
“The tail wags the dog”: A study of anomaly
detection in commercial application performance

Richard Gow
1,2

Srikumar Venugopal
1

Pradeep Ray
2

1
School of Computer Science and Engineering,

University of New South Wales, Australia

richard.gow@iag.com.au, srikumarv@cse.unsw.edu.au
2
Asia-Pacific Ubiquitous Healthcare Research Center,

University of New South Wales, Australia

p.ray@unsw.edu.au

Technical Report
UNSW-CSE-TR-201317

July 2017

THE UNIVERSITY OF
NEW SOUTH WALES

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia

!“The tail wags the dog”: A study of anomaly
detection in commercial application performance

Richard Gow1,2, Srikumar Venugopal1,2
1School of Computer Science and Engineering

The University of New South Wales
Sydney, Australia

richard.gow@iag.com.au, srikumarv@cse.unsw.edu.au

Pradeep Kumar Ray2
2Asia Pacific ubiquitous Healthcare Research Centre

(APuHC), The University of New South Wales
Sydney, Australia

p.ray@unsw.edu.au

Abstract—! The IT industry needs systems management
models that leverage available application information to detect
quality of service, scalability and health of service. Ideally this
technique would be common for varying application types with
different n-tier architectures under normal production conditions
of varying load, user session traffic, transaction type, transaction
mix, and hosting environment.

This paper shows that a whole of service measurement
paradigm utilizing a black box M/M/1 queuing model and auto
regression curve fitting of the associated CDF are an accurate
model to characterize system performance signatures. This
modeling method is also used to detect application slow down
events. The technique was shown to work for a diverse range of
workloads ranging from 76 Tx/ 5min to 19,025 Tx/ 5min. The
method did not rely on customizations specific to the n-tier
architecture of the systems being analyzed and so the
performance anomaly detection technique was shown to be
platform and configuration agnostic.

Keywords—application performance; anomaly detection; whole
of system model; application performance signature; black box
M/M/1 queuing model; nonlinear parametric regression; service
time cumulative distribution function; CDF

I. INTRODUCTION
Commercial system management is enhanced via

simplification and standardization of people training,
processes, and technology solutions. It is therefore preferable
to have a common measurement mechanism that can be used to
manage availability SLAs (Service Level Agreements),
performance SLAs, scalability OLAs, detection of anomalies
and automated resource provisioning in the plethora of possible
hosting environments available commercially. Accordingly, it
is desirable to have a performance anomaly detection technique
that is not specific to any particular platform or “n”-tier
arrangement. This platform and configuration agnostic
technique needs to prove itself capable of detecting
performance anomalies on varying application types under
normal production conditions of varying load, user session
traffic, transaction type, transaction mix, and hosting
environment.

Managing the stability and performance of the end-user
experience using high level reliable information models is
critical to enterprises and has a direct bearing on productivity
and effectiveness of business processes. Most large enterprises
have private data center arrangements with varying degrees of

infrastructure rationalization. This creates a shared resource
environment with the potential for unintended consequences as
consolidation and sharing resources drive down Total Cost of
Ownership. Collateral damage of one application service by
another is common but poorly characterized across application
portfolios. The ability to understand application performance
and pro-actively manage their state is becoming increasingly
important as infrastructure services move towards
commoditization models such as cloud computing.

Pro-active systems management involves detecting
abnormal performance situations that will result in a
degradation of service via changes to application signatures.
An application performance signature is driven by a complex
mix of common resources – CPU, memory, I/O channels,
worker threads, network conditions, storage arrangements,
shared platforms, configurations and transaction mix.
Characterizing all of these is difficult and requires detailed
baseline calibration that needs to be re-done when the
application, resources, or transaction mix change.

In this paper, we explore the construction of black box
models that take a “whole of system view” and abstract the
underlying complexity of the system being analyzed. The
contribution of this paper is to introduce a simplified method of
characterizing application performance signatures that
recognizes the transaction tail and is not customized to the
application being analyzed. This signature is characterized by
the regression parameters of the service time cumulative
distribution function (CDF) adapted from the general form of
the M/M/1 queuing model. We demonstrate how detection of
performance anomalies is achievable via tracking changes in
these parameters using a probabilistic distribution of
performance deviations between old and new conditions. The
method is platform agnostic, and does not require extensive
calibration and model re-work with changing conditions.

The remainder of this paper is structured as follows.
Section II discusses related work in this area. Section III
introduces the proposed performance signature and anomaly
detection model. Section IV overviews the commercial
systems analyzed and sampling techniques used. Section IV
also presents experimental validation of the model introduced
in III. Section V summarizes and discusses key results. Section
VI discusses the limitations of the detection method and
section VII presents the conclusions and future research ideas.

II. RELATED WORK
Past publications ([1], [3], [5], [7]) have discussed and

showed the use of queuing theory laws and derivations, service
time CDFs and regression techniques to characterize
application performance. These have involved deriving
application performance signatures and comparing them over
time to determine performance anomalies.

