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Abstract

Due to its high precision as a flow-insensitive pointer analysis, Andersen’s analysis has been
deployed in some modern optimizing compilers. To obtain improved precision, we describe
how to add context sensitivity on top of Andersen’s analysis. The resulting analysis, called
Icon, is efficient to analyse large programs while being sufficiently precise to drive compiler
optimisations. Its novelty lies in summarising the side effects of a procedure by using one
transfer function on virtual variables that represent fully parameterised locations accessed
via its formal parameters. As a result, a good balance between efficiency and precision is
made, resulting in Icon that is more powerful than a 1-callsite-sensitive analysis and less
so than a call-path-sensitive analysis (when the recursion cycles in a program are collapsed
in all cases).

We have compared Icon with Fulcra, a state of the art Andersen’s analysis that is
context-sensitive by acyclic call paths, in Open64 (with recursion cycles collapsed in both
cases) using the 16 C/C++ benchmarks in SPEC2000 (totalling 600 KLOC) and 5 C
applications (totalling 2.1 MLOC). Our results demonstrate scalability of Icon and lack
of scalability of Fulcra. Fulcra spends over 2 hours in analysing SPEC2000 and fails
to run to completion within 5 hours for two of the five applications tested. In contrast,
Icon spends just under 7 minutes on the 16 benchmarks in SPEC2000 and just under
26 minutes on the same two applications. For the 19 benchmarks analysable by Fulcra,
Icon is nearly as accurate as Fulcra in terms of the quality of the built SSA form and
the precision of the discovered alias information.



1 Introduction

Pointer analysis is critical to enable advanced and aggressive compiler optimisations. An-
dersen’s inclusion-based analysis [2] is a highly precise pointer analysis, which is flow-
insensitive (by ignoring control-flow) and context-insensitive (by ignoring calling contexts).
With its recent advances, Andersen’s analysis, which is more precise than Steensgaard’s
unification-based analysis [42], is now scalable for large programs [16]. In the latest release
of the Open64 compiler, its pointer analysis is no longer unification- but rather inclusion-
based, performed with offset-based field sensitivity and 1-callsite-sensitive heap cloning
(with malloc wrappers being recognised as heap allocation sites). Just like GNU GCC,
the overall pointer analysis framework in Open64 remains context-insensitive. However,
many compiler optimisations benefit, in both precision and effectiveness, from more pre-
cise points-to information if context-sensitivity is also considered. Unfortunately, existing
context-sensitive versions of Andersen’s analysis are not scalable to millions of lines of code.
To the best of our knowledge, there is presently no suitable context-sensitive Andersen’s
analysis that can be deployed in modern compilers such as Open64 and GCC.

In this paper, we introduce a whole-program context-sensitive Andersen’s analysis for
C/C++ programs, called Icon, that scales to millions of lines of code. Icon is signifi-
cantly faster than the state-of-the art while achieving nearly the same precision. While
implemented fully in Open64, our analysis applies to any inclusion-based framework.

The development of Icon has been guided by three design principles:

Precision For an optimizing compiler, its pointer analysis must soundly estimate the
points-to information in a program. As far as performance improvements are con-
cerned, it will be unnecessarily costly to obtain context sensitivity if the context of
a call is identified by its full call path. Instead, we prefer to find a faster solution
that may not be theoretically powerful but is practically precise enough in driving
compiler optimisations. Our measurement of precision is the quality of the built
SSA form (in terms of χ and µ operations introduced [8]) and the percentage of
aliases disambiguated. We believe that these two metrics are critical in determining
the effectiveness of compiler optimisations, such as register allocation [5], instruction
scheduling [37], redundancy elimination [4, 53], scratchpad management [25, 26, 56]
and speculative parallelization [14, 36, 47, 58].

Efficiency Context sensitivity should be achieved on top of Andersen’s analysis with as
little overhead as possible for large programs.

Simplicity The solution should be simple conceptually and implementation-wise. To this
end, some recent advances in inclusion-based analysis should be leveraged so that
the existing code base is maximally reused. Specifically, we prefer to achieve context
sensitivity by staying in the same inclusion-based analysis framework.

1.1 The State of the Art

A context-insensitive pointer analysis does not distinguish between different invocations
of a procedure. When analysing a program, passing parameters and return values between
procedures is modeled as assignments without distinguishing their calling contexts. Some
precision loss is illustrated in Figure 1.1. In Figure 1.1(a), the information from one caller
is allowed to flow into another. So both x and y may point to a and b. In Figure 1.1(b),
the information from the two callsites is merged at the entry of foo so that *p and *q
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1 void goo() {
2 int a, b;
3 int *x, *y;
4 x = foo(&a);
5 y = foo(&b);
6 }
7
8 int* foo(int *p) {
9 return p;

10 }

1 int g;
2 void goo1() {
3 int *a, *b;
4 foo(&a, &b);
5 }
6 void goo2() {
7 int *c;
8 foo(&c, &c);
9 }

10
11 void foo(int **p, int **q) {
12 int *r;
13 *p = &g;
14 r = *q;
15 }

(a) (b)

Figure 1.1: Imprecision in context-insensitive analysis.

are considered to alias in both calling contexts. As a result, r is regarded as pointing to
g always even though this is possible only when foo is called inside goo2.

A context-sensitive pointer analysis improves precision by representing calling contexts
of a procedure more accurately. An analysis is k-callsite context-sensitive if different
invocations of a procedure are distinguished by k enclosing callsites in its calling contexts.
In practice, the contexts of a method call are often represented by their acyclic call paths,
with recursion cycles collapsed or unrolled k times. If k represents the maximal length of
acyclic call paths, then the context sensitivity is achieved with full call paths. In Figure 1.1,
precise points-to sets can be obtained with k = 1.

For Java (which relies on heap-only object allocation), a lot of progress has been made
in context-sensitive points-to analysis [22, 29, 31, 38, 39, 40, 41, 46, 48, 49, 51, 52, 54, 55].
However, we have not seen a corresponding success for C and C++ due to their support
for pointer operations such as address-of operator & for both heap and stack objects and
pointer arithmetic. Many flow- and/or context-sensitive analyses [6, 17, 19, 20, 24, 23, 45,
50, 57] have been proposed. According to [1], however, current industrial-strength flow-
and context-sensitive versions of Andersen’s analysis are scalable only for small C/C++
programs. They are not deployable yet in an optimizing compiler. Even if flow sensitivity
is ignored, how to achieve context sensitivity efficiently and precisely on top of Andersen’s
analysis for whole C/C++ programs remains to be an open problem. Among some earlier
attempts at making Andersen’s (flow-insensitive) analysis context-sensitive [13, 32, 33,
30], Fulcra [32] represents a state-of-the art solution. By cloning (conceptually) the
statements in a procedure that may have interprocedural points-to side effects and then
inlining them directly in its callers, Fulcra obtains the most precise points-to information
as an inclusion-based analysis by being context-sensitive with acyclic call paths (i.e., with
recursion cycles collapsed). In obtaining such cloning-based precision, however, Fulcra
does not scale to some large programs [32].
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(a) Distribution of procedures according to the number of pointer formal parameters (PFPs)
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Figure 1.2: Pointer-related information for formal parameters using Andersen’s analysis.
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1.2 Our Insights

Our key observation is that real-world C/C++ programs are likely to be dominated by
procedures with a small number of pointer formal parameters, which are each dereferenced
with a few levels of indirection. Figure 1.2 plots some pointer-related information among
the formal parameters of the procedures in the 21 programs used in our experiments,
including the 15 C and one C++ benchmarks from SPEC2000 (totalling 600 KLOC) and
5 applications (totalling 2.1 MLOC). Most procedures (92.5% on average) have fewer than
four pointer formal parameters (PFPs). Among the procedures with two (three) PFPs,
most of their PFPs, with an average of 89.8% (91.9%), have fewer than four levels of
indirection. This suggests that in the code written by programmers, the formal parameters
of a procedure at its entry tend to have few and simple aliasing relations.

This observation has led to the design of our Icon analysis. Its novelty lies in exploit-
ing parameterised pointer information to achieve context sensitivity on top of Andersen’s
analysis. For a procedure being analysed, Icon represents the abstract locations passed
from its callers and accessed by its dereferenced formal parameters using virtual variables
and keeps track of their aliasing relations during the analysis. This enables the interproce-
dural points-to side effects of a procedure to be summarised with a transfer function that
maps each virtual variable to its points-to set. Each points-to relation is guarded by an
aliasing condition on virtual variables so that context sensitivity can be achieved when it
is “transferred” to its callsites. By using virtual variables rather than individual locations,
the propagation of points-to information is significantly accelerated.

In theory, Icon is more powerful than a 1-callsite-sensitive analysis but less so than
a cloning-based context-sensitive analysis like Fulcra (when the recursion cycles in a
program are collapsed in all cases). In practice, Icon is significantly faster than Fulcra
while achieving nearly the same precision. In addition, Icon is simple as it can be imple-
mented easily on top of Andersen’s analysis, which is widely used with industrial-strength
implementations available.

1.3 Contributions

While symbolic names [11, 20, 28, 50, 57] and transfer functions [50, 57] were previously
used, Icon exploits both in a novel way to obtain a scalable context-sensitive Andersen’s
analysis.

