructure rationalization.  This creates a shared resource 
environment with the potential for unintended consequences as 
consolidation and sharing resources drive down Total Cost of 
Ownership.  Collateral damage of one application service by 
another is common but poorly characterized across application 
portfolios.  The ability to understand application performance 
and pro-actively manage their state is becoming increasingly 
important as infrastructure services move towards 
commoditization models such as cloud computing. 

Pro-active systems management involves detecting 
abnormal performance situations that will result in a 
degradation of service via changes to application signatures. 
An application performance signature is driven by a complex 
mix of common resources – CPU, memory, I/O channels, 
worker threads, network conditions, storage arrangements, 
shared platforms, configurations and transaction mix. 
Characterizing all of these is difficult and requires detailed 
baseline calibration that needs to be re-done when the 
application, resources, or transaction mix change. 

In this paper, we explore the construction of black box 
models that take a “whole of system view” and abstract the 
underlying complexity of the system being analyzed.  The 
contribution of this paper is to introduce a simplified method of 
characterizing application performance signatures that 
recognizes the transaction tail and is not customized to the 
application being analyzed. This signature is characterized by 
the regression parameters of the service time cumulative 
distribution function (CDF) adapted from the general form of 
the M/M/1 queuing model.  We demonstrate how detection of 
performance anomalies is achievable via tracking changes in 
these parameters using a probabilistic distribution of 
performance deviations between old and new conditions. The 
method is platform agnostic, and does not require extensive 
calibration and model re-work with changing conditions.  

The remainder of this paper is structured as follows. 
Section II discusses related work in this area.  Section III 
introduces the proposed performance signature and anomaly 
detection model.  Section IV overviews the commercial 
systems analyzed and sampling techniques used.  Section IV 
also presents experimental validation of the model introduced 
in III. Section V summarizes and discusses key results. Section 
VI discusses the limitations of the detection method and 
section VII presents the conclusions and future research ideas. 



II. RELATED WORK 
Past publications ([1], [3], [5], [7]) have discussed and 

showed the use of queuing theory laws and derivations, service 
time CDFs and regression techniques to characterize 
application performance. These have involved deriving 
application performance signatures and comparing them over 
time to determine performance anomalies.   

Urgaonkar, et al. [7] discussed the problem of modeling 
multitier Internet applications using a network of queues with 
each tier represented by a queue or queues depending on the 
presence of load balancing.  Sessions were modeled using an 
infinite server queuing system that fed the multitier queuing 
model and formed a closed queuing system.  Stewart, Kelly 
and Zhang [13] used an M/M/1 queuing model for performance 
prediction in changing transaction mix workloads.  They 
demonstrated that accounting for transaction mix non-
stationarity enabled more accurate prediction of application-
level performance in steady state compared to models that 
predict performance based on workload that ignores transaction 
type.  Lama and Zhou [14] achieved efficient server 
provisioning using performance modeling via an M/GI/1/PS 
queuing model.  The end-to-end service time 90th percentile 
was used to model the need for more or less horizontal scaling 
in order to guarantee end-user response times.  The queuing 
model approach involved low-level characterization of 
application components.   

The above models use lightweight passive measurements 
routinely collected in production environments.  However, the 
modeling methods used were complex and required extensive 
monitoring across all technology tiers and representative 
baseline runs to determine queuing parameters.  They used 
various averaging techniques to represent the detail and 
complexity in the model - average service times; average queue 
visit ratios; average think times for user sessions; and average 
concurrent session loads - in order to calculate the average 
response times of requests.  As discussed in Downey & 
Feitelson [2], averages are a blunt instrument when 
representing workload with long tailed service time 
distributions.  Grade of service percentiles were suggested as a 
more appropriate way of representing service time distributions 
with “long tails”.  

Application performance issues have direct and immediate 
impact on end-user experience and hence satisfaction. 
Cherkasova et al [3] discussed online automatic detection of 
performance anomalies and application changes via integration 
of two complementary techniques. The first technique involved 
creating a resource consumption model of an application that, 
using regression, correlated processed transactions and 
consumed CPU time. The aim was to maintain a model that 
reflected resource consumption during normal operations.  
Significant changes in CPU resource consumption were then 
used to identify performance anomalies or application changes. 

The second technique in Cherkasova, et al. [3] used the 
same concept of creating an application performance signature 
discussed in Mi, et al. [1].  This involved creating a compact 
run-time model of application behavior via derivations of 
queuing theory models - Little’s Law and the Utilization Law.  
In this technique, a representative application server transaction 

service time was generated for all individual transaction types.  
This was done by creating a CDF for increasing service times 
across a range of server utilizations. Changes in the 50th 
percentile of the CDF were used to characterize performance 
changes due to anomalies. 