Urgaonkar, et al. [7] discussed the problem of modeling
multitier Internet applications using a network of queues with
each tier represented by a queue or queues depending on the
presence of load balancing. Sessions were modeled using an
infinite server queuing system that fed the multitier queuing
model and formed a closed queuing system. Stewart, Kelly
and Zhang [13] used an M/M/1 queuing model for performance
prediction in changing transaction mix workloads. They
demonstrated that accounting for transaction mix non-
stationarity enabled more accurate prediction of application-
level performance in steady state compared to models that
predict performance based on workload that ignores transaction
type. Lama and Zhou [14] achieved efficient server
provisioning using performance modeling via an M/GI/1/PS
queuing model. The end-to-end service time 90th percentile
was used to model the need for more or less horizontal scaling
in order to guarantee end-user response times. The queuing
model approach involved low-level characterization of
application components.

The above models use lightweight passive measurements
routinely collected in production environments. However, the
modeling methods used were complex and required extensive
monitoring across all technology tiers and representative
baseline runs to determine queuing parameters. They used
various averaging techniques to represent the detail and
complexity in the model - average service times; average queue
visit ratios; average think times for user sessions; and average
concurrent session loads - in order to calculate the average
response times of requests. As discussed in Downey &
Feitelson [2], averages are a blunt instrument when
representing workload with long tailed service time
distributions. Grade of service percentiles were suggested as a
more appropriate way of representing service time distributions
with “long tails”.

Application performance issues have direct and immediate
impact on end-user experience and hence satisfaction.
Cherkasova et al [3] discussed online automatic detection of
performance anomalies and application changes via integration
of two complementary techniques. The first technique involved
creating a resource consumption model of an application that,
using regression, correlated processed transactions and
consumed CPU time. The aim was to maintain a model that
reflected resource consumption during normal operations.
Significant changes in CPU resource consumption were then
used to identify performance anomalies or application changes.

The second technique in Cherkasova, et al. [3] used the
same concept of creating an application performance signature
discussed in Mi, et al. [1]. This involved creating a compact
run-time model of application behavior via derivations of
queuing theory models - Little’s Law and the Utilization Law.
In this technique, a representative application server transaction

service time was generated for all individual transaction types.
This was done by creating a CDF for increasing service times
across a range of server utilizations. Changes in the 50th
percentile of the CDF were used to characterize performance
changes due to anomalies.

The use of regression as a technique to profile application
performance was also discussed and used in Zhang, et al. [5] to
project resource provisioning based on profiling CPU usage.
The model accurately determined maximum achievable
throughput for transaction mixes. It did this using non-
negative Least Squares Regression to produce an
approximation of the CPU processing cost of all transactions
across all tiers. This was then input to the Mean-Value
Analysis (MVA) algorithm [6] to compute the mean response
time, average system throughput, and average queue length.

Urgaonkar, et al. [12] used the same MVA algorithm to
identify bottlenecking and dynamically provision, predict
response times, manage application configuration and session
policing. Instead of using regression, the model used extensive
technology tier monitors and representative baseline runs to
determine queuing parameters. Model results were validated
using synthetic workloads on real systems. The model was,
however, challenged by nonstationary workloads. This work
also assumed that key model parameters determined in low
system utilisation were applicable during workloads being
modelled. These limitations impacted the applicability of the
models to real systems.

The methods discussed so far tend to be designed for
specific application architectures. They require detailed
baseline calibration that needs to be re-done whenever changes
are made to the application resources and or transaction mix.
They frequently use averaging techniques that are limited in
describing an environment that is driven by changing
transaction and workload mixes, and significantly impacted by
the transaction tail. An application signature characterization
and modeling approach is required that is application &
architecture agnostic, and accounts for the tail.

Dean and Barroso [15] discuss concepts associated with the
notion that “the tail” of transaction performance impacts the
application service. The key insights were that even rare
performance hiccup events affect a significant fraction of all
requests in large-scale distributed systems. This is especially
true with high workload arrival rates because shared resources
such as infrastructure components and software worker threads
can be quickly consumed by a small fraction of the arriving
workload.

In this paper, the ability to pre-emptively detect degrading
performance is best driven by characterizing changes in the
“service tail” of the CDF exponential curve. This is the most
sensitive part of the service time distribution. Failure of the
application service is exponential in its performance loss if this
“tail area” performance degrades. During anomalous
performance events, the exponential service time distribution
means that the tail area can dramatically impact the scalability
of the system. This means that system behavior can be thought
of as a case where “the tail wags the dog”.

(a)

(b)

(c)

(d)

Fig. 1: (a) CDF curve fitting example (b) – (d) Example performance anomaly detected on the online supply chain management system.
 Detection and remediation are separate capabilities.

Remediation to avoid service level breakdowns is the subject
of current research ([8],[9],[10],[11]). This remediation is
outside the scope of this paper.

III. PROPOSED DETECTION METHOD
The technique presented in this paper seeks to use the

concept of application performance signatures discussed
previously. However, it was applied at a “whole of application
service” level instead of building application service models
from individual transaction type measurements, platform
infrastructure profiles (e.g. CPU), transaction modeling and n-
tier queuing models.

The service time CDF for online application service
performance in an M/M/1 queuing theory model is an
exponential curve as per equation (1) below. This is the most
common type of queue and involves a single server model. It
requires the transaction inter-arrival and service times to be
exponentially distributed.