• We introduce a context-sensitive Andersen’s inclusion-based pointer analysis, Icon,
that can be directly and easily deployed in modern optimizing compilers. While
existing solutions are not scalable, Icon, which is fully implemented in Open64,
allows large programs (with millions of lines of code) to be analysed in minutes.

• Icon is the first to achieve context sensitivity on top of Andersen’s analysis by
computing the transfer function for a procedure based on parameterised pointer in-
formation in terms of virtual variables, motivated by the pointer-related information
at the procedure entries in real-world C/C++ programs (Figure 1.2). In addition,
we also propose to accelerate Icon by pre-analysis (to discover non-aliased parame-
ters) and by propagating points-to information first top-down and then bottom-up
on the call graph of a program (to discover aliased parameters eagerly).

• We have evaluated Icon by comparing with Fulcra, a state of the art Andersen’s
analysis that is context-sensitive by acyclic call paths [32], in Open64 (with recursion
cycles collapsed in both cases) using 21 C/C++ programs, including 15 C and 1
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C++ benchmarks in SPEC2000 (600 KLOC) and 5 C applications (2.1 MLOC).
Our results demonstrate scalability of Icon and lack of scalability of Fulcra for
some large programs. Fulcra spends over 2 hours in analysing SPEC2000 and fails
to run to completion within 5 hours for two of the five applications tested, wine

and gdb. In contrast, Icon spends only just under 7 minutes on SPEC2000 and
just under 26 minutes on both wine and gdb. For the 19 benchmarks analysable by
Fulcra, Icon is nearly as accurate as Fulcra in terms of the quality of the built
SSA form and the precision of the discovered alias information.

The rest of this paper is organised as follows. Section 2 provides some more background
information. Section 3 motivates Icon with an example used throughout the paper. Sec-
tion 4 introduces the Icon analysis. Section 5 evaluates Icon and compares it with the
state-of-the art. Section 6 discusses related work and Section 7 concludes the paper.

2 Background

We first describe the canonical representation used for a program and then introduce
Andersen’s analysis by constraint resolution.

2.1 Program Representation

Four types of statements are considered: x = &y (address), x = ∗y (load), ∗x = y (store)
and x = y (copy). Note that x = ∗∗ y can be transformed into x = ∗t and t = ∗y by
introducing a new temporary t. Different fields of a struct are distinguished but arrays
are considered monolithic.

void goo(· · · ) {
int *a1, . . . , *an, *r;
. . .
r = foo(a1, . . . , an);
. . .

}

int* foo(int *f1, . . . , int *fn) {
int *s;
. . .
return s;

}

void goo(· · · ) {
int *a1, . . . , *an, *r;
. . .
foo(&r, a1, . . . , an);
. . .

}

void foo(int **r′, int *f1, . . . , int *fn) {
int *s;
. . .
*r′ = s;

}
(a) (b)

Figure 2.1: Passing return values modeled as passing parameters.

Every call contained in a procedure goo has the form r = foo(a1, . . . , an), where r,
a1, . . . , an are local variables in goo and foo is a callee (resolved on the fly during pointer
analysis). As Icon is context-sensitive, we must keep track of the (modification) side
effects made by foo on the variables accessed in goo. For efficiency considerations, the
modification side effects on the global variables made in all procedures are tracked globally
in the standard manner as in [28, 32]. In contrast, the non-global variables accessed in
goo may be modified in foo in two ways: (1) via the formal parameters of foo and (2)
by passing a return value to goo. Such modification side effects are referred to as the side
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effects of foo in this paper and tracked by using a transfer function for foo. In order to
deal with these two types of side effects on non-globals uniformly, we perform a standard
transformation as shown in Figure 2.1 so that (2) can be dealt with equivalently as (1).

2.2 Constraint-based Andersen’s Analysis

As illustrated in Figure 2.2, Andersen’s analysis discovers points-to information by treating
assignments as subset constraints using a single constraint graph for the entire program
until a fixed point is reached. When context sensitivity is not considered, passing param-
eters and return values between procedures is simply modeled as copy statements.

y=&x;

n=&g;

m=n;

*y=m;

t=*y;

(a) code

Copy Store Load

myt

n

x

{g}

{x}
myt

n

x

{g}

{x} {g}

{g}

{g}

(b) Initialization (c) Fixed point

Figure 2.2: Pointer resolution in a constraint graph.

For the code in Figure 2.2(a), Andersen’s analysis starts with the constraint graph given
in Figure 2.2(b). For the address statements, y=&x and n=&g, the points-to information
is directly recorded for their left-hand side variables. For each of the other three types of
statements, a constraint of an appropriate type is introduced. Then the analysis resolves
loads and stores by adding new copy statements discovered. As y points to x, the two
new copy statements related to x are added as shown in Figure 2.2(c). The new points-to
information discovered is propagated along the edges in the graph until a fixed point is
found. Finally, t is found to point to g.

3 A Motivating Example

We use an example as shown in Figure 3.1 to illustrate how we achieve context sensitiv-
ity on top of Andersen’s analysis. The key novelty is to summarise the side effects of a
procedure in terms of virtual variables that represent fully parameterised pointer infor-
mation at its entry. Guided by the three design principles discussed earlier in Section 1,
Icon is developed to discover precise points-to information efficiently in a simple way by
leveraging the same constraint resolution engine used by Andersen’s analysis.

In the program given in Figure 3.1(a), *p and *q are made aliases but *a and *b are
not aliased after the call to bar. Thus, after the two calls to foo, g will be pointed to by r1

but not by c1. We examine how this fact is discovered by Icon. In a context-insensitive
analysis, however, g will be conservatively estimated as being pointed to by both r1 and
c1.

Icon analyses a program by traversing its call graph (with recursion cycles collapsed)
iteratively, first top-down and then bottom-up. In a top-down phase, the points-to infor-
mation is propagated downwards from a caller to its callees, with the side effects of all
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1 int g, i, j, k;
2 void main() {
3 int **p, **q, **r, **a, **b, **c;
4 int *p1, *q1, *r1, *a1, *b1, *c1;
5 p = &p1; q = &q1; r = &r1;
6 a = &a1; b = &b1; c = &c1;
7 p1 = &i; q1 = &j; a1 = &k;
8 bar(&p, &q);
9 foo(p, q, r); // *p and *q are aliases but *a and *b are not

10 foo(a, b, c);
11 }

12 void bar(int ***u, int ***v) {
13 *u = *v;
14 }
15 void foo(int **x, int **y, int **z) {
16 int *m, *t;
17 m = &g;
18 *y = m;
19 t = *x;
20 *z = t;
21 }

(a) An example program

x

Alias Graph: Points-to
y z

V x
1 = V y

1 = V z
1 ={p1, a1} {q1, b1} {r1, c1}

V x
2 = V y
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y m
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V x
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1 )}

V z
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true
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{(true, V x
1 )}
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2 )}

{(true, V y
1 )}

{(true, V x
2 )}

{(true, V x
2 )}

Constraint Graph: Copy Store Load

Transfer Function:
Transfoo(V y

1 ) = {(true, g)}
Transfoo(V z

1 ) = {(true, V x
2 )}

x

Alias Graph: Points-to
y z

V x
1 = Ax,y

1,1
V y
1 = V z

1 =

Cx,y
1,1

Cx,y
1,1

Cx,y
2,2

Cx,y
2,2

{p1, q1, a1} {q1, b1} {r1, c1}

V x
2 = V y

2 = V z
2 =Ax,y

2,2{i, j, k, g} {j, g} {i, k}
true

true

true

true

true

true

x t z

y m

V y
1

V x
1

Ax,y
1,1

{(true, V z
1 )}

{(Cx,y
1,1, g)}

V z
1

Cx,y
1,1

Cx,y
1,1
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e
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true

{(true, g)}

{(true, g), (Cx,y
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x,y
2,2)}

{(true, V x
1 ), (Cx,y

1,1, A
x,y
1,1)}

{(true, V x
2 ), (Cx,y

2,2, A
x,y
2,2)}

{(true, V y
1 ), (Cx,y

1,1, A
x,y
1,1)}

{(Cx,y
1,1, g), (true, V x

2 )}

{(Cx,y
1,1, g), (true, V x
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Constraint Graph: Copy Store Load

Transfer Function:
Transfoo(V y

1 ) = {(true, g)}
Transfoo(V z

1 ) = {(true, V x
2 ), (Cx,y

1,1, g)}

(b) First iteration (c) Second iteration

Figure 3.1: Parameterised summarisation for foo with virtual variables. The points-to set
for a node is not completely shown but it can be read off as the set of all objects reaching
the node by copy edges.

callsites being ignored. In a bottom-up phase, the propagation of the points-to information
is reversed from a callee to its callers, with the points-to side effects of the callee being
summarised and transferred to its callsites. In both phases, new points-to information is
discovered in the same constraint resolution framework.

We focus on how foo is summarised and how its summarised side effects are transferred
to its two callsites. The call graph comprises a root node, main, and its two child nodes,
bar and foo.

3.1 First Iteration

Top-Down The analysis starts with main and then moves to bar and foo. The points-to
relations in lines 5 – 7 in main are discovered trivially and propagated downwards into bar

and foo. In our analysis, the points-to relations from different callsites in a procedure are
merged and represented using an alias graph at its entry but handled (at least 1-callsite)

context-sensitively. At this stage, the one for foo is given in Figure 3.1(b). V f
1 and V f

2 ,
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where f ∈ {x,y,z}, stand for ∗f and ∗ ∗f , respectively. These are virtual variables, each
of which represents the set of non-local locations passed from the two callsites of foo and
accessed by the dereferenced parameters in foo.