The use of regression as a technique to profile application 
performance was also discussed and used in Zhang, et al. [5] to 
project resource provisioning based on profiling CPU usage.  
The model accurately determined maximum achievable 
throughput for transaction mixes.  It did this using non-
negative Least Squares Regression to produce an 
approximation of the CPU processing cost of all transactions 
across all tiers. This was then input to the Mean-Value 
Analysis (MVA) algorithm [6] to compute the mean response 
time, average system throughput, and average queue length.  

Urgaonkar, et al. [12] used the same MVA algorithm to 
identify bottlenecking and dynamically provision, predict 
response times, manage application configuration and session 
policing.  Instead of using regression, the model used extensive 
technology tier monitors and representative baseline runs to 
determine queuing parameters.  Model results were validated 
using synthetic workloads on real systems.  The model was, 
however, challenged by nonstationary workloads. This work 
also assumed that key model parameters determined in low 
system utilisation were applicable during workloads being 
modelled.  These limitations impacted the applicability of the 
models to real systems.  

The methods discussed so far tend to be designed for 
specific application architectures. They require detailed 
baseline calibration that needs to be re-done whenever changes 
are made to the application resources and or transaction mix.  
They frequently use averaging techniques that are limited in 
describing an environment that is driven by changing 
transaction and workload mixes, and significantly impacted by 
the transaction tail.  An application signature characterization 
and modeling approach is required that is application & 
architecture agnostic, and accounts for the tail. 

Dean and Barroso [15] discuss concepts associated with the 
notion that “the tail” of transaction performance impacts the 
application service.  The key insights were that even rare 
performance hiccup events affect a significant fraction of all 
requests in large-scale distributed systems. This is especially 
true with high workload arrival rates because shared resources 
such as infrastructure components and software worker threads 
can be quickly consumed by a small fraction of the arriving 
workload. 

In this paper, the ability to pre-emptively detect degrading 
performance is best driven by characterizing changes in the 
“service tail” of the CDF exponential curve.  This is the most 
sensitive part of the service time distribution.  Failure of the 
application service is exponential in its performance loss if this 
“tail area” performance degrades.  During anomalous 
performance events, the exponential service time distribution 
means that the tail area can dramatically impact the scalability 
of the system.  This means that system behavior can be thought 
of as a case where “the tail wags the dog”. 
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Fig. 1: (a) CDF curve fitting example (b) – (d) Example performance anomaly detected on the online supply chain management system. 
  Detection and remediation are separate capabilities.  

Remediation to avoid service level breakdowns is the subject 
of current research ([8],[9],[10],[11]). This remediation is 
outside the scope of this paper. 

III. PROPOSED DETECTION METHOD  
The technique presented in this paper seeks to use the 

concept of application performance signatures discussed 
previously.  However, it was applied at a “whole of application 
service” level instead of building application service models 
from individual transaction type measurements, platform 
infrastructure profiles (e.g. CPU), transaction modeling and n-
tier queuing models. 

The service time CDF for online application service 
performance in an M/M/1 queuing theory model is an 
exponential curve as per equation (1) below.  This is the most 
common type of queue and involves a single server model.  It 
requires the transaction inter-arrival and service times to be 
exponentially distributed. 

 F(r) =1! e!rµ (1!! )  (1)  

 
r = response time 
µ = service rate of jobs per unit time 
! = traffic intensity = " / µ  
" = arrival rate in jobs per unit time 
F(r)  =CDF of r 

 
The general form of this CDF equation is used in this paper 

as the basis of detecting performance anomalies.  The chosen 
general form of the CDF equation is: 

 Y =1! e!(kX+ j )  
(2)  

where 

Y = CDF of the probability of a transaction service time 
being less than X 

X = observed transaction service time in msec. 
k, j = regression parameters 

The detection method uses univariate nonlinear parametric 
regression least squares analysis to calculate the parameters in 
equation (2).  This curve fits the observed service time CDF of 
the application service performance for each sample period. 
This assumes a Poisson arrival pattern for transaction workload 
arriving at the application service and an exponential service 
time profile. 

Analyzing the regression parameters for each sample of 
transactions and tracking them over time aims to achieve the 
detection of application performance changes. This approach 
can be applied at the whole of system level as it only requires 
end-to-end transaction measurement at the front of the system 
being analyzed. 

Fig. 1(a) shows an example of the observed service time 
CDF and the curve fitted regression parameters required to 
curve fit the general form of equation (2) for sample data 
obtained from an online supply chain management system in a 
large enterprise in Australia. The sample data was gathered 
every 5 min from 10:30am to midday on 18/9/2012. 

The key challenge in determining what constitutes a 
reasonable performance anomaly detection capability is the 
balanced mix between sensitivity to changing conditions that 
may indicate a degrading performance situation and accuracy 
of predictions used in this capability.  The balancing act is 
between being too sensitive and too inaccurate versus being 
too insensitive and more accurate.  The idea is to detect 
degraded performance states rather than achieve absolute 
accuracy. 

