
Multi-Threaded Processor Design for Embedded

Systems

Ran Zhang1 Hui Guo2

1University of New South Wales, Australia

cliffran87@hotmail.com

huig@cse.unsw.edu.au

Technical Report

UNSW-CSE-TR-201310

April 2013

THE UNIVERSITY OF

NEW SOUTH WALES

School of Computer Science and Engineering

The University of New South Wales

Sydney 2052, Australia

Abstract

Multi-threaded processor design enables high performance of a single processor
core by exploiting both the thread-level and instruction-level parallelism. This
performance gain is, however, at the cost of increasing energy consumption,
which is not desirable to embedded systems. This paper investigates multi-
threaded designs of varied thread number and under two different thread switch-
ing schemes: fine-grained and coarse-grained. Based on our experiment with a
6-stage PISA processor, we found that in terms of energy efficiency the coarse-
grained based designs are better than the fine-grained designs. And for the
coarse-grained design, the thread number for an optimal design is closely re-
lated to the memory access delay; when the memory access latency is small,
the low-thread processor appears more energy efficient than the processor with
a high thread number, but when the memory delay increases the high-thread
processor becomes superior.

1 Introduction

Performance and energy consumption are critical design issues in embedded sys-
tems. To improve performance, parallel processing techniques are often used.
Parallel processing can be applied at different design levels with different par-
allelism being exploited: at the instruction level, independent instructions can
be executed in parallel; At the data level, an operation can be performed si-
multaneously on an array of data elements; and at the thread level, multiple
instruction streams can be concurrently executed.

To support the parallel processing, various of processor architectures have
been proposed. The pipelined processor is one of the basic designs to exploit
instruction-level parallelism. Multi-threaded processor designs [1] can even im-
prove the pipeline performance by exploiting thread level parallelism. When
one thread stalls the processor execution due to dependency, the processor can
switch to other thread so that the pipeline stall is avoided.

Compared to other typical processor architectures with parallel processing
capabilities, such as superscalar and vector processor, the multi-threaded pro-
cessor design possess some advantages. Its design is much simpler than the
superscalar and its application area is more broader than the vector processor.

Since the performance improvement from parallel processing will inevitably
be at the cost of energy. How well does each unit of extra energy spent on
the performance improvement in the multi-threaded processors? This is the
question we want to answer in this paper.

Our main contributions are as following:

• we proposed an evaluation scheme for energy efficient multi-threaded de-
signs, where energy consumption per instruction is used for easy compar-
ison among different designs;

• We developed profiling based estimation models for the CPI and power
consumption of a multi-threaded processor; Our experiments show that
our models provide values consistent with the results given by the com-
mercial design tools. The estimation models effectively enable exploration
of different multi-threaded designs

• We demonstrated that given a baseline processor, there is an optimal de-
sign with high energy efficiency and it can be identified with the estimation
models.

The rest of paper is organized as follows. In Section 2, we review the related
work on the multi-threaded processor design. Our energy estimation models for
the processor evaluation are discussed in Section 4. The experimental verifica-
tion of the models is given in Section 5, followed by the evaluation of different
processor designs. The paper is concluded in Section 6.

2 Related Work

The application of multi-threaded processor can be traced back to a MIMD
(Multi-Instruction Multi-Data) architecture, HEP (Heterogeneous Element Pro-
cessor), proposed in [2]. HEP consists of several Process Execution Modules

1

(PEMs) connected to a single data memory. Each PEM is a fine-grained multi-
threaded processor. The HEP system can execute up to 16 tasks simultaneously.
A task may have up to 64 processes (threads).

In [3], authors proposed a multi-threaded processor architecture for parallel
symbolic computing (MASA), where a large set of procedures/routines are fre-
quently performed for basic symbol operations, such as expression simplification,
differentiation and polynomial factorization. Those basic operations (tasks) are
arranged in multiple context frames (threads). A fine-grained multi-threaded
scheme is applied to switch the execution between frames in MASA.

Both HEP and MASA implement the fine-grained threading on the scalar
processor. The fine-grained multi-threaded has also been applied to VLIW
(Very Long Instruction Word) architectures. The Horizon machine [4] and Tera
computer [5] are two typical examples. With their designs, four levels of paral-
lelism are exploited for high performance: system level parallelism, with multi-
ple processors; thread-level parallelism, with multi-thread interleaved execution
within individual processors; instruction level parallelism, with the overlapped
instruction execution in each pipeline; and operation level parallelism with the
multi-operations in each horizontal (wide) instruction.

For multi-thread interleaved execution, separate registers are needed for dif-
ferent threads, which lead to a huge register file. If implemented with latches or
flip-flops, as a common case in the traditional design, the big register file would
consume a large chip area. To reduce the hardware cost, in [4], the register file
is implemented with the cheap but slow memory.

For the fine-grained thread interleaving, sufficient number of threads are
needed to retain a high throughput, which may not be always possible. To
handle this situation, in Tera Computer [5], an Explicit-Dependence lookahead
approach is used. Several bits are added to each instruction to specify the num-
ber of successive independent instructions that can be executed consecutively
in the pipeline.

In [6], authors proposed a multi-computer model, called M-Machine, in or-
der to achieve high performance for both individual threads and the overall
system. The M-Machine consists of a set of computing nodes interconnected
by a bidirectional 3-D mesh network. A node consists of a multi-ALU (called
MAP) chip. Each MAP chip contains four clusters and one cluster is a three-
issue, pipelined processor consisting of four ALUs. Two mechanisms are used
for intra-node concurrency: Vertical Thread (V-thread) and Horizontal Thread
(H-thread). A V-thread consists of up to four H-threads. A H-thread is a 3-
instruction wide stream which is statically scheduled and executed on a single
MAP cluster. The H-threads within the same V-thread can communicate via
registers, while the H-threads of different V-threads must communicate through
memory. The four H-threads within a V-thread can be either independently or
collectively scheduled by the compiler to achieve an instruction level parallelism
of 12-instructions.