 F(r) =1! e!rµ (1!!) (1)

r = response time
µ = service rate of jobs per unit time
! = traffic intensity = " / µ
" = arrival rate in jobs per unit time
F(r) =CDF of r

The general form of this CDF equation is used in this paper

as the basis of detecting performance anomalies. The chosen
general form of the CDF equation is:

 Y =1! e!(kX+ j)
(2)

where

Y = CDF of the probability of a transaction service time
being less than X

X = observed transaction service time in msec.
k, j = regression parameters

The detection method uses univariate nonlinear parametric
regression least squares analysis to calculate the parameters in
equation (2). This curve fits the observed service time CDF of
the application service performance for each sample period.
This assumes a Poisson arrival pattern for transaction workload
arriving at the application service and an exponential service
time profile.

Analyzing the regression parameters for each sample of
transactions and tracking them over time aims to achieve the
detection of application performance changes. This approach
can be applied at the whole of system level as it only requires
end-to-end transaction measurement at the front of the system
being analyzed.

Fig. 1(a) shows an example of the observed service time
CDF and the curve fitted regression parameters required to
curve fit the general form of equation (2) for sample data
obtained from an online supply chain management system in a
large enterprise in Australia. The sample data was gathered
every 5 min from 10:30am to midday on 18/9/2012.

The key challenge in determining what constitutes a
reasonable performance anomaly detection capability is the
balanced mix between sensitivity to changing conditions that
may indicate a degrading performance situation and accuracy
of predictions used in this capability. The balancing act is
between being too sensitive and too inaccurate versus being
too insensitive and more accurate. The idea is to detect
degraded performance states rather than achieve absolute
accuracy.

The sensitivity of this detection model was achieved
because the curve fitting via regression characterizes the
“service tail” of the CDF exponential curve. This was the most
sensitive part of the service time distribution. Failure of the
application service is exponential in its performance loss if this
“tail area” performance degrades. Fig. 1(b)-(d) shows changing
CDF curve shape during a performance anomaly event for the
online supply chain management system.

An example of the regression parameter trending associated
with this method is shown in Fig. 2(a) and (b) for k and j for
the 5 min sample data from 10:30 to midday on 18/09/2012.
This included the performance anomaly that is highlighted in
the red box and which corresponds to the event in Fig. 1(b)-(d).

In this paper, detection of performance anomalies was
defined via an adaptation of the change profile concept used by
Shen, et al. [4]. Here, performance changes were detected via a
probabilistic distribution of performance deviations between
old and new conditions.

(a)

(b)

(c)

(d)

Fig. 2: (a),(b) Example of regression parameter trending detecting a slow down event (c),(d) Visual representation of probability distribution of changes in
regression parameters for the online supply chain management system.

 Change(told, tnew)=(tnew – told)/ max{|(tnew – told)|} (3)
where

Change (told, tnew) = degree of change in variable of interest
ranging between -1 and +1

tnew ,told = values of change variable at new and old times
respectively.

max{|(tnew – told)|} = normalize all –ve change values by
dividing by the maximum –ve change. Similarly normalize all
+ve changes.

This paper uses the application performance signature
regression parameters that characterize each 5 min sample as
the comparative metric between old and new conditions. The
changes in k and j in Fig. 2 (a) and (b) vary between -1 and +1
based on the definition in Equation (3). The probability of
outliers or large changes in k can be determined from the
probability distribution as shown in Fig. 2(c). As an example,
if the 95% confidence level was chosen as the confidence level
beyond which a change in k was considered anomalous, the
change in k would need to be less probable than 0.05. This was
approximately less than -0.92 or more than +0.9 in this
particular sample. However, the changes in k and j were
quantized into 0.1 increments and all events in this range were
bundled into a “self similar” result set. The 5% significance
level for self similar quantized delta sets requires that the
extreme ends of the probability distribution were in groupings
of less than or equal to 5%. Anything greater than this would
result in the grouping being considered baseline normal
behavior. Fig. 2 (c) shows that the most peripheral positive and
negative groupings had a probability of 5.88% and 11.76%
respectively. This meant that the significance level would need
to be 6% or 12% respectively for these extreme scenarios to be
considered anomalous. Increased sample size or a rolling
probability distribution over an extended period may have
addressed this issue by better defining the groupings.

However, the method could be further refined via a
continuous distribution but simplification can be achieved via
adjustment of the significance level to match the nature of the
system being analyzed.

The problem with the probability distributions presented in
Fig. 2 (c) and (d) was that the changes in k and j were widely
spread across the range of possible values from -1 to +1. This
indicated a system with variable performance or a sample too

small to characterize behavior. A tightly bound grouping may
have indicated an application that was more fine tuned and
subject to little variation in performance.

Another important aspect of the detection model is to
minimize processing required to produce a reasonable
regression estimate. Consuming excessive resources and or
taking too long to process detections is potentially uneconomic,
and may inhibit the very pre-emptive ability being
implemented. Auto regression engines are available
commercially and have efficient data processing capabilities.
Choosing an engine is outside the scope of this paper.

IV. ANALYSIS OF COMMERCIAL PRODUCTION SYSTEMS
A key aim of this research was to identify a performance

anomaly detection technique that was platform and
configuration agnostic. This technique needs to prove itself
capable of detecting performance anomalies on varying
application types under normal production conditions of
varying load, user session traffic, transaction type, transaction
mix, and hosting environment. Accordingly, this paper
presents anomaly detection results from two different
application types involving 2 and 3-tier configurations with
different database arrangements, transaction types & mixes,
and external service integrations. If a bottom up “n-tier”
queuing model were created to establish normal performance
behavior under varying workloads, each model would be
unique. The overhead in running the various models would be
significant. The example systems analyzed were commercially
sensitive, and hence details are kept to a minimum in this
paper.