Each procedure has its own constraint graph except that copy edges are guarded, stat-
ing the conditions under which the corresponding relations hold. In the special case when
a copy edge is guarded by true, then the corresponding relation always holds. Andersen’s
analysis is applied to the constraint graphs of all procedures combined, except that (1) the
side effects of all callsites are ignored and (2) virtual variables are used to parameterise
pointer information at procedure entries. In the case of foo, the initial constraint graph
(not shown) comprises (1) the constraints corresponding to the statements in lines 17 –
20 and (2) the points-to relations in its alias graph. After the fixed-point is reached, we
obtain the constraint graph given in Figure 3.1(b).

Bottom-Up Andersen’s analysis is applied separately to the constraint graphs of differ-
ent procedures. The interprocedural points-to side effects of a procedure are summarised
and transferred to its callsites. In the case of foo, there is no need to re-run Ander-
sen’s analysis as no new points-to information is discovered. The transfer function of
foo that maps V

y
1 and V z

1 to their points-to sets as shown is obtained. Note that x is
not modified inside. Similarly, the transfer function of bar (not shown) is computed:
Transbar(V

u
1 ) = {(true, V v

2 )}. When main is analysed, the side effects of foo on V y
1 and

V z
1 are transferred to its two callsites. For the first callsite, V y

1 and V z
1 stand for q1 and

r1, respectively. So q1 has a new target g and r1 a new target i. For the second callsite,
V

y
1 and V z

1 stand for b1 and c1, respectively. So b1 has a new target g and c1 a new
target k. Similarly, applying bar’s transfer function to its callsite, we find that p has a
new target q1.

3.2 Second Iteration

Top-Down Some new points-to relations that have been discovered in the first itera-
tion are propagated downwards. At this stage, foo’s alias graph is the same as that in
Figure 3.1(b) except that the contents of its virtual variables have been updated with the
new points-to information, as shown in Figure 3.1(c). In addition, the constraint graph
for foo remains the same as the one in Figure 3.1(b).

Bottom-Up When foo is analysed, its alias graph is inspected. At this stage, the
alias graph is the same as the one shown in Figure 3.1(c) except that the four points-

to relations, x
Cx,y

1,1−→ Ax,y
1,1 , y

Cx,y
1,1−→ Ax,y

1,1 , V x
1

Cx,y
2,2−→ Ax,y

2,2 and V y
1

Cx,y
2,2−→ A

x,y
2,2 , do not exist yet.

Once some new points-to information is available in an alias graph, Icon will proceed to
identify and establish all the new aliasing relations between virtual variables and update
the alias graph accordingly. In the case of foo, V x

1 and V y
1 are found to alias. In addition,

V x
2 and V y

2 are also found to alias. To represent these new aliasing relations, the four
aforementioned points-to relations are introduced. Here, Cx,y

1,1 is an aliasing condition that

encodes V x
1 ∩V

y
1 6= ∅. Similarly, Cx,y

2,2 encodes V x
2 ∩V

y
2 6= ∅. A

x,y
1,1 (Ax,y

2,2 ) symbolises the set

of aliased locations between V x
1 and V y

1 (V x
2 and V y

2 ). Such sets are placeholders as their
contents are not directly used during pointer resolution. Hence, the contents of Ax,y

1,1 and

Ax,y
2,2 are not shown in Figure 3.1(c). It is the presence of aliasing relations like Cx,y

1,1 and

Cx,y
2,2 that serves to enable points-to information to be propagated conditionally across the

aliased locations.
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Re-propagating the new points-to information just introduced across the constraint
graph for foo in Figure 3.1(b) yields the fixed point given in Figure 3.1(c). As a result,
the transfer function for foo is updated from the one given in Figure 3.1(b) to the one
given in Figure 3.1(c). During this second round of guarded constraint resolution, the two
new copy edges added for Ax,y

1,1 are guarded by Cxy
1,1. This indicates that V z

1 points to g

only when Cx,y
1,1 holds.

By applying foo’s transfer function to its first callsite at line 9, we find that Cx,y
1,1 =

(V x
1 ∩ V

y
1 6= ∅) = ({q1} 6= ∅) = true, where V x

1 = {p1,q1} and V y
1 = {q1} contain only

the locations propagated from the first callsite. Thus, j and g are new targets of r1. For
the second callsite at line 10, Cx,y

1,1 = (V x
1 ∩ V

y
1 6= ∅) = (∅ 6= ∅) = false, where V x

1 = {a1}
and V y

1 = {b1} contain only the locations propagated from the second callsite. So no new
points-to relations are found, implying that g cannot be pointed to by c1. This mapping
process is explained in more detail in Example 5.

4 The Icon Algorithm

As motivated by our example, the earlier Icon discovers the aliasing information at proce-
dure entries, the earlier it can find the points-to sets for more pointers, and consequently,
the faster the analysis converges. Therefore, its three components are structured as shown
in Algorithm 1.

ALGORITHM 1: The Icon Algorithm

1 Pre-Analysis
2 repeat
3 Top-Down Analysis
4 Bottom-Up Analysis

until5 a fixed point is reached ;

Pre-analysis discovers non-aliased formal parameters and initialises the alias graphs
for all procedures. During a top-down phase, the points-to information in a program is
propagated top-down across its acyclic call graph, with all recursion cycles collapsed on
the fly. During a bottom-up phase, the direction of points-to information propagation
is reversed. During each iteration, the top-down phase precedes the bottom-up phase so
that procedure pointers can be resolved as soon as possible as suggested in [32]. In Icon,
doing so has an additional benefit: the aliasing relations among the formal parameters of
a procedure can be discovered as soon as possible.

Each procedure has its own constraint graph. A top-down phase processes the con-
straint graphs of all procedures together while a bottom-up phase deals with each indi-
vidually. In both phases, guarded constraint propagation is used. Icon achieves context
sensitivity by maintaining alias graphs during the analysis, causing the side effects of a
procedure to be summarised iteratively.

Section 4.1 discusses the guarded constraint resolution used in both top-down and
bottom-up phases. Section 4.2 introduces pre-analysis. Section 4.3 focuses on top-down
analysis and Section 4.4 on bottom-up analysis. Section 4.5 discusses some salient prop-
erties of Icon.
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4.1 Guarded Constraint Propagation

Much progress has been made on efficiently solving the inclusion-based constraints for
pointer analysis [16, 18, 30, 34, 35]. We extend a recent pointer resolution algorithm,
which is adapted from Wave Propagation [35] and implemented by the Open64 team in
the Open64 compiler, to perform the guarded constraint resolution in Icon (in the presence
of virtual variables).

Table 4.1: Rules used by guarded constraint resolution.

Statement Constraint Resolution

Address x = &y {(true, y)} ∈ ptr(x)

Copy x = y ptr(x) ⊇true ptr(y)

Load x = ∗y ∀(c′, y′) ∈ ptr(y) : x ⊇c′ y
′

Store ∗x = y ∀(c′, x′) ∈ ptr(x) : x′ ⊇c′ y

The rules used by SolveConstraints are given in Table 4.1. The notation ptr(p)
stands for the points-to set of a variable p. The notation ptr(a) ⊇c ptr(b) means that for
each (c′, o) ∈ ptr(b), its propagation into a is conditional so that (c ∧ c′, o) ∈ ptr(a). In
Icon, each pointed-to object is guarded. When resolving a load or a store, all copy edges
derived are guarded accordingly.

Example 1 When moving from Figure 3.1(b) to Figure 3.1(c), two copy edges are added.

When resolving *y = m in line 18, y points to (Cx,y
1,1 , A

x,y
1,1 ). So A

x,y
1,1

Cx,y
1,1⇐= m is added. When

resolving t = *x in line 19, x points to (Cx,y
1,1 , A

x,y
1,1 ). As a result, t

Cx,y
1,1⇐= Ax,y

1,1 is added.

4.2 Pre-Analysis

Steensgaard’s unification-based analysis [42] is used to bootstrap Icon. By interpreting
assignments as equality rather than subset constraints, Steensgaard’s analysis is less precise
but significantly faster than Andersen’s analysis. Pre-analysis serves two purposes. First,
many formal parameters that do not alias, as observed in Figure 1.2, are discovered,
avoiding unnecessary aliasing tests later. Second, an alias graph for each procedure that
is expressed in terms of virtual variables, as illustrated in our example, is initialised. The
domain of a virtual variable, which denotes the set of locations that it represents in the
subsequent analysis, is also determined.

Let us describe how to initialise an alias graph, AGP = (VP , EP ), for a procedure P .
We focus on an arbitrary parameter f of P since all parameters are handled identically and
independently. After Steensgaard’s analysis, the points-to graph Gf for f , which comprises
the points-to relations originating from f , is always a “linked list” with at most one cycle
at its end. As Steensgaard’s analysis is used, all locations pointed by a variable are unified
into the same equivalence class. For example, if the points-to relations originating from f
are f → a, a → b and a → c, then Gf is f → {a} → {b, c} with two equivalence classes.
If the points-to relations are f → a, a → b, b → c, c → b and c → d instead, then Gf

becomes f → {a} → {b, c, d}

x

with a cycle at its end.
Let depth(f) be the number of equivalence classes in the points-to graph Gf . AGP =

(VP , EP ) is initialised as follows. For every parameter f of P , we add the depth(f) + 1

10



nodes that represent f (which is V f
0 ), V f

1 , . . . , V
f
depth(f) and the depth(f) edges f

true−→ V f
1 ,

V f
1

true−→ V f
2 , . . . , V

f
depth(f)−1

true−→ V f
depth(f). If Gf has a cycle (at its end), we also add

V f
depth(f)

true−→ V f
depth(f).