The designs discussed above exploit the thread parallelism mainly at the fine-
grained level, where the execution switches to other thread on each instruction.

In contrast, the coarse-grained multi-threaded processor consecutively exe-
cutes a string of instructions for a thread before switches to other thread.

In the designs proposed in [7]-[9], the load and branch instructions are chosen
as the static thread switching points since those instructions often cause the
pipeline stall.

2

A design technique for fast thread switching is also discussed in [7]. In a
general five-stage pipeline, a thread switching can often be performed in the
second stage after the instruction is decoded. Therefore, two cycles will be
wasted for a thread switching. To reduce such an overhead, the authors [7] used a
dedicate bit in the instruction to explicitly code the thread switching operation.
Switching can start before the instruction decoding, hence one clock cycle can
be saved. To further improve the performance, they introduced a thread switch
buffer to hold the addresses of most-recently-used load instructions. If the
address of the next instruction matches with an address in the thread switch
buffer, a thread switching is performed immediately. In this case, the switching
overhead is reduced to zero.

In [8], the authors implemented a coarse-grained multi-threaded system
(MSparc) on a Sparcle processor architecture. MSparc is a large-scale multipro-
cessor system with the distributed memory. The multi-thread implementation
helps reduce the impact of the long remote memory delay on the overall system
performance and at the same time achieve high speed of the single thread exe-
cution. In their design, a cache-miss monitor unit is used to dynamically detect
the thread switching event.

A similar design approach can be found in [10], where other conditions,
such as synchronization failure, are also taken into consideration in the thread
switching control.

The dynamic thread switching requires a complex switching condition detect
unit, which may increase the clock cycle time. In addition, since the event that
triggers a thread switching can often be detected at a later stage (after some
calculations), any instructions in the pipeline after this stage should be discarded
when the thread switching occurs, which leads to a high performance penalty
per thread switching. It is reported in [10] that a thread switching can take
about 11 cycles.

In [9], the authors proposed a design that combines the synergy of both fine-
grained (low switching overhead incurred) and coarse-grained threading (small
number of threads required) approaches. With their design, the processor works
as a fine-grained multi-threaded processor until a long-latency instruction is
encountered, to achieve high performance with a small number of available
threads.

The NIGARA [11] multi-threaded processor, is another example of exploiting
both the fine-grained and coarse-grained multi-thread execution. In this design,
the processor pipeline is pre-fixed with two extra stages: Fetch and Thread
Select. In the Fetch stage, instructions from all threads are fetched. Then
the Thread Select stage selects the instruction to be executed in the pipeline.
The extra two stages pre-determine the target for the thread switching; hence
it takes zero clock cycle for the pipeline execution switches from one thread
to another thread. In addition, a dynamic thread selection policy is used so
that the processor execution can be thread-interleaved at the fine-grained level,
mixed fine-grained/coarse-grained level, or coarse-grained level, according to the
number of available threads.

The above multi-threaded designs are mainly for high performance. Different
issues were also addressed in some other works. In [12], the authors investigated
the power, performance and energy of multi-threaded processors.

A separate comparison between the multi-threaded design, single thread
execution, and superscalar out-of-order execution is presented in paper [13]. The

3

paper shows that multi-threaded single pipeline in-order execution can achieve
a similar speedup as the out-of-order instruction execution in the superscalar,
but has a better energy efficiency. To facilitate the exploitation of the parallel
processing offered by the multi-threaded processor, the authors extend the C
langauge with explicit parallelism constructs. With these parallelism constructs,
the compiler is able to identify parallel threads, recognize the shared variables
and ensure the correct communications between threads.

In this paper, we investigate both fine-grained and coarse-grained thread
interleaving designs for the single pipeline, and try to find the optimal design
with high energy efficiency.

3 Overview of Target System

We target a system with multiple input execution threads; all threads are inde-
pendent from each other. Figure 3.1 shows the structure of the multi-threaded
system. It consists of a plain pipelined processor with no components for hazard
treatment, a thread switching control unit (SCU) to switch instruction execu-
tion between threads, and a reconfigurable forwarding/stall unit to mitigate the
impact of pipeline hazards due to the dependency between instructions on the
pipeline. The reconfigurable forwarding/stall unit can be customized for differ-
ent input threads and can be reduced from full forwarding connections to nil
forwarding paths.

thread1

thread2

threadn

1

IF

2

ID

3

EXE

m

WB

Thread

Interleaving

Control

Re-configurable

Forwarding/Stall Unit

plain pipeline

M
U
X

Figure 3.1: Multi-Threaded Processor System

Different number of input threads and different switching control schemes
will have different multi-threaded processor designs. Here we assume the pro-
cessor has a fixed m pipeline stages and takes n independent threads, and the
thread switching can be either fine-grained (FG) or coarse grained (CG).

For the FG thread interleaving execution, the switching control logic is very
simple. Switching is deterministic on each clock.

Full pipeline speedup can be achieved if there are sufficient independent
threads. With the full speed execution, there are no pipeline hazards. There-
fore, the forwarding and hazard detection unit can be totally removed from
the pipeline, hence reducing the hardware costs, hence the energy consump-
tion. The FG based design becomes less effective when the speed gap between
the processer and memory increases or the pipeline become deeper with many
stages.

The CG thread interleaving can reduce the impact of long memory access
delay and execution flow change on performance. The CG designs interleave

4

execution between threads on a chunk/block basis, where instructions in a block
are consecutively executed.