A. Measurement & Sampling Techniques
The systems exist in a private data center belonging to a

large financial services enterprise primarily composed of IBM
mainframe and mid-range platforms, shared among different
applications across CPU & memory pools and SAN storage.
Capacity was well provisioned but collateral impacts for short
periods of time were common, especially during peaks.

Transaction information was collected in 5-minute samples.
Transaction data was written to application service logs for
each application server. Each sample was processed to
produce summary application Grade of Service (GoS)
performance data – transaction arrival rate, 50th , 80th, 90th, 95th,
98th and 100th percentiles. Data was collected for Monday
4/2/2013 from 8am to 6pm for both applications. Monday was
chosen because it was known to be the busiest day of the week.

TABLE 1: TRANSACTION PROFILE FOR MAINFRAME SYSTEM
No. Txs in sample 1,664,010
No. Tx Types 206
Top 10 Transactions 48% of traffic
No. Txs that were 1% or
more of traffic

28 transactions

Traffic mix
Top 5 Txs
(35.6% of all
traffic)

Top Tx 2nd Tx 3rd Tx 4th Tx 5th Tx
14.9% 7.7% 5.1% 4.8% 3.1%

No. Tx Types in key
workload percentiles

80th 90th 95th 100th
36 56 76 206

Fig. 3: High level architecture of mainframe system

Fig. 4: Nonlinear parametric regression parameters k & j
by time of day for Mainframe Product system.

The detection method identified whether sample periods
were anomalous. The method of validating whether the
anomaly detection was correct or not involved checking the
grade of service (GoS) performance data for the sample period
and identifying if the performance percentiles showed
abnormal slowdown. Verified events showed a slow down in
some or all of the 50th , 80th, 90th, 95th , 98th or 100th percentiles.

 Performance SLAs focused on the 95th %ile. Detecting
events in samples that showed movement in these six %iles
was of interest to ensure SLAs were pro-actively protected.
Investigation of root causes for these slowdowns was pursued
and captured where identified.

B. Production Example 1 – Mainframe Product system

The first system is an application service running on a
mainframe system termed as the “Mainframe Product System”.
The high-level architecture of this application is illustrated in
Fig 3. This application managed the product processes
supporting all distribution and servicing channels in the
Australian financial enterprise. The typical workload profile for
this system is approx. 16-19,000 transactions per 5 minutes
with 40 concurrent transactions on average and 100 maximum
concurrent transactions during each weekday 10 am to 2pm
peak. The transaction mix was nonstationary as it was driven
by market conditions and product events.

Transactions submitted to this application were measured at
the ingress and egress queues. Each transaction may have
spawned many sub-transactions but the end-to-end transaction
time was defined as the time from the initial ingress to the final
egress. Table 1 shows the transaction mix for the 8am to 6pm
sample on Monday 4/2/2013. This 10 hour sample contained

approx. 1.7 million transactions in total with workload varying
from 3,327 Tx/ 5 min up to a max of 19,025 Tx/ 5 min.

The workload was concentrated in the top 10 transaction
types (approx. 50%). The remaining 196 transaction types
accounted for approx. 50% of the workload with only 28
transactions overall having 1% or more representation. The top
transaction (at 14.9%) was a view product transaction from the
core product source of truth M/F data store.

1) Profiling changes in k and j
Fig. 4 shows the time of day view of changes in k and j.

There was an early morning decrease in k (system getting
slower) as the workload increased. This stabilized once the
transaction arrival rate reached 13,000-14,000 Tx/5 min and
above around 9:30am. The workload peaked around 19,000
Tx/ 5min and moved back to 13-14,000 Tx/ 5min at the end of
the day around 4:30pm. The value of k increased after 4:30pm
indicating a performance increase. This suggested an inverse
relationship between workload and k. Visually this
relationship appeared to stabilize as the workload reached its
normal peak bounds between 9:30am and 4:30pm and was
possibly linear in this time. Its stable value was around 0.0083
(averaged over this period). The relationship between
workload and parameter k may be able to be used to track
application scalability over time and requires further research.
There also appeared to be a similar time of day view of the
relationship between parameter j and workload. It stabilized at
0.2768 (averaged over this period).

 Fig. 5 (a) and (b) show the detection method results for the
Mainframe Product System using a 5.0% significance level to
select edge events. At the 5.0% significance level, all negative

(a)

(b)

(c)

Fig. 5 : Probability distribution of changes in regression parameters (a) k
and (b) j for mainframe application service. (c) Grade of service graph for
the application’s performance over time of day.
Events:
1) 09:00 Slow down all %iles except 100th %ile. Results in a -ve !k

offset by a +ve !j
2) 08:30 slow down all %iles except 100th %ile. Results in a -ve #k

offset by a +ve #j
3) 11:30 Slow down all %iles. Results in a -ve #k offset by a +ve #j

15:00 Slow down all %iles. Results in a -ve #k and a -ve #j
4) 08:10 speed up in all %iles. Results in a +ve #k and a +ve #j

15:45 Speed up all %iles. Results in a +ve #k offset by a -ve #j
5) 11:35 Speed up all %iles. Results in a +ve !k offset by a -ve !j
6) 08:50 Speed up all %iles. Results in a +ve #k offset by a -ve #j
7) 13:30 Slow down all %iles except 100th %ile. Results in a +ve #k

offset by a -ve #j
8) 08:35 50th %ile stable. Speed up in 80,90,95th %iles. Slow down in