The sensitivity of this detection model was achieved 
because the curve fitting via regression characterizes the 
“service tail” of the CDF exponential curve.  This was the most 
sensitive part of the service time distribution.  Failure of the 
application service is exponential in its performance loss if this 
“tail area” performance degrades. Fig. 1(b)-(d) shows changing 
CDF curve shape during a performance anomaly event for the 
online supply chain management system. 

An example of the regression parameter trending associated 
with this method is shown in Fig. 2(a) and (b) for k and j for 
the 5 min sample data from 10:30 to midday on 18/09/2012. 
This included the performance anomaly that is highlighted in 
the red box and which corresponds to the event in Fig. 1(b)-(d). 

In this paper, detection of performance anomalies was 
defined via an adaptation of the change profile concept used by 
Shen, et al. [4].  Here, performance changes were detected via a 
probabilistic distribution of performance deviations between 
old and new conditions. 
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Fig. 2: (a),(b) Example of regression parameter trending detecting a slow down event (c),(d) Visual representation of probability distribution of changes in 
regression parameters for the online supply chain management system. 

 
 

 Change(told, tnew)=(tnew – told)/ max{|(tnew – told)|} (3)  
where 

Change (told, tnew) = degree of change in variable of interest 
ranging between -1 and +1  

tnew ,told = values of change variable at new and old times 
respectively. 

max{|(tnew – told)|} = normalize all –ve change values by 
dividing by the maximum –ve change. Similarly normalize all 
+ve changes. 

This paper uses the application performance signature 
regression parameters that characterize each 5 min sample as 
the comparative metric between old and new conditions.  The 
changes in k and j in Fig. 2 (a) and (b) vary between -1 and +1 
based on the definition in Equation (3).  The probability of 
outliers or large changes in k can be determined from the 
probability distribution as shown in Fig. 2(c).  As an example, 
if the 95% confidence level was chosen as the confidence level 
beyond which a change in k was considered anomalous, the 
change in k would need to be less probable than 0.05.  This was 
approximately less than -0.92 or more than +0.9 in this 
particular sample.  However, the changes in k and j were 
quantized into 0.1 increments and all events in this range were 
bundled into a “self similar” result set.  The 5% significance 
level for self similar quantized delta sets requires that the 
extreme ends of the probability distribution were in groupings 
of less than or equal to 5%.  Anything greater than this would 
result in the grouping being considered baseline normal 
behavior. Fig. 2 (c) shows that the most peripheral positive and 
negative groupings had a probability of 5.88% and 11.76% 
respectively.  This meant that the significance level would need 
to be 6% or 12% respectively for these extreme scenarios to be 
considered anomalous.  Increased sample size or a rolling 
probability distribution over an extended period may have 
addressed this issue by better defining the groupings. 

However, the method could be further refined via a 
continuous distribution but simplification can be achieved via 
adjustment of the significance level to match the nature of the 
system being analyzed.  

The problem with the probability distributions presented in 
Fig. 2 (c) and (d) was that the changes in k and j were widely 
spread across the range of possible values from -1 to +1.  This 
indicated a system with variable performance or a sample too 

small to characterize behavior.  A tightly bound grouping may 
have indicated an application that was more fine tuned and 
subject to little variation in performance.   

Another important aspect of the detection model is to 
minimize processing required to produce a reasonable 
regression estimate. Consuming excessive resources and or 
taking too long to process detections is potentially uneconomic, 
and may inhibit the very pre-emptive ability being 
implemented.  Auto regression engines are available 
commercially and have efficient data processing capabilities.  
Choosing an engine is outside the scope of this paper. 

IV. ANALYSIS OF COMMERCIAL PRODUCTION SYSTEMS  
A key aim of this research was to identify a performance 

anomaly detection technique that was platform and 
configuration agnostic.  This technique needs to prove itself 
capable of detecting performance anomalies on varying 
application types under normal production conditions of 
varying load, user session traffic, transaction type, transaction 
mix, and hosting environment.  Accordingly, this paper 
presents anomaly detection results from two different 
application types involving 2 and 3-tier configurations with 
different database arrangements, transaction types & mixes, 
and external service integrations.  If a bottom up “n-tier” 
queuing model were created to establish normal performance 
behavior under varying workloads, each model would be 
unique.  The overhead in running the various models would be 
significant.  The example systems analyzed were commercially 
sensitive, and hence details are kept to a minimum in this 
paper.  

A. Measurement & Sampling Techniques 
The systems exist in a private data center belonging to a 

large financial services enterprise primarily composed of IBM 
mainframe and mid-range platforms, shared among different 
applications across CPU & memory pools and SAN storage.  
Capacity was well provisioned but collateral impacts for short 
periods of time were common, especially during peaks. 