4 Evaluation Model

We evaluate the processor design based on its energy efficiency. The energy is
the product of power consumption and execution time. It may vary significant-
ly from application and application. It is not straightforward to see whether a
processor is energy efficient by looking at the amount of energy the processor
consumed for an application execution. Instead, the energy per instruction

is more indicative. Therefore, we use the following formula for energy consump-
tion:

E = P × CPI/f (4.1)

where CPI is the average clock cycles per instruction, f the clock frequen-
cy, and P the power consumption.

For a given baseline processor, we assume f is fixed. Our focus is then the
power consumption and CPI, which are discussed in the next two sub-sections.

4.1 Power Consumption

As shown in Figure 3.1, our multi-threaded processor is based on a baseline
pipeline processor. A processor can be abstracted as a connection of compo-
nents, including the register file and forwarding unit. The power consumption
of the processor is sum of the power consumed by each component. Some
components are rarely scaled with the thread number, but for the register file
and forwarding unit, their size and complexity can change greatly with different
number of threads in the design. We separate them from other components, and
the power consumption of the baseline processor (for single thread execution)
can be represented as

Pbase = p0 + prf + pfw, (4.2)

where prf and pfw are the power consumed by the register file and forwarding
unit, respectively; and the power consumed by rest components is denoted as
p0, which is deemed as constant.

When the baseline processor is extended for the multi-threaded execution,
the power consumption is increased. The power consumption for n-thread design
(i.e. n-threaded processor) can be represented as

Pnt = p0 + PRF + PFW + PSCU , (4.3)

where PRF and PFW are the power consumption of the altered register file and
forwarding unit, and PSCU the power consumed by the switching control unit.

If each thread uses the same size of register file as in the baseline processor,
the total registers required for the n-threaded processor is linearly scaled with
the thread number. Therefore, the related power consumption can be written
as

PRF = n × prf , (4.4)

where prf is the power consumption of the baseline register file.
Note that the register file for each thread can be reduced with some cus-

tomization techniques, which have been investigated in other research work [].

5

Here we look at the power consumption of the other two components (forward-
ing unit and SCU). Both components differ between the fine-grained design and
the coarse-grained design. Therefore their power estimations are different, and
discussed in detail in the sections below.

Power Consumption in the Fine-Grained Threaded Processor

To get a general idea of power distribution in the processor, we have conducted
an experiment. Table 4.1 shows the power consumption of different components,
generated by the Synopsys Design Compiler[18] for a six-stage pipelined pro-
cessor. The component power consumptions for the baseline design are given
in Columns 2-4, and the power consumptions for the 2-thread switching control
and 3-thread switching control are shown in Columns 5&6. The relative power
consumptions as compared to the baseline design are presented in the last row.
As can be seen from the experiment, the forwarding unit consumes a consider-
able amount of the processor power and should be targeted for reduction.

Plain Reg FW FG.SCU FG.SCU
(p0) File Unit (2thrd) (3thrd)

Power(mw) 1.016 0.494 0.235 0.073 0.103
Rel.Pow(%) 57.51 27.95 13.28 4.14 5.83

Table 4.1: Power Consumption of Different Components

With the FG threading design, the instruction dependency in the pipeline
is decreased. Therefore, the forwarding unit can be reduced. Here we first
discuss the forwarding unit reduction, then based on which derive the power
consumption for the FG multi-threaded processor.

In terms of the forwarding unit design, the stages in the processor pipeline
can be divided into five groups: (1) stages that generate values to be stored in
the register file, we refer to such a stage as source stage; (2) stages in which
the values generated in the pipeline are saved to the register file, we call such
a stage destination stage; (3) stages that take values in the register file as
their computing operands, we thus call such stages user stage; (4) stages that
pass the register values in the pipeline to the user stage, we call such a stage
forwarding stage; and (5) the rest stages that are irrelevant to forwarding,
and are grouped into irrelevant stage. Any stage, from the source stage and
before the destination, can be a forwarding stage. Figure 4.1 illustrates an
m-stage pipeline. Three stages, with their nickname displayed in the pipeline,
give an example of different stage types. Stage k2 (ex1 stage) is an execution
stage that computes on register values and generates results to be stored in the
register file in stage k3, wb stage. Stage k1 (brch stage) deals with the condition
checking on register values for branch instructions. Stage k3 is a destination
stage, stage k2 is a source stage as well as a forwarding stage, and both k1 and
k2 are user stages. A forwarding path is required if a register value used by
a user stage, has been generated by the source stage, but yet arrived to the
register file in the destination stage.

We can group the forwarding paths according to the number of stages they
pass backwards in the pipeline, and we call the number of passed stages the
length of the path. We use FWi to represent all forwarding paths that are
of length i, as abstracted in Figure 4.2. If the maximal distance of dependent

6

1 m

ex1brch wb

muxs muxs

k1 k2 k3

sk1 sk2

Forwarding Unit

pipeline

Figure 4.1: Forwarding Paths

instructions is d, the forwarding unit may contain components from FW1 up to
FWd.

1 k m

pipeline

FW1

FW2

2

FWd

source stagesuser stages

Figure 4.2: Forwarding Unit

If there are no dependent instructions with distance i(1 ≤ i ≤ d), then
component FWi can be totally removed from the forwarding unit.

In general, given the longest forwarding path d, n threads will reduce the
number of forwarding groups from d to ⌊ d

n⌋, which gives the required forwarding

paths as
∑⌊ d

n
⌋

i=1 FWi×n, where ⌊x⌋ represents the floor function, which gives the
largest integer not greater than x.