V f
1 , . . . , V

f
depth(f) are called virtual variables, each of which is used to represent the set

of non-local locations passed from P ’s callers and accessed by P ’s dereferenced formal

parameters during the analysis. Intuitively, V f
i stands for

︷ ︸︸ ︷
∗ · · · ∗ f with exactly i ∗’s if

i < depth(f) and all
︷ ︸︸ ︷
∗ · · · ∗ f ’s with depth(f) or more ∗’s if i = depth(f). Thus, each

guarded edge thus introduced represents a points-to relation that always holds since the
guard is true.

When Gf has a cycle, our parameterisation-based approach looks seemingly conserva-

tive since V f
depth(f) represents

︷ ︸︸ ︷
∗ · · · ∗ f ’s with depth(f) or more ∗’s. However, as suggested

by the statistics given in Figure 1.2 and evaluated further in our experiments in Section 4.5,
little precision is lost for real code.

Each virtual variable V f
i is created with empty points-to information in pre-analysis

but will be iteratively updated (or filled up) during the subsequent pointer analysis. The

domain of V f
i , denoted dom(V f

i ), is simply the i-th equivalence class in the points-to graph
Gf , with i starting from 1.

Example 2 AGfoo is initialised as shown in Figure 3.1(b), except that all the virtual
variables are empty initially. After Steensgaard’s analysis, the points-to graphs for Gx, Gy

and Gz are x → e1 → e2, y → e1 → e2 and z → e3 → e2, where e1 = {p1,q1,a1,b1},
e2 = {i,j,k,g} and e3 = {r1,c1}. Thus, each formal parameter is associated with two
virtual variables. In addition, dom(V x

1 ) = dom(V y
1 ) = e1, dom(V x

2 ) = dom(V y
2 ) = e2,

dom(V z
1 ) = e3 and dom(V z

2 ) = e2.

Lemma 1 Given a formal parameter f , V f
i and V f

j never alias with each other if i and
j are different.

Proof 1 As each virtual variable represents an equivalence class created by Steensgaard’s
analysis. Therefore, dom(V f

i ) ∩ dom(V f
j ) = ∅. Hence, V f

i and V f
j do not alias.

4.3 Top-Down Analysis

During a top-down phase, Icon resolves all the constraints in a program except that the
side effects of all callsites are ignored. As a result, the points-to information propagated
interprocedurally only flows from a caller to its callees. By summarising the side effects of a
procedure using a transfer function in terms of virtual variables, this phase is surprisingly
simple and efficient. Andersen’s analysis is simply performed on the constraint graphs
of all procedures in a program simultaneously except the guarded constraint resolution
described in Section 4.1 is used. To disregard the side effects of a callee invoked at a
callsite, we simply do not apply its transfer function at the callsite.

The new points-to information is propagated downwards from a caller into its callees.
Let P be a procedure invoked at a callsite. Let f be a formal parameter of P and a the
corresponding actual parameter at the callsite. Whenever some new points-to information
for a is discovered, it is propagated into the virtual variables V f

1 , . . . , V
f
depth(f) of f . For

each target x pointed by a directly or indirectly such that x ∈ dom(V f
i ), two cases are

distinguished. If x is a virtual variable, then x is flattened so that all the actual points-to
targets represented by x are inserted into V f

i . Otherwise, x itself is inserted into V f
i .
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Example 3 Consider the top-down phase performed during the first iteration in Fig-
ure 3.1(b). The constraint graph for foo initially consists of the four constraints in lines
17 – 20 and those in its alias graph. In main, there are two callsites to foo. The points-to
relations for their actual parameters are discovered in lines 5 – 7 in main. There are six
virtual variables for foo with their domains given in Example 2. By propagating the new
points-to relations discovered in main into these virtual variables, which are empty initially,
we obtain foo’s alias graph in Figure 3.1(b). Note that p→ p1→ i and a→ a1→ k are
propagated into V x

1 and V x
2 , q → q1 → j and b → b1 into V y

1 and V y
2 , and r → r1 and

c → c1 into V z
1 and V z

2 . Once Andersen’s analysis (using guarded constraint resolution)
is completed, the fixed-point found for foo is given in Figure 3.1(b).

Suppose we add a call goo(x) inside foo, where goo(int **s) { ... } is unspecified
here. As x→ V x

1 , where V x
1 = {p1,a1}, then p1 and a1 will be propagated into the virtual

variable V s
1 of goo after the points-to target V x

1 is flattened since V x
1 is virtual.

During top-down analysis, the call graph of a program is updated as follows. First, the
call graph is expanded on the fly whenever a new callee pointed by a procedure pointer is
detected. Second, each recursion cycle, i.e., SCC (strongly-connected component) detected
is collapsed so that all procedures contained inside are analysed context-insensitively.

4.4 Bottom-Up Analysis

During a bottom-up phase, Icon resolves all the constraints in a program by accounting
for the side effects of all callsites. As a result, the points-to information propagated
interprocedurally flows upwards from a callee into its callers. Each SCC has its own
constraint graph. Andersen’s analysis is applied to these constraint graphs separately
using our guarded constraint resolution.

We traverse the SCCs in a program’s call graph in their reverse topological order. On
visiting an SCC, we discover its new points-to relations parametrically in terms of the
virtual variables at its entry. At the same time, its interprocedural points-to side effects
on virtual variables are obtained iteratively. The entry of an SCC is formed by combining
the entries of all procedures contained in the SCC admitting calls from outside the SCC.
Thus, their alias graphs are naturally merged. For this reason, we shall speak of SCCs
and procedures interchangeably below.

ALGORITHM 2: Bottom-Up Analysis

1 for each SCC P in the program’s call graph in reverse topological order do
2 Stage 1: UpdateAliasGraph(P )
3 Stage 2: ApplyTransFun(P )
4 Stage 3: SolveConstraints(P )

As shown in Algorithm 2, an SCC P is analysed in three stages. First, P ’s alias graph
is updated to establish any new aliasing relations for its virtual variables. Second, the
interprocedural points-to side effects at P ’s callsites are accounted for. Finally, a new
round of guarded constraint propagation is started to discover more points-to relations for
P , if needed. Due to a cyclic dependency between Stages 2 and 3, Section 11 can be read
before Section 11 to ease understanding.
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Stage 1: Updating Alias Graphs

After the preceding top-down phase in the current iteration is over, some virtual variables
of a procedure P may contain new points-to targets. As a result, there may be new aliases
formed among the virtual variables of P . Note that the virtual variables of the same
parameter do not alias with each other by Lemma 1.

ALGORITHM 3: UpdateAliasGraph(P ) //AGP =(VP , EP )

1 repeat
2 for every pair of formal parameters f and g of P do
3 if NON-ALIAS(f, g) then
4 continue

5 for every pair of virtual variables V f
i and V g

j in VP (for some i and j) such that

V f
i ∩V

g
j 6=∅ do

6 if there exists C(V f
i , V g

j ) = V f
i ∩ V g

j 6= ∅ encoded earlier in line 8 then

7 continue

8 Encode C(V f
i , V g

j ) as V f
i ∩ V g

j 6= ∅
9 Add a new aliasing variable Af,g

i,j , which is a placeholder standing for V f
i ∩ V g

j

10 Add V f
i−1

C(V
f
i ,V

g
j )

−→ Af,g
i,j and V g

j−1

C(V
f
i ,V

g
j )

−→ Af,g
i,j

where V f
0 denotes f and V g

0 denotes g by the construction of an alias graph
(when i = 1)

until11 no new aliases are found ;

UpdateAliasGraph given in Algorithm 3 is simple. We examine every pair of pa-
rameters f and g to look for new aliasing relations (line 1). If f and g are discovered not
to alias in pre-analysis, we are done (lines 3 – 4). Otherwise, we proceed to discover new

aliasing relations between V f
i , a virtual variable of f , and V g

j , a virtual variable of g (line

5). We introduce a new aliasing relation between V f
i and V g

j in P ’s alias graph (lines 8

– 10) if it is not encompassed by an existing one (lines 6 – 7). In line 9, Af,g
i,j symbolises

V f
i ∩V

g
j but is not actually computed. Such aliasing variables serve as a conduit to allow

points-to information to be propagated along aliased locations.

Example 4 Let us apply UpdateAliasGraph to foo during the second iteration illus-
trated in Figure 3.1(c). Initially, foo’s alias graph is the same as that in Figure 3.1(b)
except that the contents of all virtual variables are shown as in Figure 3.1(c). Since
V x
1 ∩ V

y
1 = {q1}, Cx,y

1,1 is introduced to encode V x
1 ∩ V

y
1 6= ∅. By using Ax,y

1,1 to symbolise

V x
1 ∩ V

y
1 , two new points-to relations, V x

0

C(V x
1 ,V

y
1 )−→ Ax,y

1,1 and V y
0

C(V x
1 ,V

y
1 )−→ Ax,y

1,1 , are intro-

duced, where V x
0 and V y

0 stand for x and y, respectively. Similarly, Since V x
2 ∩V

y
2 = {j, g},

Cx,y
2,2 is introduced to encode V x

2 ∩ V
y
2 6= ∅. By using Ax,y

2,2 to symbolise V x
2 ∩ V

y
2 , two new

points-to relations, V x
1

C(V x
2 ,V

y
2 )−→ Ax,y

2,2 and V y
1

C(V x
2 ,V

y
2 )−→ Ax,y

2,2 , are introduced. As a result,
foo’s alias graph has been updated from Figure 3.1(b) to Figure 3.1(c).