Transaction information was collected in 5-minute samples.  
Transaction data was written to application service logs for 
each application server.  Each sample was processed to 
produce summary application Grade of Service (GoS) 
performance data – transaction arrival rate, 50th , 80th, 90th, 95th, 
98th and 100th percentiles.  Data was collected for Monday 
4/2/2013 from 8am to 6pm for both applications.  Monday was 
chosen because it was known to be the busiest day of the week. 



TABLE 1: TRANSACTION PROFILE FOR MAINFRAME SYSTEM 
No. Txs in sample 1,664,010 
No. Tx Types 206 
Top 10 Transactions 48% of traffic 
No. Txs that were 1% or 
more of traffic 

28 transactions 

Traffic mix 
Top 5 Txs 
(35.6% of all 
traffic) 

Top Tx 2nd Tx 3rd Tx 4th Tx 5th Tx 
14.9% 7.7% 5.1% 4.8% 3.1% 

No. Tx Types in key 
workload percentiles 

80th  90th   95th  100th  
36 56 76 206 

 

 
Fig. 3: High level architecture of mainframe system 
 

 

 

Fig. 4: Nonlinear parametric regression parameters k & j 
by time of day for Mainframe Product system. 

 

The detection method identified whether sample periods 
were anomalous. The method of validating whether the 
anomaly detection was correct or not involved checking the 
grade of service (GoS) performance data for the sample period 
and identifying if the performance percentiles showed 
abnormal slowdown.  Verified events showed a slow down in 
some or all of the 50th , 80th, 90th, 95th , 98th or 100th percentiles.  

 Performance SLAs focused on the 95th %ile.  Detecting 
events in samples that showed movement in these six %iles 
was of interest to ensure SLAs were pro-actively protected.   
Investigation of root causes for these slowdowns was pursued 
and captured where identified. 

B. Production Example 1 – Mainframe Product system 

The first system is an application service running on a 
mainframe system termed as the “Mainframe Product System”. 
The high-level architecture of this application is illustrated in 
Fig 3. This application managed the product processes 
supporting all distribution and servicing channels in the 
Australian financial enterprise. The typical workload profile for 
this system is approx. 16-19,000 transactions per 5 minutes 
with 40 concurrent transactions on average and 100 maximum 
concurrent transactions during each weekday 10 am to 2pm 
peak. The transaction mix was nonstationary as it was driven 
by market conditions and product events.  

Transactions submitted to this application were measured at 
the ingress and egress queues. Each transaction may have 
spawned many sub-transactions but the end-to-end transaction 
time was defined as the time from the initial ingress to the final 
egress. Table 1 shows the transaction mix for the 8am to 6pm 
sample on Monday 4/2/2013.  This 10 hour sample contained 

approx. 1.7 million transactions in total with workload varying 
from 3,327 Tx/ 5 min up to a max of 19,025 Tx/ 5 min.   

The workload was concentrated in the top 10 transaction 
types (approx. 50%).  The remaining 196 transaction types 
accounted for approx. 50% of the workload with only 28 
transactions overall having 1% or more representation. The top 
transaction (at 14.9%) was a view product transaction from the 
core product source of truth M/F data store.  

1) Profiling changes in k and j 
Fig. 4 shows the time of day view of changes in k and j.  

There was an early morning decrease in k (system getting 
slower) as the workload increased.  This stabilized once the 
transaction arrival rate reached 13,000-14,000 Tx/5 min and 
above around 9:30am.  The workload peaked around 19,000 
Tx/ 5min and moved back to 13-14,000 Tx/ 5min at the end of 
the day around 4:30pm.  The value of k increased after 4:30pm  
indicating a performance increase.  This suggested an inverse 
relationship between workload and k.  Visually this 
relationship appeared to stabilize as the workload reached its 
normal peak bounds between 9:30am and 4:30pm and was 
possibly linear in this time. Its stable value was around 0.0083 
(averaged over this period).  The relationship between 
workload and parameter k may be able to be used to track 
application scalability over time and requires further research.  
There also appeared to be a similar time of day view of the 
relationship between parameter j and workload. It stabilized at 
0.2768 (averaged over this period). 