To explain, we take a five-stage pipeline as an example, its full forwarding
paths are shown in Figure 4.3(a). In this pipeline, the source stage is EXE,
destination stages are WB, the forwarding stages are EXE and MEM , and
the user stages are IF and EXE. There are three forwarding paths, Pa, Pb,
and Pc. The length of the longest forwarding path is 3 (Pc). Figure 4.3(b)
summarized the needed forwarding components for 1-thread, 2-thread and 3-
thread FG interleaved pipelines.

With the forwarding unit reduced, the power of forwarding unit in an FG
n-thread processor can be approximated as:

PFW =
⌊ d
n
⌋

d
× pfw , (4.5)

7

IF ID EXE MEM WB

pa

pb

1-thread

FW1 FW2 FW3

Pa

(a)

(b)

0 0

Pc00

2-thread

3-thread

pc

PcPb

Pb

Figure 4.3: Forwarding Reduction Example

where pfw is the power consumption of the full forwarding unit, d the longest
forwarding length, and n the number of threads in the design.

Like the register file consumption, the power consumption of SCU also in-
creases with the number of threads, as given below:

PFG.SCUn = PFG.SCU0
+ PFG.SCU1

× (n − 1) (n ≥ 2), (4.6)

where PFG.SCU0
is the base cost of SCU design and PFG.SCU1

the extra SCU
power consumption per thread for the FG design.

Finally, the total power consumption of the FG n-thread pipeline can be
estimated as

PFGn =

p0 + prf + pfw if n = 1

p0 + n × prf +
⌊ d
n

⌋

d
× pfw+

+PFG.SCU0
+ PFG.SCU1

× (n − 1) if n > 1

(4.7)

Formula (4.7) shows that increasing number of threads leads to more power
consumption in the register file and at the same time, reduces the power con-
sumption by the decreased forwarding unit in the fine-grained threading design.

Power Consumption in the Coarse-Grained Threaded Processor

In the CG multi-threaded processor, the SCU controls to fetch instructions from
threads that are ready for execution. A set of registers to hold the execution
state for each thread and the related logic circuit are required for checking
and updating the state of each thread, and for finding the target for a thread
switching.

Compared to FG design, the SCU is more complicated in the CG multi-
threaded processor and takes more power consumption, as illustrated by the
experiment data given in Table 4.2. The table lists the power consumption of
SCU in the 2-thread and 3-thread FG designs (Column 2 and 4, respectively),
and the related power consumptions in the CG designs (Columns 3 & 5). The
last row gives their relative values as compared to the baseline processor design.
As can be seen from the table the power consumption of the SCU in the CG
design is about doubled as compared to that in the FG design.

8

2-thread 3-thread
FG CG FG CG

Power (mW) 0.073 0.145 0.103 0.199
Relative Power 4.14% 8.18% 5.83% 11.23%

Table 4.2: Comparison of SCU Power Comparison

For the CG SCU design, each thread requires an equal size of registers for
thread switching control. The power consumption of the SCU increases with the
thread number, and the n-thread SCU power consumption can be approximated
as:

PCG.SCUn = PCG.SCU0
+ PCG.SCU1

× (n − 1) (n ≥ 2), (4.8)

where PCG.SCU0
is the base cost of SCU design and PCG.SCU1

the extra SCU
power consumption per thread for the CG design.

Since a block of instructions from a thread will be consecutively executed
in the CG design, data dependency between instructions in the block requires
the full forwarding unit in place. Therefore, the power consumption of the CG
based n-threaded processor can be approximated as

PCGn =

p0 + prf + pfw if n = 1
p0 + n × prf + pfw+
+PCG.SCU0

+ PCG.SCU1
× (n − 1) if n > 1

(4.9)

where pfw is the power consumption of the full forwarding unit as in the baseline
processor design. Formula (4.9) shows that the power consumption from the CG
design will increase when the thread number increases.

4.2 CPI

In the pipelined processor, the execution time of an application consists of two
types of clock cycles: execution clock cycles that are actually used to execute
the application, and the idle clock cycles when the pipeline is stalled due to
the hazards in the pipeline. We use U to denote the actual clock cycles used for
execution and W the total waste clock cycles when the pipeline is in the idle
state. For a typical pipelined processor, without pipeline stall one instruction
takes one clock cycle to complete. Therefore, U can be regarded as the number
of instructions executed. The average clock cycles per instruction can, therefore,
be calculated as

CPI = (U +W)/U

= 1+ Ridle, (4.10)

where Ridle = W/U is the pipeline idle rate.
With the multiple thread execution, the idle clock cycles of one thread can

be taken to execute instructions from other threads. Therefore, the idle clock
cycles in the pipeline can be reduced, hence the CPI is decreased.

Assume there are k types of hazards (h1, · · · , hk) that can happen in the
pipeline1, and the idle time incurred by the hi hazard is ιhi

; We call the idle
time hazard latency. We use phi

to represent the frequency of hazard hi over
the whole executed clock cycles. The idle rate is closely related to the hazard

1The hazard types may vary from one pipeline design to another. Here our multi-threaded
processors are built on the baseline design. They have a fixed set of hazard types.

9

frequencies and their latencies, which will be discussed in detail in the next two
subsections.

CPI in the Fine-Grained Multi-Threaded Processor

With the FG threading design, the processor switches to different threads on
each clock cycle. Its execution is illustrated in Figure 4.4(a), where a block
denotes a clock cycle and the thread being executed in the cycle is given in the
block. There are n threads, and each thread gets executed every n clock cycles.

If the latency of a hazard is larger than the number of threads, the hazard
will result in pipeline stall. Take the execution of 4-thread processor given in
Figure 4.4(b), as an example. If thread A causes a hazard with the latency of 10
clock cycles, the pipeline will stall for the next 2 clock cycles when the thread
gets its turn to execute.

In general, the FG threading design can reduce the pipeline idle time, related
to hazard hi, from ιhi

to ⌊
ιhi

n ⌋.