It is easy to see that UpdateAliasGraph terminates as the number of aliasing re-
lations is finite. The following lemma states that all aliasing relations at the entry of a
procedure are captured.
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Lemma 2 (Aliasing) Let f and g be two formal parameters of a procedure P . If V f
i and

V g
j alias for some i and j, then there must exist an aliasing relation C and an aliasing

variable A such that V f
i−1

C−→ A and V g
j−1

C−→ A in P ’s alias graph, where C = C(V f
i , V

g
j )

and A = Af,g
i,j .

Proof 2 Following from the construction of an alias graph given in Algorithm 3.

Stage 2: Applying Transfer Functions

Let us describe how to transfer context-sensitively the side effects of every callee Q invoked
at each callsite I that is contained in a procedure P . For a virtual variable v of Q, we
write MQ

I (v) to represent the subset of v that is propagated only from the callsite I. For

an aliasing condition c = vi ∩ vj 6= ∅ that appears in Q’s alias graph, we overload MQ
I by

writing MQ
I (c) to mean MQ

I (vi) ∩MQ
I (vj) 6= ∅, which represents the aliasing condition

created at the callsite I alone (as if the other callsites were non-existent) .

ALGORITHM 4: ApplyTransFun(P )

1 for each callsite I in P do
2 for each callee Q invoked at callsite I do

3 for each virtual variable V f
i of Q do

4 S ←−MQ
I (V

f
i )

5 for each (c, v) ∈ TransQ(V
f
i ) do

6 if MQ
I (c) holds then

7 if v is a virtual variable V g
j of Q then

8 T ←−MQ
I (V

g
j )

else
9 T ←− {v}

10 for (s, t) ∈ S × T do
11 Insert (true, t) into s’s points-to set in P ’s constraint graph

ApplyTransFun given in Algorithm 4 is straightforward. The transfer function
TransQ referred to in line 5 is defined precisely in Section 11 below. It is worth em-
phasising that a guarded points-to relation (c, v) created in a callee Q is ignored at a

callsite I when its guard MQ
I (c) evaluates to false at the callsite (line 6). As a result, the

imprecision illustrated in Figure 1.1(b) is avoided.

Example 5 Consider Figure 3.1(c) again. Let us illustrate Algorithm 4 for main by
applying Transfoo(V

z
1 ) = {(true, V x

2 ), (Cx,y
1,1 , g)} to its two callsites at lines 9 – 10 where

foo is invoked. We have P = main, Q = foo and I ∈ {9, 10}. In the first callsite at
line I = 9, we know from Figure 3.1(c) that Mfoo

9 (V z
1 ) = {r1} and Mfoo

9 (V x
2 ) = {i,j}.

From the target (true, V x
2 ), the points-to relations r1

true−→ i and r1
true−→ j are established

at this callsite. For the other target (Cx,y
1,1 , g), we know that Mfoo

9 (Cx,y
1,1 ) = (Mfoo

9 (V x
1 ) ∩

Mfoo
9 (V y

1 ) 6= ∅) = ({p1,q1} ∩ {q1} 6= ∅) = ({q1} 6= ∅) = true. So the points-to relation

r1
true−→ g is also found. For the second callsite at line I = 10, Mfoo

10 (V z
1 ) = {c1} and

Mfoo
10 (V x

2 ) = {k}. As Mfoo
10 (Cx,y

1,1 ) = (Mfoo
10 (V x

1 ) ∩Mfoo
10 (V y

1 ) 6= ∅) = ({a1} ∩ {b1} 6= ∅) =

(∅ 6= ∅) = false, only c1
true−→ k is found at this second callsite.
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Stage 3: Solving Constraints

The guarded constraint propagation is performed on the constraint graph of a procedure
P using the rules given in Table 4.1 as follows [35] (by considering the new points-to
relations added to P ’s alias graph and the new ones introduced at P ’s callsites). First,
points-to cycles are detected and collapsed to make the constraint graph acyclic. Second,
the points-to information is propagated across the existing copy edges. Third, all load
and store edges are processed, resulting in new copy edges to be added to the constraint
graph. The process terminates once a fixed point is reached.

Finally, the interprocedural points-to side effects of P are simply expressed on its virtual
variables with one single transfer function, denoted TransP . In particular, TransP (V f

i ) is

directly read off as the points-to set of V f
i in P ’s constraint graph. However, V f

i+1 is not

included because ∗V f
i = V f

i+1, i.e.,
︷ ︸︸ ︷
∗ · · · ∗ f =

︷ ︸︸ ︷
∗ · · · ∗ f with i+1 ∗’s in both sides represents

a no-op (assignment).

Example 6 Consider Figure 3.1(c). The points-to set at a node is not shown completely
to avoid cluttering. After a fixed point has been reached, the points-to sets {(true, g)} and
{(true, V x

2 ), (Cx,y
1,1 , g} will be directly available at V y

1 and V z
1 , respectively. So the transfer

function Transfoo as shown is trivially available.

4.5 Soundness and Context Sensitivity

As Icon represents a generalisation of Andersen’s analysis with context sensitivity being
realised. It suffices to argue briefly why the soundness of our analysis is still maintained.
An analysis is sound for a program if it over-approximates its points-to relations. In
addition, we also examine the precision achieved by Icon in terms of the accuracy of its
points-to information.

Theorem 1 (Soundness) Icon is sound.

Proof 3 Andersen’s analysis is sound. It suffices to show that its soundness is still main-
tained by Icon in achieving context sensitivity in its three phases in Algorithm 1. Pre-
analysis is sound as Steensgaard’s analysis is. Our top-down analysis performs essentially
Andersen’s analysis with the side effects of all callsites ignored. Such side effects are con-
sidered when performing Andersen’s analysis during our bottom-up analysis. Finally, all
aliasing relations at procedure entries are tracked by Lemmas 1 and 2 and our guarded
constraint resolution rules are the same as the standard ones except that copy edges are
guarded by aliasing relations correctly established by Lemma 2.

Recall that when the points-to graph Gf for a formal parameter f of a procedure P

contains a cycle at its end, V f
depth(f) stands for all

︷ ︸︸ ︷
∗ · · · ∗ f ’s with depth(f) or more ∗’s in

P . In this case, some points-to relations may be over-approximated when P is analysed.
Therefore, the following theorem is stated under a caveat related to such imprecision
inherited from Steensgaard’s analysis.

Theorem 2 (Context-Sensitivity) Suppose the points-to graph Gf obtained in pre-
analysis is acyclic for every formal parameter f of every procedure P in a program. Then
Icon is context-sensitive for the program (1) by at least 1-callsite and (2) by (acyclic) call
paths if the formal parameters of every procedure are alias-free.
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Proof 4 If Gf is acyclic, then every virtual variable V f
i for every procedure P represents

precisely the set of non-local locations that may be passed from its callers, i.e.,
︷ ︸︸ ︷
∗ · · · ∗ a with

exactly i ∗’s for each corresponding actual parameter a. Therefore, Statement (1) is true
because Icon’s aliasing information is at least 1-callsite-accurate (line 6 in Algorithm 4).
In the absence of aliasing at all procedure entries, the side-effects of every procedure are
accounted for as if the procedure were cloned at each of its callsites. Thus, Statement (2)
is true.

void goo() {
int i, j;
int *p, *q = &i
int *a, *b = &j;
bar(&p, q);
bar(&a, b);

}
void bar(int **x, int *y) {

foo(x, y);
}
void foo(int **u, int *v) {

*u = v;
}

int g;
void goo1() {

int *a, *b, *x;
x = bar(&a, &b);

}
void goo2() {

int *c, *y;
y = bar(&c, &c);

}
int* bar(int **x, int **y) {

int *z;
foo(x, y, &z);
return z;

}
void foo(int **u, int **v, int **w) {

*u = &g;
*w = *v;

}
(a) (b)

Figure 4.1: Context-sensitivity of Icon.

It is possible to capture better the aliasing information at a procedure entry by using
a more precise but more expensive pre-analysis or building its virtual variables on the fly
together with Icon. This does not appear to be necessary in practice as Steensgaard’s
analysis is a good choice for our pre-analysis. Precision loss is small when some points-to
graphs Gf ’s have cycles at their tails (Section 4.2). For the 16 SPEC benchmarks used,
176.gcc is the worst but with only 3.5% of all Gf ’s containing cycles. The average across
these benchmarks is only 1.3%.

Example 7 Let us illustrate Theorem 2 with two small programs. Icon is context-
sensitive by call paths in Figure 4.1(a) due to the absence of aliases. Propagating the
modification side effects of foo with Transfoo(V

u
1 ) = {(true, V v

1 )} into bar, we obtain
Transbar(V

x
1 ) = {(true, V y

1 )}. By propagating the modification side effects of bar into its

two callsites, we obtain p
true−→ i and a

true−→ j context-sensitively. In Figure 4.1(b), which
is slightly modified from Figure 1.1(b), Icon is only 1-callsite-context-sensitive. Given

that V x
1 = {a,c} and V y

1 = {b,c}, V z
1
true−→ g is created when the callsite to foo in bar is

analysed. As a result, x
true−→ g is generated when the callsite to bar in goo1 is analysed.