98th & 100th %iles. Results in a +ve #k offset by a -ve #j
14:00 Slow down all %iles except 100th %ile. Results in a -ve #k and
a -ve #j

9) 08:45 stable 5oth %ile, slow down in 80,90,95,98 & 100th %iles.
Results in a -ve #k offset by a +ve #j
13:35 Speed up all %iles except 100th %ile. Results in a +ve #k and a
+ve #j

10) 08:10 speed up in all %iles. Results in a +ve #k and a +ve #j

TABLE 2: TRANSACTION PROFILE FOR PAYMENT PROCESSING SYSTEM
No. Txs in sample 20,718
No. Tx Types 11
Top 10 Transactions 99.9% of traffic
No. Txs that were 1% or
more of traffic

8 transactions

Traffic mix
Top 5 Txs
(89.1% of all
traffic)

Top Tx 2nd Tx 3rd Tx 4th Tx 5th Tx
37.3% 18.3% 13.1% 12.8% 7.6%

No. Tx. Types in key
workload percentiles

80th 90th 95th 100th
4 5 7 11

Fig. 6: High-level architecture of online payment processing system

!k events were missed. The changes in k and j were quantized
into 0.1 increments and all events in this range bundled into a
“self similar” result set. The 5% significance level for events
meant that larger result sets which exceeded the 5% occurrence
level were assumed to be baseline normal behavior e.g. -0.2 <=
!k <= -0.1 in Fig. 5 (a).

The numbered events from 1 to 3 in the probability
distribution in Fig. 5 (a) and (b) are marked on the Grade of
Service (GoS) graph by time of day. The GoS graph showed
several other small slow down events that might have
reasonably qualified (see the question marks in Fig. 5(c)).

However, these were missed because of the 5.0% significance
level and 0.1 quantization in the probability distribution. The
choice of significance level needs to be small enough to avoid
detection noise (false positives) yet sensitive enough to pickup
missed events (false negatives). The aim of the detection
method was to pickup true slow down events (true positives)
and avoid false events (false positives and true negatives).

The detection method was specifically aimed at detecting
slow down events rather than the speed up events that followed
them. This required further understanding of the combinations
of +ve and –ve changes in k and j that could be definitively
associated with known slow down events in order to avoid
false positives and false negatives from the detection method.
This was very difficult in a low noise system such as the
Mainframe Product System. Accordingly, the second system
analyzed in Section IV C was chosen because its performance
profile was known to be variable, and hence enabled detailed
clarification of the combinations of k & j that could be
definitively associated with slow down events. The objective
was to avoid detection noise (false positives) even if this meant
missing some smaller events (false negatives).

C. Production Example 2 – Payment processing system

The second system analyzed managed credit card payments
for all eBusiness, call center and face-to-face payment
transactions for a large Australian financial services provider.
Fig. 6 shows the high level architecture of this JAVA/ J2EE
web application. It is a front-end web application clustered on
2 machines (members) for resilience. The application servicing
entity was a JAVA/ J2EE application server hosted in the IBM
WebSphere platform. HTTP transactions were associated with
unique end-user session ids that were “sticky” because traffic
traversed all higher infrastructure layers to and from the same

Fig. 7:!Nonlinear parametric regression parameters k & j by time of day for
payment processing system member 1

application server instance. The driver of work for this front-
end system was submissions from the end-user sessions that
may have in turn spawned multiple sub-transactions to and
from lower layers before returning the final result back to the
end-user session. The total transaction response time was the
time from receiving the end-user http request for service until
the time the reply was sent back.

Sampling was performed on this system from 8am to 6pm
on Monday 4/2/2013 every 5 minutes. During the sampling, the
workload was found to have a peak arrival rate of 518 requests
per 5 minutes with 112 peak active sessions per sample. On
average, there were a max of 10 requests in the system
concurrent in any sample going up to a maximum of 20. This
workload was split evenly across the two cluster members.

The transaction mix was nonstationary as it was driven by
retail behaviors that could be variable. Importantly, this
application dealt with external payment gateway services
shared amongst many large financial institutions and showed
contention behaviors based on variable retail conditions.

1) Payment processing system workload
The application had two cluster members. They were both

found to have the same results so only cluster member 1 is
presented in this paper. Table 2 shows the transaction mix for
this machine. This 10 hour sample contained approx. 21K
transactions with workload varying from 76 Tx/5min up to a
max of 267 Tx/5min. The workload was concentrated in the
top 5 transaction types (approx. 90%). The remaining 6

transaction types accounted for approx. 10% of the workload
with only 8 transactions overall having 1% or more
representation. The top transaction (at 37.3%) was an external
payments gateway access transaction. This heavy reliance on
the external payments gateway service largely defined the
transacting profile of this application service. Any Internet link
or gateway transaction delays were a determining influence on
performance.

2) Profiling changes in k and j
Fig. 7 shows the time of day view of changes in k and j.