T1 T2 Tn T1 T2 Tn

A B DC B DCAA B DC

(a)

(b)

Figure 4.4: Fine-Grained Multi-Thread Execution

The total idle time of the n-thread processor can be calculated as

W = U ×

k
∑

j=1

(phj
× ⌊

ιhj

n
⌋), (4.11)

where U is the number of instructions executed, phj
the frequency of hazard hj

over U , and k the number of hazard types.
Based on Formula (4.11), the CPI for the FG threaded processor can be written
as

CPI = (U +W)/U

= 1 +
k∑

j=1

(phj
× ⌊

hi

n
⌋) (4.12)

Formula (4.12) shows that the high the hazard rate and the longer the haz-
ard latency, the larger the CPI. But CPI can be reduced if more threads are
available.

CPI in the Coarse-Grained Multi-Threaded Design

For the CG multi-threaded processors, the thread switching is often based on
the occurrence of pipeline stall and flush. The pipeline stall and flush are in-
curred by some types instructions, such as instructions for memory access and

10

T1 T2

T1

T2

0 5 Time (cc)

0

Time (cc)

5

1
0

1
5

Execution clock cycle

1
0

(b)

(a)

Unready clock cycle

Ready waiting for exec.

Figure 4.5: Execution in Coarse-Grained Design

for branching. We call such instructions bf hazard risk (HR) instruction. A
HR instruction may and may not cause pipeline stall, depending on the real
execution situation. For example, a memory load instruction may not cause
pipeline stall if the memory data is cached and the cache access takes only one
clock cycle.

The thread switching can be controlled statically or dynamically. With the
static approach, the pipeline execution will switch to other thread whenever
a HR instruction is encountered; while by the dynamic approach, the thread
switching happens only when a pipeline hazard actually appears. The static
approach is simple and easy to implement. Our model is based on the static
approach.

The static thread switching can be implemented without extra performance
overhead, as has been discussed in [7][11]. Therefore, in our model, we assume
it takes zero clock cycles to switch from one thread to another. We also assume
that if a HR instruction in a thread initiates thread switching, this thread is
put in unready state and should wait at least ιhj

clock cycles before it changes
back to ready stage, where hj is the hazard associated with the HR instruction
and ιhj

the hazard latency.
In CG processor, the pipeline is idle only when all threads are in unready

state. Take the two-thread execution shown in Figure 4.5, as an example. Both
threads each have 4 execution clock cycles (denoted by the colored blocks) and
5 clock cycles (shaded blocks) in the unready state. If executed in sequence,
the two threads will have 18 unready clock cycles, as shown in Figure 4.5(a).
Figure 4.5(b) shows the coarse-grained threaded execution. For each thread,
there are three kinds of states: 1)execution (shown in colored blocks), 2) unready
(in shaded blocks), and 3) ready waiting for execution (blank blocks). The
pipeline is in the unready stage only when two threads are unready, which is in
clock cycles 7, 8, 10.

We use Cur0 to represent the number of unready clock cycles of a single
thread and Curnt

the unready clock cycles of n threads. The unready rate, Rur,
is defined as the ratio of the number of the unready clock cycles over the whole
execution time.

For a single thread execution (only one thread is solely executed in the
pipeline), the number of unready clock cycles is

Cur0
= U ×

k
∑

j=1

(fHRj
× ιhj

), (4.13)

11

where U is the number of executed instructions in one thread, k is the num-
ber of different HR instruction types, fHRj

is the frequency of the j-type HR
instructions over the executed clock cycles number (U), and ιhj

is the hazard
latency of the related instruction.

For simplicity, here we assume all threads concurrently execute a same ap-
plication with a similar execution behavior.

The unready rate of n threads is

Rurnt =
Curnt

Curnt + n× U
. (4.14)

From Formula (4.14), the unready clock cycles of the n threads is

Curnt =
n× U × Rurnt

1− Rurnt

. (4.15)

The unready rate of single thread is

Rur0 =
U ×

∑k
j=1(fHRj

× ιhj
)

n× U + Curnt

=
U ×

∑k
j=1(fHRj

× ιhj
)

n× U +
n×U×Rurnt

1−Rurnt

=

∑k
j=1(fHRj

× ιhj
)

n+
n×Rurnt

1−Rurnt

. (4.16)

The unready rate of the n threads can also, statistically, be

Rurnt = (Rur0
)n. (4.17)

With Formula (4.16) and Formula (4.17), we have

nn ×Rurnt

(1 −Rurnt
)n

= (

k∑

j=1

(fHRj
× ιhj

))n. (4.18)

We can then use Equation (4.18) to estimate the unready rate of n threads2.
With the idle rate, we can in turn estimate the CPI for a multi-threaded

pipeline design based on Formula (4.10), as given below:

CPI = 1 +Rurnt . (4.19)

5 Experimental Results

To verify the estimation models, we built hardware processors of different multi-
threads, based on the PISA [14] ISA (Instruction Set Architecture). A six-stage
pipeline was implemented for each of the processors: Instruction Fetch stage,
Instruction Decode stage, Execution stage, two memory access stages; and the
last Write Back stage. ASIPMeister [15] was used to generate the VHDL model
for the processor, and six applications from the Mibench testbench suite [16]
were selected in the experiment. The experimental setup and design flow are
shown in Figure 5.1.

2It is worth to point out that there may not be an algebraic solution of the unready rate
for a given n value. In that case, numeric approach with some math tool can be used.