 Fig. 5 (a) and (b) show the detection method results for the 
Mainframe Product System using a 5.0% significance level to 
select edge events.  At the 5.0% significance level, all negative 
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Fig. 5 : Probability distribution of changes in regression parameters (a) k 
and (b) j for mainframe application service. (c) Grade of service graph for 
the application’s performance over time of day.  
Events:  
1) 09:00 Slow down all %iles except 100th %ile.  Results in a -ve !k 

offset by a +ve !j 
2) 08:30 slow down all %iles except 100th %ile.  Results in a -ve #k 

offset by a +ve #j 
3) 11:30 Slow down all %iles.  Results in a -ve #k offset by a +ve #j 

15:00 Slow down all %iles.  Results in a -ve #k and a -ve #j 
4) 08:10 speed up in all %iles. Results in a +ve #k and a +ve #j 

15:45 Speed up all %iles.  Results in a +ve #k offset by a -ve #j 
5) 11:35 Speed up all %iles.  Results in a +ve !k offset by a -ve !j 
6) 08:50 Speed up all %iles.  Results in a +ve #k offset by a -ve #j 
7) 13:30 Slow down all %iles except 100th %ile.  Results in a +ve #k 

offset by a -ve #j 
8) 08:35 50th %ile stable.  Speed up in 80,90,95th %iles.  Slow down in 

98th & 100th %iles.  Results in a +ve #k offset by a -ve #j 
14:00 Slow down all %iles except 100th %ile.  Results in a -ve #k and 
a -ve #j 

9) 08:45 stable 5oth %ile, slow down in 80,90,95,98 & 100th %iles.  
Results in a -ve #k offset by a +ve #j 
13:35 Speed up all %iles except 100th %ile.  Results in a +ve #k and a 
+ve #j 

10) 08:10 speed up in all %iles. Results in a +ve #k and a +ve #j 

TABLE 2: TRANSACTION PROFILE FOR PAYMENT PROCESSING SYSTEM 
No. Txs in sample 20,718 
No. Tx Types 11 
Top 10 Transactions 99.9% of traffic 
No. Txs that were 1% or 
more of traffic 

8 transactions 

Traffic mix 
Top 5 Txs 
(89.1% of all 
traffic) 

Top Tx 2nd Tx 3rd Tx 4th Tx 5th Tx 
37.3% 18.3% 13.1% 12.8% 7.6% 

No. Tx. Types in key 
workload percentiles 

80th  90th   95th  100th  
4 5 7 11 

 

 
Fig. 6: High-level architecture of online payment processing system 
 

!k events were missed.   The changes in k and j were quantized 
into 0.1 increments and all events in this range bundled into a 
“self similar” result set.  The 5% significance level for events 
meant that larger result sets which exceeded the 5% occurrence 
level were assumed to be baseline normal behavior e.g. -0.2 <= 
!k <= -0.1 in Fig. 5 (a).  

The numbered events from 1 to 3 in the probability 
distribution in Fig. 5 (a) and (b) are marked on the Grade of 
Service (GoS) graph by time of day. The GoS graph showed 
several other small slow down events that might have 
reasonably qualified (see the question marks in Fig. 5(c)).  

However, these were missed because of the 5.0% significance 
level and 0.1 quantization in the probability distribution.  The 
choice of significance level needs to be small enough to avoid 
detection noise (false positives) yet sensitive enough to pickup 
missed events (false negatives).  The aim of the detection 
method was to pickup true slow down events (true positives) 
and avoid false events (false positives and true negatives). 

The detection method was specifically aimed at detecting 
slow down events rather than the speed up events that followed 
them.  This required further understanding of the combinations 
of +ve and –ve changes in k and j that could be definitively 
associated with known slow down events in order to avoid 
false positives and false negatives from the detection method.  
This was very difficult in a low noise system such as the 
Mainframe Product System.  Accordingly, the second system 
analyzed in Section IV C was chosen because its performance 
profile was known to be variable, and hence enabled detailed 
clarification of the combinations of k & j that could be 
definitively associated with slow down events.  The objective 
was to avoid detection noise (false positives) even if this meant 
missing some smaller events (false negatives). 

C. Production Example 2 – Payment processing system 

The second system analyzed managed credit card payments 
for all eBusiness, call center and face-to-face payment 
transactions for a large Australian financial services provider. 
Fig. 6 shows the high level architecture of this JAVA/ J2EE 
web application.  It is a front-end web application clustered on 
2 machines (members) for resilience. The application servicing 
entity was a JAVA/ J2EE application server hosted in the IBM 
WebSphere platform.  HTTP transactions were associated with 
unique end-user session ids that were “sticky” because traffic 
traversed all higher infrastructure layers to and from the same 



 

 
Fig. 7:!Nonlinear parametric regression parameters k & j by time of day for 
payment processing system member 1 
 

application server instance.  The driver of work for this front-
end system was submissions from the end-user sessions that 
may have in turn spawned multiple sub-transactions to and 
from lower layers before returning the final result back to the 
end-user session. The total transaction response time was the 
time from receiving the end-user http request for service until 
the time the reply was sent back. 

Sampling was performed on this system from 8am to 6pm 
on Monday 4/2/2013 every 5 minutes. During the sampling, the 
workload was found to have a peak arrival rate of 518 requests 
per 5 minutes with 112 peak active sessions per sample. On 
average, there were a max of 10 requests in the system 
concurrent in any sample going up to a maximum of 20. This 
workload was split evenly across the two cluster members. 