Similarly. y
true−→ g is generated when the callsite to bar in goo2 is analysed. However,

the spurious x
true−→ g will be avoided if a 2-callsite-context-sensitive analysis is used.

By using virtual variables, Icon is more precise than a 1-callsite-sensitive analysis (in
the same inclusion-based framework with recursion cycles collapsed in both cases) and
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makes a good tradeoff between efficiency and precision as evaluated extensively below.

5 Evaluation

In our experimental validation, we show that Icon has met the three design principles
mentioned earlier in Section 1: precision, efficiency and simplicity. We present our results
and analysis for 21 C/C++ programs with a total of 2.7 MLOC, including the 15 C pro-
grams and 1 C++ from SPEC2000 (600 KLOC) as well as five open-source C applications
(2.1 MLOC). The five applications are wine-0.9.24 (a tool that allows windows applica-
tions to run on Linux), icecast-2.3.1 (a steaming media server), gdb-6.8 (a debugger),
httpd-2.0.64 (an HTTP server) and sendmail-8.14.2 (a general-purpose internet email
server).

Table 5.1: Benchmark characteristics (the last two columns are produced with no proce-
dure pointers resolved).

Program KLOC #Procs #Pointers #Loads+Stores
#Callsites

#SCCs
Largest

Total Indirect SCC

164.gzip 8.6 113 3004 586 418 2 0 0
175.vpr 17.8 275 7930 2160 1995 2 0 0
176.gcc 230.4 2256 134380 51543 22353 140 179 398
177.mesa 61.3 1109 44582 17320 3611 671 1 1
179.art 1.2 29 600 103 163 0 0 0
181.mcf 2.5 29 1317 526 82 0 1 1
183.equake 1.5 30 1203 408 215 0 0 0
186.crafty 21.2 112 11883 3307 4046 0 5 2
188.ammp 13.4 182 9829 1636 1201 24 6 2
197.parser 11.4 327 8228 2597 1782 0 42 3
252.eon 41.2 1296 41950 4001 12733 80 17 1
253.perlbmk 87.1 1079 54816 20900 8470 58 12 322
254.gap 71.5 857 61435 22840 5980 1275 33 20
255.vortex 67.3 926 40260 11256 8522 15 12 38
256.bzip2 4.7 77 1672 434 402 0 0 0
300.twolf 20.5 194 20773 8657 2074 0 5 1
gdb-6.8 474.5 7810 337706 105917 52462 2967 170 128
httpd-2.064 128.1 3000 60027 18450 3959 200 12 4
icecast-2.3.1 22.3 603 15098 9779 877 40 14 1
sendmail-8.14.2 115.2 2656 107242 29220 16973 381 31 76
wine-0.9.24 1338.1 77829 1330840 137409 362787 23523 251 313

Some statistics on these 21 C/C++ programs, which are obtained on their intermediate
representations (including library code) before procedure pointers are resolved, are given
in Table 5.1. We will also briefly discuss and analyse our results on the 12 C/C++
benchmarks from SPEC2006, which reveal the same trend as the 21 programs focused on
in this paper.

Our computer platform is a 3.0GHz quad-core Intel Xeon running Red Hat Enterprise
Linux 5 (Linux kernel version 2.6.18) with 16GB memory.
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5.1 Methodology

There are only a few earlier attempts [13, 32, 33, 30] to achieve context sensitivity on top
of Andersen’s analysis for C/C++. As discussed in Section 6, Fulcra [32] represents a
state-of-the art solution. It is also the most precise inclusion-based analysis since it clones
(conceptually) the statements in a procedure with interprocedural points-to side effects
and inlines them at its callers.

Therefore, we compare Icon and Fulcra in terms of their efficiency and precision on
analysing large C/C++ programs. Just like Icon, Fulcra also collapses the recursion
cycles (or SCCs) in a program so that the procedures in an SCC are analysed context-
insensitively. Otherwise, Fulcra is even more unscalable, especially for large programs
[32].

We show that Icon spends just under 35 minutes on analysing all the 21 programs in
the benchmark suite (an average of less than 1.7 minutes per program) while achieving
nearly the same precision as that of Fulcra. In contrast, Fulcra spends over 2 hours
in analysing 19 programs and fails to run to completion in 5 hours for the remaining
two. To highlight further the importance of our parameterisation-based approach, we also
demonstrate the performance advantages of Icon over Nonpa. Recall that Nonpa is a
non-parameterised version of Icon. So these two analyses have exactly the same precision.

We measure the precision of an analysis in terms of its capability in alias disambiguation
and the quality of the SSA form constructed for a program. These two metrics are believed
to be critically important in determining the effectiveness of compiler optimisations.

5.2 Implementation

We have implemented Icon, Nonpa, and Fulcra in Open64 (version 5.0), an open-source
industrial-strength compiler, on its High WHIRL IR at IPA (interprocedural analysis)
phase. All the analyses are offset-based field-sensitive, by using an existing field-sensitive
analysis module in Open64 modified to work with our guarded constraint resolution. In
this module, the positive weight cycles (PWCs) that arise from processing fields of struct
objects [34] are detected and collapsed. The maximum number of offsets considered for a
struct is 256, with the last one representing the 256th and all subsequent offsets available
in the struct. However, arrays are considered monolithic. Heap objects are modeled with
context-sensitive heap cloning [21, 43] for allocation wrappers. All wrappers are identified
and treated as allocation sites in the manner as described in [7, 44]. All the three analyses
are compiled under the optimisation flag “-O2” in Open64.

We have implemented Fulcra by following its algorithms [32]. For its top-down phase,
we use the code implemented by the Open64 team and already made available in Open64,
which is implemented by following the rules in [32, Figure 4.3]. For its bottom-up phase,
we coded its summarisation using [32, Figure 4.11] and constraint compaction using [32,
Figure 4.15].

We have extended an existing implementation of Wave Propagation [35] in Open64
to support constraint resolution for all the three analyses evaluated. As discussed in
Section 2.1, global variables are tracked separately for efficiency considerations, without
participating in procedure summarisation. It is worth mentioning again that in each
analysis, the recursion cycles (or SCCs) in a program are merged so that the procedures
in each SCC are analysed context-insensitively.
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Table 5.2: Alias disambiguation and SSA quality of Icon and Fulcra (‘=’ means “same
as left”).

Program
Alias Disambiguation SSA Quality

#Queries #Not Aliased (%) #µ’s #χ’s
Fulcra Icon Fulcra Icon Fulcra Icon Fulcra Icon

164.gzip 1483 = 38.57 = 10582 = 12252 =
175.vpr 23557 = 75.24 = 26386 = 34172 =
176.gcc 101187 101134 31.58 31.11 482184 482296 580224 580263
177.mesa 144328 144398 32.13 32.08 30536 30541 71923 71935
179.art 3772 = 84.51 = 2697 = 3396 =
181.mcf 8588 = 30.34 = 1363 = 2625 =
183.equake 9422 = 80.11 80.09 7768 = 8508 =
186.crafty 15545 = 50.12 = 303532 = 243282 =
188.ammp 38893 = 43.87 = 20539 = 28320 =
197.parser 9529 9636 8.36 8.32 23855 = 33161 33165
252.eon 84838 = 18.56 = 196940 = 309167 =
253.perlbmk 98090 = 12.81 = 135050 135059 175081 175097
254.gap 19360 = 2.11 = 68632 = 105058 =
255.vortex 81542 = 32.31 = 210699 = 302539 =
256.bzip2 2404 = 54.91 = 4174 = 5515 =
300.twolf 92917 = 70.56 = 60575 = 66026 66158
gdb-6.8 >5 hrs 540650 >5 hrs 17.07 >5 hrs 722775 >5 hrs 959068
httpd-2.064 56689 = 11.41 = 167146 = 184687 =
icecast-2.3.1 7774 = 25.94 = 18810 = 32910 =
sendmail-8.14.2 144336 144398 30.71 30.67 517244 517286 581516 581599
wine-0.9.24 >5 hrs 434805 >5 hrs 29.88 >5 hrs 1743726 >5 hrs 1865159

5.3 Results and Analysis

We first show that Icon is nearly as precise as Fulcra (which is context-sensitive by
acyclic call paths) for the 21 programs given in Table 5.1. Note that Nonpa is a non-
parameterised version of Icon and thus has the same precision as that of Icon. We then
analyse why Icon achieves such precision even though running significantly faster than
Fulcra and Nonpa.

Precision

The aliasing information is used extensively to guide compiler optimisations in various
passes of Open64’s backend, e.g., WOPT (Whirl Optimiser), LNO (Loop-Nest Optimiser)
and CG (Code Generator). As shown in Table 5.2, Icon detects the same or nearly the
same percentage of non-alias pairs in all the 21 benchmarks. This percentage metric is
used since different aliasing relations detected earlier can affect queries issued later. For
both algorithms, the same alias analysis interface, AliasAnalyzer, provided in Open64 is
used to issue alias queries generated by various compiler optimisations. Only the ones
that require the results of a pointer analysis to disambiguate are issued.