12

ASIPmeister Simplescalar

processor VHDL
model

object code

ISA

ModelSim

application

Thread-Interleaved

Design

Fine-Grained
VHDL model

Single-thread Processor

Design

Multi-threaded processor

design
CPI Estimation

Model

Coarse-Grained
VHDL model

CPIest

CPIsim

Profiling data

ModelSim

Design Comiler

Processor
component power

II. CPI estimation
model verification

I. VDHL processor
model verification

III. Energy
Estimation

Figure 5.1: Experimental Setup and Design Flow

For an application written in C, it is compiled with the Simplescalar GCC
[14]. The execution of the application on the processor model is simulated with
Modelsim [17], and its results are compared with the Simplescalar simulation
results for functional verification of the processor design. The execution trace
fromModelsim is used in profiling the HR instruction frequencies and the hazard
frequencies, based on which, the CPI and the power consumption are estimated.
The Design Compiler [18] estimates the power consumption of the processor
based on the 65nm technology. The experiments results are given in the next
section.

5.1 Power Estimation Verification

With the baseline processor, we built the hardware models for the 2- and 3-
thread multi-threaded processors, each of two different designs: the FG based
and the CG based. The baseline register file is replicated and dedicated to each
thread. In the FG based design, the forwarding unit is reduced according to the
thread number. Table 5.1 shows the relative power consumption for the multi-
threaded designs as compared to the baseline design. The estimated values given
in Row 2 are calculated with Formula (4.9) and Formula (4.7). Row 3 shows
the simulation values from the Design Compiler [18]. The percentage differences
between the estimation and simulation values are given in the last row. As can
be seen from the table, the differences are small. On average, there is a 3.26%
difference for the power estimation when compared to the result from Design

13

Compiler.

FG CG AVG
2thread 3thread 2thread 3thread

EstVal 2.195 2.680 2.384 2.932
SimVal 2.304 2.750 2.441 3.022
Diff. 4.95% 2.62% 2.39% 3.06% 3.26%

Table 5.1: Relative Power Consumption from Estimation and Simulation

5.2 CPI Verification for CG Designs

Unlike the CPI Formula 4.12 for the FG design, approximations have made in
the derivations of the CPI for CG designs. To check how the approximations
affect the estimation, we also run CPI comparisons between estimation and
simulation.

With the PISA ISA and the processor implementation, there are pipeline
hazards that related to two types of instruction dependencies: data dependency
on memory access, and control flow dependency on branch condition. The
hazard frequency is made of the memory access rate and branching rate.

The profiling data for each of the applications in our experiment on the base-
line pipeline are presented in Table 5.2, where Row 2 gives the total number of
instructions executed. The number of executed branch instructions and memory
accesses are given in Rows 3-4, respectively. The branching and memory access
rates over the total number of instructions are given in the last two rows.

Sha Qsort Bitcount Dijkstra Strsearch Aes BSort
Exec. instr. number 19912 24336 14812 21710 14436 36966 14244

Branch number 3718 5568 4061 3571 2579 75157 2631
Mem-access number 2339 3545 91 3112 411 5995 2535

Branch rate 0.187 0.229 0.274 0.164 0.179 0.203 0.185
Mem-access rate 0.117 0.146 0.006 0.143 0.028 0.162 0.178

Table 5.2: Profiling Data

The CPI values are shown in Table 5.3. Here, the hazard length for memory
access is 4cc and for the conditional branching is 2cc. Both the branch and
memory access rates from profiling (shown in Table 5.2) are used in the CPI
estimation and the calculated results from Formula (4.18 and 4.10) are presented
in the second data section (rows 6 to 7) in the table. The simulation results
are in the first section (rows 3 to 4), and the differences between the estimated
value and simulation result (in percentage) are given in the last data section;
The last column in this section shows the average value. As can be seen from
the table, on average, there are, respectively, 2.94% and 2.52% differences for
the 2-thread and 3-thread designs.

To see the impact of memory latency on the estimation model, we change
the memory delay in the designs. Table 5.4 and Table 5.5 show the CPI with the
memory delay of 8cc and 14cc, respectively. From Table 5.4, we see the average
discrepancies of 3.62% and 3.95%, respectively in the 2-thread and 3-thread CG
designs when the memory latency is 8cc, and the discrepancies slightly increase
to 3.88% and 6.49% as the memory delay is raised to 14cc (shown in Table 5.5).

In summary, both the power estimation model and the CPI estimation model
offer results very close to the simulation and therefore can be used to estimate

14

Sha Qsort Bitcount Dijkstra Strsearch Aes BSort AVG
simulation value

2-thread 1.150 1.194 1.010 1.138 1.038 1.179 1.095
3-thread 1.064 1.082 1.004 1.053 1.015 1.056 1.059

estimated result
2-thread 1.124 1.173 1.066 1.151 1.051 1.182 1.187
3-thread 1.018 1.031 1.006 1.023 1.004 1.034 1.035

estimation discrepancy
2-thread 2.20% 1.70% 5.57% 1.18% 1.21% 0.32% 8.38% 2.94%
3-thread 4.33% 4.69% 0.24% 2.89% 1.06% 2.11% 2.29% 2.52%

Table 5.3: CPI in Coarse-Grained Designs (with 4cc memory latency)

Sha Qsort Bitcount Dijkstra Strsearch Aes BSort AVG
simulation value

2-thread 1.364 1.474 1.022 1.380 1.090 1.489 1.445
3-thread 1.161 1.207 1.009 1.103 1.039 1.184 1.121

estimated result
2-thread 1.279 1.380 1.071 1.355 1.077 1.417 1.446
3-thread 1.065 1.109 1.007 1.092 1.007 1.124 1.140

estimation discrepancy
2-thread 6.20% 6.40% 4.84% 1.82% 1.21% 4.83% 0.07% 3.62%
3-thread 8.33% 8.18% 0.24% 1.06% 3.08% 5.05% 1.68% 3.95%