The transaction mix was nonstationary as it was driven by 
retail behaviors that could be variable. Importantly, this 
application dealt with external payment gateway services 
shared amongst many large financial institutions and showed 
contention behaviors based on variable retail conditions. 

1) Payment processing system workload 
The application had two cluster members.  They were both 

found to have the same results so only cluster member 1 is 
presented in this paper. Table 2 shows the transaction mix for 
this machine.  This 10 hour sample contained approx. 21K 
transactions with workload varying from 76 Tx/5min up to a 
max of 267 Tx/5min.  The workload was concentrated in the 
top 5 transaction types (approx. 90%).  The remaining 6 

transaction types accounted for approx. 10% of the workload 
with only 8 transactions overall having 1% or more 
representation. The top transaction (at 37.3%) was an external 
payments gateway access transaction.  This heavy reliance on 
the external payments gateway service largely defined the 
transacting profile of this application service.  Any Internet link 
or gateway transaction delays were a determining influence on 
performance. 

2) Profiling changes in k and j 
Fig. 7 shows the time of day view of changes in k and j.  

There was an early morning slight decrease in k (system getting 
slower) as the workload increased.  This stabilized once the 
transaction arrival rate reached 200-300 Tx/5 min and above 
around 9:30am.  At the end of the day, as the workload 
dropped below this point (around 5:30pm) the value of k 
slightly increased indicating a performance increase.  Its stable 
value was around 0.0037 averaged over this period.  The time 
of day view of j was quite variable about a linear trend.  It 
averaged 0.0271 over this time.  The amplitude of variation 
about this average and the error of the auto regression values 
were significantly larger than for the mainframe system 
discussed in IV B.  It was also much more variable than the k 
parameter. This indicated instability in system performance 
compared to the low noise mainframe product system. 
Importantly, this instability was part of a broader problem 
subsequently diagnosed. Multiple mid-range systems all 
displayed instability to varying degrees when compared to the 
mainframe system.  This was a key monitoring diagnostic used 
in preventing a severe organization wide mid-range outage.  
Additionally, it was found that the external gateway 
transactions for this application were being intermittently 
delayed via an under allocation of guaranteed bandwidth on the 
Internet link.  Subsequent work doubled this allocation in order 
to reduce variable service times on these transactions. 

The unique aspect of the payment processing system was 
its dependence on an external gateway service that issued 
tokens so that payment details could be masked in core 
systems.  Setting up the external token issuing service and 
waiting for these tokens was synchronous in nature for 
individual user sessions.  The service was performant but 
shared by many financial institutions such that small delay 
events for a variable number of sessions was a common feature 
of this application service transaction profile.  These delays 
manifested as slow downs within the whole of service 
transaction mix followed by speed ups as the service freed up 
and completed issuing tokens. 

The analysis approach chosen involved looking at the auto 
regression parameters for all 5min samples and analyzing 
approx. 20% of edge cases for +ve and -ve changes in k or j as 
measured by equation (3) to determine what type of 
performance change was detected.  Fig. 8 shows the major 
grade of service change scenarios observed in this application 
service, and the resulting combinations of changes in k & j that 
resulted from curve fitting the CDF general form in equation 
(2).  

The results from this application captured a representative 
sample of the combinations of grade of service slow downs and 
speed ups.  This involved analyzing events in the sample 
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Fig. 8 : Probability distribution of changes in regression parameters (a) k and 
(b) j for payment processing service. (c) Grade of service graph for the 
application’s performance over time of day.  
Events:  
1) 14:05 Slow down event all %iles causing a -ve !k offset by a +ve !j, 

14:15 Slow down event all %iles causing a -ve !k offset by a +ve !j 
2) 12:35 Speed up of all %iles. This causes a +ve !k offset by a -ve !j,  

13:35 Speed up in all %iles results in a +ve !k offset by a -ve !j , 
17:45 Speed up in all %iles results in a +ve !k and a -ve !j offset 

3) 15:25 Speed up across all %iles following 15:20 slow down event 
causing a +ve #k offset by a -ve #j, 
16:15 Speed up across all %iles causing a +ve !k offset by a -ve !j 

4) 14:10 Significant speed up across all %iles following 14:05 slow down 
event causing a +ve #k offset by a -ve #j 

5) 14:10 Significant speed up across all %iles following 14:05 slow down 
event causing a +ve #k offset by a -ve #j 

6) 13:35 Speed up in all %iles results in a +ve #k offset by a -ve #j, 
14:35 Speed up in all %iles results in a +ve #k offset by a -ve #j 

7) 08:55 Speed up event all %iles results in a +ve #k and a -ve #j offset, 
17:15 5oth %ile stable, speed up in 80 & 90th %ile, slow down in 95,98 
& 100th %iles results in a +ve #k offset by a -ve #j 