Many program analysis and compiler optimisations are nowadays performed on SSA.
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Table 5.3: Analysis times of Icon, Nonpa and Fulcra.

Program
Analysis Time (secs)

Icon Nonpa Icon Speedup Fulcra Icon Speedup

164.gzip 0.03 0.03 1.00 0.03 1.00
175.vpr 0.07 0.16 2.29 0.15 2.14
176.gcc 161.60 689.42 4.27 3805.01 23.55
177.mesa 39.56 87.60 2.21 94.32 2.38
179.art 0.00 0.00 1.00 0.00 1.00
181.mcf 0.02 0.01 0.50 0.01 0.50
183.equake 0.01 0.02 2.00 0.01 1.00
186.crafty 0.08 0.14 1.75 0.13 1.63
188.ammp 0.12 0.20 1.67 0.14 1.17
197.parser 0.44 0.67 1.52 1.33 3.02
252.eon 16.70 93.70 5.61 88.60 5.31
253.perlbmk 81.75 615.32 7.53 3107.28 38.01
254.gap 63.35 290.61 4.59 390.87 6.17
255.vortex 19.59 37.66 1.92 44.10 2.25
256.bzip2 0.01 0.02 2.00 0.02 2.00
300.twolf 0.11 0.41 3.73 0.36 3.27
gdb-6.8 586.51 2958.02 5.04 >5 hrs > 30
httpd-2.064 67.84 153.22 2.26 148.46 2.19
icecast-2.3.1 7.23 26.56 3.67 27.17 3.76
sendmail-8.14.2 49.75 220.08 4.42 380.08 7.64
wine-0.9.24 948.75 >5 hrs > 17 >5 hrs > 17

In Open64, SSA construction is intraprocedural based on the approach introduced in [8].
For each store ∗x = y, a v = χ(v) operation is introduced for each location v pointed by x.
Similarly, for each load x = ∗y, a µ(v) operation is introduced for each location v pointed
by y. When converted to SSA form, each v = χ(v) is treated as both a def and use of v
and each µ(v) as a use of v. In the absence of strong updates, the def v must incorporate
the pointer information from both y and the use v. As shown in Table 5.2, Icon and
Fulcra give rise to nearly the same SSA representations in all benchmarks (measured in
terms of χ and µ operations). For a benchmark, Icon results in the same SSA as Fulcra
if Icon scores two =’s, one for Column “#µ’s” and one for Column “#χ’s”.

These results show that Icon is nearly as precise as Fulcra in terms of the quality
of the built SSA form and the precision of the discovered alias information.

Efficiency

From the analysis times given in Table 5.3 for the three analyses compared, we see that
Icon is the only one that scales to millions of lines of code.

Comparing Icon and Fulcra Fulcra spends over 2 hours analysing the 16 programs
from SPEC2000 (totalling 600 KLOC) and fails to terminate within 5 hours when analysing
gdb and wine (totalling 1.8 MLOC). In contrast, Icon spends just under 7 minutes on
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SPEC2000 and just under 26 minutes on both gdb and wine together. For the other three
applications, httpd, icecast and sendmail, Icon is also faster.

Fulcra is not scalable when analysing programs with large recursion cycles, as also
reported by its author in [32, Table 4.3]. Fulcra conservatively identifies the side-effect-
causing constraints (called critical edges) of a callee, then “inlines” them at its callers,
and finally, resolves them at those callers to achieve cloning-based context-sensitivity.
There are three reasons affecting its scalability. First, such critical edges are recomputed
(conservatively) whenever a callee is re-summarised. Second, more edges than necessary
may be pasted from the callee into a caller, causing a rippling effect upwards its call chains.
Third, the pasted edges are solved repeatedly at different callsites. As a result, many edges
in a program’s constraint graph are introduced unnecessarily, slowing down the analysis
performance.

Among the 19 benchmarks analyzable by Fulcra, 176.gcc is the most costly to
analyse, taking a little over an hour to complete, due to a large number of constraints
moved from callees to their callers during its analysis, as highlighted in Figure 5.1. In
contrast, Icon spends less than 3 minutes in analysing this benchmark. It should be noted
that both Fulcra and Icon analyse all the 21 programs with their SCCs collapsed. Let
us take a closer look at Figure 5.1. During the second iteration (from around the 4th
minute to the 13th minute), Fulcra spends a lot of time on computing the summaries
of the SCCs in the call graph of 176.gcc. The largest SCC, as highlighted in Figure 5.2,
comprises nearly 400 procedures across 22 source files. During the period from the 15th
minute to the 22nd minute in the third iteration and the period from the 40th minute to
the 53rd minute in the fourth iteration, over 3000 critical edges identified in the largest
SCC are “inlined” at, i.e., promoted to each of its callers. In contrast, Icon avoids this
cost by iteratively summarising the side effects of each SCC in place and then transferring
the side effects to its callers.
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Figure 5.1: Side-effect-causing constraints promoted from a callee to its callers for 176.gcc
by Fulcra. The two rectangles are drawn to highlight the parts of those iterations when
the largest SCC is analysed.

Comparing Icon and Nonpa Nonpa does not terminate within 5 hours when analysing
wine. For the remaining 20 benchmarks, Nonpa spends 5173.85 secs (> 86 mins) while
Icon spends 1094.77 secs (< 19 mins).

Full parameterisation has no benefits for small programs such as art, equake and gzip

or even hurts performance in the case of mcf due to the use of virtual variables. However,
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Figure 5.2: Call graph of 176.gcc, with part of the largest SCC (referred to in Table 5.1)
zoomed-in.

significant performance improvements occur for large programs such as eon, gap, gcc,
perlbmk, gdb, sendmail and wine. This is because these programs have a larger number
of pointers as well as loads and stores (Table 5.1). For some large programs such as mesa,
vortex and vpr, the improvements are less remarkable since they require relatively more
virtual variables to be used, as shown in Table 5.4. In the case of httpd, with many
pointers as well as loads and stores but few virtual variables, the improvement is small
since the number of levels of indirections among its pointers is small (Figure 1.2).

More Analysis To the best of our knowledge, Icon is the fastest context-sensitive
inclusion-based pointer analysis ever reported, at least measured in terms of the 16 C/C++
SPEC2000 benchmarks, five open-source applications, and the 12 C/C++ SPEC2006
benchmarks (discussed in Section 5.4). There are several reasons behind this.

• By using virtual variables to parameterise pointer information, Icon propagates
points-to information across copy edges significantly less frequently than Fulcra
and Nonpa, as shown in Figure 5.3. This is particularly pronounced in the bench-
marks for which Icon achieves the best speedups. The analysis overhead thus in-
curred is small since the alias graphs, as shown in Table 5.4, are small.

• Analyzing a program top-down rather than bottom-up first has two benefits. After
the first top-down phase is completed, two observations are made. First, the majority
of aliasing variables (77.88% on average) in a program have been introduced as shown
in Figure 5.4. In several small to medium benchmarks, such as ammp, equake, mcf
and vpr, however, most aliases still need to be discovered. Second, the majority
of procedure pointer targets in a program have also been resolved, as shown in
Figure 5.5. However, in some benchmarks, such as gcc and vortex, most of their
indirect call edges will have to be resolved later, because they need to be discovered
with at least one bottom-up phase being performed.

• Pre-analysis helps avoid unnecessary checks for aliasing (lines 3 – 4 in UpdateAlias-
Graph). Most of pointer formal parameters are not aliased as shown in Figure 5.6.
On average, around 85% of the procedures in a program are alias-free.
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Table 5.4: Alias graph Statistics.

Program
Average #Nodes in Alias Graphs over #Aliasing Var per Procedure

Total #Nodes in All Constraint Graphs AVG MAX

164.gzip 4.94 0.15 2
175.vpr 13.81 0.71 8
176.gcc 4.95 0.69 12
177.mesa 14.39 0.68 9
179.art 3.33 0.00 0
181.mcf 10.10 1.00 5
183.equake 5.07 0.10 1
186.crafty 1.46 0.05 1
188.ammp 4.41 0.30 3
197.parser 5.72 0.41 6
252.eon 5.27 0.15 4
253.perlbmk 1.78 0.13 5
254.gap 2.59 0.51 8
255.vortex 13.01 0.51 8
256.bzip2 4.25 0.00 0
300.twolf 1.83 0.49 5
gdb-6.8 9.88 0.45 16
httpd-2.064 3.63 0.08 5
icecast-2.3.1 2.20 0.05 2
sendmail-8.14.2 5.98 0.45 12
wine-0.9.24 4.21 0.66 15

Average 5.85 0.36 6
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Figure 5.4: Percentage of virtual variables discovered after the 1st top-down phase is
completed.
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Figure 5.5: Percentage of procedure pointer targets resolved after the 1st top-down phase
is completed.
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Memory Usage Table 5.5 compares Icon, Fulcra and Nonpa in terms of memory
usage. For the 20 benchmarks that can be analysed by Nonpa, Icon consumes 16% more
memory on average. Icon needs extra space to store virtual variables but saves space as
parameterisation reduces the number of copy edges created (Figure 5.3). Compared with
Nonpa, Icon uses more memory in 15 out of the 20 benchmarks that are analysable by
Nonpa. For some small benchmarks with a few procedures and pointers (Table 5.1), such
as art, mcf and equake, Icon consumes slightly more memory than Nonpa. Some rela-
tively large pointer-intensive benchmarks (Figure 1.2), including mesa, eon, gap, vortex
and httpd, require at least 20MB of memory each to analyse in either case. For these
benchmarks, Icon requires more space to store virtual variables and thus consumes slightly
more memory than Nonpa. For the largest benchmarks, such as gcc, perlbmk and gdb,
Icon has succeeded in exploiting parameterisation to reduce significantly the number of
copy edges created by Nonpa (Figure 5.3). As a result, for gcc, perlbmk and gdb, Icon
consumes only 80%, 71% and 70%, respectively, of the amount of memory consumed by
Nonpa.