Table 5.4: CPI in Coarse-Grained Designs (with 8cc memory latency)

Sha Qsort Bitcount Dij Strsearch Aes BSort AVG
simulation value

2-thread 1.663 1.866 1.037 1.720 1.169 1.848 1.964
3-thread 1.328 1.435 1.019 1.301 1.083 1.407 1.250

estimated result
2-thread 1.557 1.733 1.080 1.713 1.125 1.820 1.889
3-thread 1.190 1.296 1.008 1.270 1.015 1.342 1.387

estimation discrepancy
2-thread 6.37% 7.13% 4.15% 0.41% 3.76% 1.52% 3.82% 3.88%
3-thread 10.37% 9.72% 1.08% 2.40% 6.28% 4.59% 10.98% 6.49%

Table 5.5: CPI in Coarse-Grained Designs (with 14cc memory latency)

the energy consumption of a design, which is given in the following section.

5.3 Energy Efficiency Analysis and Multi-threaded Pro-

cessor Evaluation

To evaluate a multi-threaded processor, we estimate its energy based on the
average power consumption and CPI of a given set of applications.

For our given 6-stage baseline processor, here in the experiment we simply
examined processors with the thread number range from two to six (more designs
with even higher thread numbers can be easily evaluated in the same way based
on the estimation models proposed). Based on Formula (4.7) and Formula (4.9),
the relative power as compared to the baseline design of different thread number
for the FG and CG designs are estimated and given in Table 5.6.

Table 5.7 shows the average CPI of 7 applications of different designs. Here,
the branch delay always takes 2cc and the memory delay varies from 2cc to 10cc,
as given in Rows 2-3. Row 5 shows the average CPIs with the baseline processor
execution, while Rows 7-11 show the CPIs of the CG design. The CPIs of the
FG design are given in Rows 13-17.

With the above relative power consumption (Table 5.6) and CPI, we can
therefore estimate the energy costs of different processor designs, which are

15

Relative Power (times)
Coarse-grained Fine-grained

2-thread 1.349 1.242
3-thread 1.659 1.516
4-thread 1.969 1.802

Table 5.6: Relative Power of Multi-Threaded Processor Over the Baseline Pro-
cessor

Pipeline Characteristics
Memory Delay 2cc 3cc 4cc 5cc 6cc 7cc 8cc 9cc 10cc
Branch Delay 2cc 2cc 2cc 2cc 2cc 2cc 2cc 2cc 2cc

CPI estimation
1-thread 1.505 1.618 1.731 1.844 1.957 2.070 2.184 2.297 2.410

Coarse-grained CPI
2-thread 1.073 1.102 1.136 1.172 1.211 1.251 1.294 1.337 1.382
3-thread 1.008 1.014 1.022 1.032 1.045 1.061 1.079 1.099 1.120
4-thread 1.001 1.002 1.003 1.004 1.007 1.011 1.016 1.022 1.030
5-thread 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.003
6-thread 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fine-grained CPI
2-thread 1.253 1.253 1.366 1.366 1.479 1.479 1.592 1.592 1.705
3-thread 1.000 1.113 1.113 1.113 1.226 1.226 1.226 1.339 1.339
4-thread 1.000 1.000 1.113 1.113 1.113 1.113 1.226 1.226 1.226
5-thread 1.000 1.000 1.000 1.113 1.113 1.113 1.113 1.113 1.226
6-thread 1.000 1.000 1.000 1.000 1.113 1.113 1.113 1.113 1.113

Table 5.7: CPI Estimation

Pipeline Characteristic
MemDly 2cc 3cc 4cc 5cc 6cc 7cc 8cc 9cc 10cc
BrchDly 2cc 2cc 2cc 2cc 2cc 2cc 2cc 2cc 2cc

Energy estimation
1 thread 1.505 1.618 1.731 1.844 1.957 2.070 2.184 2.297 2.410

Coarse-grained
2 thread 1.447 1.486 1.532 1.581 1.633 1.688 1.745 1.803 1.863
3 thread 1.671 1.681 1.695 1.713 1.734 1.760 1.790 1.822 1.857

4 thread 1.970 1.972 1.974 1.978 1.983 1.990 2.000 2.013 2.028
5-thread 2.279 2.279 2.279 2.279 2.279 2.279 2.279 2.283 2.285
6-thread 2.589 2.589 2.589 2.589 2.589 2.589 2.589 2.589 2.589

Fine-grained
2 thread 1.556 1.556 1.696 1.696 1.837 1.837 1.977 1.977 2.117
3 thread 1.516 1.688 1.688 1.688 1.859 1.859 1.859 2.031 2.031

4 thread 1.802 1.802 2.005 2.005 2.005 2.005 2.209 2.209 2.209
5-thread 2.091 2.091 2.091 2.328 2.328 2.328 2.328 2.328 2.564
6-thread 2.383 2.383 2.383 2.383 2.653 2.653 2.653 2.653 2.653

Table 5.8: Energy Estimation

16

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
n

e
rg

y
 I

m
p

ro
v

e
m

e
n

t
(P

e
rc

e
n

ta
g

e
)

Memory Delay

coarse-grained Fine-grained

Figure 5.2: Energy Improvement

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14P
e

rf
o

rm
a

n
ce

 I
m

p
ro

v
e

m
e

n
t

p
e

r
E

n
e

rg
y

C
o

n
su

m
p

ti
o

n
 U

n
it

 (
T

im
e

s)

Memroy Delay(Clock Cycles)

2-thread 3-thread 4-thread 5-thread 6-thread

Figure 5.3: Performance Improvement (FG)

shown in Table 5.8. In Table 5.8, Row 5 gives the relative energy of a single-
thread processor. Rows 7-11 and Rows 13-17 show, respectively, the relative
energy consumptions of the CG and FG designs, where the minimum energy
consumption among different designs for a given memory access delay is high-
lighted in bold.