8) 14:15 Slow down event all %iles causing a -ve #k offset by a +ve #j, 
14:30 Slow down event all %iles causing a -ve #k offset by a +ve #j 

9) 17:20 Slow down 50,80,90,98 & 100th %iles, speed up in 95th %iles 
results in a -ve #k offset by a +ve #j 

period.  There were 4 combinations of +ve and –ve changes in 
the k and j auto regression parameters observed: 

1. Speed up in main body and transaction tail 
2. Hybrid scenario in which the transaction main body 

speeds up and the tail slows down 
3. Slow down in main body and transaction tail 
4. Hybrid scenario in which the transaction main body 

slows down and the tail speeds up 

Significant slow downs resulted in a negative change in k 
where as speed-ups were characterized by a positive change in 
k.  The changes in j could be +ve or –ve depending on the 
significance of the slow down or speed up event in k and hence 
changes in j were not a good predictor of event type. 

Detailed results in the scenarios examined showed that a 
stable k with partial transaction slow downs involving the tail 
(95th, 98th, and 100th percentiles) were characterized by –ve 
changes in j.  A stable k with speed-ups in the tail were 
characterized by +ve changes in j.  Any changes in k could 
over ride these trends in j.   

The results showed that k can be characterized as the 
“transaction main body” coarse grain adjustor in the general 
form of the CDF equation.  The results showed j acted as the 
“transaction tail” fine grained adjustor.  k was a determinant of 
event type. j determined event type only when k did not vary 
significantly. Positive changes were associated with speed up 
events and negative changes were associated with slow down 
events. There were 4 event scenario patterns: 

1. Positive change in k = speed up event 
2. Negative change in k = slow down event 
3. Stable k plus positive change in j = speed up event in 

the transaction tail 
4. Stable k plus negative change in j = slow down event 

in the transaction tail 

The purpose of the detection method was to identify slow 
down events.  This was most reliably determined via negative 
changes in k that were identified as anomalous by exceeding 
the change significance level, in this case 5%.  The key issue 
with a highly variable application was that only considering the 
5% significance level meant the detection method was 
insensitive to potential slow down events.  This could be seen 
when mapping the slow down events from the probability 
distribution to the grade of service graph in Fig. 8(c). This 
meant two definite events were identified (annotation 1 in Fig. 
8(a) and Fig. 8(c)) and four possible events missed for this 
sample of the payment processing system. The question mark 
annotations in the grade of service graph in Fig. 8(c) showed 
events that were missed due to the 5% significance choice. 

The proposed detection method approach to identify slow 
down events was modified to the following: 

1. Focus on events that involve negative k changes. 
2. Quantize probability changes into 0.1 segments to 

allow grouping of events, simplify classification, and 
reduce false positive events 

3. Set the significance level small enough to avoid false 
positives (5%) 

4. Consider small changes to the significance level if the 
sample size means likely events are excluded by the 
0.1 quantizing of probability segments. 

Importantly, callouts 5, 6, and 7 in Fig. 8(b) couldn’t be 
definitely characterized as they included both speed ups and 
slow downs.  Negative changes in j could not be positively 
identified as slow downs. 



TABLE 3: RELATIVE VALUES OF k & j FOR DIFFERENT APPLICATIONS 
Application 

Service 
Normal 

workload 
Values & Times 

App 
service 
entities 

Avg k 
during 
normal 
w’load 

Avg j 
during 
normal 
w’load 

M/F Product 
system 

16-20,000 Tx/ 
5min 

Only one 0.0083 0.2768 

Credit Card 
Payment 
system 

200-300 Tx/  
5min 

 

Member 1 
of 2 

0.0037 0.0271 

 

V. DISCUSSION 
As noted in the results discussed in Section IV C, the k 

parameter mapped the early rise in the service time CDF and 
the j parameter matched the tail of the curve.  The k parameter 
was a coarse-grained transaction main body curve fitter and 
the j parameter was a fine-grained transaction tail fitter.  
Observing the variability in these regression parameters over 
time and between different applications was a good indicator of 
system issues.  Extreme variability was found to be an effective 
indicator of several issues subsequently diagnosed:  

a) Inadequate CPU allocation to applications and their 
I/O pools 

b) Poor scheduling of batch style workloads such as 
dbase backups across all applications in shared 
resource pools  

c) Problems with shared resource management in the 
operating system 

The purpose of the detection method was to identify slow 
down events.  This was most reliably determined via negative 
changes in k that were identified as anomalous by exceeding 
the change significance level, in this case 5%.   

The fine-grained CDF tail adjustor parameter j was found 
to be a good detector of aberrant variability and used to assist 
in identifying broad mid-range platform issues.  This parameter 
effectively functioned as “the canary in the mine” and was 
used to avoid significant corporate outage events. 