There was an early morning slight decrease in k (system getting
slower) as the workload increased. This stabilized once the
transaction arrival rate reached 200-300 Tx/5 min and above
around 9:30am. At the end of the day, as the workload
dropped below this point (around 5:30pm) the value of k
slightly increased indicating a performance increase. Its stable
value was around 0.0037 averaged over this period. The time
of day view of j was quite variable about a linear trend. It
averaged 0.0271 over this time. The amplitude of variation
about this average and the error of the auto regression values
were significantly larger than for the mainframe system
discussed in IV B. It was also much more variable than the k
parameter. This indicated instability in system performance
compared to the low noise mainframe product system.
Importantly, this instability was part of a broader problem
subsequently diagnosed. Multiple mid-range systems all
displayed instability to varying degrees when compared to the
mainframe system. This was a key monitoring diagnostic used
in preventing a severe organization wide mid-range outage.
Additionally, it was found that the external gateway
transactions for this application were being intermittently
delayed via an under allocation of guaranteed bandwidth on the
Internet link. Subsequent work doubled this allocation in order
to reduce variable service times on these transactions.

The unique aspect of the payment processing system was
its dependence on an external gateway service that issued
tokens so that payment details could be masked in core
systems. Setting up the external token issuing service and
waiting for these tokens was synchronous in nature for
individual user sessions. The service was performant but
shared by many financial institutions such that small delay
events for a variable number of sessions was a common feature
of this application service transaction profile. These delays
manifested as slow downs within the whole of service
transaction mix followed by speed ups as the service freed up
and completed issuing tokens.

The analysis approach chosen involved looking at the auto
regression parameters for all 5min samples and analyzing
approx. 20% of edge cases for +ve and -ve changes in k or j as
measured by equation (3) to determine what type of
performance change was detected. Fig. 8 shows the major
grade of service change scenarios observed in this application
service, and the resulting combinations of changes in k & j that
resulted from curve fitting the CDF general form in equation
(2).

The results from this application captured a representative
sample of the combinations of grade of service slow downs and
speed ups. This involved analyzing events in the sample

(a)

(b)

(c)

Fig. 8 : Probability distribution of changes in regression parameters (a) k and
(b) j for payment processing service. (c) Grade of service graph for the
application’s performance over time of day.
Events:
1) 14:05 Slow down event all %iles causing a -ve !k offset by a +ve !j,

14:15 Slow down event all %iles causing a -ve !k offset by a +ve !j
2) 12:35 Speed up of all %iles. This causes a +ve !k offset by a -ve !j,

13:35 Speed up in all %iles results in a +ve !k offset by a -ve !j ,
17:45 Speed up in all %iles results in a +ve !k and a -ve !j offset

3) 15:25 Speed up across all %iles following 15:20 slow down event
causing a +ve #k offset by a -ve #j,
16:15 Speed up across all %iles causing a +ve !k offset by a -ve !j

4) 14:10 Significant speed up across all %iles following 14:05 slow down
event causing a +ve #k offset by a -ve #j

5) 14:10 Significant speed up across all %iles following 14:05 slow down
event causing a +ve #k offset by a -ve #j

6) 13:35 Speed up in all %iles results in a +ve #k offset by a -ve #j,
14:35 Speed up in all %iles results in a +ve #k offset by a -ve #j

7) 08:55 Speed up event all %iles results in a +ve #k and a -ve #j offset,
17:15 5oth %ile stable, speed up in 80 & 90th %ile, slow down in 95,98
& 100th %iles results in a +ve #k offset by a -ve #j

8) 14:15 Slow down event all %iles causing a -ve #k offset by a +ve #j,
14:30 Slow down event all %iles causing a -ve #k offset by a +ve #j

9) 17:20 Slow down 50,80,90,98 & 100th %iles, speed up in 95th %iles
results in a -ve #k offset by a +ve #j

period. There were 4 combinations of +ve and –ve changes in
the k and j auto regression parameters observed:

1. Speed up in main body and transaction tail
2. Hybrid scenario in which the transaction main body

speeds up and the tail slows down
3. Slow down in main body and transaction tail
4. Hybrid scenario in which the transaction main body

slows down and the tail speeds up

Significant slow downs resulted in a negative change in k
where as speed-ups were characterized by a positive change in
k. The changes in j could be +ve or –ve depending on the
significance of the slow down or speed up event in k and hence
changes in j were not a good predictor of event type.

Detailed results in the scenarios examined showed that a
stable k with partial transaction slow downs involving the tail
(95th, 98th, and 100th percentiles) were characterized by –ve
changes in j. A stable k with speed-ups in the tail were
characterized by +ve changes in j. Any changes in k could
over ride these trends in j.

The results showed that k can be characterized as the
“transaction main body” coarse grain adjustor in the general
form of the CDF equation. The results showed j acted as the
“transaction tail” fine grained adjustor. k was a determinant of
event type. j determined event type only when k did not vary
significantly. Positive changes were associated with speed up
events and negative changes were associated with slow down
events. There were 4 event scenario patterns:

1. Positive change in k = speed up event
2. Negative change in k = slow down event
3. Stable k plus positive change in j = speed up event in

the transaction tail
4. Stable k plus negative change in j = slow down event

in the transaction tail

The purpose of the detection method was to identify slow
down events. This was most reliably determined via negative
changes in k that were identified as anomalous by exceeding
the change significance level, in this case 5%. The key issue
with a highly variable application was that only considering the
5% significance level meant the detection method was
insensitive to potential slow down events. This could be seen
when mapping the slow down events from the probability
distribution to the grade of service graph in Fig. 8(c). This
meant two definite events were identified (annotation 1 in Fig.
8(a) and Fig. 8(c)) and four possible events missed for this
sample of the payment processing system. The question mark
annotations in the grade of service graph in Fig. 8(c) showed
events that were missed due to the 5% significance choice.