Let us now compare Icon and Fulcra. For the 19 benchmarks that can be analysed
by Fulcra, Icon consumes 12% more memory on average. The extra amount of memory
incurred by Icon for small and medium benchmarks is negligible. However, for large
benchmarks, Icon uses less memory than Fulcra. In the case of gcc, mesa and perlbmk,
Icon consumes only 56%, 77% and 43%, respectively, of the amount of memory consumed
by Fulcra, as Fulcra introduces a large number of extra constraints when promoting
side-effect-causing statements from a callee to its callers, especially in the presence of large
recursion cycles (Figure 5.1).

Simplicity

For this design goal, we aim to leverage the recent advances in inclusion-based analysis so
that context sensitivity can be achieved in the same constraint resolution framework. In
other words, the existing code base should be reused as much as possible.

Icon’s pre-analysis is bootstrapped by the standard Steensgaard’s unification-based
analysis [42]. During each iteration, both the top-down and bottom-up phases are per-
formed using the same constraint resolution engine based on an existing module for Wave
Propagation [35] in Open64. This module is modified so that guarded copy edges are
handled in the presence of aliasing variables.

5.4 SPEC 2006

We briefly discuss the results obtained on comparing Icon and Fulcra using the 12 C
programs in SPEC2006 (totalling 1.0 MLOC). Icon is once again nearly as precise as
Fulcra in terms of their capabilities in alias disambiguation and the quality of the SSA
form built for a program.

Icon spends only less than 14 minutes (803.04 secs) in analysing all the 12 programs
in SPEC2006. In contrast, Fulcra spends over 48 minutes (2922.48 secs) in analysing
10 benchmarks and fails to terminate within 5 hours for the remaining two benchmarks,
400.perlbench and 403.gcc. These are the top two in SPEC2006 ranked in terms of how
many pointers and SCCs they contain: 400.perlbench has 13283 pointers, 46792 loads
and stores and 30 SCCs (with the largest SCC containing 461 procedures) and 403.gcc has
35697 pointers, 123389 loads and stores and 317 SCCs (with the largest SCC containing
436 procedures). As in the case of Table 5.1, the statistics on SCCs are collected before
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Table 5.5: Memory usage of Icon, Nonpa and Fulcra.

Program
Memory Usage (MBs)

Icon Nonpa
Icon Increase

Fulcra
Icon Increase

(Icon/Nonpa) (Icon/Nonpa)

164.gzip 2.90 1.15 2.52 1.23 2.36
175.vpr 9.40 8.23 1.14 8.15 1.15
176.gcc 425.86 535.11 0.80 754.38 0.56
177.mesa 67.36 60.48 1.11 87.37 0.77
179.art 0.83 0.82 1.01 0.82 1.01
181.mcf 1.09 1.09 1.00 1.06 1.03
183.equake 1.07 1.07 1.00 1.07 1.00
186.crafty 5.93 5.32 1.11 5.41 1.10
188.ammp 7.21 7.01 1.03 6.81 1.06
197.parser 10.85 9.55 1.14 8.56 1.27
252.eon 68.07 58.07 1.17 59.90 1.14
253.perlbmk 131.54 186.18 0.71 306.18 0.43
254.gap 85.85 51.84 1.66 57.19 1.50
255.vortex 38.20 34.88 1.10 35.96 1.06
256.bzip2 2.18 1.67 1.31 1.71 1.27
300.twolf 12.22 12.13 1.01 12.21 1.00
gdb-6.8 1633.45 2333.45 0.70 >5 hrs >5 hrs
httpd-2.064 29.99 20.09 1.49 23.14 1.30
icecast-2.3.1 20.19 16.87 1.20 16.66 1.21
sendmail-8.14.2 132.58 116.11 1.14 120.38 1.10
wine-0.9.24 1820.88 >5 hrs >5 hrs >5 hrs >5 hrs

procedure pointers are resolved. For these two benchmarks, Fulcra is not scalable for
the same reason illustrated for 176.gcc in Figure 5.1.

6 Related Work

Context Sensitivity There are many pointer analyses in the literature with different
types of flow sensitivity assumed: some are flow-sensitive [6, 11, 15, 17, 19, 20, 45, 50, 57],
some are inclusion-based [33, 30, 51] and some are unification-based [9, 12, 21, 27, 28].
To account for the interprocedural side effects of a procedure context-sensitively, some
pointer analyses resort to cloning [11, 30, 48] while others rely on procedure summarisation
[6, 10, 19, 50, 57, 60]. While Binary Decision Diagrams can be used to handle efficiently
the exponential number of contexts by exploiting their similarities [3, 48, 60], cloning-
based algorithms are still not scalable to large programs. When context sensitivity is
considered, different types of precision are distinguished if calling contexts are identified
by full call paths [19, 57], assumed aliases at callsites [6, 20], acyclic call paths (with the
SCCs in the call graph being collapsed) [19, 57] and approximated call paths within the
SCCs [11, 48, 50]. The research described in [21, 52] focuses on achieving scalability for
context-sensitive heap cloning and is thus orthogonal to this research.

There are some earlier attempts [13, 32, 33, 30] on adding context sensitivity to An-
dersen’s analysis to analyse C/C++ programs. Cloning [30] achieves context sensitivity
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trivially by analysing different calls to a procedure using different clones of the procedure.
Fulcra [32, 33], which improves [13], clones only the side-effect-causing constraints, i.e.,
so-called critical edges in a procedure. The analysis introduced in [59] is demand-driven
rather than a whole-program analysis.

Icon is more powerful than a 1-callsite-sensitive analysis and less so than a cloning-
based context-sensitive analysis when recursion cycles are collapsed in all cases (Theo-
rem 2). Therefore, a good balance between efficiency and precision is maintained to make
Icon practical for compilers.

Parameterisation To distinguish the side effects of a procedure context-sensitively at
its different callsites, symbolic names have been used to represent points-to relations passed
from its callers into the procedure, such as invisible blocks [11, 20], auxiliary parameters
[28], extended parameters [50] and semi-parameterised spaces [57]. Some important bene-
fits include improved precision (due to more strong updates enabled) if flow sensitivity is
considered [50, 57] and faster analysis (by propagating one symbolic name instead of all
individual locations abstracted). In [28], its parameterisation is performed on a unification-
based analysis. In [11, 50], when flow sensitivity is considered, some aliased symbolic names
of a procedure are either allowed or merged, trading precision for efficiency. In [49], the
analysis proposed for Java uses parameterised points-to escape graphs to identify memory
blocks escaping from a method.

In this paper, we consider inclusion-based analysis without strong updates. The points-
to values passed into a procedure are fully parameterised in terms of (symbolic) virtual
variables. To the best of our knowledge, this is the first paper exploiting fully parame-
terised pointer information on inclusion-based pointer analysis, resulting in (1) faster con-
vergence facilitated by parameterised side-effect summarisation and (2) call-path-based
context-sensitivity in the special case when the formal parameters of every procedure are
alias-free (Theorem 2).

Side-Effect Summarisation There are two earlier summary-based approaches to achiev-
ing context sensitivity, by using RCI (Relevant Context Inference) [6] and PTFs (Partial
Transfer Functions) [50], which were both originally proposed for flow-sensitive analysis.
In the case of inclusion-based analysis, both are not as efficient as Icon. RCI builds one
transfer function for a procedure eagerly by assuming the presence of all possible aliases
at its entry, which is unnecessarily costly as revealed by (lack of) the aliasing relations in
real code given in Table 5.4. On the other hand, building multiple PTFs for a procedure
lazily based on different aliasing combinations at its callsites is also unnecessarily costly,
as this would require multiple constraint graphs to be constructed for the procedure. By
exploiting the absence of strong updates, Icon is designed to perform its analysis quickly
by summarising a procedure iteratively in-place, i.e., in the same constraint graph of the
procedure.

Pre-Analysis An analysis can be bootstrapped with the results of a prior analysis that
is faster but less precise [19, 17]. In [57], Steensgaard’s analysis is performed first to
assign a level to each variable. Then the program is re-analysed level by level for greater
precision. In [44], Andersen’s analysis is used to accelerate static detection of memory leaks
for C/C++ programs. In this paper, Icon is boosted by must-not-aliased information to
accelerate its convergence.
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7 Conclusion

We introduce a new context-sensitive pointer analysis on top of Andersen’s analysis that
can scale to millions of lines of C/C++ code, making it deployable in modern optimizing
compilers to drive advanced compiler optimisations. We have validated its scalability
in Open64 using a total of 21 C/C++ programs (totalling 2.7 MLOC), by comparing
it with the state-of-the art. By summarising the points-to side effects of a procedure
parametrically using virtual variables, our analysis is significantly faster than the state-of-
the-art while yielding nearly the same precision.
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