Resolving system transaction performance profiles to a 
standard CDF with identical form and bounds between 0 and 1 
enabled absolute comparison of k values between system 
coarse-grained scalability.  Additionally, it allowed 
performance profile comparison between systems with 
different transaction workload arrival rates.  The relative value 
of the coarse grain parameter k when comparing systems was 
an indicator of relative scalability with changing workloads. 
Table 3 shows these values for the 2 applications analyzed in 
this paper.  This comparative concept needs more research to 
be confirmed more broadly. 

A key aspect of this detection method was that the 
performance anomaly detection technique was platform and 
configuration agnostic.  It did not rely on customization to a 
specific n-tier application architecture but was based on a 
whole of service monitoring approach from just in front of the 
servicing entity for each application being measured. 

The shape of the change in k and j probability distributions 
gave a good indication of a system’s variability in performance 
behavior.  A tendency to grouping around the change of 
 -0.4 " ! " +0.4 for the mainframe system indicated an 
application that was more tuned and subject to less variability 
in performance compared to the credit card system which had a 
more extended range -0.6 " ! " 0.6 .  This needs more research 
to confirm more broadly. 

VI. LIMITATIONS OF DETECTION METHOD 
The following limitations of the detection method were 

identified: 

1. There needed to be enough sample points to properly 
fit the CDF curve and reduce variability. 

2. Detecting changes in k and j meant that slow downs 
were detected relative to current application state.  If 
the application was tuned well, then the method may 
detect events that are not practical to invest time to 
tune.  Alternatively, if the system was in a poor state 
of repair there could be many slow down events that 
were missed while efforts were spent dealing with 
more significant slow down events.  This is both a 
limitation and a benefit in that it naturally prioritizes 
the requirement to address problems. 

3. Quantizing the probability segments into 0.1 lots and 
choosing the 5% significance level were arbitrary 
choices that may have de-sensitized the method.  
Research needs to be done on trending of these 
choices to fine tune the detection method. 

4. A balancing consideration is the need for quick and 
light CPU resource consumption when performing 
automated regression calculations.  The choice of 
regression engine performance and calculation 
structure (e.g. max number of regression iterations) 
needs to be considered. 

VII. CONCLUSIONS AND FUTURE WORK 
The hypothesis of this paper was that curve fitting using a 

CDF general form involving an exponential term that mimics 
the tail was an accurate method of representing a systems 
performance and its scalability.  Further this modeling method 
could be used to detect application slow down events.  The 
results showed that this hypothesis was true for the corporate 
context analyzed and a full day sample from 8am to 6pm 
Monday 4/2/2013.  The technique was shown to work for a 
diverse range of workloads ranging from 76 Tx/5min to 19,025 
Tx/ 5min.  The method did not rely on customizations specific 
to the n-tier architecture of the systems being analyzed and so 
the performance anomaly detection technique was shown to be 
platform and configuration agnostic. 

Further research is required to understand trending of 
relative values of k and j for applications with different 
transaction mixes and 3 tier application architecture footprints.   

It is possible that the relationship between workload and k 
can be used to track application scalability over time. The time 
of day view of changes in k and j showed a near linear 
relationship once the application had reached its stable 
transaction profile between 9am and 5pm depending on 
system.  A further subject of study will be to investigate this 
relationship.  A simplified approach might be to analyze the 



gradient of the line of best fit over an extended period as a 
useful indication of trends in scalability gain/loss.  If this 
simple relationship correlates well then changes in gradient 
could be used to direct application tuning work and inform 
systems managers of the current risk position of applications. 

The CDF form of the nonlinear function used for regression 
was univariate.  This paper focused on the relationship between 
CDF and application service time for each sample over time to 
characterize the application performance signature.  The 
service time was known to be impacted by the workload arrival 
rate and hence this variable included possible effects of 
changing workload arrival rates.  A future piece of work 
involves examining multi-variate regression using arrival rate 
and service time.  This technique may achieve a more sensitive 
alignment between the fitted curve and the regression curve.  
This would mean the change profile and hence anomaly 
detection capability could be improved.   

The sample size used in this paper was a whole of day.  A 
typical busiest day of the week was chosen for all commercial 
systems discussed in this paper – Mondays.  This mechanism 
of application profiling will be productionized and longer term 
trending of the regression parameters examined.  The 
hypothesis of further research work will be that trends in these 
parameters will reveal scalability trends that identify longer 
term performance issues due to system growth, need for tuning 
of dbase query plans, systemic growth in resource consumption 
and/or contention. In this way this detection technique can be 
analyzed for its ability to function in the short and long term 
time scales. 

This detection technique could be combined with auto 
provisioning models such as those discussed in Tan, et al. [8], 
Stewart, et al.  [9], and Tan, et al. [10] to achieve just in time 
performance anomaly prevention. 
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