The proposed detection method approach to identify slow
down events was modified to the following:

1. Focus on events that involve negative k changes.
2. Quantize probability changes into 0.1 segments to

allow grouping of events, simplify classification, and
reduce false positive events

3. Set the significance level small enough to avoid false
positives (5%)

4. Consider small changes to the significance level if the
sample size means likely events are excluded by the
0.1 quantizing of probability segments.

Importantly, callouts 5, 6, and 7 in Fig. 8(b) couldn’t be
definitely characterized as they included both speed ups and
slow downs. Negative changes in j could not be positively
identified as slow downs.

TABLE 3: RELATIVE VALUES OF k & j FOR DIFFERENT APPLICATIONS
Application

Service
Normal

workload
Values & Times

App
service
entities

Avg k
during
normal
w’load

Avg j
during
normal
w’load

M/F Product
system

16-20,000 Tx/
5min

Only one 0.0083 0.2768

Credit Card
Payment
system

200-300 Tx/
5min

Member 1
of 2

0.0037 0.0271

V. DISCUSSION
As noted in the results discussed in Section IV C, the k

parameter mapped the early rise in the service time CDF and
the j parameter matched the tail of the curve. The k parameter
was a coarse-grained transaction main body curve fitter and
the j parameter was a fine-grained transaction tail fitter.
Observing the variability in these regression parameters over
time and between different applications was a good indicator of
system issues. Extreme variability was found to be an effective
indicator of several issues subsequently diagnosed:

a) Inadequate CPU allocation to applications and their
I/O pools

b) Poor scheduling of batch style workloads such as
dbase backups across all applications in shared
resource pools

c) Problems with shared resource management in the
operating system

The purpose of the detection method was to identify slow
down events. This was most reliably determined via negative
changes in k that were identified as anomalous by exceeding
the change significance level, in this case 5%.

The fine-grained CDF tail adjustor parameter j was found
to be a good detector of aberrant variability and used to assist
in identifying broad mid-range platform issues. This parameter
effectively functioned as “the canary in the mine” and was
used to avoid significant corporate outage events.

Resolving system transaction performance profiles to a
standard CDF with identical form and bounds between 0 and 1
enabled absolute comparison of k values between system
coarse-grained scalability. Additionally, it allowed
performance profile comparison between systems with
different transaction workload arrival rates. The relative value
of the coarse grain parameter k when comparing systems was
an indicator of relative scalability with changing workloads.
Table 3 shows these values for the 2 applications analyzed in
this paper. This comparative concept needs more research to
be confirmed more broadly.

A key aspect of this detection method was that the
performance anomaly detection technique was platform and
configuration agnostic. It did not rely on customization to a
specific n-tier application architecture but was based on a
whole of service monitoring approach from just in front of the
servicing entity for each application being measured.

The shape of the change in k and j probability distributions
gave a good indication of a system’s variability in performance
behavior. A tendency to grouping around the change of
 -0.4 " ! " +0.4 for the mainframe system indicated an
application that was more tuned and subject to less variability
in performance compared to the credit card system which had a
more extended range -0.6 " ! " 0.6 . This needs more research
to confirm more broadly.

VI. LIMITATIONS OF DETECTION METHOD
The following limitations of the detection method were

identified:

1. There needed to be enough sample points to properly
fit the CDF curve and reduce variability.

2. Detecting changes in k and j meant that slow downs
were detected relative to current application state. If
the application was tuned well, then the method may
detect events that are not practical to invest time to
tune. Alternatively, if the system was in a poor state
of repair there could be many slow down events that
were missed while efforts were spent dealing with
more significant slow down events. This is both a
limitation and a benefit in that it naturally prioritizes
the requirement to address problems.

3. Quantizing the probability segments into 0.1 lots and
choosing the 5% significance level were arbitrary
choices that may have de-sensitized the method.
Research needs to be done on trending of these
choices to fine tune the detection method.

4. A balancing consideration is the need for quick and
light CPU resource consumption when performing
automated regression calculations. The choice of
regression engine performance and calculation
structure (e.g. max number of regression iterations)
needs to be considered.

VII. CONCLUSIONS AND FUTURE WORK
The hypothesis of this paper was that curve fitting using a

CDF general form involving an exponential term that mimics
the tail was an accurate method of representing a systems
performance and its scalability. Further this modeling method
could be used to detect application slow down events. The
results showed that this hypothesis was true for the corporate
context analyzed and a full day sample from 8am to 6pm
Monday 4/2/2013. The technique was shown to work for a
diverse range of workloads ranging from 76 Tx/5min to 19,025
Tx/ 5min. The method did not rely on customizations specific
to the n-tier architecture of the systems being analyzed and so
the performance anomaly detection technique was shown to be
platform and configuration agnostic.

Further research is required to understand trending of
relative values of k and j for applications with different
transaction mixes and 3 tier application architecture footprints.