Comparing the energy efficiency between the multi-threaded processors (Rows
7-17) and the baseline processor (Row 5), we can see that the multi-threaded
processor designs always offer a better solution. In addition, the CG design
can achieve better energy efficiency than the FG design. The average energy

17

0.8

1.3

1.8

2.3

2.8

3.3

3.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
e

rf
o

rm
a

n
ce

 I
m

p
ro

v
e

m
e

n
t

p
e

r
E

n
e

rg
y

C
o

n
su

m
p

ti
o

n
 U

n
it

 (
T

im
e

s)

Memroy Delay(Clock Cycles)

2-thread 3-thread 4-thread 5-thread 6-thread

Figure 5.4: Performance Improvement (CG)

improvement(%) of both CG and FG are given in Figure 5.2, which shows the
minimum energy consumption for different memory access delays.

The performance improvement per energy unit consumption (PIPE) of dif-
ferent processors with varied memory access delays for different number threads
designs are shown in Figures 5.3 (FG based designs) and 5.4 (CG based de-
signs). As can be seen from Figure 5.3, the 3-threaded processor generally gives
a best energy efficiency in the FG design. But for the CG based designs, the
optimal solution varies as the memory access delay changes. The best design
solution changes from the 2-threaded processor for a small memory access delay,
to the 3-threaded processor, and goes further to the 4-threaded processor when
the memory access delay is increased.

6 Conclusions

Estimation models for performance and energy consumption of multi-threaded
processors have been proposed in this paper. The models offer the similar
results as produced by the commercial design simulation tool (ModelSim), where
the RTL hardware description model for each processor should be built before
simulation, which is much time consuming and tedious. The models proposed
in this paper enable fast design space exploration for an optimal multi-threaded
processor based on a given baseline pipeline design.

Based on our experiments on the multi-threaded processor designs with dif-
ferent thread number (from 1 thread to 4 threads), we found that the CG based
designs are better than the FG based designs in terms of energy efficiency. And
for the CG designs, the optimal solution changes with the memory access de-
lay. With our target baseline processor (PISA ISA and 6-stage pipeline), the
2-threaded processor is best for the small memory access delay (≤ 4cc); but the
3-threaded design appears optimal when the memory delay is in the range of
4cc to 10cc, and when the delay exceeds 10cc, the 4-threaded processor becomes

18

superior.

Bibliography

[1] T. Ungerer, B. Robic and J. Silc. A survey of processors with explicit mul-
tithreading. In ACM Computing Surveys, volume 35, issue 1, page 29-63,
March, 2003.

[2] H.F. Jordan. Performance measurements on HEP-a pipelined MIMD com-
puter. In 10th annual international symposium on Computer architecture,
volume 11, issue 3, pages 207-212, June, 1983.

[3] R.H. Halstead, Jr and T. Fujita. MASA: A multithreaded processor ar-
chitecture for parallel symbolic computing. In Computer Architecture, 1988.
Conference Proceedings. 15th Annual International Symposium, pages 443-
451, June, 1988.

[4] M.R. Thistle and B.J. Smith. A processor architecture for Horizon. In
Supercomputing ’88 Proceedings of the 1988 ACM/IEEE conference on Su-
percomputing, pages 35-41, 1988.

[5] R. Alverson and D. Callahan. The Tera computer system. In ICS ’90
Proceedings of the 4th international conference on Supercomputing, 1990.

[6] M. Fillo, S.W. Keckler, and W.J. Dally. The m-machine multicomputer.
In Proceedings of the 28th Annual International Symposium, pages 146-156,
1995.

[7] W. Grunewald and T. Ungerer. A multithreaded processor designed for
distributed shared memory systems. In Advances in Parallel and Distributed
Computing, 1997. Proceedings, page 206-213, 1997.

[8] K. Kurihara, D. Chaiken, and A. Agarwal. Latency tolerance through mul-
tithreading in large-scale multiprocessors. In Proceedings International Sym-
posium on Shared Memory Multiprocessing, 1990.

[9] T. Killeen and M. Celenk. Stream-interleaved pipelined RISC processor
design for SIMD andMIMD system development. In 1993 (25th) Southeastern
Symposium on System Theory, pages 452–456, 1993.

[10] A. Agarwal, J. Kubiatowicz, and D. Kranz. Sparcle: An evolutionary pro-
cessor design for large-scale multiprocessors. Micro, IEEE, volume13, issue3,
page48-61, December 1993.

[11] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multi-
threaded sparc processor. Micro, IEEE, volume25, issue2, page21-29, 2005.

[12] J.S. Seng, D.M. Tullsen, and G.Z.N. Cai. Power-sensitive multithreaded
architecture. Proceedings 2000 International Conference on Computer Design,
pages 199–206, 2000.

19

[13] A. Gontmakher, A. Mendelson and A. Schuster. Using fine grain multi-
threading for energy efficient computing. In Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel programming-
PPoPP ’07, pages 259-269, 2007.

[14] D. Burger and T.M. Austin. The SimpleScalar tool set, version 2.0. ACM
Sigarch Computer Architecture News, volum25, issue3, page 13-25, 1997.

[15] ASIP-meister. http://www.asip-solutions.com/.

[16] MR. Guthaus, JS. Ringenberg, D. Ernst, TM. Austin, T. Mudge and RB.
Brown. MiBench: A free, commercially representative embedded benchmark
suite. In 4th Annual IEEE Workshop on Workload Characterization, 2001

[17] Mentor Graphics Modelsim. http://www.synopsys.com.

[18] Synopsys Synopsys Design Compiler. http://www.synopsys.com.

20