It is possible that the relationship between workload and k
can be used to track application scalability over time. The time
of day view of changes in k and j showed a near linear
relationship once the application had reached its stable
transaction profile between 9am and 5pm depending on
system. A further subject of study will be to investigate this
relationship. A simplified approach might be to analyze the

gradient of the line of best fit over an extended period as a
useful indication of trends in scalability gain/loss. If this
simple relationship correlates well then changes in gradient
could be used to direct application tuning work and inform
systems managers of the current risk position of applications.

The CDF form of the nonlinear function used for regression
was univariate. This paper focused on the relationship between
CDF and application service time for each sample over time to
characterize the application performance signature. The
service time was known to be impacted by the workload arrival
rate and hence this variable included possible effects of
changing workload arrival rates. A future piece of work
involves examining multi-variate regression using arrival rate
and service time. This technique may achieve a more sensitive
alignment between the fitted curve and the regression curve.
This would mean the change profile and hence anomaly
detection capability could be improved.

The sample size used in this paper was a whole of day. A
typical busiest day of the week was chosen for all commercial
systems discussed in this paper – Mondays. This mechanism
of application profiling will be productionized and longer term
trending of the regression parameters examined. The
hypothesis of further research work will be that trends in these
parameters will reveal scalability trends that identify longer
term performance issues due to system growth, need for tuning
of dbase query plans, systemic growth in resource consumption
and/or contention. In this way this detection technique can be
analyzed for its ability to function in the short and long term
time scales.

This detection technique could be combined with auto
provisioning models such as those discussed in Tan, et al. [8],
Stewart, et al. [9], and Tan, et al. [10] to achieve just in time
performance anomaly prevention.

ACKNOWLEDGMENT
Richard Gow would like to thank the following people for

assisting him with retrieving transaction logs for the systems
analyzed – Eduardo Soares, Neil Soutar, Peter Jadrijevic, and
Matthew White.

REFERENCES
[1] Ningfang Mi, Cherkasova, Ludmila$; Ozonat, Kivanc$; Symons, Julie$;

Smirni, Evgenia; “Analysis of Application Performance and Its Change
via Representative Application Signatures”, IEEE Network Operations
and Management Symposium, 2008, pp. 216–223, 2008.

[2] A. B. Downey, “The Elusive Goal of Workload Characterization,” ACM
SIGMETRICS Performance Evaluation Review, vol. 26, no. 4, p. Pages
14 – 29, 1999.

[3] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smimi, “Anomaly$?
Application Change$? or Workload Change$? Towards Automated
Detection of Application Performance Anomaly and Change ”,
International Conference on Dependable Systems &Networks:
Anchorage, Alaska, June 24-27 2008, pp. 452 – 461, 2008.

[4] K. Shen, C. Stewart, C. Li, and X. Li, “Reference-driven performance
anomaly identification,” Proceedings of the eleventh international joint
conference on Measurement and modeling of computer systems -
SIGMETRICS ’09, p. 85, 2009.

[5] Q. Zhang, L. Cherkasova, and E. Smirni, “A Regression-Based Analytic
Model for Dynamic Resource Provisioning of Multi-Tier Applications,”
Autonomic Computing, 2007. ICAC ’07. Fourth International
Conference on, p. 27, 2007.

[6] M. Reiser, and S. Lavenberg, “Mean-value analysis of closed multichain
queuing networks”, 1980, J. ACM 27, 2, pages 313-322

[7] B. Urgaonkar, G. Pacifici, and I. B. M. T. J. Watson, “Analytic
Modeling of Multitier Internet Applications,” ACM Transactions on the
Web (TWEB), 2007, Volume 1, Issue 1, Pages 1-35, vol. 1, no. 1, pp. 1–
35, 2007.

[8] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“PREPARE: Predictive Performance Anomaly Prevention for
Virtualized Cloud Systems”, 2012 IEEE 32nd International Conference
on Distributed Computing Systems, no. Vcl, pp. 285–294, Jun. 2012.

[9] C. Stewart, K. Shen, A. Iyengar, and J. Yin, “EntomoModel:
Understanding and Avoiding Performance Anomaly Manifestations,”
2010 IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pp. 3–13,
Aug. 2010

[10] Y. Tan, X. Gu, and H. Wang, “Adaptive system anomaly prediction for
large-scale hosting infrastructures,” Proceeding of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing -
PODC ’10, p. 173, 2010.

[11] H. Li and S. Venugopal, “Using Reinforcement Learning for Controlling
an Elastic Web Application Hosting Platform,” ICAC-11 June 2011, pp.
205–208, 2011.

[12] B. Urgaonkar, G. Pacifici, and I. B. M. T. J. Watson, “Analytic
Modeling of Multitier Internet Applications,” ACM Transactions on the
Web (TWEB), 2007, Volume 1, Issue 1, Pages 1-35, vol. 1, no. 1, pp. 1–
35, 2007.

[13] C. Stewart, T. Kelly, and A. Zhang, “Exploiting Nonstationarity for
Performance Prediction,” Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, pp.
31–44, 2007.

[14] P. Lama and X. Zhou, “Efficient Server Provisioning with Control for
End-to-End Response Time Guarantee on Multitier Clusters,” IEEE
Transactions on Parallel and Distributed Systems, Jan. 2012, Vol.23(1),
pp.78-86, vol. 23, no. 1, pp. 78–86, 2012.

[15] Jeffrey Dean and Luiz Andre Barroso, “The Tail at Scale”,
Communications of the ACM, February 2013, Volume 56, No. 2, pages
74-80

